6,991 research outputs found

    Controlled fabrication of tunable delay using compound phase shifted resonators

    Get PDF
    Fine tuned, narrowband group delay (“slow light”) is obtained using a compound phase shifted grating and superposing resonances. Both simulation and experiments are reported

    Optical Yagi-Uda nanoantennas

    Get PDF
    Conventional antennas, which are widely employed to transmit radio and TV signals, can be used at optical frequencies as long as they are shrunk to nanometer-size dimensions. Optical nanoantennas made of metallic or high-permittivity dielectric nanoparticles allow for enhancing and manipulating light on the scale much smaller than wavelength of light. Based on this ability, optical nanoantennas offer unique opportunities regarding key applications such as optical communications, photovoltaics, non-classical light emission, and sensing. From a multitude of suggested nanoantenna concepts the Yagi-Uda nanoantenna, an optical analogue of the well-established radio-frequency Yagi-Uda antenna, stands out by its efficient unidirectional light emission and enhancement. Following a brief introduction to the emerging field of optical nanoantennas, here we review recent theoretical and experimental activities on optical Yagi-Uda nanoantennas, including their design, fabrication, and applications. We also discuss several extensions of the conventional Yagi-Uda antenna design for broadband and tunable operation, for applications in nanophotonic circuits and photovoltaic devices

    Conformal Magnetic Composite RFID for Wearable RF and Bio-Monitoring Applications

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.10.1109/TMTT.2008.2006810This paper introduces for the first time a novel flexible magnetic composite material for RF identification (RFID) and wearable RF antennas. First, one conformal RFID tag working at 480 MHz is designed and fabricated as a benchmarking prototype and the miniaturization concept is verified. Then, the impact of the material is thoroughly investigated using a hybrid method involving electromagnetic and statistical tools. Two separate statistical experiments are performed, one for the analysis of the impact of the relative permittivity and permeability of the proposed material and the other for the evaluation of the impact of the dielectric and magnetic loss on the antenna performance. Finally, the effect of the bending of the antenna is investigated, both on the S-parameters and on the radiation pattern. The successful implementation of the flexible magnetic composite material enables the significant miniaturization of RF passives and antennas in UHF frequency bands, especially when conformal modules that can be easily fine-tuned are required in critical biomedical and pharmaceutical applications

    Tunable MEMS VCSEL on Silicon substrate

    Get PDF
    We present design, fabrication and characterization of a MEMS VCSEL which utilizes a silicon-on-insulator wafer for the microelectromechanical system and encapsulates the MEMS by direct InP wafer bonding, which improves the protection and control of the tuning element. This procedure enables a more robust fabrication, a larger free spectral range and facilitates bidirectional tuning of the MEMS element. The MEMS VCSEL device uses a high contrast grating mirror on a MEMS stage as the bottom mirror, a wafer bonded InP with quantum wells for amplification and a deposited dielectric DBR as the top mirror. A 40 nm tuning range and a mechanical resonance frequency in excess of 2 MHz are demonstrated

    Electrical and electronic devices and components: A compilation

    Get PDF
    Components and techniques which may be useful in the electronics industry are described. Topics discussed include transducer technology, printed-circuit technology, solid state devices, MOS transistors, Gunn device, microwave antennas, and position indicators

    Search for gravitational-wave bursts in LIGO data from the fourth science run

    Get PDF
    The fourth science run of the LIGO and GEO 600 gravitational-wave detectors, carried out in early 2005, collected data with significantly lower noise than previous science runs. We report on a search for short-duration gravitational-wave bursts with arbitrary waveform in the 64-1600 Hz frequency range appearing in all three LIGO interferometers. Signal consistency tests, data quality cuts, and auxiliary-channel vetoes are applied to reduce the rate of spurious triggers. No gravitational-wave signals are detected in 15.5 days of live observation time; we set a frequentist upper limit of 0.15 per day (at 90% confidence level) on the rate of bursts with large enough amplitudes to be detected reliably. The amplitude sensitivity of the search, characterized using Monte Carlo simulations, is several times better than that of previous searches. We also provide rough estimates of the distances at which representative supernova and binary black hole merger signals could be detected with 50% efficiency by this analysis.Comment: Corrected amplitude sensitivities (7% change on average); 30 pages, submitted to Classical and Quantum Gravit

    Backscatter Transponder Based on Frequency Selective Surface for FMCW Radar Applications

    Get PDF
    This paper describes an actively-controlled frequency selective surface (FSS) to implement a backscatter transponder. The FSS is composed by dipoles loaded with switching PIN diodes. The transponder exploits the change in the radar cross section (RCS) of the FSS with the bias of the diodes to modulate the backscattered response of the tag to the FMCW radar. The basic operation theory of the system is explained here. An experimental setup based on a commercial X-band FMCW radar working as a reader is proposed to measure the transponders. The transponder response can be distinguished from the interference of non-modulated clutter, modulating the transponder’s RCS. Some FSS with different number of dipoles are studied, as a proof of concept. Experimental results at several distances are provided
    corecore