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Tunable MEMS VCSEL on Silicon Substrate
Hitesh Kumar Sahoo, Thor Ansbæk, Luisa Ottaviano, Elizaveta Semenova, Fyodor Zubov, Ole Hansen,

and Kresten Yvind

Abstract—We present design, fabrication and characterization
of an optically pumped MEMS VCSEL which utilizes a silicon-
on-insulator wafer for the microelectromechanical system and
encapsulates the MEMS by direct InP wafer bonding, which
improves the protection and control of the tuning element.
This procedure enables a more robust fabrication, a larger
free spectral range and facilitates bidirectional tuning of the
MEMS element. The MEMS VCSEL device uses a high contrast
grating mirror on a MEMS stage as the bottom mirror, a
wafer bonded InP with quantum wells for amplification and a
deposited dielectric DBR as the top mirror. A 40 nm tuning range
and a mechanical resonance frequency in excess of 2 MHz are
demonstrated.

Index Terms—MEMS, VCSEL, wavelength tunable, integra-
tion, Silicon, laser, OCT, swept source.

I. INTRODUCTION

OPTICAL Coherence Tomography (OCT) has grown
rapidly since its introduction in 1991 [1], [2]. Imaging

resolution and speed have increased by 10 and 1 000 000
times, respectively [1]. The application area which initially
was eye imaging [2] has now expanded to cardiology [3],
[4], dermatology [5], urology [6], etc. Integration of OCT
with endoscopes [7], [8] and surgical probes [9] for providing
physicians with real-time data has also been shown. OCT has
also been coupled with other imaging technologies such as
multiphoton tomography [10], non-linear microscopy [11], and
photoacoustic imaging [12] to extract more information. In
order to continue this trend and extend to more application
domains, OCT systems need to be simplified. The ultimate
goal should be to integrate OCT on a chip, in a compact form
factor. The light source is the most important component of a
swept source (SS) OCT system, and the MEMS vertical-cavity
surface-emitting laser (VCSEL) based swept sources [13], [14]
are among the most promising light source technologies for
future integrated OCT systems.

Most existing MEMS VCSELs, e.g., [15], [16], [17], [18],
[19], [20], [21], [22] primarily based on the III-V material
system, share a common design principle. The bottom mirror
is grown along with the active material and the actuated part
is the top mirror. As a result, they have an open MEMS design
and need careful handling until hermetically sealed using an
external packaging. Changes in the humidity and temperature
may result in water condensation on the device which damages
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the MEMS element. A sealed MEMS element would make
a more robust device. Moreover, the MEMS element can be
actuated in one direction only since the electrostatic force is an
attractive force. Also, the MEMS element can only be actuated
one-third of the total gap distance to prevent electrostatic
snap-in. Consequently, the gap must be increased in order to
increase the tuning range, however, the increased gap also
results in a longer laser cavity and thereby a smaller free
spectral range (FSR). So, there is always a trade-off between
a short laser cavity and a wide mirror actuation range. This
trade-off also sets a limit to mode-hop-free tunable wavelength
bandwidth. Thus these issues need to be addressed in order to
design a more robust and better tunable MEMS VCSEL.

In the following, we propose a MEMS VCSEL design
based on a silicon substrate which incorporates sealed MEMS
actuation and the possibility to decouple the actuation gap
from the laser cavity. The bottom mirror of the VCSEL is the
actuated component defined on a silicon-on-insulator (SOI)
substrate, which is then bonded to a III-V wafer with active
material followed by a deposition of the top mirror. The
design of the MEMS VCSEL is discussed in Sec. II. The
fabrication process flow is presented in Sec. III followed by
initial characterization results from a first generation optically
pumped 1550 nm MEMS VCSEL in Sec. IV.

II. DESIGN OF MEMS VCSEL ON SILICON SUBSTRATE

Fig. 1 shows a schematic of the MEMS VCSEL on a
silicon substrate. A high contrast grating (HCG) mirror [23]
is used as the bottom mirror, which is fixed on a MEMS
frame defined in the silicon ”device” layer of an SOI substrate.
The active material and the top mirror, a dielectric distributed
Bragg reflector (DBR), are static and seal the MEMS cavity.
Thus, the DBR and HCG mirrors are no longer dependent
on a challenging epitaxial growth; on the contrary, both
mirrors can be defined using standard complementary metal-
oxide-semiconductor (CMOS) processing steps. The device is
now based on a silicon substrate which makes (automated)
handling of the wafer easier and that paves the path for
further integration. In addition, the MEMS part is now defined
in silicon which is a better mechanical material than III-
V semiconductors. With comparable geometric dimensions,
silicon MEMS is stiffer than III-V MEMS and thus the device
can operate at higher frequency.

A sealed cavity provides multiple benefits, such as improved
control of the MEMS dynamics, since a partial vacuum or
controlled gas pressure in the cavity can be used to adjust the
MEMS damping. In addition, the HCG on the MEMS can
now be actuated both from the top and the bottom electrodes,
essentially increasing the tuning bandwidth. Actuation using
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Fig. 1. Illustration of a MEMS VCSEL on a silicon substrate. The cut-out
section shows the sealed MEMS cavity.

only the bottom electrode is also an option, which realizes a
pull-away design. This option decouples the relation between
the tuning gap and the laser cavity since the HCG bottom
mirror can be placed close to the active layer resulting in a
wide FSR.

The device was modeled using a modal method [24] using
CAMFR [25], [26]. Fig. 2 (a) shows the refractive index profile
of the structure overlaid on the resulting electric field. From
the left, the alternating layers of SiO2 and TiO2 represent the
top mirror, followed by a layer of active material, the tunable
airgap and the HCG mirror. The active material was defined
by 8 quantum wells (QWs) (InGaAsP/InGaAlAs) in InP. The
air-gap thickness was varied to simulate the effect of tuning.
For each air-gap thickness, the corresponding cavity mode
and threshold gain were determined as shown in Fig. 2 (b).
The lasing mode was obtained by satisfying the condition of
unity round trip gain for the cavity and the threshold gain was
equal to the minimum gain required to overcome losses of the
system. Multiple QWs were used to minimize the impact of the
moving anti-nodes of the field when the device is tuned thus
a low threshold can be achieved for the desired wavelength
range. A semiconductor coupled design was chosen for the
device since the attempt to incorporate an AR coating at the
bonding interface failed either due to roughness or stress in the
coating. An air dominant design [22] could also be done and
since the HCG mirror is not the output mirror this could be
done with a minimum penalty from the needed high reflectivity
of the MEMS mirror.

III. 1550 NM MEMS VCSEL FABRICATION

Fig. 3 shows the fabrication process flow for the MEMS
VCSEL. A SOI wafer with a 400±5 nm p-doped silicon
device layer (10 nm less than the optimal value for the HCG)
on a 1 µm thick buried oxide was used as the substrate.
Electron beam lithography was used to define the HCG and
the MEMS frame around it. For a reflectivity around 99.9%
at 1550 nm, the HCGs was defined with a periodicity of
650 nm and duty cycles of 0.63±0.08 to account for process
variations. The pattern was transferred to the MEMS silicon
layer using reactive ion etching (RIE). A blanket layer of SiO2

was then deposited. The thickness of this layer equals the air-
gap between the active layer and the HCG mirror. SiO2 was
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Fig. 2. (a) Electric field (corresponding to an air gap of approx. 930 nm)
plotted on top of the device structure defined by the refractive index of
the layers. (b) The lasing wavelength and threshold gain plotted against the
corresponding air gap (the tunable component of the cavity length).

chosen since it is a standard CMOS material and easy to work
with. This layer is also the interface layer for bonding with the
active material, thus the surface roughness of the SiO2 layer
must be below 0.5 nm for successful direct bonding. However,
SiO2 deposited by plasma enhanced chemical vapor deposition
(PECVD) has a surface roughness in excess of 3 nm, thus a
two-step deposition process was used to achieve the required
surface roughness. Following PECVD deposition of SiO2, a
layer of phosphorous boron doped silicate glass (PBSG) was
deposited and then the stack was annealed at 1000 ◦C for
reflow of the glass. The reflow of the PBSG resulted in surface
roughness of approximately 0.2 nm. The reason for using two
types of SiO2 was the relatively low wet etch rate of PBSG in
buffered HF (bHF), which becomes critical in the subsequent
etch step. A dry etch step followed by a wet etch using bHF
was used to release the MEMS structure. The wet etch avoided
ion damage on the HCG MEMS. Using only PBSG would
increase the etch time in bHF which would degrade the resist
mask. The wet etch in bHF is continued to etch also the buried
oxide below the HCG MEMS. A critical point drying (CPD)
step was used in order to successfully release the MEMS. The
processed wafer was then direct bonded to an InP wafer with
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the active material, using Al2O3 as an intermediate layer [27].
The wafers were annealed at 300 ◦C to consolidate the wafer
bonding. The InP substrate on the bonded wafers was then
etched away leaving a thin layer of InP with the active region.
Contact-windows were etched to all the contact layers the
n-doped layer in InP, the MEMS silicon layer and the silicon
substrate. A combination of dry and wet etch steps were used
in all three contact-window etches to avoid ion damage to
the contact surface. A metal stack (25 nm Ti, 75 nm Pt, 300
nm Au) was then deposited for establishing contacts using a
lift-off process. In addition to the metal contacts, metal strips
were added on top of the chip to improve with heat extraction
from the lasing region (Visible in Fig. 4). Finally, 7 pairs of
TiO2 (n = 2.31 at 1550 nm) and SiO2 (n = 1.44 at 1550
nm) layers were deposited using sputter deposition to define
the top DBR mirror. The individual layer thicknesses were
optimized to reduce the reflectivity near the pump wavelengths
while retaining high reflectivity around 1550 nm. A scanning
electron microscope (SEM) image of a completed MEMS
VCSEL is shown in Fig. 4.

The design of the MEMS VCSEL adds flexibility to the
fabrication process flow. All critical steps such as electron
beam lithography, growth of active material and bonding are
performed early in the process flow followed by the non-
critical steps such as contact definition and DBR deposition.
The bottom mirror (HCG on MEMS frame) and the top mirror
(DBR) are defined using standard Si processing.

IV. DEVICE CHARACTERIZATION AND DISCUSSION

The proposed device can be designed for both electrical and
optical pumping. A current confinement scheme e.g. patterned
tunnel junctions or implantation close to the active layer,
is required to achieve electrical pumping. In this paper, we
focus on optical pumping. The fabricated device was optically
pumped using a continuous wave 976 nm fiber Bragg grating
stabilized laser diode. The pump was also used to define the
aperture for lasing; part of the incident pump energy is used for
the generation of photons and the remaining energy is released
as heat. The heat increases refractive index at the incident spot
and this defines the lasing mode. A microscope setup was
used to focus the pump beam. Fig. 5 shows the threshold plot
for a VCSEL at room temperature. The threshold input power
(delivered on the chip) is ≈5.5 mW which translates to around
1.4 mW of absorbed power (assuming the active material has
an absorption coefficient of 104 cm−1), which is equivalent to
an electrical injection current of 1 mA. The maximum power
output achieved for the device is 0.1 mW. The small variations
seen in Fig. 5 are due to undesired changes in the focus of
the microscope.

Fig. 6 shows the optical spectrum measured on the fabri-
cated sample. The spectrum shows single mode emission with
a peak at 1564 nm and a side mode suppression ratio of more
than 55 dB. The use of the HCG bottom mirror also helps with
suppression of higher order modes [28]. On the other hand,
a HCG defined in silicon (which absorbs 976 nm) broadens
the line-width of the emission due to heating as also reported
by Rao et al. [18]. Fig. 7 shows the optical spectra obtained

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 3. The fabrication process flow of a 1550 nm MEMS VCSEL on a
silicon substrate. (a) A SOI wafer with a silicon device layer thickness of
400 nm was used as the substrate. (b) The bottom mirror for the VCSEL, the
HCG was defined in the silicon layer using e-beam lithography and RIE. (c)
A blanket layer of 930 nm SiO2 was then deposited followed by etch steps
to open up on top of the patterned area and release the MEMS using CPD.
(d) The processed wafer was directly bonded using Al2O3 as an intermediate
layer to InP wafer with the QW structures. (e) The InP substrate was then
etched away. (f) Openings were etched to all the contact layers - n-doped
layer in InP, MEMS silicon layer and the silicon substrate. (g) Metal stack
was deposited for establishing contacts. (h) 7 pairs of TiO2 and SiO2 layers
were deposited to define the top DBR mirror.

Fig. 4. SEM image of a fabricated MEMS VCSEL. The dark region around
the metal pads is a thin layer of SiO2 mask. The odd shape is due to an
improper adhesion with the resist mask used for metal deposition.
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Fig. 6. Optical spectrum from the MEMS VCSEL using 976 nm optical
pumping.

for 980 nm and 1310 nm pumping (Note, measurements in
Figs. 6 and 7 were performed on different devices). The lasing
peak corresponding to 980 nm pumping is red shifted due
to heating. The measured full width half maximum (FWHM)
was much smaller using 1310 nm pumping. However, for the
QWs used in the device, a 976 nm pump is more effective
than a 1310 nm pump since the former is absorbed both in
the QWs and its barriers whereas the latter is only absorbed
in the available states within the QWs; thus 980 nm laser
pumping was used for further characterization.

A. DC Characteristics

The MEMS can be actuated by applying a voltage between
the centre electrode (HCG MEMS silicon layer) and either top
(doped InP) or bottom (silicon substrate) electrodes. Fig. 8
shows the output spectrum when the MEMS is actuated.
By application of a voltage between the centre and bottom
electrodes, the peak emission red shifts. Some degree of
bidirectional tuning is also demonstrated since the emission
wavelength blue shifts when a voltage is applied between
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Fig. 7. Optical spectra obtained using 976 nm and 1310 nm pump lasers. The
FWHM measured on the emission using the 1310 nm pump laser is smaller
than that obtained using a 976 nm pump laser.
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Fig. 8. Optical spectra showing wavelength tuning achieved for different
actuation voltages. A 976 nm laser diode was used for pumping. The
electrodes used for the right part of tuning were the MEMS silicon layer
and the silicon substrate. The electrodes for the left part of actuation were
doped InP and MEMS silicon layer. The MEMS silicon layer was grounded
in both configurations.

the top and centre electrodes. A very limited tuning range
was achieved using top actuation either because of increased
losses from heating or gain limitations. Overall, the device
demonstrated a wide tuning range of approximately 40 nm.
This is, however, not a fundamental limit to the maximum
tuning range. The active layer can be optimized to have a
wider gain bandwidth, and at the same time, heat extraction
needs to be optimized to reduce the losses to further expand
the tuning range.

B. AC Characteristics

The AC dynamics of the device was studied since a
continuous swept source is interesting for OCT. A voltage
waveform V (t) = VDC + VAC sin(ωt) where ω = 2πf , was
applied between the HCG MEMS silicon layer and the silicon
substrate. The DC bias VDC shifts the zero point for the AC
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Fig. 9. Optical spectrum obtained for AC actuation. A voltage waveform
V (t) = VDC + VAC sin(ωt) where ω = 2πf and f = 2.46 MHz was
applied between MEMS silicon ”device” layer and the silicon substrate.

bias VAC sin(ωt) and shifts the zero position for the HCG
MEMS silicon layer. Fig. 9 shows the AC response of the
device at the resonance frequency (f = 2.46 MHz). The AC
actuation is studied at the resonance frequency to achieve the
maximum tuning range [13]. The use of silicon for the MEMS
element helped to increase the resonance frequency. As the DC
bias, VDC is increased the centre of the tuning curve red shifts
and there is a distinct increase in the bandwidth of the tuning
curve. A higher VDC reduces the gap between the actuating
electrodes, thus the electric field increases, and therefore the
displacement at fixed VAC sin(ωt) increases. AC actuation at
the resonance frequency increases the tuning range beyond the
achievable DC tuning range [13]. The tuning range of around
20 nm achieved at 2.46 MHz is among the highest reported
[13], [17], [29], [30], [31]. The high resonance frequency
achieved would be desirable for a swept source for faster
imaging. The high frequency of operation can also be used
for fast switching applications if combined with a damped
MEMS cavity.

Different devices were used for the AC and DC actuation
experiments; thus, tuning range for the MEMS VCSEL can
be expected to improve in future experiments. The variation
in lasing wavelength between devices came mainly from non-
uniformity during the SiO2 deposition process which defines
the cavity length, thus a better uniformity control can improve
the repeatability and performance in future devices.

C. Thermal Effects

Lasers are dependent on the operating temperature as
it influences the gain spectrum, threshold carrier density,
radiative/non-radiative recombination and overall refractive
index of the system [32]. In addition, the device in this paper
also relies on temperature for thermal lensing and, thus, lasing.
The active region illuminated by the pump beam is locally
heated due to the injected carriers. As the pump power is
increased carrier generation is increased which increases the
heat generated (non-radiative transitions). This contributes to
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Fig. 10. The shift in peak lasing wavelength of the MEMS VCSEL plotted
against the substrate temperature for various pump laser power. 53 mA pump
laser current corresponds to the threshold for the MEMS VCSEL.

a change in refractive index and thus shifts the lasing peak.
In order to study the effect of temperature, the emission
was recorded for different pump powers at different substrate
temperatures. Fig. 10 shows the shift in the peak of the lasing
wavelength for changes in substrate temperature and pumping
power. For moderate and low pumping powers, the lasing
wavelength has an almost linear dependence on temperature.
The temperature coefficient for low pump power is close
to 0.12 nm/K. However, the wavelength changes (increases)
much more rapidly with an increase in pump power. The
temperature coefficient increases to around 0.28 nm/K for
higher pump powers. The pump power (a local phenomenon)
has a more profound effect than variations with the substrate
temperature. Fig. 10 can be used to estimate the amount of
heating of the device due to pumping. As an example, for this
device with a pump laser current of 69 mA, lasing at 1595
nm results in a temperature of 38 ◦C at the core, which is
approximately 18 ◦C above room temperature.

V. CONCLUSION

We have successfully designed and fabricated a MEMS
VCSEL on a silicon substrate which encapsulates the MEMS
in a cavity, enables the possibility of bi-directional tuning
and is a promising robust design for future on-chip integrated
devices using MEMS VCSELs. The design exploits standard
silicon CMOS based processing for part of the device and all
III-V processing done after bonding to silicon. The fabricated
MEMS VCSEL was characterized by optical pumping to have
a low threshold for lasing and a wide DC tuning range of 40
nm with some degree of bi-directional tuning. AC actuation
was also explored to find the resonance frequency of MEMS
and a high-frequency operation at 2.4 MHz with a tuning range
of 15-20 nm was also achieved.
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G. Böhm, S. Jatta, F. Küppers, P. Meißner et al., “Surface microma-
chined tunable 1.55 µm-vcsel with 102 nm continuous single-mode
tuning,” Optics Express, vol. 19, no. 18, pp. 17 336–17 343, 2011.

[32] U. Menzel, A. Barwolff, P. Enders, D. Ackermann, R. Puchert, and
M. Voss, “Modelling the temperature dependence of threshold current,
external differential efficiency and lasing wavelength in qw laser diodes,”
Semiconductor science and technology, vol. 10, no. 10, p. 1382, 1995.

Hitesh Kumar Sahoo is currently working as a post-doc researcher with
the High-Speed Optical Communication group at the Technical University
of Denmark (DTU) Fotonik. He received B.E. (Hons.) in Electronics and
Instrumentation from Birla Institute of Technology and Science - Goa, India in
2011, M.Sc. in Nanotechnology from the University of Pennsylvania, USA, in
2013 and PhD in the fabrication of wavelength tunable MEMS VCSELs from
DTU in 2018. His research interests include MEMS, heterogeneous material
integration, nano-fabrication and integrated optics.

Thor Ansbæk was born in Copenhagen, Denmark, in 1984. He received
the M.Sc. Eng. degree in 2008 and the Ph.D. degree in 2012 both at The
Technical University of Denmark, Kongens Lyngby, Denmark. His research
interests include semiconductor fabrication, microelectromechanical systems,
and vertical-cavity surface-emitting lasers for medical diagnosis. Currently
CEO of OCTLIGHT ApS, a company developing OCT Swept Sources for
Optical Coherence Tomography.



7

Luisa Ottaviano holds a PhD within physics of semiconductor by the
University of Catania and is currently working as development engineer
at Alight technologies where she is mainly responsible for the process
development, characterisation and failure mode analysis of VCSEL devices
for telecommunication. From 2008 to 2017 she has worked at the Department
of Photonics Engineer at the Technical University of Denmark (DTU) first
as Post Doc, then as academic technician where she has been involved in
several projects involving cleanroom process development, optimization and
fabrication of devices based on III-V compound semiconductors. She is author
or co-author of 50 peer reviewed articles and conference contributions.

Elizaveta Semenova received her B.Sc and M.Sc degrees from St.-Petersburg
State Technical University, Russia in 1999 and 2001, respectively, and she
received her PhD degree in semiconductor physics from A.F. Ioffe Institute,
Russia in 2005. Currently she is holding the position of a Senior Researcher at
the Technical University of Denmark at DTU Fotonik. Her research interests
are focused on the development and the optimization of the epitaxial growth
process of new III-V semiconductor materials for optoelectronic applications,
including III-V on Si. She is a co-author of more than 76 peer-reviewed
scientific publications.

Fyodor Zubov was born in Leningrad (now Saint Petersburg, Russia) in 1984.
He received an MSc degree in technical physics from St. Petersburg State
Polytechnical University, St. Petersburg, Russia, in 2008. Since 2008 till 2010
he was with Phystex, Netherlands, as a research fellow, working on radiation
source for extreme ultraviolet lithography. From 2010 to date he is a research
fellow at Nanophotonics lab. at St. Petersburg Academic University. In 2013
he received the Ph.D. degree from St. Petersburg Academic University. His
current research interests include diode lasers with asymmetric barrier layers,
semiconductor lasers based on microresonators and terahertz quantum cascade
lasers.

Ole Hansen is Professor at DTU Nanolab, the Technical University of
Denmark, where he is heading the Silicon Microtechnology group, with
activities within lithography based micro- and nano-technology. He received
his MSc degree within micro-technology from the Technical University of
Denmark in 1977, and has since then worked with micro- and nano-technology
and applications of the technology within electronics, metrology, sensing,
catalysis and energy harvesting. Current research interests include sustainable
energy, photo-catalysis and tools for characterizing catalytic processes. From
2005-2016 he was part of the Danish National Research Foundation Center
CINF, Center for Individual Nanoparticle Functionality, and since 2016 he
has been part of V-Sustain, the Villum Center for the Science of Sustainable
Fuels and Chemicals.

Kresten Yvind received the M.Sc.E. and Ph.D. degree in 1999 and 2003
from the Research Center for Communication, Optics and Materials (COM)
at the Technical University of Denmark. The center was renamed DTU
Fotonik in 2008 and he is now Professor there. His work is centered on
III-V and silicon optoelectronic devices and involves design of epitaxial
structures to growth, processing and high-speed characterization. Examples
of work has been passive high contrast waveguide devices and high-speed
functional waveguide elements i.e. mode-locked lasers, electro-absorption
modulators and semiconductor optical amplifiers for applications in optical
communication systems or microwave photonics and MEMS VCSELs for
optical coherence tomography. Membrane based devices (on silicon) have
been a focus the last decade leading to efficient nonlinear integrated photonics,
various (active) photonics crystal devices for optical interconnects and MEMS
VCSELs.


