2,817 research outputs found

    Current status of and future opportunities for digital agriculture in Australia

    Get PDF
    In Australia, digital agriculture is considered immature and its adoption ad hoc, despite a relatively advanced technology innovation sector. In this review, we focus on the technical, governance and social factors of digital adoption that have created a disconnect between technology development and the end user community (farmers and their advisors). Using examples that reflect both successes and barriers in Australian agriculture, we first explore the current enabling technologies and processes, and then we highlight some of the key socio-technical factors that explain why digital agriculture is immature and ad hoc. Pronounced issues include fragmentation of the innovation system (and digital tools), and a lack of enabling legislation and policy to support technology deployment. To overcome such issues and increase adoption, clear value propositions for change are necessary. These value propositions are influenced by the perceptions and aspirations of individuals, the delivery of digitally-enabled processes and the supporting legislative, policy and educational structures, better use/conversion of data generated through technology applications to knowledge for supporting decision making, and the suitability of the technology. Agronomists and early adopter farmers will play a significant role in closing the technology-end user gap, and will need support and training from technology service providers, government bodies and peer-networks. Ultimately, practice change will only be achieved through mutual understanding, ownership and trust. This will occur when farmers and their advisors are an integral part of the entire digital innovation system

    Intelligent Control and Security of Fog Resources in Healthcare Systems via a Cognitive Fog Model

    Get PDF
    There have been significant advances in the field of Internet of Things (IoT) recently, which have not always considered security or data security concerns: A high degree of security is required when considering the sharing of medical data over networks. In most IoT-based systems, especially those within smart-homes and smart-cities, there is a bridging point (fog computing) between a sensor network and the Internet which often just performs basic functions such as translating between the protocols used in the Internet and sensor networks, as well as small amounts of data processing. The fog nodes can have useful knowledge and potential for constructive security and control over both the sensor network and the data transmitted over the Internet. Smart healthcare services utilise such networks of IoT systems. It is therefore vital that medical data emanating from IoT systems is highly secure, to prevent fraudulent use, whilst maintaining quality of service providing assured, verified and complete data. In this paper, we examine the development of a Cognitive Fog (CF) model, for secure, smart healthcare services, that is able to make decisions such as opting-in and opting-out from running processes and invoking new processes when required, and providing security for the operational processes within the fog system. Overall, the proposed ensemble security model performed better in terms of Accuracy Rate, Detection Rate, and a lower False Positive Rate (standard intrusion detection measurements) than three base classifiers (K-NN, DBSCAN and DT) using a standard security dataset (NSL-KDD)

    A study of existing Ontologies in the IoT-domain

    Get PDF
    Several domains have adopted the increasing use of IoT-based devices to collect sensor data for generating abstractions and perceptions of the real world. This sensor data is multi-modal and heterogeneous in nature. This heterogeneity induces interoperability issues while developing cross-domain applications, thereby restricting the possibility of reusing sensor data to develop new applications. As a solution to this, semantic approaches have been proposed in the literature to tackle problems related to interoperability of sensor data. Several ontologies have been proposed to handle different aspects of IoT-based sensor data collection, ranging from discovering the IoT sensors for data collection to applying reasoning on the collected sensor data for drawing inferences. In this paper, we survey these existing semantic ontologies to provide an overview of the recent developments in this field. We highlight the fundamental ontological concepts (e.g., sensor-capabilities and context-awareness) required for an IoT-based application, and survey the existing ontologies which include these concepts. Based on our study, we also identify the shortcomings of currently available ontologies, which serves as a stepping stone to state the need for a common unified ontology for the IoT domain.Comment: Submitted to Elsevier JWS SI on Web semantics for the Internet/Web of Thing

    A Fog Computing Approach for Cognitive, Reliable and Trusted Distributed Systems

    Get PDF
    In the Internet of Things era, a big volume of data is generated/gathered every second from billions of connected devices. The current network paradigm, which relies on centralised data centres (a.k.a. Cloud computing), becomes an impractical solution for IoT data storing and processing due to the long distance between the data source (e.g., sensors) and designated data centres. It worth noting that the long distance in this context refers to the physical path and time interval of when data is generated and when it get processed. To explain more, by the time the data reaches a far data centre, the importance of the data can be depreciated. Therefore, the network topologies have evolved to permit data processing and storage at the edge of the network, introducing what so-called fog Computing. The later will obviously lead to improvements in quality of service via processing and responding quickly and efficiently to varieties of data processing requests. Although fog computing is recognized as a promising computing paradigm, it suffers from challenging issues that involve: i) concrete adoption and management of fogs for decentralized data processing. ii) resources allocation in both cloud and fog layers. iii) having a sustainable performance since fog have a limited capacity in comparison with cloud. iv) having a secure and trusted networking environment for fogs to share resources and exchange data securely and efficiently. Hence, the thesis focus is on having a stable performance for fog nodes by enhancing resources management and allocation, along with safety procedures, to aid the IoT-services delivery and cloud computing in the ever growing industry of smart things. The main aspects related to the performance stability of fog computing involves the development of cognitive fog nodes that aim at provide fast and reliable services, efficient resources managements, and trusted networking, and hence ensure the best Quality of Experience, Quality of Service and Quality of Protection to end-users. Therefore the contribution of this thesis in brief is a novel Fog Resource manAgeMEnt Scheme (FRAMES) which has been proposed to crystallise fog distribution and resource management with an appropriate service's loads distribution and allocation based on the Fog-2-Fog coordination. Also, a novel COMputIng Trust manageMENT (COMITMENT) which is a software-based approach that is responsible for providing a secure and trusted environment for fog nodes to share their resources and exchange data packets. Both FRAMES and COMITMENT are encapsulated in the proposed Cognitive Fog (CF) computing which aims at making fog able to not only act on the data but also interpret the gathered data in a way that mimics the process of cognition in the human mind. Hence, FRAMES provide CF with elastic resource managements for load balancing and resolving congestion, while the COMITMENT employ trust and recommendations models to avoid malicious fog nodes in the Fog-2-Fog coordination environment. The proposed algorithms for FRAMES and COMITMENT have outperformed the competitive benchmark algorithms, namely Random Walks Offloading (RWO) and Nearest Fog Offloading (NFO) in the experiments to verify the validity and performance. The experiments were conducted on the performance (in terms of latency), load balancing among fog nodes and fogs trustworthiness along with detecting malicious events and attacks in the Fog-2-Fog environment. The performance of the proposed FRAMES's offloading algorithms has the lowest run-time (i.e., latency) against the benchmark algorithms (RWO and NFO) for processing equal-number of packets. Also, COMITMENT's algorithms were able to detect the collaboration requests whether they are secure, malicious or anonymous. The proposed work shows potential in achieving a sustainable fog networking paradigm and highlights significant benefits of fog computing in the computing ecosystem

    Distributed Hybrid Simulation of the Internet of Things and Smart Territories

    Full text link
    This paper deals with the use of hybrid simulation to build and compose heterogeneous simulation scenarios that can be proficiently exploited to model and represent the Internet of Things (IoT). Hybrid simulation is a methodology that combines multiple modalities of modeling/simulation. Complex scenarios are decomposed into simpler ones, each one being simulated through a specific simulation strategy. All these simulation building blocks are then synchronized and coordinated. This simulation methodology is an ideal one to represent IoT setups, which are usually very demanding, due to the heterogeneity of possible scenarios arising from the massive deployment of an enormous amount of sensors and devices. We present a use case concerned with the distributed simulation of smart territories, a novel view of decentralized geographical spaces that, thanks to the use of IoT, builds ICT services to manage resources in a way that is sustainable and not harmful to the environment. Three different simulation models are combined together, namely, an adaptive agent-based parallel and distributed simulator, an OMNeT++ based discrete event simulator and a script-language simulator based on MATLAB. Results from a performance analysis confirm the viability of using hybrid simulation to model complex IoT scenarios.Comment: arXiv admin note: substantial text overlap with arXiv:1605.0487

    Creating Intelligent Computational Edge through Semantic Mediation

    Get PDF
    This research proposes semantic mediation based on reasoning and the first order logic for mediating the best possible configuration of Computational Edge, relevant for software applications which may benefit for running computations with proximity to their data sources. The mediation considers the context in which these applications exist and exploits the semantic of that context for decision making on where computational elements should reside and which data they should use. The application of semantic mediation could address the initiative to accommodate algorithms from predictive and learning technologies, push AI towards computational edges and potentially contribute towards creating a computing continuum

    Earth Observation Open Science and Innovation

    Get PDF
    geospatial analytics; social observatory; big earth data; open data; citizen science; open innovation; earth system science; crowdsourced geospatial data; citizen science; science in society; data scienc

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    HSCLOUD: CLOUD ARCHITECTURE FOR SUPPORTING HOMELAND SECURITY

    Full text link

    Mobile crowdsensing for road sustainability: exploitability of publicly-sourced data

    Get PDF
    ABSTRACTThis paper examines the opportunities and the economic benefits of exploiting publicly-sourced datasets of road surface quality. Crowdsourcing and crowdsensing initiatives channel the parti..
    corecore