
A Fog Computing Approach for

Cognitive, Reliable and Trusted

Distributed Systems

Mohammed Al-khafajiy

A thesis submitted in partial fulfilment of the requirements of

Liverpool John Moores University

for the degree of

Doctor of Philosophy

February 2020

Abstract

In the Internet of Things era, a big volume of data is generated/gathered every second from

billions of connected devices. The current network paradigm, which relies on centralised

data centres (a.k.a. Cloud computing), becomes an impractical solution for IoT data stor-

ing and processing due to the long distance between the data source (e.g., sensors) and

designated data centres. It worth noting that the long distance in this context refers to the

physical path and time interval of when data is generated and when it get processed. To

explain more, by the time the data reaches a far data centre, the importance of the data

can be depreciated. Therefore, the network topologies have evolved to permit data process-

ing and storage at the edge of the network, introducing what so-called fog Computing. The

later will obviously lead to improvements in quality of service via processing and responding

quickly and efficiently to varieties of data processing requests.

Although fog computing is recognized as a promising computing paradigm, it suffers

from challenging issues that involve: i) concrete adoption and management of fogs for de-

centralized data processing. ii) resources allocation in both cloud and fog layers. iii) having a

sustainable performance since fog have a limited capacity in comparison with cloud. iv) hav-

ing a secure and trusted networking environment for fogs to share resources and exchange

data securely and efficiently. Hence, the thesis focus is on having a stable performance

for fog nodes by enhancing resources management and allocation, along with safety proce-

dures, to aid the IoT-services delivery and cloud computing in the ever growing industry

of smart things. The main aspects related to the performance stability of fog computing

involves the development of cognitive fog nodes that aim at provide fast and reliable ser-

vices, efficient resources managements, and trusted networking, and hence ensure the best

Quality of Experience, Quality of Service and Quality of Protection to end-users.

i

Therefore the contribution of this thesis in brief is a novel Fog Resource manAge-

MEnt Scheme (FRAMES) which has been proposed to crystallise fog distribution and re-

source management with an appropriate service’s loads distribution and allocation based

on the Fog-2-Fog coordination. Also, a novel COMputIng Trust manageMENT (COMIT-

MENT) which is a software-based approach that is responsible for providing a secure and

trusted environment for fog nodes to share their resources and exchange data packets. Both

FRAMES and COMITMENT are encapsulated in the proposed Cognitive Fog (CF) com-

puting which aims at making fog able to not only act on the data but also interpret the

gathered data in a way that mimics the process of cognition in the human mind. Hence,

FRAMES provide CF with elastic resource managements for load balancing and resolving

congestion, while the COMITMENT employ trust and recommendations models to avoid

malicious fog nodes in the Fog-2-Fog coordination environment.

The proposed algorithms for FRAMES and COMITMENT have outperformed the com-

petitive benchmark algorithms, namely Random Walks Offloading (RWO) and Nearest Fog

Offloading (NFO) in the experiments to verify the validity and performance. The exper-

iments were conducted on the performance (in terms of latency), load balancing among

fog nodes and fogs trustworthiness along with detecting malicious events and attacks in

the Fog-2-Fog environment. The performance of the proposed FRAMES’s offloading al-

gorithms has the lowest run-time (i.e., latency) against the benchmark algorithms (RWO

and NFO) for processing equal-number of packets. Also, COMITMENT’s algorithms were

able to detect the collaboration requests whether they are secure, malicious or anonymous.

The proposed work shows potential in achieving a sustainable fog networking paradigm and

highlights significant benefits of fog computing in the computing ecosystem.

ii

List of Publications

This thesis research has been carried out at The Department of Computer Science, Liverpool

John Moores University. The main contributions of this thesis are discussed in Chapters 3-6

which are based on the following publications:

Selected Journals Paper

1. Mohammed Al-khafajiy, Thar Baker, Hilal Al-Libawy, Zakaria Maamar, Moayad

and Yaser Jararweh. “Improving fog computing performance via fog-2-fog collabora-

tion.” Future Generation Computer Systems (2019). (Q1)-(IF:5.7).

2. Mohammed Al-khafajiy, Thar Baker, Muhammad Asim, Zehua Guo, Rajiv Ran-

jan, Antonella Longo, Deepak Puthal, and Mark Taylor. “COMITMENT: A Fog

Computing Trust Management Approach.” Journal of Parallel and Distributed Com-

puting (2020). (Q2)-(IF:1.8).

3. Mohammed Al-khafajiy, Thar Baker, Carl Chalmers, Muhammad Asim, Hoshang

Kolivand, Muhammad, and Atif Waraich. “Remote health monitoring of elderly

through wearable sensors.” Multimedia Tools and Applications (2019). (Q1)-(IF:2.1)

4. Mohammed Al-khafajiy, Hoshang Kolivand, Thar Baker, David Tully, and Atif

Waraich. “Smart Hospital Emergency System Via Mobile-based Requesting Ser-

vices.” Multimedia Tools and Applications (2019). (Q1)-(IF:2.1)

5. Zakaria Maamar, Thar Baker, Noura Faci, Mohammed Al-Khafajiy, Emir, Yacine

and Mohamed Sellami. “Weaving cognition into the internet-of-things: Application

to water leaks.” Cognitive Systems Research (2019). (Q3)-(IF:1.4).

iii

https://doi.org/10.1016/j.future.2019.05.015
https://doi.org/10.1016/j.jpdc.2019.10.006
https://doi.org/10.1007/s11042-018-7134-7
https://doi.org/10.1007/s11042-019-7274-4
https://doi.org/10.1016/j.cogsys.2019.04.001

6. Boukadi, Khouloud, Noura Faci, Zakaria Maamar, Emir Ugljanin, Mohamed Sellami,

Thar Baker, and Mohammed Al-Khafajiy. “Norm-based and commitment driven

agentification of the Internet of Things.” Internet of Things 6 (2019).

7. Mohammed Al-khafajiy, Safa Otoum, Thar Baker, Muhammad Asim, Zakaria

Maamar, Moayad Aloqaily, Mark Taylor, Martin Randles “Intelligent Control and

Security of Fog Resources in Healthcare Systems via a Cognitive Fog Model” ACM

Transactions on Internet Technology. [Accepted] (Q2)-(IF:3.7).

Selected Conferences Papers

1. Al-Khafajiy, Mohammed, Thar Baker, Atif Waraich, Dhiya Al-Jumeily, and Abir

Hussain. “IoT-Fog Optimal Workload via Fog Offloading.” In 2018 IEEE/ACM Inter-

national Conference on Utility and Cloud Computing Companion (UCC Companion),

pp. 359-364. IEEE, 2018.

2. Al-Khafajiy, Mohammed, Thar Baker, Hilal Al-Libawy, Atif Waraich, Carl Chalmers,

and Omar Alfandi. “Fog Computing Framework for Internet of Things Applications.”

In 2018 11th International Conference on Developments in eSystems Engineering

(DeSE), pp. 71-77. IEEE, 2018.

3. Al-Khafajiy, Mohammed, Lee Webster, Thar Baker, and Atif Waraich. “Towards fog

driven IoT healthcare: challenges and framework of fog computing in healthcare.” In

Proceedings of the 2nd International Conference on Future Networks and Distributed

Systems, p. 9. ACM, 2018.

4. Maamar, Zakaria, Thar Baker, Noura Faci, Emir Ugljanin, Mohammed Al Khafajiy,

and Vanilson Burégio. “Towards a seamless coordination of cloud and fog: illus-

tration through the internet-of-things.” In Proceedings of the 34th ACM/SIGAPP

Symposium on Applied Computing, pp. 2008-2015. ACM, 2019.

5. Maamar, Zakaria, Thar Baker, Noura Faci, Emir Ugljanin, Yacine Atif, Mohammed

Al-Khafajiy, and Mohamed Sellami. “Cognitive computing meets the internet of

things.” In 13th International Conference on Software Technologies, ICSOFT, Porto,

Portugal, July 26-28, 2018, pp. 741-746. SciTePress, 2018.

6. Maamar, Zakaria, Khouloud Boukadi, Emir Ugljanin, Thar Baker, Muhammad Asim,

Mohammed Al-Khafajiy, Djamal Benslimane, and Hasna El Alaoui El Abdallaoui.

iv

http://researchonline.ljmu.ac.uk/id/eprint/12231/

“Thing Federation as a Service: Foundations and Demonstration.” In International

Conference on Model and Data Engineering, pp. 184-197. Springer, Cham, 2018.

7. Mohammed Al-Khafajiy, Thar Baker, Atif Waraich, Omar Alfandi, and Aseel

Hussien, “Enabling high performance fog computing through fog-2-fog coordination

model,” in 2019 IEEE/ACS 16th International Conference on Computer Systems and

Applications (AICCSA), pp. 1–6, IEEE, 2019.

8. Mohammed Al-Khafajiy, Shatha Ghareeb, Rawaa Al-Jumeily, Rusul Almurshedi,

Aseel Hussien, Thar Baker, and Yaser Jararweh, “A holisticstudy on emerging iot net-

working paradigms,” in2019 12th International Conference on Developmentsin eSys-

tems Engineering (DeSE), pp. 943–949, IEEE, 2019.

Book Chapter

1. Mohammed Al-Khafajiy, Thar Baker, Aseel Hussien, and Alison Cotgrave, “UAV

and Fog Computing for IoE-Based Systems: A Case Study on Environment Disasters

Prediction and Recovery Plans,” in Unmanned Aerial Vehicles in Smart Cities, pp.

133–152, Springer, 2020.

v

Declaration

The work presented in this thesis was carried out at the Department of Computer Science,

Liverpool John Moores University. Unless otherwise stated, it is the original work of the

author. While registered as a candidate for the degree of Doctor of Philosophy, for which

submission is now made, the author has not been registered as a candidate for any other

award. This thesis has not been submitted in whole, or in part, for any other degree.

Mohammed AL-khafajiy

Department of Computer Science

Liverpool John Moores University

3 Byrom St,

Liverpool

L3 3AF

UK

July 1, 2020

vi

Declaration of Authorship

I, Mohammed AL-khafajiy, declare that this thesis titled, ‘A Fog Computing Approach for

Cognitive, Reliable and Trusted Distributed Systems’ and the work presented in it are my

own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at

this University.

• Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date: July 1, 2020

vii

Acknowledgements

PhD is tough, but rewarding journey that a person can experience once in a lifetime. I am

truly happy that I have overcome the adversities and finally approached near to the end of

this journey, my enormous gratitude and thanks go to the Almighty God for every blessing.

The PhD journey would not have happened without endless help from people around me.

First and foremost, I am perpetually indebted in thanks and appreciation to my super-

visor Dr. Thar Baker for his dedicated supervision, helpful and endless support, patience

and motivation. His guidance has provided me with great help throughout my PhD and

in every aspect of my research work. His kindness and care have encouraged me to stay

on track. This work would never have been completed without his support, warm welcome

and dedication. His kindness, prudence and work ethic have made me enjoy this journey.

Gratitude and sincere appreciation to my family for their continuous support. I would

not have been able to achieve my dreams without thier sacrifice, patience and kindness.

I am especially grateful to my parents (Dhirgham and Ashwaq) to whom I owe where

I am today. They have supported me emotionally and financially, thank you both for

giving me the strength to reach for the stars and chase my dream. Immense thanks beyond

measure to my wonderful wife (Rusul) for her love and constant support, for all the late

nights and early mornings, and for keeping me sane over the PhD journey. Thank you for

being my muse, my best friend and great companion, who encouraged, and helped me get

through this agonizing period in the most positive way. I also want to take the opportunity

to thank my brothers (Hassan and Ali) and sister (Mariam) for their support and

encouragement throughout.

viii

Contents

Abstract . ii

Preface . iii

Acknowledgements . viii

List of Figures . xv

List of Tables . xvi

List of Algorithms . xvii

Chapter 1 Introduction 1

1.1 Introduction . 2

1.2 Motivation: cognitive, reliable and trusted fog 4

1.3 Research Problem and Questions . 6

1.4 Thesis Aim and Objectives . 8

1.5 Research Methodology . 9

1.6 Contributions to Knowledge . 11

1.7 Thesis Organisation . 14

Chapter 2 Background and Literature Review 16

2.1 Introduction . 17

2.2 Background . 17

2.2.1 Internet of Things (IoT) . 18

2.2.2 Cloud Computing . 20

2.2.3 Fog Computing . 22

2.2.4 Cloud versus Fog Computing in IoT 24

2.3 Cloud and Fog Co-Existence in IoT . 26

2.4 IoT and Data Processing Mediums Challenges 28

2.4.1 IoT Challenges . 28

2.4.2 Cloud Challenges In IoT . 30

2.4.3 Fog Challenges In IoT . 31

2.5 Related Works . 34

2.5.1 Research Criteria . 34

2.5.2 Existing Work Limitations . 36

2.5.3 Gap Analysis . 42

2.6 Chapter Summary . 44

Chapter 3 Design Principles and Preparation 45

3.1 Introduction . 46

3.2 Fog Networks Architecture . 47

3.2.1 Network topology . 49

3.2.2 IoT services requests workflow . 50

3.3 Design Principles and Requirements . 51

3.3.1 Design Principles . 51

3.3.2 Fog Performance Requirements . 53

3.3.3 Fog Security Requirements . 54

3.4 Cognitive Fog Model . 56

3.4.1 Fog Cognition . 57

3.4.2 Fog Federation . 59

3.5 Case Study and Testbed Setup . 62

3.5.1 Case Study - Patients Monitoring . 62

3.5.2 Testbed and experiment configurations 64

3.5.3 Performance evaluation . 65

3.6 Chapter Summary . 69

Chapter 4 Collaboration Model of Fog and Cloud 71

4.1 Introduction . 72

4.2 Collaboration Model of Fog and Cloud . 73

4.2.1 Foundations of fog-cloud collaboration model 73

4.3 Criteria for Selecting Data Recipients . 75

4.4 System Evaluation . 81

4.4.1 Case Study - Healthcare . 81

4.4.2 Test-bed and experiment configurations 82

4.4.3 Performance Evaluation . 85

4.5 Chapter Summary . 91

Chapter 5 Coordination Model of Fog-to-Fog 92

5.1 Introduction . 93

5.2 Fog Resource manAgeMEnt Scheme . 94

5.2.1 Fog management scheme . 94

5.2.2 Fog Workload Balancing . 97

5.3 Fog-2-Fog Coordination Model . 100

5.3.1 Network Model . 100

5.3.2 Service Delay . 100

5.3.3 Delay Sources . 102

5.3.4 Transmission Delay . 102

5.3.5 Propagation Delay . 103

5.3.6 Computational Delay . 103

5.3.7 Fog Workload . 107

5.3.8 Average Delay in a Fog Node . 108

5.3.9 Problem Formulation and Constraints 109

5.3.10 Offloading Model . 110

5.4 System Evaluation . 116

5.4.1 Experiment Configurations . 117

5.4.2 Benchmark Algorithms . 118

5.4.3 Performance Evaluation and Discussion 119

5.5 Chapter Summary . 125

Chapter 6 Fog Computing Trust Management 127

6.1 Introduction . 128

6.2 Fog Computing Trust Management Model 130

6.3 Fog Performance: Safe Load Balancing . 135

6.3.1 Problem Formulation and Constraints 135

6.3.2 Safe Offloading Model . 137

6.4 Fog interactions: Trust and Recommendation 140

6.4.1 Trust - Direct Experiences . 140

6.4.2 Recommendations - Indirect Experiences 143

6.4.3 Reputation Assessment . 147

6.5 System Evaluation . 148

6.5.1 Experiment Configurations . 148

6.5.2 Performance Evaluation and Discussion 150

6.6 Chapter Summary . 156

Chapter 7 Conclusions and Future Directions 158

7.1 Conclusion . 159

7.2 Future Directions . 163

7.3 Final Remarks . 165

List of Figures

1.1 IoT Layers and horizontal versus vertical nodes cooperation 4

1.2 Contributions to knowledge summarised in a mind-map 11

1.3 Thesis Structure . 14

2.1 IoT-Fog based Healthcare Example . 23

3.1 IoT fog architecture composed of things, fog, and cloud layers 48

3.2 Interactions of the Cognitive Fogs . 58

3.3 Cognition of the Cognitive Fog as a 3 stage cycle 59

3.4 Planned and Ad-hoc federations . 60

3.5 Cognitive Fog testbed . 65

3.6 The Execution time for Planned Federations 66

3.7 The Execution time for Ad-hoc Federations 67

3.8 Execution time related to PF versus AF federations 68

4.1 Representation of the fog-cloud collaboration model 74

4.2 Testbed’s architecture for the healthcare-driven IoT case study 82

4.3 Example of messages in JSON format . 83

4.4 Number of packets per latency in T → C → F configuration1 86

xiii

4.5 Number of packets per latency in T → F → C configuration2 86

4.6 Number of packets per latency in T → C configuration3 87

4.7 Number of packets per latency in T → F configuration4 87

4.8 Delays means and STDs (for 25k of packets) for each configuration 88

4.9 Total latency (for 25k of packets) for each configuration 90

4.10 Percentage performance improvement of T → F → C, T → C and T → F . 90

5.1 Overview of the Fog Resource manAgeMEnt Scheme 95

5.2 Sequence diagram showing FRAMES interactions 96

5.3 Four sources could delay service processing 102

5.4 Three types of service processing . 104

5.5 Queuing system . 104

5.6 Loaded, idle and, semi-idle fog nodes based on λs
min[Dp]−−−−−→ fi 111

5.7 Average latency according to offloading model 120

5.8 Average latency per node . 122

5.9 Average load on nodes . 122

5.10 Latency per packet . 123

5.11 Maximum latency upon heavy-packets . 125

6.1 Architecture of the proposed COMITMENT approach, including the different

types of fog’s statuses and interactions . 132

6.2 Level of Trust (LOT) according to fuzzy logic 146

6.3 Average latency against two benchmark algorithms (RWO and NFO) and

based on mixed type of packets . 150

6.4 Packets distribution . 152

xiv

6.5 Coordination requests according to their type; secure, malicious and anonymous

requests based on the LoT score . 153

6.6 Average number of successful and aborted coordinations according to the

percentage of malicious fogs . 154

6.7 LoT score for the 15 participated fogs against each other proven that LoT is

asymmetric . 155

6.8 Lot score for fog1 and fog5 proven that LoT is not transitive 156

xv

List of Tables

2.1 Appropriateness of cloud/fog to respond to system’s characteristics (Cisco) 25

2.2 Analysis of cloud versus fog . 25

2.3 Comparative analysis with main recent research studies 43

4.1 Data-recipient selection criteria versus interaction forms (HR:Highly Recom-

mended, R:Recommended, NR:Not Recommended, N/A:Not Applicable) . . 77

4.2 Cloud and Fog Computing Characteristics (Cisco) 78

5.1 Notations used in the thesis . 101

6.1 Notations used in the paper . 134

6.2 Simulation Settings . 148

xvi

List of Algorithms

1 Maintain Fog Load . 113

2 Service Offloading . 115

3 Service Offloading . 139

4 Proposed Recommendation Model . 145

xvii

CHAPTER 1

Introduction

A question of need is a question of taste.

Neil Tennant & Chris Lowe

1.1 Introduction

I
n the last few years, major advances in Information and Communication Technolo-

gies (ICT) have been witnessed. Such advances are anchored to different paradigms,

such as Information Centric Network (ICN) (e.g., mainframe), the well known Software De-

fined Network (SDN), and Data Centre Network (DCN). ICN shifted the inter-networking

to a cloud-based computing model, as reported in Cisco Cloud Index (2013-2018) [1]. Since

most Internet traffic originates from and/or terminates in the cloud [1, 2, 3, 4, 5, 6], it

is predicted that nearly two-thirds of total workloads obtained from traditional IT ser-

vices (e.g., data aggregation and processing) will be processed on the cloud [1, 7]. Cloud

computing enables users to access a variety of configurable facilities such as data storage,

processing, infrastructure, and applications [4], providing Everything-as-a-Service (*aaS) in

return for a fee. Embracing the clouds, Internet service providers and corporate IT service

providers have become more motivated to adopt cloud computing; they can obtain a wide

range of services with minimal administration [4, 8]. The inclination to use the clouds coin-

cides with the improvement of the Network Function Virtualisation (NFV) technique which

reduces cloud CAPital EXPenditures (CAPEX) and OPerating EXpenditures (OPEX), and

improves the flexibility and scalability of an entire network [9].

Within the emerging Internet of Things (IoT), a large number of “smart” devices and ob-

jects (e.g., wearable) are, nowadays, connected to the Internet [10], generating high volumes

of data every second. In the IoT area, the key word “thing” could be everything, referring

to anything that can connect to a network and exchange data over this network [11] with

other stakeholders (e.g., users, applications, and peers). Cisco Internet Business Solutions

Group (IBSG) estimates that approximately 50 billion devices (i.e., things) will be con-

nected to IoT networks by 2022 [12, 13], and thus served by the cloud. Although the cloud

can provision efficient data storage and processing facilities, the ever-growing volume of

data will result in a burden on the communication bandwidth [1, 2], and “unacceptable”

latency [14, 4, 15]. In addition, since the cloud is relatively “far” from IoT things, by the

time the data reaches the cloud for storage and/or processing, its importance and freshness

could depreciate [16, 17]. It worth noting that we define service-latency (to be used in

Chapter 5 & 6) as the total time required to deliver a service, which includes the time when

2

an IoT thing sends a service request, and when it receives the response back including the

travelling interval time. To address cloud limitations with a focus on latency in IoT, Cisco

came up with the concept of Fog Computing in 2014 [1].

Fog Computing is described as a highly virtualised platform that provides similar cloud

facilities, in terms of storage, processing, and communications, but at the edge of the

network, “closer” to things compared to the cloud; i.e., between things and clouds [18],

intended to allow fast, secure, and reliable services [19, 16]. Fog is not a substitute to cloud

but a complements it [1] since both are expected to work together [20, 21]. In general, the

fog can support, serve, and facilitate services that are not appropriately served by cloud

such as, (i) latency-sensitive services (e.g., healthcare monitoring and online gaming) [14];

(ii) geo-distributed services (e.g., pipeline monitoring) [22]; (iii) mobile services with high

speed connectivity (e.g., connected vehicles) [3]; and (iv) large scale distributed control

systems (e.g., smart energy distribution and smart traffic lights) [1]. In fog computing, fog-

based services are generally owned by different parties for various reasons: (i) the deploy-

ment choice that may include the selection of Internet service providers or wireless carriers,

(ii) businesses extending their existing cloud-based services to the edge for performance

improvement, and (iii) offering spare resources on the local private cloud as fog services

to local businesses on lease [23]. The fog-based services can be provided and managed by

different providers, which means that the services can be either attached to with services

Internet service provider or by independent stockholders such as FogHorn1. This flexibility

of offering different fog-based services by different providers complicates the performance

reliability and trust of service providers in fog computing. Moreover, the main recurring

challenging issues of fog computing includes node’s heterogeneity that poses substantial

designing challenge, in network design, to ensure reliable services throughout, also the trust

management among these fog nodes that work at the network edge can poses threats such

as Denial-of-Service (DoS) attack, and ultimately resource management and allocation that

poses additional provocation due to the limited computing and storage resources available

in the fog nodes compared to the cloud.

1FogHorn provide edge intelligence solution in the market today, it delivers comprehensive data
enrichment and real-time analytics on high volumes, varieties and velocities of streaming sensor
data. Can be found at www.foghorn.io

3

1.2 Motivation: cognitive, reliable and trusted fog

Most challenging issues that the fog computing addresses can be associated with Quality of

Service (QoS) [24] (e.g., reduce latency and serve large number of users), Quality of Experi-

ence (QoE) (e.g., service experience) [3], along with the Quality of Protection (QoP) (e.g., ser-

vice security and privacy) [25]. Fog can provide elastic resources to large scale processing

systems, thus it can work independently (i.e., fog process all requests) and/or federated

with cloud (i.e., fog and cloud share the processes of requests) [26, 2, 14]. When fogs works

independently, we refer to the (Fog-2-Fog) cooperation as fog-to-fog coordination, while,

when fog shares processes with cloud, we refer to the (Fog-2-Cloud) cooperation as fog-to-

cloud collaboration. Simply put, horizontal nodes cooperation is a coordination processes,

while the vertical nodes cooperation is a collaboration processes as per Figure 1.1. De-

spite the appealing benefits of fog computing, some concerns are undermining its adoption.

This includes the approach of how to form the Fog-2-Cloud (F2C) collaboration and the

Fog-2-Fog (F2F) coordination.

Figure 1.1: IoT Layers and horizontal versus vertical nodes cooperation

4

Fog computing is still an open research area and in its infancy stage, therefore, the

motivation of providing a trusted and reliable fog environment for IoT based services comes

from the ongoing challenging issues associates with fog computing [14, 27, 28, 20]. Many re-

searchers are focusing on bringing the computing resources to network edges [29, 30].

This will facilitate processing of the data at the edge for time-sensitive applications and

services to allow quick responses. Fog nodes are deployed at the edge of the network, and

they do not have enough resources and computational power like the cloud [31, 32]. As a

result, fog nodes can easily get overloaded with incoming services requests. Also, another

noted issue with the cyber-threats is of hostile/open deployment [30, 33, 34]. Hence, there

are misbehaving fog nodes that may perform discriminatory attacks to ruin the reputation

of an IoT service [35]. Thus, avoiding fraudulent or malicious fog nodes for load-balancing

and collaboration is still an open challenge. These challenges raise the motivation to develop

a fog model that serves as a starting point for the deployment of an efficient and trusted

fog computing environment that particularly focus on:

• Cognitive: fog nodes should not only act upon things data, but also direct them

to engage in follow-up interactions to achieve certain tasks that boost user’s QoS

and QoE. Cognitive fog means that it reasons about the surroundings, learns from

the past, and adapts to changes, hence fog is featured with components, such as

image recognition (see use-case in Chapter 3), that enable a fog node to interpret the

surrounding. It worth noting that the cognition feature on fog will not poses extra

load on the resources, instead it work inline with FRAMES (In Chapter 5) to manage

the load on fog through fog’s federation on congestion.

• Reliable: proper network managements for both fog and cloud to promote efficient

load balancing among network nodes to address the latency concern of the IoT service

request’s and things data.

• Trusted: providing a secure/trusted fog environment that allow fogs sharing their

resources and exchange data. Fog nodes should make concise decisions that not

only includes the choice of best nodes to handle a task efficiently, but also the most

trusted fog that could provide best QoS and QoP to end-users. This important to

avoid fraudulent and malicious nodes that can disrupt network operations through

various attacks (e.g., forgery) which directly effect the reliability of fog computing.

5

1.3 Research Problem and Questions

Fog computing extends cloud computing to act on IoT data at the edge of the network. This

introduces more complexity to the networks, by adding large numbers of devices and service

providers, and hence efficient network management/planning is significantly important to

design optimal networks. Efficient network management and planning involves the arrange-

ments of the data processing mediums (e.g., fog and cloud computing) in the network. In

addition, an appropriate network resources management along a with a criteria to define

the selection of specific recipients (i.e., fog, cloud or both) for the IoT data. The efficient

network management helps in providing a stable network that guarantees best Quality of

Service (QoS) and Quality of Experience (QoE) to the end-users.

Indeed frequent sending of large volumes of data from IoT applications to the cloud

leads to both network slowdown and processing congestion, fog computing should be a

solution [36]. Hence, a resources management for network components with coordina-

tion/collaboration among the nodes on different layers (i.e., fog and cloud layers) is essential.

One of the biggest challenges in network management is how to design interaction among

fogs/clouds nodes or between fog and cloud in order to accommodate the characteristics

of applications because of the huge amount of data generated by these environments. Al-

though fog nodes are placed “closer” to IoT-things so that latency is “taken care” of [14, 37],

fog can quickly become congested too due to fog’s limited resources. This occurs when the

number of service requests, soliciting their services, exceed the fog’s computational ca-

pabilities [14, 3]. It’s obvious that when the service’s traffic increases on fog nodes, the

potential of having the newly arrived request waiting will be high, and hence having la-

tency. OpenFog [38] reported that, although fog computing provides extensive peer-to-peer

interconnection for communication purposes with the clouds, its nodes run in silos, where

no collaboration capability, for job processing, is available. Therefore, a proper resource

management is required to unlock the silos and free them from the historical stovepipes

working pattern. In fact, poor resource management causes latency and inefficiency for

IoT-services [6, 26, 39].

6

In this thesis a comprehensive resources management for fog and cloud computing is

presented. The main research problem and questions investigated in this thesis can be

summarized as follow:

Problem Statement: despite the appealing features of fog computing, there is a lack

of; (i) a clear characterisation for fog computing [40, 38], (ii) concrete solutions for network

resources managements (both fog and cloud nodes) [41, 16], (iii) secure and trusted fog

network [42, 43]. Hence, there is no solid and stable deployment of fog computing to aid

the heavy processes of IoT-things [14, 44, 45, 46, 47].

Research Questions (RQ): according to the problem statement, this thesis is con-

cerned with the following research questions:

RQ1: What is fog computing cognition? How can fog node be cognitive and what are the

activities of a cognitive fog? to achieve better QoS and QoE with fog computing.

RQ2: How to provision the computing and networking resources simultaneously in fog/cloud

IoT architecture? What criteria are used for selecting data recipients? for better QoS.

RQ3: How to identify computation intensive tasks and point out the congested fog nodes in

the network to trigger task’s offloading and node’s resource sharing, thus allow better

QoS and QoE using fog computing.

RQ4: Find an efficiently approach to distribute network workload evenly, also scheduling

tasks among the fog nodes with respect to their resources capabilities in fog-2-fog

computing environment for better QoS and QoE.

RQ5: How to ensure a fair participation for fog nodes to avoid idleness? as the traffic can

significantly vary depending on node’s geo-location in fog environment for better QoS.

RQ6: How to periodically analyse the trust among fog nodes during the run-time? How to

identify malicious behaviours to self-adapt and take actions? for better QoE and QoP.

Scope of the thesis: the focus of this thesis is to have a stable performance for fog

computing to aid the IoT-services and cloud computing in the ever growing industry of

smart things. Aspects related to the performance stability of fog computing involves the

development of cognitive fog nodes, reliable resources management and trusted networking,

and hence ensure best Quality of Service (QoS), Quality of Experience (QoE), and the

Quality of Protection (QoP) to the end-users.

7

1.4 Thesis Aim and Objectives

This thesis focuses on providing a holistic fog computing approach for a cognitive, reliable

and trusted distributed IoT service that ensure best QoS, QoE and QoP. Hence, the main

aim and objectives of this thesis are as follows:

Research Aim: design and develop a comprehensive solution to tackle the challeng-

ing issues of deploying fog computing in the IoT network. This solution addresses the

current limitations of; (i) network resources management by efficient resource provision-

ing algorithm to ensure the Quality of Service (QoS) provided, (ii) services reliability and

availability in cases of high-traffic and network node’s congestion, and hence to ensure the

Quality of Experience (QoE) provided. Finally, (iii) security and privacy through evolving

trusted network environments for nodes, to share resources and user’s data, hence avoid-

ing malicious events and attacks to ensure the Quality of Protection (QoP) provided. The

solution for these challenges will be integrated in our proposed Cognitive Fog (CF).

Research Objectives (RO): to tackle the research questions and achieve the research

aims, this thesis identified few objectives that are essential to develop the desired solution.

The objectives are applied iterative to guide the research process, and hence the following

research objectives have been identified:

RO1: Review the relevant state-of-the-art research on fog/cloud computing to obtain a

systematic understanding and identify the gaps in the area. [to resolve all RQs]

RO2: Identify the key characteristics of fog computing along with the main challenging

issues that deter the deployment of fog computing within the IoT network, to create

criteria for using fog/cloud and avoid network congestion.[help resolve RQ1, RQ2]

RO3: Investigate the functional and non-functional requirements of fog nodes. Also, inves-

tigate the barriers that might impede fog in IoT network. [help resolve RQ3, RQ4]

RO4: Design and develop a comprehensive solution that manages the network resources and

ensures the level of security and trust within the network. [help resolve RQ5, RQ6]

RO5: Evaluating the developed solution to ensure that the network could achieve the desired

performance, and thus the thesis aim. [evaluate all RQs]

8

1.5 Research Methodology

Designing and developing a comprehensive solution to tackle the fog computing challenges

will need to follow a clear and effective methodology. Therefore, to resolve the thesis aim and

achieve research objectives, a conventional Design Science Research Methodology (DSRM)

inspired by [48, 49] is adopted as an optimal methodology to fulfill the research aim. The

methodology is applied iteratively to guide the research process. The following methodology

steps will be used to approach the desired outcome.

1. Problem identification: a survey on the state-of-the-art research studies has been con-

ducted to acquire a full knowledge about fog computing and its challenges. This helps

in identifying the research landscape and analysing the gap in research. This step

involved some critical thinking of the main solution to aid fog computing challenges

and the modelling strategies developed before, hence to justify the value of the new

solution.

2. Objectives of the solution: identifying the objectives was driven by the identified prob-

lem, hence this required accurate knowledge about the state of the problem, its current

solutions, and their efficacy. The proposed solution aims at providing a complete de-

sign and implementation to help with the deployment of fog computing in the IoT

network. Therefore, the objective is to provide; (i) a cognitive model for fog nodes,

and (ii) resources management that evolves two main algorithms:

• A load balancing algorithm to monitor network resources, active processes, and

the incoming services requests volume. Hence, it can monitor the performance

and congestion to promote load balancing and offloading to address any la-

tency concerns.

• Trust and recommendation algorithm and model to help networked fog nodes

make the right decision for selecting the appropriate nodes to collaborate with

during task offloading. Hence, this process includes assessing the trustworthiness

level of the nominated nodes to ensure that the QoP, QoS and QoE provided

by the hosting node can be met.

9

3. Design and development: during this phase, agile methodology is adopted, thus the

proposed solution was designed and implemented in parts so that intensive testing

and evaluation could be carried out on each part, hence meeting the desired ob-

jective. Therefore, the design and development of the solution for fog computing

were carried out in Chapter 3-6. Chapter 3 presents the design principles and the

preparation of developing cognitive fog nodes. Chapter 4 presents the foundation for

networked IoT-nodes collaborations (i.e., fog and cloud) and the criteria for select-

ing data recipients. Chapter 5 presents the fog coordination model which will allow

nodes to outsource their resources to enable load balancing and resources manage-

ment. Chapter 6 presents an approach to impart useful prognostic information on

nodes trustworthiness.

4. Demonstration: in this thesis, multiple healthcare related scenarios are adopted for

demonstrating the usefulness of the research and highlight the advantages of using

a reliable fog computing in latency sensitive applications/systems. Also, a mathe-

matical proof and simulation is provided to demonstration both network resources

managements efficiency and trustworthiness assessments model.

5. Evaluation: to evaluate the performance of the proposed solution to show the fea-

sibility, a test-bed and simulation has been implemented for different part of the

solution to intensively test the efficiency. This involves assessing the effectiveness of

the solution compared to current efforts available in the relevant literature.

6. Communication: main thesis contributions have been discussed and published in peer-

reviewed scholarly publications. A total of 14 publications have been disseminated

from the presented work; 6 of which are published in high-quality impacted journals,

and the rest are published in high-quality conferences proceedings that are relevant

to the scope of this research.

10

1.6 Contributions to Knowledge

Precise design and development of the proposed solution could potentially lead to a sus-

tainable IoT fog computing based networking paradigm, and thus benefits the computing

ecosystem. This thesis made the following key contributions (summarised in Figure 1.2),

ordered by their appearance in the thesis.

Figure 1.2: Contributions to knowledge summarised in a mind-map

Note: 2 partials fulfill 1 RQ, for example contributions 1 & 2 fulfill RQ1:

1. A novel approach for developing cognition fog computing, this by empowering nodes

with reasoning, learning, and adaptation capabilities so that it would weave these

fog nodes into service provisioning models. Cognitive fog advocates that fog can

interpret the gathered/received data in a way that mimics the process of cognition

in the human mind. The core concepts and design of cognitive fog are discussed

in Chapter 3. [Partially addresses RQ1].

2. Cognitive fog federation, this is about gathering multiple nodes to perform/achieve

a specific task efficiently in a certain situation. Fog nodes become members of a

federation based on their capabilities, hence federation can be a planned federation

or an ad-hoc federation. In planned federations, all nodes are known to each other

from the design time to assist, or take benefit from, each other. On the contrary, in

ad-hoc federations, the nodes are formed on the fly, so they can communicate with

each other based on a need. Both types of federations are discussed in Chapter 3.

[Partially addresses RQ1].

11

3. A collaboration model of fog and cloud with a set of criteria for selecting data recipi-

ents. These criteria define to whom data of things should be sent (cloud, fog, or both)

and in what order (cloud then fog or fog then cloud or both concurrently). This is

supported by a healthcare driven IoT case study deployed on a test-bed to demon-

strate fog-cloud collaboration. The objective is to assist engineers who are in-charge

of developing IoT applications to know what is best for their system. The fog-cloud

collaboration and criteria for selecting data recipients are discussed in Chapter 4.

[Addresses RQ2].

4. A novel Fog Resource manAgeMEnt Scheme (FRAMES) that promotes load balanc-

ing to address the latency concern of service request’s received from things. This is

based on the load distribution algorithm in the Fog-2-Fog coordination model that

achieves a optimal workload among the collaborative nodes. Ensuring the fair partic-

ipation of fog nodes while maintaining efficient workload distribution can be difficult

task, however this can be manged by bounding node’s participation by their capa-

bilities (in term of resources) and not time-of-operation or tasks loads. Hence, this

approach will allow fairness in term of service delivery, obviously participation level

and fairness can predetermined according to the level of QoS and QoE intended to

achieve. The load distribution model consider not only the queue length of a node, but

also the node’s capabilities (i.e., CPU frequency) and their performance with different

request types, such as, heavy-request (e.g., from sensor) and light-request (e.g., from

CCTV). FRAMES is discussed in Chapter 5. [Addresses RQ3, Partially RQ4].

5. A mathematical model that backs the decision of load balancing among fog nodes.

This investigates the time delay issue and the requests offloading opportunities in the

Fog-2-Fog coordination model. Hence, a time-cost function is developed to compute

the time-cost for a service to be processed in multi-nodes based on the number of

participant nodes and network conditions. The mathematical model is discussed in

Chapter 5. [Addresses RQ5, Partially RQ4].

6. A novel Fog COMputIng Trust manageMENT (COMITMENT) approach to impart

useful prognostic information on networked nodes trustworthiness. Thus, providing

a secure and trusted networking environment for nodes to share their resources and

12

exchange data securely and efficiently. The core concepts and design of COMITMENT

are discussed in Chapter 5. [Partially addresses RQ6].

7. A novel trust and recommendation model and algorithm that helps nodes make the

right decision for selecting the appropriate nodes to collaborate with in the Fog-

2-Fog coordination environment. This is to provide support during the offloading

processes to avoid malicious nodes and attacks. Therefore, this process includes

assessing the trustworthiness level of the nominated nodes to ensure that the QoP,

QoE and QoS are met by the hosting node before a coordination is formed. The trust

and recommendation model is discussed in Chapter 5. [Partially addresses RQ6].

13

1.7 Thesis Organisation

The structure of the thesis chapters is shown in Figure 1.3. It worth noting that the

work presented in this thesis is derived from several publications published during the

PhD journey. The rest of the thesis is structured as follows:

Figure 1.3: Thesis Structure

Chapter 2: provides a background on the basic concepts of IoT, cloud computing and fog com-

puting along with a comparison between the two computing paradigms and their

existence in the IoT era. Then, the chapter reports on a systematic literature review

on fog/cloud challenges with critique for some of the recent research efforts.

14

Chapter 3: proposes a holistic fog computing architecture and design principles, also the concept

of cognitive fog is also presented in this chapter. The design principles of fog nodes

are highlighted based on the main requirements of fog in term of networks communi-

cations and geo-location along with their functional and non-functional requirements.

Chapter 4: proposes a fog-cloud collaboration model that assists organizations wishing to ride

the IoT wave in determining where data should be sent (cloud, fog, or cloud and fog

concurrently) and in what order (cloud, fog, or cloud and fog concurrently). Hence,

a set of data-recipient selection criteria, such as frequency, sensitivity, freshness and

volume, have been proposed to ensure a smooth collaboration.

Chapter 5: proposes a novel Fog Resource manAgeMEnt Scheme (FRAMES) to justify fog distri-

butions and management with an appropriate service’s load distribution and alloca-

tion. Also, the mathematical model that backs the decision of load balancing among

fog nodes.

Chapter 6: proposes Fog COMputIng Trust manageMENT (COMITMENT), which is a software-

based solution that is responsible for providing a secure and trusted environment

for nodes to share their resources and exchange data packets. Also, a trust and

recommendation model that helps nodes make the right decision for selecting the

appropriate nodes during coordinations.

Chapter 7: concludes and summarises the thesis outcomes and contributions. Also, potential

future work and possible extensions are also discussed.

15

CHAPTER 2

Background and Literature Review

We know next to nothing about virtually

everything. It is not necessary to know the

origin of the universe; it is necessary to want

to know. Civilization depends not on any

particular knowledge, but on the disposition

to crave knowledge.

George Will

2.1 Introduction

D
ue to the massive volume of data generated from Internet of Things (IoT) applications,

IoT becomes a source of big data. Currently, IoT data are backed by cloud com-

puting, where data is processed by big data-systems in a powerful data-centres. However,

with the increase of data velocity and volume, the distant cloud computing may not be able

to satisfy the ultra-low latency requirements for IoT applications [14, 7, 4], such as patient

monitoring applications in [50, 40]. Therefore, the fog computing paradigm emerged to sup-

port the cloud by providing data processing and analysis at the edge of the network where

IoT nodes are located. This chapter introduced a background on the basic concepts of IoT,

cloud computing and fog computing along with a comparison between the two computing

paradigms and their existence in the IoT era.

The survey was conducted based on studying a systematic literature review by using

search terms like “fog vs cloud”, “fog and cloud”, “fog resource managements”, “fog of-

floading”, “cognitive fog”, “load balancing”, “fog congestion” and other compensations of

these terms. The number of publications initially identified were over 250, which has been

filtered to the most relevant researches. Hence, examined more than 120 relevant stud-

ies/researches from multiple research databases, such as IEEE, Web of Science and Elsevier

libraries. Research criteria were then developed (presented in Section 2.5.1) from the anal-

ysis of the primary studies. These criteria were then used to classify and analyse current

research. Also, a cross analysis performed to derive the gaps and directions for further

research, has been conducted in this thesis to fill the gaps.

2.2 Background

This section provides a brief background on the Internet of Things (IoT) and its main data

processing mediums (i.e., fog and cloud). In addition, it analyses cloud computing and fog

computing in terms of similarities and differences along with appropriateness for certain

types of applications. Finally, last subsection discusses the co-existence of fog and cloud

in the IoT paradigm.

17

2.2.1 Internet of Things (IoT)

There are no doubts that the Internet has impacted people’s lives and organizations’ prac-

tices. Acting as a reliable communication middleware, the Internet permits the connection

of different hardware and software components to the extent that location is no longer an

obstacle to information availability and service accessibility. The latest Information and

Communications Technology (ICT) developments, introduced the IoT, targets convenience

by ensuring that things in people’s and organizations’ surroundings are accessible and re-

sponsive to their requests. Smart-home is a good example of this convenience where things

like white appliances take actions on behalf of the home’s occupants.

Different forms of computing contribute to IoT functioning including mobile, however,

the abundant literature about IoT (e.g., [51, 52]) does not help propose a unique defini-

tion of what is IoT. On the one hand, Barnaghi and Sheth provide a good overview of

IoT requirements and challenges [52]. Requirements include quality, latency, trust, avail-

ability, reliability, and continuity that should impact efficient access and use of IoT data

and services. While the challenges resulting from today’s IoT ecosystems featuring billions

of dynamic things and thus, making existing search, discovery, and access techniques and

solutions inappropriate for IoT data and services. On the other hand, Abdmeziem et al. dis-

cuss IoT characteristics and enabling technologies [51]. Characteristics include distribution,

interoperability, scalability, resource scarcity, and security, along with enabling technolo-

gies include sensing, communication, and actuating. These technologies are mapped onto a

three-layer IoT architecture consisting of perception, network, and application, respectively.

Each layer could have any of the three main IoT components which enables seamless ubiqui-

tous Computing [53]: (i) Hardware that is made-up of data sources (e.g., sensors, actuators)

along with the embedded communication components and protocols. (ii) Middleware to

support the on demand storage and computing tools for data analytic. This includes various

types of data processing mediums (e.g., fog and cloud computing) that can serve the IoT

needs. (iii) Data presentation through easy to understand visualization and interpretation

tools which can be widely accessed on different platforms and which can be designed for

different applications.

18

A comprehensive guide about applications, protocols, and best practices in the IoT is

released by the DZone group in 2017 [54]. The guide covers various aspects relevant to IoT

such as privacy, big data, monitoring, context, and architecture. Some terms worth men-

tioning in the guide are: (i) consensual IoT meaning that all IoT providers need to respect

and take all measures in their power to protect users’ privacy and safety, (ii) ubiquitous

computing meaning that the next generation of IoT systems will require a middleware pro-

tocol capable of managing heterogeneous devices, supporting scalability, ensuring privacy

and security, and encouraging utility, and (iii) context meaning that approaching users’

attention should be at the right time with the right messaging. Although the IoT is getting

a significant attention in both research and industry, many challenging issues still need to

be addressed in both technological side (e.g., communication and processing) and the social

side (e.g., security and privacy) before the IoT can be widely accepted.

19

2.2.2 Cloud Computing

Cloud computing within the definition of The National Institute of Standards and Technol-

ogy (NIST) [55] is “a model for enabling ubiquitous, convenient, on-demand network access

to a shared pool of configurable computing resources (e.g., networks, servers, storage, appli-

cations, and services) that can be rapidly provisioned and released with minimal management

effort or service provider interaction” [55]. Cloud computing brings together already exist-

ing technologies such as virtualisation, grid computing and utility-based pricing [56] to meet

industrial demands. The cloud is composed of five characteristics, three service models and

four different deployment models [55]. The five main cloud characteristics are:

• On-demand self-service: a consumer can independently provision computing services

that may require server time and network storage automatically. Without the in-

volvement of human interaction with the service provider [57].

• Network access: services and capabilities offered are available via standard mecha-

nisms that promote and allow the use of heterogeneous client platforms [58].

• Resource pooling: the providers computing and storage resources are combined to

allow services to be used by multiple consumers, by using, a multi-tenant model

with different physical and virtual resources dynamically assigned and reassigned

according to consumer demand. In terms of location, the consumer commonly has

no knowledge or control over the location of the provided resources but may be able

to specify location at a higher level of abstraction [59].

• Rapid elasticity: capabilities can be elastically provisioned and released in some cases

automatically to scale rapidly outward and inward commensurate with demand [58].

• Measured service: cloud systems automatically control and optimise resource use by

leveraging a metering capability at some level of abstraction appropriate to the type of

service (e.g., storage, processing and bandwidth). Resource usage can be monitored,

controlled and reported. Therefore providing transparency for both the provider and

consumer of the utilised service [60].

Cloud computing employs a three service-driven business model [58]. In other words,

hardware and platform resources are provided as services on an on-demand basis. Concep-

20

tually, every layer of the cloud architecture can be implemented as a service. However, in

practice, clouds offer services that can be grouped into three categories [61]: Software as a

Service (SaaS), Platform as a Service (PaaS), Infrastructure as a Service (IaaS) which are

described as follow:

1. Software as a Service (SaaS): provides on-demand applications over the internet.

2. Platform as a Service (PaaS): this service provides platform layer resources that

include operating system support, frameworks for software development.

3. Infrastructure as a Service (IaaS): refers to on-demand provisioning of infrastructural

resources, usually in terms of virtual machines.

Due to different consumer demands such as high reliability and businesses aiming to

reduce operation costs by using the cloud, there are four different deployment models that

all have their own benefits and drawbacks. The four deployment models are as follows:

• Private cloud: known as internal clouds, this is designed for exclusive use by one

organisation. The management of a private cloud can be done by the organisation

itself or by an external provider. By deploying a private cloud, the organisation can

benefit from the best degree of control over performance, security and reliability [62].

• Community cloud: this deployment model infrastructure is provisioned for exclusive

use by a specific community of users or organisations. They are able to share a cloud

as the users have similar requirements (e.g., mission, compliance considerations and

security). It can be owned, managed/operated by one or more organisations [60, 62].

• Public cloud: in this model service providers offer their resources as services to the

general public rather than organisations. Public clouds have multiple benefits to the

service providers, such as no initial capital investment on infrastructure and shifting

of risks to infrastructure providers [62].

• Hybrid cloud: this model is a combination of public and private cloud models that

tries to benefit by reducing the limitations of the individual approaches. Part of the

service infrastructure is operated within private clouds while the remaining sections

are run in public clouds [59, 62].

21

2.2.3 Fog Computing

Fog computing, also call fog networking or fogging, is described as a highly virtualised

platform that provides application services, and network services at the edge of the net-

work, closer to the IoT things. Fog nodes act as middleware and are placed between things

and cloud layers [18]. Fog computing is similar to cloud computing, it offers a range of

application services, such as, data processing and data analysis with closer distance. How-

ever, fog is expected to deliver these services faster, more securely, and more reliably than

clouds [19, 16] due to its proximity. The fog layer is composed of large scale geo-distributed

fog nodes, which are deployed at the edge of networks [1]. Each fog node is equipped

with on-board computational resources, data storage, along with network communication

facilities to bridges things and cloud within the IoT network [14].

It is worth noting that fog computing is not a substitute for cloud computing but

is a complement it [1] which introduces to lower bandwidth burden along with reducing

transmission and processing delays. Fog computing only offers the ability to extend the

storage, networking and computing capabilities of the cloud with a better positioning within

the network in relation to the end-devices [50, 39, 31]. In general, fog computing can support,

serve, and facilitate services that are not appropriately served by the cloud due to cloud

proximity, such as, (i) services that are latency sensitive (e.g., online gaming) [14]; (ii) geo-

distributed services (e.g., pipeline monitoring) [22]; (iii) services that requires mobility

support with high speed connectivity (e.g., connected vehicles) [3]; and finally, (iv) services

in large scale distributed control systems (e.g., smart grid) [1]. Figure 2.1 shows an IoT-

based healthcare example where fog computing is adapted to interact with the different types

of sensors and actuators, such as camera, wearable, environment sensors. On the thing side,

fogs directly communicate with things to accumulate the data via wireless communication

connections interfaces (e.g., Zigbee, LoRa). On the other side, the fogs are interconnected

with clouds to leverage the rich functions and services of the cloud.

The fog nodes can work independently or in collaboration with cloud node. Since fog

nodes have on-board computational power resources and data services facilities (e.g., data

processing and aggregations), fog can independently provide predefined/dedicated services

without cloud assistance [1, 63, 64, 65]. For example, fog nodes can independently monitor

22

Figure 2.1: IoT-Fog based Healthcare Example

and analyse real-time data from a pressure sensor and then initiating actions like open-

ing/closing a valve in response to a pressure reading from the sensor. However, fog has

limited hardware capabilities compared to cloud, therefore it may get congested very easily

when the data traffic is high and exceeds fog capacity. Hence it may need cloud assistance

or fog’s coordination to process the tasks. Its obvious that when the service traffic increases

on fog nodes, the potential of having the newly arrived services requests waiting is high,

thus having latency. The high traffic is associated with fog node capacity and its resource

managements, therefore, the better the fog resource management, the lower is the latency.

Despite the appealing benefits of fog computing, some concerns are undermining its

adoption. These include how to specify Cloud-2-Fog (C2F) collaboration and Fog-2-

Fog (F2F) coordination. Thus, since fog is being introduced to address the problem of

mobility and latency for delay-sensitive applications, most issues within the fog layer can be

categorised under the umbrella of Quality of Service (QoS) [24] (e.g., reduce latency, mobility

and privacy) and Quality of Experience (QoE) (e.g., service experience) [3]. It is worth noting

that the definition of service latency in this thesis is the total time required to deliver a

service, which covers the time when an IoT thing sends a service request and receives the

response back. This includes the travelling interval time and the processing time.

23

2.2.4 Cloud versus Fog Computing in IoT

Since 2000, cloud has become a popular geo-distributed operation model for organizations.

It differs from its predecessor models (i.e., grid and cluster) not only in terms of architecture,

networking, and middleware, but in terms of consolidating hardware and software resources

into co-located server farms known as data-centres. Cloud data-centres facilitate the delivery

of computing, storage, and networking to organizations as the 5th utility (after water,

electricity, gas, and telephony) using a pay-per-use pricing model. This leads to minimizing

operational, acquisition, and maintenance costs. Moreover, the technical complexity of

managing the clouds is hidden away from organizations. Despite the bright side of cloud,

it does not, unfortunately, suit all application types, especially IoT-based services and

application. For instance, latency-critical and data-privacy sensitive applications cannot be

hosted on the cloud due to reasons such as: (i) high-latency added by network connections

to datacentres [66] and (ii) multi-hops/nodes between end-users and datacentres raise the

probability of attacks. The centralized nature of cloud leading to a high communication

cost and power consumption are extra reasons for the cloud unsuitability [66].

In conjunction with the IoT boom, fog has been introduced and become a hot topic in

recent years. It was first introduced by Satyanarayanan et al. in 2009 [67] and generalized by

Cisco Systems in 2014 [68] as a new ICT-based operation model that would make computing,

storage, and networking facilities “close” to where data is captured and/or located. The

extension from cloud to fog is not trivial due to their subtle similarities and differences.

Cisco1 provides Table 2.1 to illustrate how cloud and fog would handle the characteristics

of certain applications differently. For instance, real-time applications that ask for almost

immediate action and high data protection, would discard cloud as an operation model.

On the contrary, fog would offer better support to mobile applications compared to cloud.

A thorough discussion of fog’s feasibility is presented by Varghese et al. [69]. The authors

mention that by 2020, 43 trillion gigabytes of data will be generated and thus, need to

be processed in cloud data-centers. However, this operation model cannot be sustained

for a long time due to frequency and latency of communication between these devices and

1Cisco blog on IoT, from Cloud to Fog Computing
https://blogs.cisco.com/perspectives/iot-from-cloud-to-fog-computing

24

https://blogs.cisco.com/perspectives/iot-from-cloud-to-fog-computing

Table 2.1: Appropriateness of cloud/fog to respond to system’s characteristics (Cisco)

Characteristics Cloud Fog
1 Latency High Low
2 Delay jitter High Low
3 Location of service Within the Internet At network edge
4 Distance client to server Multiple hops One hop
5 Security Undefined Can be defined
6 Attack on the enroute High probability Very low probability
7 Location awareness No Yes
8 Geo-distribution Centralized Distributed
9 No. of server nodes Few Very large
10 Support for mobility Limited Supported
11 Real-time interaction Supported Supported
12 Last-mile connectivity type Leased line Wireless

geographically distributed data-centres. Fog comes to the rescue of cloud by processing data

closer to its source so, that, network traffic is reduced and both quality-of-service (QoS)

and quality-of-experience (QoE) are expected to improve. According to Taivalsaari and

Mikkonen, fog harnesses a network’s edges for computation to pre-process thing data and

trigger alert requests locally on the basis of pre-defined criteria [66]. Table 2.2 also provides

more details about cloud versus fog as an operation model for applications.

Table 2.2: Analysis of cloud versus fog

Cloud Fog
Data/applications are processed/run
over the cloud, which is time consuming
for large data.

Data/applications are processed/run
over scattered network edges, so this
could consume less time.

High demand of bandwidth, as a result
of sending every bit of data over commu-
nication channels.

Less demand of bandwidth due to access
points located next to data.

Slow response time and scalability prob-
lems due to cloud servers located at re-
mote places.

Possibility of reducing response time and
scalability due to edge servers located at
close places.

25

2.3 Cloud and Fog Co-Existence in IoT

Different reasons motivate the adoption of fog over cloud such as avoiding the risk of network

slowdown and storage congestion [36], when large volumes of data are regularly transferred.

In the following, we discuss some works that expose these reasons.

Aazam et al. refer to the amount of data that the IoT will generate requiring addi-

tional support to applications deployed on the clouds [70]. This support is exemplified by

first, pre-processing and trimming data before sending it to the clouds and second, having

a smart gateway accompanied with a smart network or fog to regulate data flows from

IoT devices to the clouds. There two forms of communication arising between the smart

gateway and IoT thing: (i) direct (aka one-hop) when the communication is of a smaller

magnitude and IoT things are not very diverse and (ii) indirect (aka multi-hops) through

base stations and sink nodes when IoT things are diverse, more widely spread, and their

data is more heterogeneous.

Lewis et al. advocate cyber-foraging that “is the leverage of external resource-rich sur-

rogates to augment the capabilities of resource-limited mobile devices” [67]. This leverage

could be applied to IoT things that could offload their computation and data-management

duties to cloudlets instead of maintaining continuous remote connection with the clouds [71].

Cyber-foraging is very appropriate for military personas (e.g., soldiers) who make exten-

sive use of IoT things (e.g., handled tablets) during ground operations. These personas

use multiple applications like speech and image recognition and situational awareness that

are computation intensive and take a heavy toll on the devices’ batteries and computing

resources. Lewis et al. suggest partitioning military-critical applications into a very thin

client that will run on the IoT device and a computation intensive server that will run on

the cloudlet which is a fog devices that provide data staging and data filtering.

Yannuzzi et al. discuss the key ingredients of a successful IoT recipe [72]. These in-

gredients are fog computing, cloud computing, and more fog computing, and allow the

provision of an alternative to having storage and computing capabilities always confined

in data-centres. Applications that exhibit features of mobility, reliable control and actua-

tion, and scalability should benefit from Yannuzzi et al.’s proposed recipe. Despite the fact

26

that the authors raise the question of where storage and computing resources should be

appropriately located, they do not provide any criteria that would address this.

Petri et al. analyze and manage data in a multi-layered cloud configuration [73]. Al-

though data are expected to flow from the lowest level, consisting of sensors, to the high-

est level, consisting of data-centres, through an intermediate level, consisting of gateways,

the authors observe that complying with this flow is not a must for certain applications

like IoT. To this end, data analysis is usually performed at 3 layers, in-situ (i.e., sensor),

in-transit (i.e., gateway), and data-drop (i.e., cloud). The authors observe that only a

subset of data is sometimes needed for analysis at the cloud level. Thus, they propose a

coordination mechanism as an objective function that minimizes and/or maximizes some

QoS constraints over each layer. These constraints depend on criteria like type of sens-

ing (for a multi-purpose sensor), number of concurrent streams processed (for a gateway),

and execution time per application (for a cloud).

Wen et al. discuss the challenges that hamper the orchestration of IoT services from a fog

perspective, such as service selection and placement, parallel computation, late calibration,

dynamic orchestration with run-time QoS, to cite just a few [74]. The authors develop a

fog orchestrator that consists of a resource manager, planner, and status monitor. On top

of this, the orchestrator interacts with a cloud data-centre and other fog nodes in charge of

locally storing and/or computing data of the IoT.

Chekired et al. discuss the role of fog computing in sustaining Industry 4.0 growth [75].

To achieve this role, they propose a fog-based multi-tier architecture and a scheduling model

for data processing. Through this architecture and model, the authors aim at minimizing

communication and data processing delay in Industry 4.0 systems by organizing fog servers

hierarchically and optimally aggregating and offloading data peak loads in lower-tier servers

to higher-tier servers.

Despite the co-existence of cloud and fog in the afore-mentioned approaches, fog largely

dominates cloud in term of appropriateness for IoT applications. The coordination (Fog-2-

Fog or C loud-2-C loud) and collaboration (Fog-2-C loud) models proposes in this thesis is

one step forward towards a holistic approach for a cognitive, reliable and trusted fog-cloud

models to support IoT applications.

27

2.4 IoT and Data Processing Mediums Challenges

In the IoT, things provide a vast amount of data every second, which requires special treat-

ments by the available ICT and data processing mediums to be converted into a useful

knowledge. In order to generate useful data out of raw data, a proper data filtering and ag-

gregating should be supported by the ICT with a special care for data security and privacy

which is set/identified according to the application’s requirements. ICT currently adopts

fog and/or cloud in most IoT-based application as data processing mediums. However, due

to the heterogeneity of data, IoT-nodes (i.e., thing, fog and cloud) and communications

protocols, frequent challenging issues arise, such as resource management. This section

summarise the key technical challenges and issues associate with IoT, fog and cloud com-

puting.

2.4.1 IoT Challenges

IoT enables many new features and opportunities for industry (e.g., smart grid) or directly to

end-users (smart-homes). However, the IoT itself lacks some theory, architecture standards

and technologies that can integrate the virtual world and the real physical world in a unified

framework [76, 77]. The main challenge issues of IoT are summarised below:

• Standard Challenge: since the IoT does not have well-defined standards that govern

the interaction and the development of the IoT-systems, there are many issues related

to IoT-systems management and development [78], such as connectivity and security.

Standards could play an important role in forming the IoT, thus they will allow IoT-

systems developments to follow some minimum requirements that could satisfy both

QoS and QoP. Generally, standards should be publicly available and free to use.

• Data management: the IoT sensors and applications provide vast amounts of data

every millisecond, hence these data need immediate attention to serve their storage

and processing needs. These data consist not only of traditional discrete-data, but

also a continuous stream of raw-data that are generated from digital-sensors [79],

thus entering the era of big-data. For example, industrial/environment sensors that

stream different data, such as location, movement, temperature, humidity etc. The

28

current adopted architecture and network topology of today’s data-centres are not

prepared to handle or deal with the heterogeneous nature of the IoT data [79, 80].

• Architecture Design: since IoT encompasses an extremely wide range of technologies,

communication protocols and heterogeneous devices, the network and architecture of

the IoT become very challenging to identify, manage and standardise. In the IoT,

data integration over different environments is a tough process and should be enabled

by modular interoperable components [76]. Thus, IoT infrastructure development

requires systems to: (i) accumulate data from different sources, (ii) determinate and

analyse data of relevant features and relationships to interpret the data, (iii) provide

support for decision making. Therefore, a single architecture cannot be a blueprint

for all IoT systems/applications [76, 81]. Hence, this stresses the need for a heteroge-

neous IoT architectures, this should be flexible and adaptable, following preset IoT

standards and not restricted to a single solution.

• Technical challenges: the IoT technologies can bring complex technical issues in both

things-design and networking protocols [82]. The things-design has lots of require-

ments so they can be widely accepted, however, there are two main requirements that

are essentials when producing any thing-device: (i) extremely low-power consump-

tion during both active and sleep modes (ii) ultra low-cost in terms of production

and delivery to consumers. In addition, things should be a bandwidth-saver as the

bandwidth in IoT is critical and can vary from kbps to mbps from sensing simple

raw-data to capturing video streaming [76]. In term of networking protocols between

things and things with data-centres, these should be simple and fixable and more

importantly they should be low-cost and provide reliable connectivity [76].

• Security and Privacy: the IoT-things generate and exchange enormous amount of

security-critical data along with privacy-sensitive information, hence are appealing

targets of various attacks [83, 84, 85]. Cyberattacks on IoT-things are very critical

since they may cause physical damage and even threaten human lives [83]. A recent

study from HP Inc revealed that 70% of the most commonly used IoT devices contain

serious vulnerabilities to attacks [86, 87]. This poses new challenges on the design

and implementation of secure embedded systems that typically must provide multiple

29

security features and safety functions. Current IoT applications are insufficiently

developed with regards to fulfilling all the desired security requirements and endure

security and privacy risks [83, 44]. Protecting and avoiding attacks on IoT will require

a complete cybersecurity framework. This framework should be able to cover all

abstraction-layers of the heterogeneous IoT across platform boundaries [83, 42].

2.4.2 Cloud Challenges In IoT

Integrating cloud computing with IoT can provide several benefits, also it can foster the

development and improvement of many IoT-systems. Cloud can help in managing the

connected IoT-things (i.e., sensors) remotely, thus making the generated data globally ac-

cessible. However, complex IoT-systems, such as patient’s monitoring, could raise several

challenging issues for cloud computing [88, 89]. The main recurring challenging issues of

cloud computing in the IoT are twofold:

• Proximity: the current cloud networking paradigm relies on powerful centralised

servers that are located somewhere in the world. Also, the traditional traffic-management

is mainly based on a centralised control mechanism. This poses heavy loads on the

traffic management server and causes a long response delay [3]. The long-distance

between the data-source (i.e., IoT-things) and designated cloud servers makes cloud

an impractical solution for IoT data processing, especially for delay sensitive IoT-

applications. This is because by the time the data reaches a far cloud servers, the

importance of IoT-things data would be depreciated [17, 39]. This prompts the need

to evolve the network in order to permit the data processing at the edge of the network

• Performance and Reliability: cloud adoption in the IoT could feature many application

and services, especially those that requires heavy tasks processing, such as video

processing. However, adopting cloud computing in mission critical applications would

raise some reliability concerns [89], especially in the context of moving things, such as

smart-vehicles that often experience networking/communications being intermittent

or unreliable when they are in motion [3]. This will seriously affect the usability and

user-experience, and thus the QoS provided by the cloud. It worth noting that cloud’s

main issue is to have a stable and acceptable networking performance throughout as

30

timeliness may be heavily impacted the performance [89, 90], for example peak and

off-peak time performance.

2.4.3 Fog Challenges In IoT

Although Fog computing is a promising network paradigm to serve IoT applications/systems,

there are a number of challenging issues that need significant attention. Despite the fact

that there are a number of research projects that have been conducted on fog computing,

there are on-going research challenges and opportunities still open to discuss. The main

recurring challenging issues of fog computing in the IoT are threefold:

• Heterogeneity: in IoT-based applications, the bottom most layer within the IoT (thing

layer) can have multiple different devices such as smart-phones, autonomous cars,

wristbands and other IoT smart objects. The heterogeneity issue emerge at this

point due to the heterogeneous data-formats [91], which limits the data aggregation

processes and thus could directly impact the QoS and QoE can be provided to the

end users if data could not processed in time due to its heterogeneous nature. Deal-

ings with various data formats and different communication protocols for managing

unstructured data becomes a major issue. Heterogeneity becomes an substantial de-

signing factor to be considered during the design phase of an IoT -Fog based system

architecture [92]. Therefore, this raises the issue of how fogs can handle various data

formats and network protocols from highly dissimilar sources of data.

• Resource Management: when IoT layers (a.k.a, things, fogs, and clouds) are integrated

into one network, the management of the resources becomes a primary concern [93].

Resource discovery and sharing are critical factors for IoT applications, as it could

affect the services and QoS directly. Due to the dynamic nature of IoT nodes in

terms of communication and data acquisition, significant challenges arise. Even when

considering fog without the aid of the cloud [63, 64, 65], resource management can be

challenging. This is due to the limited computing and storage resources available in

the fog compared to the cloud. Fog resource management is not been widely studied

in most existing researches studies [94, 26]. Thus, the question of “How to balance the

load in Fog layer?” towards delay minimising, services availability, cost-effectiveness,

31

and power-reduction is an open research challenge. Understanding the nature of fog

in the way it deals with data and the mobility of things may be beneficial for re-

source management and task scheduling within fog to allow best QoS. In resource

management, offloading can be a solution to balance the fog’s workload, however, it

still experiences some issues [1, 39, 95, 96, 97], for example, the question of “when to

offload a task?” in a way that can allow efficient resource management while insuring

best QoS is still an open research challenge. Offloading refers to the transfer of tasks

from one entity to another, such as one fog to another or to cloud. For example a fog

node transferring the load to another node that’s experiencing less load. What makes

offloading challenging is how tasks should be offloaded, and what reasons should be

applicable to make the decision to offload the task(s), hence achieving minimal delay.

To the best of our knowledge, there are a number of research studies tackling the

challenges associated with task scheduling [26] at the fog layer. However, most pro-

posed research so far permits distributing jobs over participant Fog nodes regardless

of the current workload on nodes. In other words, they have not appreciated the

possible unbalanced situation among fog nodes in terms of traffic and workloads [26].

In fact, most of the proposed algorithms focus on reduce the task blocking prob-

ability, hence, they cause such unbalanced loads, among participant nodes. This

stresses the need for algorithms and framework that support offloading [98, 99] and

load redistribution [100] activities at the fog layer. Offloading could be detrimental

to latency-sensitive systems if carried out in an unsuitable manner. If the offloading

of the tasks causes more delay, it could reduce the QoS and QoE.

• Security (Threats and Attacks): security in fog computing is also a changing issue

which can directly impacts the QoP and QoE to end users, threats and attacks are

mainly because of fog’s geo-distribution and positioning within the network. Working

at the network edge could present threats that do not exist within an organised cloud

architecture. One of these threats could be a Denial-of-Service (DoS) attack, in which

the attacker can relay and alter the communication between two parties [101], thus

affecting the QoP. For example, in a healthcare system, the attack could compromise

a gateway that is in between a patient monitoring sensor and a fog node that processes

patient’s data, hence, a major consequence regarding the patient’s health occurs if

32

the attacker altered the data that being processed. Not only gateways are abused

for attacks, but fog node themselves can also be attacked and manipulate them to

become malicious fog nodes. A malicious fog nodes can disrupt network operations

through various attacks, the following attacks [102, 103, 104] are considered since

they can directly effect the reliability of fog computing.

1. Forgery:- malicious fog nodes may forge their identities and fabricate fake data

to mislead other fog nodes and IoT services. This type of node burdens the

network resources by excessively consuming network bandwidth, storage and

computational power by running a fake services and fabricating large amounts

of faked data.

2. Tampering:- malicious tampering with fog nodes degrades fog efficiency by de-

laying, modifying or droping the transmitted data. Detecting such malicious

fog nodes is difficult as transmission failure or delay may be caused by other

factors, such as unstable channel conditions or weak network signal, and not

due to tampering with the fog.

3. Spam and Jamming:- this attack burdens the network with unwanted content

and data by generating large amount of bogus data to jam the network channels

and the fog’s resources. Such attacks are generated and spread by malicious fogs

to consume network and fog’s resources so that the fog become unavailable for

other services and processes.

4. Impersonation: A malicious fog pretends to be a legitimate fog node to provides

fog’s services, but then it provide fake or phishing services to users and breaches

users privacy.

5. Denial of Service (DoS):- malicious attacks to disrupt the fog’s services and

make them unavailable to the intended users, by flooding the target fog nodes

with superfluous service requests. This attack consumes network resources to

prevent the requests from legitimate users from being fulfilled. Fog nodes are

highly vulnerable to DoS attacks compared to the cloud due to the fog’s lim-

ited resources.

33

2.5 Related Works

The Research and Development (R&D) community has found that the employment of fog

computing at the edge of the network can provide a low latency, location awareness and

many more features that can improve the Quality of Services (QoS) [14, 4, 3, 38, 96, 105].

However, there is a lack of concrete solutions supporting the development and adoption of

this computing paradigm [39, 40, 106]. Although Fog computing is still in its conceptual

stage, there is some related research which needs to be regarded. The following subsections

are: (i) research criteria section to define the research criteria that are used to critique the

recent efforts, (ii) existing work limitations section summarises some of the main research

on fog computing, and (ii) gap analysis that highlights the contributions of this thesis.

2.5.1 Research Criteria

Despite the growing interest in fog computing for IoT-enabled applications and systems,

there does not appear to be an established approach for a concrete solution supporting all

fog computing features. Recent efforts on fog computing has been studied with regard to

the following criteria:

• Heterogeneity criterion: fog nodes are heterogeneous, hence fog nodes can significantly

vary in their processing, storage and communication capabilities. Therefore, during

the design phase of IoT-fog based system, this criterion should be taken into account

in order to specify the limitation and capabilities of fog nodes, hence the system will

be able to decide/pick the right resources for job deployment to allow best QoS.

• Cognition criterion: fog nodes should not only act upon things data, but also direct

them to engage in follow-up interactions that should lead to achieving certain tasks.

Hence, fog should be able to interpret gathered data so that it can learn from their

process experiences according to different situations/scenarios and improve when per-

forming repeated processes. It worth noting that the cognitive capabilities and learn-

ing activities are not bound by the types/formats of the data, hence fog can learn

from any data as long as the data can be interpreted (i.e., unencrypted) by the fog

to allow fog identifying patterns and similarities for future processes for best QoE.

34

• Scalability criterion: an elastic fog system is essential in the era of the IoT because

fog computing is expected to cover vast number of IoT things which are significantly

growing over time. Thus, fog should be able to make decisions whether to scale

up/down or scale out upon the number of connected devices/Things. Therefore, IoT-

fog based systems should have an elastic scalability manner to insure fog reliability

at such large IoT scales, hence having best QoS and QoE.

• Federation criterion: fog nodes are distributed over several geographical location based

on things locations, also they can be provided/operated by different parties. There-

fore, cooperation among fog nodes is essential in order to ensure QoS leverage (e.g., re-

duce latency) for IoT Things. Therefore, federation among fog nodes is an essential

criterion for fog nodes to help with in-sourcing and out-sourcing resources/processes

to other nodes which may help to deliver best QoS and QoE.

• Security and Privacy criterion: the flexibility of offering different fog-based services by

different providers complicates the trust situation between fog nodes and end-users.

Cryptographic-based techniques can prevent external attacks from expose user’s pri-

vacy, however, they are not useful when fog nodes are already authenticated and part

of a networks using legitimate identities. Therefore, fog nodes should be supported by

some enhanced security features (e.g., on the fly authentication) to mitigate the risk

of breaching user-privacy, thus avoiding malicious fogs/attacks and having best QoP.

35

2.5.2 Existing Work Limitations

The benefits of adopting the fog computing paradigm has attracted researchers and organi-

zations in different research disciplinary. Since the emergence of fog computing by CISCO

in 2012 [26], researches studies related to the fog paradigm have been actively conducted

over the last few years. In early efforts, studies were primarily conducted on emphasizing

the importance of the fog and its services along side fog usability, while today the focus

of research has subsequently shifted toward fog framework, resources management and se-

curity. This section summarises some of the main state-of-the-art research/contributions

on fog computing, these research studies have been grouped according to their field and

studied based on the criteria in Section 2.5.1.

2.5.2.1 Fog Computing Resource Management

Beate et al. [107] propose a job placement and migration approach for providers of infras-

tructure that incorporate cloud and fog. The approach ensures end-to-end latency restric-

tions and reduces network usage by planning load migration ahead of time. The authors

also discuss how the application knowledge of Complex Event Processing (CEP) can reduce

the required bandwidth of Virtual Machines (VMs) during their migration. However, the

presented approach does not consider offloading high load among fog nodes; hence they

assumed the fog nodes are able to perform computationally intensive tasks, which might

not always be the case thus impacting the QoS provided by fog. According to our criteria,

the authors indicate that the approach can be employed at large scale in the real-world, so

the scalability is met as the presented approach can scale well with the increment of jobs.

However, presented approach seem to overlooking heterogeneity of both devices and data

which may impact QoE and the federation among fog nodes to allow better job processing

and migration which can directly impact the QoS and QoE.

Agarwal et al. [108] proposed a resource allocation in a fog context. They proposed

3-layer architecture, client, fog, and cloud allowing the distribution of workload between

the cloud and fog nodes. In fact, the authors check whether enough processing is available

on the fog node so that, all or some tasks are executed or even postponed. Tasks could

also be directed to cloud nodes. The limitation of this work is making an assumption that

36

every fog and cloud nodes will have a manger to manage the collaboration and performance

of the node. Thus, this approach is not well discussed to prove the proper execution of

distributed tasks. According to our criteria, Agarwal et al.’s work tackles the heterogeneity

challenge well but neither scalability nor federation challenges were tackled, this limit the

deployment of fog computing and obviously impact the both QoS and QoE.

Heil et al. [109] propose a context-aware federation approach for IoT devices to support

user access, and connect and locate arbitrary devices according to their functionalities. The

proposed approach utilizes the concept of Federated Devices Assemblies (FDX) for inte-

grating real-word IoT devices into service federations. According to our criteria, Heil et

al.’s things federation tackles heterogeneity and federations of things well in away that can

improve the QoS, but this federations have not discussed on fog level, also the interaction

among “things” is not monitored and facilitated with an approach to prevent the attacks and

malicious behavior that can impact network’s QoP. Mathlouthi et al. [110] present an ap-

proach which enables the composition of federated cloud based System of Systems (SoS) to

work co-operatively in order to achieve common goals. An SoS constitutes several complex,

heterogeneous, and autonomous systems deployed on heterogeneous cloud environments. In

this work, the presented functional and non-functional requirements for IoT are considered

to obtain best SoS composition and maintain the overall QoS. However, according to our

criteria, Mathlouthi et al.’s SoS composition approach tackles the heterogeneity and fed-

erations of the devices very well, hence developed approach can deliver reasonable QoS.

Nevertheless, neither the scalability nor cognition criteria are not tackled, also malicious

behavior within the network is not tracked/monitored for better QoE and QoP.

Sun et al. [111] propose a Cloud-of-Things and Edge Computing (CoTEC) scheme for

traffic management in multi-domain networks. CoTEC directs the traffic flow through ser-

vice nodes. The authors assign a critical egress point for each traffic flow in the CoTEC

network using multiple egress routers to optimize the traffic flow; this is known as Egress-

Topology (ET). Therefore, the proposed ET incorporates traditional multi-topology routing

in the CoTEC network to address the inconsistencies between service overlay routing and

border gateway protocol policies. Furthermore, Sun et al. introduce several programmable

nodes that can be configured to ease the ongoing traffic on the network and realign services

37

among other nodes in multi-domain networks. In regards to the above challenges, the fed-

eration is only met with edge-cloud, however the congestion and its implication in clouds

or edges is not discussed, this can be a serious issue that can impact both QoS and QoE.

Moreover, they seems to overlooking the heterogeneity (i.e., device’s capacity) and scalabil-

ity of the network. Also, in edge-cloud communications, the proposed approach does not

monitored in term of malicious behaviors within the network, hence the QoP may impacted.

Lina et al. [112] propose a fog computing based resource allocation policy using Priced

Timed Petri-Nets (PTPNs). A simulation was developed to evaluate the proposed resource

allocation strategy using parallel machines and Linux cluster. The outcomes were that the

proposed resource allocation policy can provide efficient resource selection for autonomous

task scheduling and improve the use of fog resources. The limitation of this work is the

small-scale context related to online shopping, and the process of resource allocation is not

automated calling for user assistance, hence this propsed work is not scalable. While the

authors meet the federation criteria in term of considering different forms communications

among nodes, the heterogeneity and cognitivity are not met.

Al-Turjman et al. [113] propose a cognitive caching approach for the future fog that

focuses on the data exchange in Information Centric Sensor Networks (ICSNs). It depends

on functional parameters, such as the age of information and data fidelity, to assign a value

to the cached data while retaining the most valuable one in the cache for a prolonged

time period. This enables the significant availability of the most valuable and difficult to

retrieve data in the ICSNs. According to our criteria, Al-Turjman et al. overlooked the

issues of heterogeneity in term of device’s capacity, also how the proposed work can cop

with expanding of the network, thus the scalability left unmet. Jalali et al. [114] propose a

cognitive IoT gateway based approach supported by cognitive analytic and machine learning

to improve the performance of IoT-enabled applications. The proposed approach enables

the IoT devices to automatically learn and decide whether and when to run an application

on the cloud or on the fog. Jalali et al. does not discuss how the proposed approach and the

cognitive capabilities can handle/impacted with the encrypted data traffic on the gateway,

which may affect services reliability, hence the QoS. Also, authors seems overlooked the

challenges of scalability when the network expanding.

38

2.5.2.2 Fog Security: Trust and Privacy

In recent years, trust-based security solutions have been the focus of both industry and

academia. Trust can help in detecting and isolating those malicious entities which are part

of a network using legal identities. Moreover, trust plays an important role in nurturing the

relation between different fog nodes in terms of maintaining user privacy and information

security [115]. Ideally, fog clients are expected to connect to any arbitrary fog node to avail

its services such as computation, storage and processing, with a belief that the provided

information is not to be misused. The integration of trust management in fog computing

will assist fog nodes to select the most secure and trustworthy fog nodes in the vicinity

according to their needs and requirements. For achieving this, all the participating fog

nodes should have a certain threshold of trust in each other. However, the development of

a trust management mechanism for fog nodes is tricky due to its decentralised architecture,

which may pose some challenges. The main issue with the decentralized architecture is that

it makes collection and management of evidence and behaviour difficult which is required

for the evaluation of the trustworthiness of distributed fog nodes [116].

Abedin et al. [117] propose resource sharing among fog nodes by defining a utility metric

for these nodes that accounts for the communication benefits in case resources are shared

among them. First, the authors determine an organised list of preferences that pairs fog

nodes with each node. Then, each fog node requests pairing with its preferred fog nodes.

At the reception side, depending on the preference and benefits of the previously received

requests, a target fog node decides either to accept or to reject the request. The limitation

of this work is that the pairing decisions are made based on communication cost without

considering time and location. The authors do not also take the QoS, in term of latency

and bandwidth, into the consideration as part of the resource sharing decision. Abedin et

al. considers the heterogeneity of nodes, as the resource limitation of fog nodes (e.g., CPU)

has been considered during load allocation. However, the evaluation is conducted over a

small scale, making the scalability limited and hence, not met. In addition, federation is

not relevant for this context, since the developed algorithm targets a single fog domain.

Fog-based trust management is in its inception as there have been very few reported

works on the topic of the trust mechanism in fog computing. Alrawais et al. [118], carried

39

out a survey for finding the current security issues and challenges in IoT and propose a fog-

based security mechanism to improve the distribution of certification revocation information

between IoT devices. Wang et al. [119] propsed a concept of fog-based hierarchical trust-

based mechanism for SDN, which has two distinctive features that are based on trust in

the network structure, and the trust between cloud service providers (CSPs) and sensor

service providers (SSPs). They focused on the packet loss rate, route failure rate and

forwarding delay only. According to our criteria this work did not investigated the affect

of nodes heterogeneity nor the scalability with network’s expanding in term of size and

functionality, which can be a major drawback. The proposed trust-based mechanism for

SDN may have discussed how to achieve better QoS and QoP, but not the QoE. Elmisery

et al. [120] proposed a fog-based middleware where trust between a fog node and the cloud

is calculated in a decentralized fashion using entropy definition. The entropy may help in

improving the QoP among nodes, but not the QoE and QoS as it can be a time consuming,

also this approach will not scale well with network expansions. The authors in [121] proposed

a fuzzy trust-based model that take into account experience and plausibility for securing

vehicular networks. To ensure the correctness of information collected from authorized

vehicles, a series of security checks are performed. Moreover, a fog -based facility is used

to evaluate the level of accuracy of event’s location. The limitation of this work is that

the pairing decisions are made based on communication cost without considering time of

processing nor federation, hence the heterogeneity and federation criterias are overlooked.

Many trust-based models have been reviewed thoroughly in the literature [43, 122, 123].

Reputation is considered as an important parameter for the evaluation of trustworthiness.

Hence, there are many mechanisms which employ this procedure for evaluating the trustwor-

thiness in mobile ad-hoc networks [124] and vehicular ad-hoc network [125], delay-sensitive

networks [126] and mobile crowd sensing [127]. However, they seem to have overlooked the

heterogeneity of nodes and scalability. Kai Hwang with his team presented the idea off trust

in clouds, in which he suggested to combining security-based data centres, data access and

virtual clusters driven by reputation systems [128]. The work of [122] represents a trust

mechanism using a points based technique for protecting against unauthorized entry. For

securing data transmission between two devices, trust was used in the gateway devices.

40

Jiang et al. [129] proposed an Efficient Distributed Trust Model (EDTM) for things.

They randomly calculated direct trust values and recommendation trust values by eval-

uating the number of packets received by the sensor node. This approach is helpful in

identifying different types of attacks. However, it is susceptible to processing and com-

munication overheads, also they have overlooked the heterogeneity and scalability criteria.

The work of [43] integrates the cloud and edge computing trust evaluation mechanisms

which resulted in the considerable reduced resource usage for the evaluation of trust and

increased IoT-cloud services efficiency. In this approach, they employed mean trust value,

calculated on the basis of observed values obtained from the interacting devices. This may

lead to communication overhead in the network.

The realization of offloading among fog nodes achieve resource efficiency and avoid bot-

tlenecks, and overload [130]. There exist several mechanisms in the literature that focuses on

the issue of offloading requests in a fog computing environment. However, they do not con-

sider trust as a primary metric when it comes to offloading requests among fog nodes [131].

Bonomi et al. [132] proposed a fog computing module that brings the fog computing power

and resources closer to the mobile users through an offloading policy. The policy takes

into account execution, energy and other expenses. Fricker et al [133] proposed an ana-

lytical model to analyze a simple offloading strategy under heavy load for data centres in

fog computing. The model considered forwarding requests with a certain probability to

neighbouring data centres when the originally intended data centres is overloaded. More-

over, requests can be blocked/rejected based on whether it can offload the arriving requests

to other data centres. Zhang et al. [97] proposed an analytical framework to support fair

offloading among multiple fog nodes while maintaining low delay. It selects fog nodes to

offload tasks based on a fairness metric and rules that minimize the task delay. Massri et

al. [106] presented a collaborative fog-to-fog communication algorithm that allows fog nodes

to communicate and coordinate with each other to process IoT job requests. However, most

effort seems to have overlooked the heterogeneity of devices, thus treating node with same

capacity which is a major drawback that can impact the QoS and QoE. Also, the scalability

with IoT network expansion and federation among nodes for better QoS are overlooked.

Nevertheless, none of these works have investigated, or invested in, the ideal location of fog

in the network to provide cognitive capabilities and learning activities within fog nodes.

41

2.5.3 Gap Analysis

Despite the growing interest in fog computing for IoT-enabled applications, there are not, to

the best of our knowledge, dedicated works that particularly examine a systematic frame-

work for fog nodes coordination. Such a framework should be elastic in a way that can

meet the intelligence communication among fog nodes, along with tackling the heterogene-

ity, scalability, and security criteria in Section 2.5.1. Several efforts tackle the challenging

criteria of fog computing, however, most proposed approaches in the existing literature only

pay attention to one criterion and overlook the other criteria, and this significant issue as

other criteria may be in conflict with what has been proposed. Thus, a concrete solution

for fog computing is still absent, and hence we identify the research gaps.

Many research studies have proposed theoretical solutions that have not yet been eval-

uated, especially those that are related to fog cognition and security, or they overlook some

other criteria. Hence, from a closer analysis of the literature, we found that the engineering

approach of fog computing is not considered in different aspects of architectural stability for

different systems that have different types of tasks on fog nodes, such as heavy-tasks and

light-tasks. Therefore, this thesis serves as a starting point to jointly handle the criteria in

Section 2.5.1. Table 2.3 shows a comparative analysis of the work proposed in this thesis

with other research. The comparison is based on main objectives and criteria set for fog

computing scope, such as QoS, scalability and security, along with appropriate fog resource

management and availability.

42

Table 2.3: Comparative analysis with main recent research studies

Research

Scope and Research Objectives

QoS Latency Security Availability Scalability SSLA QoE Resource Plan Cognition

Deng et al. [63] X X − − X − X X −

Al-khafajiy et al. [29] X X − X − − − X −

He et al. [134] X − X − − − − − −

Yannuzzi et al. [72] X − − X X − − − −

Chen and Hao [135] X − − − − − − X −

Giang et al. [136] X − X − X − X X −

Al-Turjman et al. [113] − X X − − − − − X

Sarkar et al. [137] X X − − − − X − −

Skarlat et al. [138] X − − X X − − X X

Gupta et al. [139] X X − − X − X − −

Shen et al. [140] − − X − X − − − −

Wen et al. [141] X − − − − − − X −

Liu et al. [142] X − − X X − − X −

Bhardwaj et al. [143] − − X − − − − X −

Wang et al. [144] X X − X X − − X −

Jalali et al. [114] − − − − − − − X X

Vallati et al. [145] X − − − − − X − −

Azimi et al. [146] X − − X X − − X −

Markakis et al. [147] X − X − − − − X −

Chen and Xu [148] X − − − X − X − −

Ni et al. [149] − X X X − − − − −

Lina et al. [112] X X − X − − − X −

Sun et al. [111] − X − X X − − X X

Agarwal et al. [108] − X − − X − − X −

Beate et al. [107] − X − − − − − X −

Heil et al. [109] X − − X − − − X −

Abedin et al. [117] − − X − X − − X −

Elmisery et al. [120] − − X − − − X − −

Jiang et al. [129] X − X − − − X − −

Proposed CF X X X X X X X X X

43

2.6 Chapter Summary

This chapter introduced a background on the basic concepts of IoT, cloud computing and

fog computing along with a comparison between the two computing paradigms and their

existence in the IoT era. Then, the chapter reported on a systematic literature review on

fog/cloud challenges with a critique of some of the recent research efforts. After studying the

literature, this chapter provided a gap analysis to highlight the research opportunity that

forms the contribution of this thesis. The literature survey aims to provide a comprehensive

overview of the current state-of-the-art and connect knowledge on fog, cloud computing,

and more on fog since it is the main focus of this thesis.

The outcome of the background study and systematic literature review revealed that the

emerge of IoT, on one hand, brought significant advantages to our lifestyle by utilising the

network of sensors and smart objects. However, one the other hand, brought unavoidable

challenges that vary from network congestion and resource managements to security and

privacy challenges imparted by the heterogeneous nodes in the IoT network. Moreover,

The emerge of fog computing with IoT deems to offer valuable services to help in network

managements the lowering the response time to IoT application in comparison with cloud

computing. However, there were no concrete solutions on fog computing can be adopted,

manged, and what services fog nodes can provides. Therefore, next chapter proposes a full

fog computing design principles and preparations for a concrete adoption of fog computing.

44

CHAPTER 3

Design Principles and Preparation

True stability results when presumed order

and presumed disorder are balanced.

Tom Robbins

3.1 Introduction

I
n most recent IoT systems, there is a bridging point, called fog computing, between IoT

things and the Internet (i.e., cloud). This fog layer often just performs basic functions

such as translating between the protocols used in the Internet and the smart objects that

are deployed on the Internet, such as healthcare wearable, along with providing other basic

data storage and processing services (e.g., data filtering and aggregations). Fog computing

offers the ability to extend not only storage capabilities but also networking and comput-

ing capabilities of the cloud to the edge of the network. The better positioning of fog

nodes within the network in relation to fog connectivity with end-devices boosts its func-

tionality and abilities, especially for systems that require data synchronisation with low

latency (i.e., real-time systems), such as patient monitoring systems.

Fog nodes have the advantage of obtaining beneficial knowledge and constructive control

over both the things network and the data transmitted over the network due to its strategic

position within the network. This enables fog nodes to not only act on the data but also

make intelligent decisions. Therefore, in this chapter, we first highlight the adopted network

architecture of fog computing, secondly discuss the design principle and requirements of

fog computing, and thirdly propose the concept of Cognitive Fog (CF) that forms the

fog node functional and non-functional requirements which are used throughout this thesis.

Briefly, the architecture of the fog computing network will give insight into how the network

components are connected and the integration of different technologies within the network

topology. The design principles highlight the main requirements of fog nodes based on

networks communications and geo-location of the fog nodes along with their functional and

non-functional requirements. While the concept of CF will discuss the opportunities of

fog nodes within the network, in terms of what can be achieved by employing fog, that’s

includes the processes of not only acting on the gathered data but also learn from them and

make decisions.

46

3.2 Fog Networks Architecture

Before we dive into the Cognitive Fog principles and requirements, we highlight the adapted

fog computing architecture1. This architecture is similar to other large-scale computing ar-

chitectures (e.g., cloud computing) which have either application specific architecture or

application agnostic architecture. However, there is no standards architecture for the sys-

tems that are using fog computing [1, 2, 50, 150] as a data processing mediums. To elaborate

this more, as reported by the National Institute of Standards and Technology (NIST) [151]

there is no consensus exists on distinction architecture (distinct from cloud computing) and

clear adoption of fog computing, hence no standards architecture on how fog computing can

be adopted. The general fog computing architecture adopted in this thesis is in-line with

the architectures presented in [1, 2, 4, 14, 39] which were initially introduced by CISCO [41].

Understanding the fog computing architecture topology helps obtain a better insight into

the main functionality and benefits of using fog computing, also the advantages of its loca-

tions within the networks. Figure 3.1 (recall from Chapter 1) shows the IoT fog architecture

composed of things, fog, and cloud layers. The main layers in IoT-fog architecture are:

thing, fog, and cloud. The bottom-most layer (thing) comprises of end-devices, gateways

and sensors. The middle layer (fog) is where the fog nodes reside along with the core net-

work. The top-most layer (cloud) is where the cloud components are located for historical

data storage and big data processing. Below is a description of the three layers.

Thing layer: also called perception layer, this is the closest layer to the users and

physical sensor’s surrounding/environment. This layer involves the connected IoT sensors,

such as ambient sensors, heart-rate and blood-oxygen sensors and so on, this to ensures data

availability by hosting the networked devices and enable data sensing and sharing. These

sensors and devices are widely distributed over this layer and their main responsibility is to

sense the featured data from the physical surrounding objects or events and transmitting

these sensed/generated data to the upper layer (e.g., fog layer) for processing. Each de-

vice/sensor has a communication protocol, such as IEEE 802.15.4, WiFi, Bluetooth, MQTT,

and so on. This communication protocol is essential for the things so they can transmit the

generated/sensed data to other layers in the form of a data-processing request.

1It worth noting that this architecture is used throughout this thesis unless otherwise specified

47

Figure 3.1: IoT fog architecture composed of things, fog, and cloud layers

Fog layer: this is located at the edge of the thing’s layer. This layer contains a large

number of distributed fog nodes [39, 46] that should ideally be located “next” to data

sources (i.e., things). The fog node can be any device with: i) communication protocol,

ii) processing and storage capacities, and iii) physically located close to the data sources.

This generally include, but is not limited to, access-points, gateways, routers, switchers,

base-stations, or specifically developed fog nodes [46]. This layer refines and processes the

data that are generated/sensed at the things layer. The fog nodes are deployed at the edge

of networks [1] to ease and make fast the process of data acquisition and processing. Thus,

each fog node is equipped with on-board computational resources, data storage, alongside

network communication facilities to bridge things and cloud within the IoT network [14].

Fog has the potential to reduce the amount of things’ data transmitted to the cloud layer

by acting on these data. The real-time analysis and latency sensitive applications can be

accomplished in the fog layer. The fog nodes communicate with things to accumulate and

process data conveniently and independently [1]. Moreover, fog nodes are also connected

with cloud, hence if no sufficient resources are available at the fog layer, its responsible for

interaction and cooperation with the cloud to obtain more powerful computing for rich-

functions and services as well as more storage capabilities.

48

Cloud layer: this layer provides a global or centralised monitoring and control over the

network. This layer consists of multiple high performance servers which enable omnipresent,

convenient, and proper network access to shared resources, such as storage, rich-functions

and service over the network. This layer has powerful computing and storage capabilities to

support extensive computation analysis and permanently storage of an enormous amount

of data. Cloud data centres are ideal for for big data processing and advanced machine

learning activities, such as training and analysis.

3.2.1 Network topology

IoT network with fog computing carries out the service’s communication, computation

and storage at the edge of the network, is the most basic characteristic of fog computing

and the most significant advantage compared with other traditional computing models.

Therefore, stranded network topology has evolved to have the fog layer as the main point of

communication to the thing’s service requests. In the following, we define an IoT network as:

IoT = {T, F,C, L}

where:

• T is a set of things {t1, t2, .., tn}; tn is a 3-tuple format 〈n, ty, d〉 where n is a thing

identifier (e.g., IP address), ty is a thing’s type according to the packet’s payload

size 2 generated from the thing (e.g., heavy-packet and light-packet), and d denotes

the service request’s destination fog, from the tn to the nearest fog node (i.e., the

first fog node that receives a service request from tn) within the fog layer, and this is

subject to change according to the shortest distance between tn and the fog node in the

fog domain, It worth noting that the shortest distance is identified during the design

time of the network, and in case of mobile things, things will have to periodically run

a protocol to check the closest fog nodes coverage (similar to access point).

• F is a set of fog nodes {f1, f2, .., fi}; fi is a 4-tuple format 〈i, `, s, }, r〉 where i is

a fog identifier (e.g., IP address), ` denotes a fog node location, s and } refer to

services (e.g., image processing) provided by the fog node and hardware capabil-

2The payload size of 1024 Bytes can be transported without any fragmentation through a normal
not constrained network; otherwise, it is fragmented into lighter tasks [152]

49

ity (i.e., CPU frequency) of the fog node, respectively, and r is a set of all “reachable

fogs” from fi.

• C is a set of cloud nodes, each ci is defined using a 3-tuple format 〈i, `, s〉 where

i is the cloud identifier, ` denotes the cloud location, and s denotes the cloud ser-

vices (e.g., processing and storage).

• L is set of communication links among the thing, fog and cloud layers, such that L is:

L ⊆ {〈n, ǹ, q〉|(n, ǹ) ∈ (T, T)(T, F)(F, F)(T,C)(F,C)(C,C)(C,F)(F, T)(C, T)∧(q ∈ Q)}

This means, L is a sub-/set of available links between Thing ←→ Fog ←→ Cloud.

Each link is associated with its q from Q set, which refers to the QoS proper-

ties (e.g., upload b↑ and download b↓ bandwidth).

3.2.2 IoT services requests workflow

The standardised approach in which service requests are made in the IoT systems (with

a fog layer) is as follows: tn generating, sensing and/or gathering data periodically from

the surrounding environments and sending it to either the fog layer or the cloud layer for

processing and/or manipulation. In the fog layer, fi can serve tn’s request instantly or

offload it to another fog node (e.g., fi∈r) in the same domain if fi is congested and may

delay processing tn’s request. To this end, fi (or fi∈r) responds back to tn and reports to

cloud ci for data archiving. Similarly, when packets are sent to ci, it will be processed at this

level and a response goes back to tn. It is worth noting that the importance of the fog layer

location (i.e., in-between thing and cloud layers) makes fogs more accessible/reachable for

both things and clouds. Therefore, fog can be used/operated horizontally (i.e., Fog-2-Fog)

and vertically (i.e., Thing ←→ Fog ←→ cloud) in the network to provide the desired IoT

services with high QoS and QoE. However, thesis main focus is on processing service requests

dispatched from the things to fogs, in which the latter can adapt to different workloads by

evolving the propose fog cognition features and the Fog-2-Fog coordination for efficient

data processing.

50

3.3 Design Principles and Requirements

Understating the fog computing design principles and requirements is essential to gain

the most efficient services of fog computing. The following subsections will highlight the

main design principles of fog nodes based on networks communications and geo-location

where nodes are planted. In addition, the fog computing functional and non-functional

requirements are presented as performance requirements (i.e., functional requirements) and

security requirements (i.e., general non-functional requirements). It is worth noting that

these requirements and the design principles are adopted and taken into account when

implementing the fog system in the following chapters.

3.3.1 Design Principles

In this section the design principles of fog computing are discussed. These are general fog

node design principles that have been proposed according to the requirements that needs

to be satisfied by the practical constraint of fog nodes, such as nodes resource manage-

ments, communications, traffic management as well as fog services related constraints. Fog

computing involves the on-board components of data-processing and/or analytic, networks

communication channels as well as software applications running on distributed nodes [47].

Therefore, when designing a fog computing network, a set of aspects and facilities that

manages the networking, storage and services needs to be considered.

The fog manages the cooperation between data-centres and end-devices (i.e., things)

for data storing and processing. In addition, it supports user mobility, resource and nodes

heterogeneity as well as distributed data analytics to address the requirements of widely

distributed applications that need low-latency [39]. Hence, fog nodes generally use the

sense-process-actuate and stream-processing programming models [47]. In such model,

things (e.g., sensors) stream data to the IoT networks, applications/services that are running

on fog nodes will subscribe to process the data, and the resulted/refined data are translated

into actions sent to actuators or to storage in the cloud for future uses. Fog nodes are

dynamically discover and use Application Program Interfaces (APIs) to build new complex

functionalities [47] and/or separate their current services to improve the scalability. More-

over, fog node’s resource management is a big concern when designing the fog networks.

51

Hence, the resource management processes uses information from the resource monitoring

service to track the state of available fog nodes and/or clouds to identify the best candi-

dates to process incoming tasks. With multi tenant applications, the resource-management

components prioritize the tasks of the various participating users or programs. Therefore,

there are four main designing principles that should be taken into account when designing

fog networks and services:

1. Fog nodes hardware components: since fog nodes can be anything, such as access-

points, routers, base-stations, or specifically developed fog device, the hardware com-

ponents can significantly vary. Nevertheless, in principle each fog node should have

some requisite components such as a CPU for data processing, RAM for temporarily

data storing, and disk for longtime data storage. In addition, each node should have

a pre-defined software that features or operates the hardware components such as

operating system with a resources managements software.

2. Fog nodes Locality and Geo-distribution: fog nodes normally act as a bridging point

between the data sources (e.g., sensors) and data processing mediums (e.g., cloud,

local servers, or fog itself). since the things (e.g., sensors) are widely spread over

different geographical locations, the fog computing services should also have equal

spread to provide efficient functional ties to these things and be able to serve end-

users with reliable services. Hence, this will require a large number of planted fog

nodes available in the networks compared to the number of cloud servers.

3. Fog nodes communications: the communication links of fog nodes are mainly with

things and cloud. Thus, in fog nodes communication a machine-to-machine (M2M)

standard is used, such as MQ Telemetry Transport (MQTT) and the Constrained

Application Protocol (CoAP). In addition, the adoption of a Software Defined Net-

working (SDN) to help with the efficient management of heterogeneous fog networks.

4. Fog resources planning: resource planning becomes a critical issue in fog computing

due to the vast amount of data that things provide every second. Hence, a proper

strategy for efficient resources planning needs to be in place when designing a fog

network. This includes the processes of estimating the correct number of fog nodes

52

which need to be installed in the network. In addition, some resource sharing features

to allow the fog nodes to share the load and reduce the traffic load from a congested

fog node.

3.3.2 Fog Performance Requirements

The most basic requirement/characteristic and the most significant advantage of fog com-

puting is that the service’s capabilities are in close proximity to end devices/users in com-

parison with other traditional computing paradigms. Fog computing aims at supporting

things functions by performing the tasks of computation, communication and storage at

the edge of the network to address requirements of services that are latency sensitive with

a wide and dense geographical distribution. Furthermore, the main performance require-

ments/characteristics of fog computing are listed as follows:

1. Low latency and real time interactions: the good location of fog nodes within the net-

work most significantly reduces the time of data-movement across the network. Also,

provides high quality localised services supported by endpoints. Hence, it enables low

latency that meets the demand of real-time interactions with things (e.g., sensors),

especially for latency sensitive or time sensitive applications and services.

2. Service Availability: fog computing services availability means that the services must

be available when required. Unexpected situations, such as service crashes, would

significantly affect service availability. Hence, the fog should be able to tolerate any

attacks that aim to crash the fog services or divert them. It is worth noting that the

service distribution among fogs helps in enhancing services availability.

3. Scalability: this is a very essential requirement when designing fog networks as its

connected with both big data and the geo-distribution of both fog and things nodes.

Thus, the network scalability is the ability of fog computing to handle the grow-

ing number of service requests (i.e., tasks) sent from the things in both processing

and storage capacities. Also, the potential of fog to be easily enlarge in order to

accommodate the continuous growth.

4. Save bandwidth: is one of the significant advantages of fog computing. Since fog

53

allows the data processing and storing at the edge it reduces the amount of the data

transmission over the the network, hence reducing bandwidth. Also, in some services

the decisions are completed within the fog layer, rather than completed by the cloud,

therefore fog computing will save the bandwidth effectively compared to the cloud.

This bandwidth saving advantage is more and more becoming significantly effective

with the increasing in the amount of data in the network.

5. Support for mobility: this for both things mobility and fog mobility. The support of

mobility is by providing adequate communication technologies to ensure the contin-

uous data sharing and processing. An example of a mobile thing is robots, while the

mobile fog is smart vehicular.

3.3.3 Fog Security Requirements

A number of security measures and requirements need to be taken into account when de-

signing a fog computing network in order to enable a secure fog networks that provide a

secure environment for the running services and applications. This secure fog computing

environment will enable fog nodes to securely outsource services, resources as well as data

sharing across fog nodes. Therefore, the following security requirements should be fulfilled

when designing a fog computing network. These security requirements are defined as Re-

quirements of Protection (RoP) which are a set of security requirements that includes all

the security factors required to deliver the desired services securely and efficiently. Thus,

RoP defines and measures the Quality of Protection (QoP) among fogs. It is worth nothing

that the following RoP are mainly focused on the security and trustworthiness within the

fog layer. Hence, the more RoP are met, the better is the QoP.

1. Location and identity: fog responses to any collaboration requests from other fogs

should be based on an authentication process, such as fog’s identity and location. The

fog should be trusted by verifying the identity of fog nodes within the fog domain

and identifying whether the provided fog location is real or fake before it an access

the desired services.

2. Service integrity: since the transmitted service packets among fog nodes can be

changed during the transmission time by malicious fogs, the packets must be checked

54

so that they completely match what was sent initially (such as packet authentication

from source). It is worth noting that the fog might be legitimate for collaboration,

however the service packets could contain fabricated data, and thus, the bigger the

distance between collaborating fogs, the higher is the risk of packet attacks. Hence,

the packets that are generated in a closer-distance and short-time are more reliable

than packets arriving from long-distance and generated a long-time ago.

3. Confidentiality: the confidentiality in the fog-2-fog collaboration refers to data confi-

dentiality. Since data packets are shared among fogs, the data may contain sensitive

information, such as personal details (e.g., bank details), therefore, such confiden-

tiality can be achievable by adopting public or symmetric key encryption to assure

the security of the communications. Thus, the encryption of data prior to sharing is

required to keep data secret and unreadable for distrusted or malicious fogs, and only

trusted fogs can have the correct decryption key for the shared data.

4. Trusted fog: the fogs trust each other based on past experiences obtained upon the

fog’s coordinations. The ability of selecting the trusted fogs in a domain will helps

in providing the desired fog’s services with high quality, hence both Quality of Expe-

rience (QoE) and Quality of Protection (QoP) will be fulfilled. Moreover, the trust

between fogs is:

• Dynamic: the trust between fogs is dynamic and not static, so that foga trusts

fogb at a specific timestamp (e.g., t1), however foga may distrust fogb at t2 due

to two reasons; i) fog networks topology is continuously changing by adding or

removing nodes from the fog domain. ii) fogs within the domain may alter their

behaviour due to malicious attacks (e.g., Denial of Service). Therefore, periodic

trust assessment is essential.

• Subjective: fog nodes may have different security measures for different types

of processing so they meet the QoP. For example, foga can trust fogb to carry

out processes for traffic data, however, fogb is not trusted enough for foga to

process healthcare related data.

• Asymmetric and not transitive: each fog node has its own RoP that defines

its QoP. Hence, the RoP properties that one fog adopts can vary from one

55

fog to another, so that, if foga finds fogb is trustworthy, it is not necessarily

that fogb finds foga is trustworthy. Similarly, the trust is not transitive, for

example, if foga trust fogb and fogb trust fogc, it is not necessarily true that

foga trusts fogc.

3.4 Cognitive Fog Model

Fog nodes have the advantage of obtaining beneficial knowledge and constructive control

over both the things network and data transmitted over the IoT network due to their

strategic position within the network (i.e., in between things and cloud layers). This enables

fog nodes to not only act on the data but also make intelligent decisions, for follow-up

processes when required. The core concepts of Cognitive Fog (CF) and fog federations (so

that CF can assist each other) is elaborated in this section. Before we dive into the details,

we highlight the key definition of cognitive fog and fog nodes federation.

Cognitive fog advocates for fogs that can interpret the gathered/received data from

things, hence CF learns and matches patterns in a way that mimics the process of cog-

nition in the human mind [153]. CF can learn from their process experiences according

to different situations/scenarios, then get better when performing the repeated processes.

Therefore, fogs employ algorithms such as pattern recognition and data mining to boost the

abilities rapidly and achieve better experiences on the repeated processes. In this thesis,

the context of CF takes the same concepts of cognitive computing which can be defined

according to DARPA definition of cognitive system, which is a system that can “reason,

use represented knowledge, learn from experience, accumulate knowledge, explain itself, ac-

cept direction, be aware of its own behavior and capabilities as well as respond in a robust

manner to surprises” [22, 153]

Fog nodes federations is about gathering multiple fog nodes to perform/achieve a

specific task in a certain situation or scenario. Fogs become members of a federation because

of their capabilities that permit them to satisfy the needs and requirements of the situation

assigned to this federation for handling. Hence, fogs are to be described and discovered for

federation and then selected for a particular federations according to planned and ad-hoc

federations [22] based upon trustworthiness assessment for the fog nodes in achieving the

56

desired tasks. The planned and ad-hoc federations are as follows:

• Planned federation is formed at design-time, all its fog participants are already iden-

tified and ready to act according to a task’s needs and requirements.

• Ad-hoc federation is formed at run-time, fogs are joined together according to certain

occasions where each fog can empower the federation with various types of processing

and controls that enhance the processes.

3.4.1 Fog Cognition

To allow fog to be cognitive, so that, it reasons about the surroundings, learns from the

past, and adapts to changes, the fog nodes are featured with functionalities, such as pat-

tern recognition, image recognition, and emotional intelligence that enable the Cognitive

Fog (CF) to not only respond to events, but also interpret the surrounding activities in or-

der to invoke further services/processes based on fog’s judgments/interpretation that boost

the cognition features of fog, hence improve the QoE ans QoS. In addition, CF features

a computation/processing capability for task processing needs, resources for storage needs

and communication abilities for networking and interactions. The operations over the CF

run or interact with four connected worlds as per Fig. 3.2. The data world that is featuring

the both raw-data (i.e., plan data from sensors) and filtered data (i.e., processed data), the

process world featuring the processing models that acts on the data, the fog world featuring

the CF processes and controls over all connected worlds, and finally the things world that

contains the things nodes that are planted at the user level and controlled by CF to adapt

as the environment changes, based on its sensed/gathered data.

CF either acts upon a things data or direct things to engage in continuous interactions

that should, ideally, lead to achieving certain tasks, such as directing traffic upon conges-

tion or accidents. Each CF has a number of functional and non-functional requirements

that either permit service accessibility and allow CF to participate in the service’s request

processing and decision making processes or just to step-out the processes. Functional re-

strictions influence CF involvements in active processes in the process world due to limited

availability (e.g., busy) and/or security restrictions (based on the trusts/recommendations

57

Figure 3.2: Interactions of the Cognitive Fogs

approach presented in Chapter 6). While the Non-functional restrictions, influence CF

involvements in the active processes in the process world due to processing or storage ca-

pabilities and/or bandwidth limitations which associate with the type of data packets (two

types of data packets are considered, light and heavy packets, more in Chapter 5). There-

fore, participation considers a CF’s functional and non-functional restrictions that, in fact,

reflect this CF’s current/active participation in other ongoing (under-execution) process

which also influence CF participations with other CF processes during the planned or the

ad-hoc federations (Discussed in Section 3.4.2).

The cognition anchored defined as a three stage cycle as per Fig. 3.3. In the first stage,

the reasoning stage, all cognition activities are taken place to assesses the surroundings ac-

cording to the received data from the data and things worlds. Thereafter and prior to any

decision from the CF, it will check its functional and non-functional restrictions for any pro-

cesses and/or participations within the new context that may impact the CF performance.

In the second stage, the CF relies on both the thing’s data and data in the data world to

make some decisions and reasoning that could lead to CF participations in new process as

well as some adjusting in its behaviours, such as executing additional processes (e.g., pat-

tern and/or image recognition) to identify certain activity, then ideally, to redirect the

58

Figure 3.3: Cognition of the Cognitive Fog as a 3 stage cycle

connected things accordingly. In the third stage, the lessons learned during the adaptation

and participation of CF will feeds into a learning process, such as making new rules/notes

for its functional and non-functional, for example. To this end, all learning outcomes will

will feeds into the reasoning stage that applies on the CF in it’s future interactions.

3.4.2 Fog Federation

In order to model CF federations, understanding the insight of CF design is an essential step.

In the proposed model, recall that each CF consists of set of 4-tuple, hence CF composed of

CF = {i, t, c, l}. Where i denotes to CF unique identifier, such as, the IP address or a unique

ID, t denotes to the type of CF (e.g., refers to the type of processes/jobs that CF is capable

of), to elaborate more, since different CF can be equipped with different cognition features,

t is use to distinguish CFs based on their functionalities/jobs, for example healthcare CF,

Traffic CF, etc. While c denotes the total capability of the CF node, such as fog hardware

limitations (e.g., CPU frequency), and finally l denotes the actual geographical location

where the CF is installed. Thus, these CF tuples are used to define each CF in the network,

prior to or during any federation. Fig. 3.4 shows both types of federations.

In planned federations (PF), all CFs are known to each other as they are initially (i.e.,

59

Figure 3.4: Planned and Ad-hoc federations

during design time) designed to assist, or take benefit from, each other. Thus, CF in a partic-

ular geographical area, having the same t (i.e., same type of processes/jobs) and l (e.g., within

the same network domain), are designed to communicate with each other to deliver a sin-

gle task. We can formulate the PF as:

PF = {CF ts11 , CF ts22 , ..., CF tsnn } (3.1)

Where ts refers to the tasks required from CF during the federation. For instance, the

roadside of a highway supplied with a set of CFs to perform road monitoring task, such

as traffic and accidents (known from data provided from things planted along the way).

The CFs are connected to each other at the design stage, thus in this scenario, the planned

federations occur when one or more CF has gone down for whatever reasons, active CF will

federate to cover the role of the failure CF. In PF , CF are usually connected to perform a

specific task (e.g., road monitoring) and not multi-tasks.

On the contrary, in ad-hoc federations (AP), the CFs are communicating with each

60

other based on a need (i.e., formed on the fly) and usually to perform different types of

tasks (i.e., multi-tasks are achieved from the federation) according to a specific situation,

for example, multiple CF can form a federation to detect and react upon a patient illness.

Hence, within the AP, multiple CF could perform one or more tasks according to the feder-

ation’s outcome and its requirements, therefore, AP can be formulated as a 2-dimensional

matrix of unlimited possibilities of CF communications according to tasks, as follows:

AF =

CF ts11,1 CF ts11,2 · · · CF ts1,n
CF ts22,1 CF ts22,2 · · · CF ts2,n

...
...

. . .
...

CF tsx,1 CF tsx,2 · · · CF tsx,n

 (3.2)

So that, one row could refer to the multi CF collaborating to achieve one task (CF ts11,1

& CF ts11,2 & · · · & CF ts1,n), while CF on another row is working to achieve another task, and

so on. Eventually, the total CFs in the federation (i.e., all rows and columns) will achieve

multiple tasks.

61

3.5 Case Study and Testbed Setup

This section demonstrate the practicality of the proposed cognitive fog along with its two

types of fog nodes federations, planned and ad-hoc federations. The work presented is

based on a motivating healthcare case study. The testbed setup and implementation of

the cognitive fog take the form of a feasibility study. Therefore, two main stages are

included: i) the installation and experiment’s configurations that shows the connectivity of

different components, and ii) the performance evaluation upon the execution of the cognitive

fog testbed.

3.5.1 Case Study - Patients Monitoring

Improving the efficiency of healthcare and biomedical systems is one of the considerable goals

of modern society. The case study proposed in this chapter is about using fog computing in

healthcare. Moreover, cognitive fog is used to monitor the health and activities of elderly

people in care-homes premises, especially the people who need special care or continuous

assisting and monitoring.

Consider an IoT healthcare system to monitor human symptoms data for patients with

chronic diseases. This system is offered by a healthcare organisation to its patients in

care-homes premises. The system is modelled to support real-time monitoring for patient

activities. Thus, the system consists of smart healthcare wearables (e.g., heartrate, temper-

ature and oxygen sensors), cognitive fogs, cloud and dashboard for caregiver and doctors to

monitor the patient’s symptoms. The fogs are responsible for getting real-time data from

wearables and making a primary compute/processing on the gathered data for diseases

detection. While the cloud data-centre is for data storage and future analysis (i.e., non-

real-time processes) including the machine learning (ML) segment for data training and

analysis activities.

The IT division experts install a few CFs according to the care-home size, with at least

two CFs at any given location of their care-home premises. The reason for having at least

two at each premises is to make sure that a backup fog node is always available in case

one fog node went down. Also, in case one fog node is busy with the data processes of a

62

patient and more data is received from another patient, a planned or an ad-hoc federation

is formed to handle the extra load from the congested fog node. Moreover, for patient’s

symptoms monitoring, we have focused on monitoring the pulse rate (i.e., heartrate) with

either abnormal pulse racing or pulse dropping of a patient. To this end, two possible cases

have been considered:

1. First time pulse rate is racing/dropping: CF will analyse the received data from the

pulse sensor to detect/check for any abnormal racing or dropping in the patients

pulse. For any suspicious situation, a planned CFs federation is formed, with respect

to the rescue of CF non-functional requirements, to investigate the patient’s status

and make a decision based on federated CFs experiences with such situations. Once

a decision is taken, the caregiver will be notified through the dashboard. Thereafter,

every CF will log the set of learned lessons which could be used in the future federation

of similar or repeated processes.

2. Recurrent abnormality detected: on a similar or repeated situation, the installed CFs

will learn (i.e., make note of repeated actions) the conduct taken by the caregiver on

such pulse racing/dropping situations, so that CF can automate the processes and

take the action more quickly and on behalf of the caregiver, such as request an ambu-

lance and notify the in-charge doctor(s) about the patient’s status. In such a scenario,

an ad-hoc CF federation is formed after selecting the necessary CFs (i.e., according

to their functional requirements) with respect to their non-functional requirements to

run multiple processes at the same time. For example, care-home CF communicating

with CF of the nearest hospital to send an ambulance to the care-home address, also

communicating with roadside CF to clear the way for the ambulance in advance to

avoid traffic delays and congestion. Once the case is over, the ad-hoc CFs federation

becomes a planned federation that could be initiated in the future, this should be

titled under one task that has a similar or repeated situations that happen along

with similar functional and non-functional requirements.

Our proposal is that CFs for health monitoring would reason about sensed data, such

as pulse abnormality, time detected and the case of pulse racing or dropping, so ideally, CF

will be able to act accordingly and form the appropriate federations to solve the issues.

63

3.5.2 Testbed and experiment configurations

Our CF testbed is shown in Figure. 3.5. The testbed was assembled using four CFs and three

things (i.e., sensors) nodes. We assume that the CFs are located in these locations, i) in care-

home premise (CF1 & CF2) where patients are normally based, ii) in hospital and/or A&E

department (CF3), and iii) on-street fog (CF4) (located on roadside between the care-home

premises and the hospital connected to traffic-light and CCTV things nodes). Moreover,

the CF1, CF2 and CF3 are a Raspberry Pi (RPi) device with a Quad Core 1.2GHz CPU

and 1GB RAM. However, each with different functionality, according to our case-study,

CF1 and CF2 are connected to a pulse sensor (SEN-11574) to measure heart-rate and

temperature/humidity sensor DHT22 (AM2302) sensor, these are used as patient’s sensors.

While CF3, is used for hospital processes, such as dispatching ambulance and contacting

doctors according to the data received from CF1 and/or CF2. Finally, CF4 composed of a

Lenovo Ideapad laptop with i5 1.8GHz CPU and 8GB RAM connected to the Internet over

Ethernet cable and fitted with an HD Lenovo EasyCamera Webcam (as a thing node) with

0.92MP resolution. In addition, CF4 is connected to a traffic light node (as a thing node)

which has two LED diodes (Green and Red) wired through the breadboard to the RPi.

The interactions between CFs themselves, and CFs with IoT things (i.e., sensors) are

over publish/subscript protocol, that is Message Queuing Telemetry Transport (MQTT) pro-

tocol is been used, however, any other similar protocol can be used in this scenario (e.g., Kafka,

RabbitMQ, etc). Moreover, via the subscribed topic, which is a UTF-8 string that the

MQTT broker uses to decide on which client can receive which message, the subscribers of

a specific topic will receive useful data in real-time. For example, the traffic light receives

signals through the “CF/traffic” topic, upon which it changes to green or red.

During the ad-hoc federation, a CF will be responsible for communicating with the

camera thing and the traffic thing to clear the way for an ambulance travelling from/to the

hospital. Therefore, to detect ambulances, we developed an in-house Python image recogni-

tion program that processes RGB images using an Open Source Computer Vision (OpenCV)

library. Upon ambulance detection by the CF, according to the live frames from the cam-

era, it will send an alert to the traffic-light, to stop or redirect the traffic, over the MQTT

protocol via “CF/traffic” topic to set the traffic-light sign.

64

Figure 3.5: Cognitive Fog testbed

3.5.3 Performance evaluation

In our experiment, we employ the four CFs as follows: CF1 and CF2 is for interacting

with the patient’s things (i.e., the pulse and temperature sensors) as well as interpret the

sensed data. The CF3 is for alerting the hospital’s A&E about the patient’s situation,

command for ambulance driver to go to the patient’s address (supplied from CF1 or CF2).

While, the CF4 is for interacting and controlling things planted on the roadside (i.e., camera

and traffic-light). The camera is for broadcasting live images of the road from/to the care-

home and hospital, while the traffic-light node is regulating the access of the ambulance. For

evaluation needs, two simulation scenarios were carried. It worth noting that these results

are not comparatively evaluated, at this point, as these are just testbed setup evaluation

results for the sake of preparation for next chapters. The scenarios are as follow:

Scenario 1: we considered a PF of two CFs, namely CF1 and CF2, upon needs

after detecting an abnormality in the patient’s pulse, thus experience of multi CFs is

required to make a decision. The PF evaluated in terms of time-delay and efficiency

65

Figure 3.6: The Execution time for Planned Federations

in forming a such federation, therefore, we measured the total time required to form

PF between CF1 and CF2 when the pulse sensor provides a reading that looks abnor-

mal (i.e., 60Bpm > pulse > 100Bpm as in [105]). CF1 interpret the sensed data from both

pulse and temperature sensors to reason the measured data, thereafter, upon suspected

values or abnormality, CF1 will seek an assist from CF2, forming a PF to make a decision

for either alerting the caregiver or not. During the same execution life-cycle, we change the

payload of sensed data and experience a different set of data across a number of iterations

which have been grouped into 50, 100 and 150 iterations. The objective was to observe

how the test-bed behaves with respect to the number of detected abnormalities and the

time taken to make a decision including the time required to exchange number of mes-

sages between both CFs. Figure. 3.6 reports the performance results of the PF within the

three iterations. It worth noting that the aborted federation in Figure 3.6 is due to some

non-functional requirements.

66

Figure 3.7: The Execution time for Ad-hoc Federations

Scenario 2: we expanded Scenario 1: to include all four CFs, namely CF1, CF2,

CF3 and CF4. In this scenario both PF and AF are formed according to following: i) CF1

detect an abnormality, in patient’s pulse, and through a PF with CF2 makes decision for

requesting ambulance. ii) CF1 will search for nearest hospital and communicate with its

CF, in this case CF3, and form an AF . To this end, CF3 will inform the doctor and send

out an ambulance to the patient. iii) CF3 will also form an AF with CF4 to clear the path

for the ambulance, upon detecting the ambulance via the camera thing, through controlling

the traffic-light signals. The AF is evaluated in terms of time-delay and efficiency in forming

the federations, thus, we measured the total time required to form an AF among all CFs.

Figure. 3.7 reports the performance results of the AF within three iterations (50, 100 and

150 iterations). It is worth noting that the time-delay (in millisecond) for AF is higher due

to the multi-tasks required from the federation, also, the aborted federation is due to some

67

Figure 3.8: Execution time related to PF versus AF federations

non-functional requirements. Within this scenario, we checked how the test-bed behaves

when the PF of things (i.e., pulse sensor) is merged with an AF federation to evaluate

the execution/process time required to perform a collaboration. Figure. 3.8 illustrates the

results showing cases of execution time related to PF versusAF federations; it took between

85ms and 90ms to execute an AF and between 18ms and 22ms to execute PF .

68

3.6 Chapter Summary

In this chapter, a holistic fog computing architecture and design principles are presented.

The architecture of the fog computing network give an insight on how the network com-

ponents are connected and the integration of different technologies within the network

topology. The IoT fog architecture is composed of three main layers; things, fog, and cloud

layers. Things is the bottom-most layer, comprising of end-devices, gateways and sensors.

Fog is the middle layer where the fog nodes reside along with the core network. Cloud is

the top-most layer where the cloud components are located for historical data storage and

big data processing. The topology of fog computing carries out the service’s communica-

tion, computation and storage at the edge of the IoT network, thus this is the most basic

characteristic of fog computing and the most significant advantage compared with other

traditional computing models.

The design principles of fog nodes are highlighted based on the main requirements of fog

in term of networks communications and geo-location of the fog where nodes are planted,

along with their functional and non-functional requirements. The four main designing

principles of fog nodes are; hardware components, locality and geo-distribution, commu-

nications, and resources management. The fog computing functional and non-functional

requirements fit under the umbrella of performance requirements (i.e., functional require-

ments) and general security requirements (i.e., non-functional requirements). Hence, this

chapter have addresses part of: i) RO2 as the key characteristics of fog computing are identi-

fies, also highlighted the main challenging issues that deter the deployment of fog computing

within the IoT network, ii) RO3 as the functional and non-functional requirements of fog

computing were investigated in details, also highlighted the barriers that might impede fog

in the IoT network. Hence, this chapter fulfill RQ1 for cognitive capabilities and RQ2 for

fog computing criteria and requirements.

The concept of cognitive fog (CF) is also presented in this chapter. The cognitive

fog discussed the opportunities of fog nodes within the network, in terms of what can be

achieved by employing a fog that not only act on the gathered data but also learns from

them and makes decisions. CF advocates fogs to interpret the data so it can learn from

their process experiences according to different situations/scenarios, then fogs can get better

69

when performing the repeated processes. The operations of CF runs over four connected

worlds; data world featuring both raw and filtered data, processes world featuring processing

models, fog world featuring the CF processes and controls, and finally the things world that

is controlled by the CF to adapt with environment changes. Moreover, one of the important

characteristics of CF is node federations, which is about gathering multiple fog nodes to

perform/achieve a specific task in a certain situation. There are two types of federations;

planned and ad-hoc federations. Planned federations are formed at the design-time, while

ad-hoc federations are formed at run-time. The performance of the developed CF test-bed

shows that fog can perform better on repeated processes. After exploring fog computing

design requirements and setting the preparations of adopting fog nodes, the next chapter

discusses the fog/cloud coherence in IoT and proposes set of criteria that defines where data

of things should be sent (cloud, fog, or both) and in what order (cloud then fog or fog then

cloud or both concurrently).

70

CHAPTER 4

Collaboration Model of Fog and Cloud

Essentially, all models are wrong,

but some are useful.

George E. P. Box

4.1 Introduction

T
oday’s Information and communications technology (ICT) requires a different way of

approaching the huge volume of data that needs to be transferred securely, processed

rapidly, and used properly. Although the trend is to shift data and computation from or-

ganizations to the cloud as this operation model offers many benefits, some organizations

have been reluctant to adopt it. According to a Logicworks survey, 78% of IT decision

makers believe that vendor lock-in prevents their organisation from maximising the benefits

of cloud resources. This led the majority of ITs decision makers to choose not to fully

invest in cloud because they value long-term vendor flexibility over long-term cloud suc-

cess” [154]. Cloud is even a major concern with IoT practitioners. Exchanging data back

and forth between things and the cloud could turn out to be time consuming, be subject

to alterations and misuses, and heavily depend on network availability and reliability [72].

Storage and/or computation could better serve the IoT industry when it happens “next”

to where data is collected minimizing its transfer and avoiding its exposure to unnecessary

risks. This is the essence of fog computing. However, rather than treating cloud and fog

as antagonists, this chapter discusses how they can work hand-in-hand through a fog-cloud

seamless collaboration of the operations that each and both can handle.

Fog-cloud collaboration has become doable because of the recent advances in storage,

networking, and processing capabilities of fog devices [155]. The objective is to assist

engineers who are in-charge of developing IoT applications, to define where data of things

should be sent (i.e., cloud, fog, or both) based on the intrinsic characteristics of these

applications. These characteristics are presented in this chapter and vary from data latency

to sensitivity and freshness. The contributions of this chapter includes; (i) a collaboration

model of fog and cloud, (ii) a set of criteria that defines where data of things should be

sent (cloud, fog, or both) and in what order (cloud then fog or fog then cloud or both

concurrently), and (iii) a demonstration of fog-cloud collaboration through a healthcare-

driven IoT case study deployed on a testbed.

72

4.2 Collaboration Model of Fog and Cloud

The collaboration model of fog and cloud computing consists of two main parts. The

first part presents an overview of the proposed collaboration model between fog and cloud

computing, the approach for fog-cloud collaboration on data processing. The second part

defines the criteria that guide the collaboration for fog-cloud. Thus, this includes the

selection of specific recipients (i.e., cloud and fog nodes) to which sensed and actuated

data that things generate are sent, also a specific fog-cloud collaboration configuration that

defines where things should send their data. The fog-cloud collaboration model adopts

distributed based architecture for both fog and cloud nodes. This collaboration of fog-cloud

is generally about delivering/achieving the best QoS and QoE to end users, such as reducing

service time and avoiding delays for real-time systems.

4.2.1 Foundations of fog-cloud collaboration model

The foundations of the fog-cloud collaboration model is discussed in this section. Fig-

ure. 4.1 presents the proposed approach for supporting the fog-cloud collaboration model, the

first tier (thing-fog-cloud interactions) means that the data of the IoT ecosystem can be sent

to fog, cloud, or both depending on the IoT system’s requirements/criteria like those dis-

cussed in Section 4.3, similarly, the second tier (cloud-fog interactions) of Figure 4.1 means

that the data can be shared between both fog and cloud based on needs. It is clear that fog

nodes have just the same attributes as cloud nodes have; storage capacity, computing power,

and networking capabilities that vary according to the nodes specification and the needs and

requirements of the IoT-enabled systems. The approach features an IoT ecosystem in which

things are expected to feed “appropriate” recipients (i.e., cloud, fog, or both) with data.

The fog-cloud model can provide an elastic computational resources for large scale

processing systems, thus fog and cloud can work either independently (i.e., fog↔fog or

cloud↔cloud) or collaborated (i.e., fog↔cloud). This chapter focus on the fog-to-cloud

collaborations (fog-to-fog next chapter), the fog and cloud will aid each other to serve the

end-user; hence they can improve the ability to handle big-data acquisition, aggregation,

reducing data transportation as well as balancing the computation power used for data

processing. It is worth noting that even in fog-to-fog coordination, when fog nodes work

73

IoT ecosystem

Cloud nodes Fog nodes

Interactions
Push/Pull data

Interactions

Interactions
Push/Pull data

(directing raw/processed data)

c

c f

f

T
h
in

g
-F

o
g
-C

lo
u
d

in
te

ra
ct

io
n
s

C
lo

u
d
-F

o
g

in
te

ra
ct

io
n
s

c f

Storage capabilities Computing capabilities

Legend

Networking capabilities

Figure 4.1: Representation of the fog-cloud collaboration model

together to achieve one task, cloud can be used to aid in relevant decision-making that

requires cloud computing knowledge and/or capabilities. Delay sensitive applications may

gain priority over others to make use of the fog-cloud model over applications/systems that

are not time sensitive. The decision-making in fog-cloud interactions and where data can be

processed may also be influenced by the demand and location of these fog-cloud resources,

for example, fog-cloud resources in busy area versus quiet area. According to Figure. 4.1,

two main categories of interactions are shown and discussed below:

• The first category, known as TFC for Thing-Fog-Cloud, involves the ecosystem and

cloud/fog nodes that consists of pushing and/or pulling (on either a continuous basis

or a regular basis) raw data from things to cloud/fog nodes.

• The second category, known as CF for Cloud-Fog, involves cloud and fog nodes and

consists of directing either raw or processed data from cloud to fog or vice-versa.

Rather than sending similar data to both cloud and fog, things could send data to

either fog or cloud that will relay these data to the other partner. More details about

this option are provided in Section 4.3.

The IoT ecosystem also features networks of things that support the exchange of addi-

tional data (not-initially requested but could be deemed relevant) from things to cloud/fog nodes.

74

4.3 Criteria for Selecting Data Recipients

This section defines the criteria adopted for selecting thing’s data recipients, whether its

fog, cloud or both. The objective is to assist engineers, who are in-charge of developing

IoT systems, in selecting/knowing where data generated by things should be sent (i.e., cloud,

fog, or both cloud and fog), also whether the collaboration is required or one recipient can

handle the desired service/tasks. This can also be influenced by the characteristics and

requirements of the IoT applications/systems in term of performance, reliability and privacy.

The assumption made in support of these criteria is that cloud nodes are physically far from

things and that fog nodes are physically closer to the things. To achieve this objective, an

exhaustive set of criteria is proposed, which allow us to look at data transfer from different

perspectives (e.g., location, time, and application’s needs). These criteria are as follow:

1. Proximity refers to how “close” things are from cloud/fog nodes, service type, stor-

age and/or computational facilities. Continuous transfer of large volumes of data

could be time consuming and require a certain level of bandwidth. Thus, if things are

in fixed location, interactions with fog/cloud nodes in terms of duration and band-

width could be estimated/predicted. However, this does not apply to mobile things

since network coverage varies and is dependent on many physical factors. The proxim-

ity criterion is appropriate when considering data transmission, such as Thing→ Cloud

and Thing → Fog.

2. Frequency criterion refers to the rate of data transfer from things to fog/cloud

nodes. The frequency could be regular with fixed frequency (e.g., every 2 hours) or

continuous with different frequency (e.g., every time patient’s blood pressure drops).

Frequency may be set according to the proximity criterion.

3. Sensitivity criterion refers to the nature of data exchanged between things and

fog/cloud nodes. Highly-sensitive data should not be exposed longer than is required

on the networks and during the data processing among all things, fog and cloud nodes.

4. Time and Freshness (velocity) criterion refers to how important is the data deliv-

ery between things and fog/cloud, hence this is according to the requirements of the

75

IoT system on how recent is the data, whether it should be in real-time, near real-

time or at anytime. The delay that results from withholding/processing data at the

thing, fog and cloud levels until its transfer to the end-user. This may also include the

delay for holding data at the thing level in preparation for transferring the collected

data (i.e., real-time vs batch processing) to either fog, cloud, or fog/cloud nodes.

5. Volume criterion refers to the amount of data that things produce and send to

fog/cloud nodes. For instance, if the fog can handle up-to a set image size in pixels,

so when an image with a bigger size is captured, this might be directed to the cloud

to take care of it; otherwise, the image can be partitioned into sub-graphs, in which

case the fog can work in a collaborative mode to perform the processing.

6. Criticality criterion refers to the demands that fog/cloud express with regard to

data of things. This may combine both data integrity and availability. Low demands

could lead to ignoring certain data, while high demands could lead to high traffic and

network congestion. Therefore, selecting appropriate data recipient is crucial.

7. Variety criterion refers to the different types of data being generated, for exam-

ple, personal data can be anything like texts, emails, photos, videos, sensor-data etc.,

hence, such types of data can be split in three categories: structured, semi-structured

and unstructured data. Structured data has a fixed format and size, semi-structured

data has a structure but does not obey the formal structure of data models (e.g., re-

lational databases), while the unstructured data does not have any format and poses

challenges for processing and analysing activities. Therefore, according to data needs

and requirements, the recipient can be identified; either fog, cloud, or fog-cloud.

8. Veracity criterion refers to the biases, noise and abnormality in data. This refers

to the data that is being collected and stored as well as mined meaningful to the

problem being analysed, which can be critical for the cognition capabilities. Veracity

can be more challenging in comparison with above criteria, hence careful selection of

data recipient is essential to prevent sloppy data from accumulating in the network,

fog as first hop can help in such case. Also an approach/procedure may required to

allow only the clean data in the processes of feeding and learning of the cognition

capabilities, hence fog-cloud may collaboration for such scenario.

76

Table 4.1: Data-recipient selection criteria versus interaction forms (HR:Highly Rec-
ommended, R:Recommended, NR:Not Recommended, N/A:Not Applicable)

Criterion Features T→C T→F T→C|F T→C→F T→F→C

Frequency Continuous stream NR HR N/A NR R

Regular stream

Short gaps NR HR N/A NR HR

Long gaps R R R R R

Sensitivity High NR HR N/A NR HR

Low R R R R R

Freshness Highly important NR HR N/A NR R

Lowly important R R R R R

Time Real-time NR HR N/A NR HR

Near real-time R HR HR R HR

Batch-processing HR NR N/A R NR

Volume High amount HR NR N/A NR R

Low amount NR HR N/A NR R

Criticality Highly important HR HR HR HR R

Lowly important NR HR N/A NR HR

In Table 4.1, we analyze the role of the aforementioned criteria in recommending a cer-

tain form of interaction between thing, clouds, and fog nodes. The specialization of TFC and

FC interactions, mentioned in Section 4.2.1, leads to five interaction forms classified into one-

hop and two-hops interactions. The interaction forms described below, the notations T, C,

and F refer to Thing, Cloud, Fog, respectively,→ refers to flow, and | refers to concurrently.

1. One-hop with {T→C, T→F, T→C|F}, assuming that processing data at cloud nodes

is different from processing data at fog nodes in term of speed, privacy etc. Ex-

ample of T→C includes batch processing of CCTV data, example of T→F includes

processing CCTV frames as being captured in real-time, while the example of T→C|F

includes processing CCTV data with no time-sensitivity (i.e., delay is acceptable).

77

2. Two-hops with {T→F→C} this includes pre-processing data at fog nodes prior to send-

ing the new data to cloud nodes, for example, process patient’s vital sensor data in

real-time at the fog, then notify the cloud with a new record for the patient to be

used in the future (i.e., keeping patient history). While, {T→C→F} includes the pre-

processing data at clouds prior to sending the new data to fogs, this could be a rare, but

can be used for scenarios where some authentication processes is required before as-

signing a fog service, for example authenticating a doctor trying to access patient’s

healthcare service that run on a fog.

Table 4.2: Cloud and Fog Computing Characteristics (Cisco)

Characteristics Cloud Fog

1 Latency High Low

2 Delay jitter High Low

3 Location of service Within the Internet At network edge

4 Distance client to server Multiple hops One hop

5 Security Undefined Can be defined

6 Attack on the enroute High probability Very low probability

7 Location awareness No Yes

8 Geo-distribution Centralized Distributed

9 No. of server nodes Few Very large

10 Support for mobility Limited Supported

11 Real-time interaction Supported Supported

12 Last-mile connectivity type Leased line Wireless

Cisco1 provides Table 4.2 to illustrate how cloud and fog would handle the characteristics

of certain applications. For instance, real-time applications that ask for almost-immediate

action and high data-protection, would discard cloud as an operation model. Contrarily, fog

would offer better support to mobile applications compared to cloud.

1Cisco blog on IoT, from Cloud to Fog Computing
https://blogs.cisco.com/perspectives/iot-from-cloud-to-fog-computing

78

https://blogs.cisco.com/perspectives/iot-from-cloud-to-fog-computing

Establishing correspondences between Table 4.2’s characteristics and Table 4.1’s sugges-

tions of how to proceed with data (i.e., 5 interaction forms), yields into the following points:

• Frequency criterion is dependent on the data stream between things and cloud/fog

nodes. If the stream is continuous (non-stop), then it is highly recommended to

involve fog nodes in all interactions so, that, direct data-transfer to cloud nodes is

avoided as per Table 4.1, rows 1&2 (i.e., low-latency and low-delay jitter). If the

data stream is regular, recommendations will depend on how short versus long the

gaps are during data transfer. For example for regular stream with long gaps any

interaction can be recommended “R” since there is enough time for data to go into

any interactions. Generally these interactions can also be influenced by the type of

data and requirement of the applications/systems.

• Sensitivity criterion is about the protection measures that need to be put in place

during data exchange between things and cloud/fog nodes. If the data is highly

sensitive, then it is highly recommended to involve fog nodes in all interactions so

that protection is ensured as per Table 4.1, rows 4&5, otherwise, data could be sent

to cloud and fog nodes. Security can be defined along with very-low-probability of

attack enroute by malicious nodes in the network.

• Freshness criterion is about the data quality to maintain during the exchange between

things and cloud/fog nodes. If the data needs to be highly fresh, then it is highly

recommended to involve fog nodes in all interactions as per Table 4.1, rows 6&7.

This can be subject to being aware of the location of fog nodes and their support

to real-time interactions should be provided. It is worth noting that data freshness

is different from data frequency, having high frequency does not reflect the freshness

of data. Freshness reflects the new and useful data for the system/application, while

high frequency is probably just redundant data.

79

• Time criterion is about how soon data is made available for processing. If it is real-

time processing, then it is highly recommended to send data to fog nodes as per

Table 4.1, row 8-10. If it is near real-time (i.e., minutes are acceptable) then it can be

sent to cloud and/or fog nodes. Otherwise, cloud is ideal for data batch-processing. In

batch processing, cloud nodes are always preferred over fog nodes due to the limited

capabilities of fog nodes. More details on fog congestion can be found in Chapter 5.

• Volume criterion is about the space constraint over the amount of data collected

or produced by things. In other words, it is the constraint of the amount of data

collected/produced by things and the correspondent/equivalent space required on

fog/cloud nodes to handle these data. If this amount is big, it is highly recom-

mended to send data directly to cloud nodes. Otherwise, data could be sent to a

fog node(s) and then to cloud. In case of a large amount of data and where the

data is divisible, then data could be sent over to multiple fog nodes as per Ta-

ble 4.1, row 11&12 (i.e., distributed geo-distribution). For instance, the system can

handle up to a set image size in pixels, so when an image with a bigger size is captured,

the system might decide to send it to the cloud to take care of it; otherwise, the im-

age can be partitioned by the system into sub-graphs, in which case the system sends

them separately into many local collaborative and connected fogs for processing.

• Criticality criterion is about ensuring data availability according to fog/cloud de-

mands. If fog/cloud demands are highly important, then it is highly recommended

that data should be sent to fog/cloud regardless of the hop number as per Ta-

ble 4.1, row 13&14(i.e., geo-distribution) to ensure data availability. Otherwise fog

nodes could sort tasks based on their priorities, keeping higher priority actions within

a node, sending data that can wait a few minutes for a larger aggregation to cloud node.

80

4.4 System Evaluation

To validate the fog-cloud collaboration model, a developed test-bed was deployed upon which

a set of experiments were carried out. The experiments refer to a healthcare-driven IoT

case study in which medical data are collected and then transmitted to different recipients.

4.4.1 Case Study - Healthcare

The recent advances in ICT have facilitated the emergence of a new generation of sensors

and IoT-based applications that can be used in different contexts like smart city and smart

healthcare in such a way that it becomes ordinary need. Cisco and Business Insider predict

that the IoT will make use of 50 billion individual devices that can produce 507.5 zettabytes

of data by the end of the current decade [156]. The large distance between the cloud and IoT

users, and the number of fog nodes in the network have lowered the overall performance even

more, and notoriously cannot guarantee the response time for applications demanding real-

time assurance processing and very low latency (e.g., healthcare). An example to consider is

the around-the-clock urgent/emergency care services department (or Intensive Care Unit)

in a hospital, which deals with genuine life threatening cases (e.g., breathing difficulties,

severe allergic reactions, and consequent high blood pressure), where patients may have

only moments before a dip in vital signs which might end in a catastrophic crash. In such

cases, readings from patient’s wearable sensors need to make it to the doctors within a split-

second time frame, otherwise life could easily be lost. Such a highly critical department

requires use of devices and technologies with real-time analytic and low latency constraint

along with mobility features.

81

4.4.2 Test-bed and experiment configurations

The test-bed was developed based on the case study described in 4.4.1. The configurations

were set so that a full test for the developed test-bed with proposed interactions was eval-

uated. Figure. 4.2 depicts the test-bed’s architecture consisting of three layers: thing, fog,

and cloud. Each layer includes hardware and/or software components specific to the health-

care case-study. Communications between the thing layer and other layers is taken care

by a gateway. The three layers are connected to each other through 4-two-way network

topologies that implement the 4 interaction forms discussed in Section 4.3: the T → C,

T → F, T → F → C, and T → C → F. Mosquitto2 was used for exchanging messages,

via MQTT protocol, among the 3 layers (i.e., thing, fog and cloud layers). The hardware

components and their specs of each layer are as descried below.

!"#$"%&'()*+,-"#

.(/*+,-"#

01(23*+,-"#

Thing Layer

Figure 4.2: Testbed’s architecture for the healthcare-driven IoT case study

2mosquitto.org, Open Source MQTT Broker and part of Eclipse IoT project v3.1.1.

82

Figure 4.3: Example of messages in JSON format

• The thing layer includes 3 components: (i) a gateway featuring a Raspberry Pi (rPi2)

model B (1 GB RAM and Broadcom BCM2836 ARMv7 Quad Core 32 bit processor

running at 900 MHz), (ii) a digital temperature and humidity sensor (AM2302), and

(iii) a microcontroller Arduino UNO board (Clock Speed 16 MHz and 2 KB SRAM)

connected to both the gateway and the sensor. Arduino UNO pushes data to the

rPi2 through a serial connection while the gateway is connected to the Internet (with

uploading speed at 32.6 Mbps and downloading speed at 98.5 Mbps) through an

Ethernet cable CAT5 with 100 Mbps to populate/deploy the data to either cloud,

fog, or both.

83

• The fog layer includes 1 component: a Raspberry Pi (rPi2) with a similar specification

to the one in the thing layer. It connects to the Internet through an Ethernet cable,

processes data received from the gateway and cloud and then timestamps the received

JSON data.

• The cloud layer is a 4 core Virtual Private Server (VPS) located in a data centre

in Germany, operates under Linux CentOS7, and is technically specified as follows:

300 GB 100% SSD storage space, 12 GB RAM, and 100 Mbit/s data transmission

port for unlimited traffic. Note that the VPS is totally dedicated for this experiment

and thus, is not involved in any other processing that may share the server resources

and cause delay. Cloud processes data received from the gateway and fog and then

timestamps the received JSON data.

Regarding the experiment configuration, we use an in house Python program to let

the sensor stream data continuously (about 5-10 readings per second) for 24 hours over

each of the 4 network topologies. Upon reception at the end point, JSON messages, are

timestamped by an in house Python program prior to storing them into a Mongo database.

Fig. 4.3 shows a message formatted in JSON during the experiments. Recall that messages

are transferred using MQTT broker. To support message transfers, different MQTT brokers

are used to ensure the lowest latency-time. In T → F and T → F → C configurations, the

fog acts as a broker. In T → C and T → C → F configurations, the cloud acts as a broker.

In T → F → C, the fog acts as a broker. Finally, in T → C → F, the cloud acts as a broker.

84

4.4.3 Performance Evaluation

The performance evaluation and results presented in this section are based on the frequency

and time criteria and recommendations from Section 4.3. The frequency and time criteria

has been selected in this evaluation for two reasons; i) frequency and time criteria are feasible

combination to reflect the performance of IoT one-hop {T→C, T→F} interactions and the

two-hops {T→F→C, T→C→F} interactions, ii) worth investigating the time (reflect the

latency) and the frequency (reflect the traffic) criteria as they can impact IoT performance,

thus impacting both QoS and QoE. Also. the selection of both criteria fit with the scope

of the performance evaluations of fog-2-fog coordination model presented in next chapter.

The evaluation taken from running 4 experiments, one for each two-way network topol-

ogy, the physical topology configurations are based on our one-hop and two-hops interac-

tions, hence the configs are; Config1: T→ C→ F, Config2:T→ F→ C, Config3:T→ C, and fi-

nally Config4:T→ F. These configurations are to compare recommendations indicated in the

proposed coordination model (Section 4.3) with the total (end-to-end) latency obtained per

topology. Specifically, we experiment on the frequency criterion with “continuous stream”

and time criterion with real-time processing, these criteria described in Section 4.4.2. All the

experiments (Figures 4.4 to 4.7) were conducted for the same duration (i.e., 24 hours for

each configuration) to ensure consistency, in fact the number of transferred packets are

also fixed to 25k per each configuration, this mainly to avoid evaluating uneven number of

packets in each topology due packet’s losses to either connection issue or sensors glitch.

Each transferred packet in each configuration contains similar structure with a raw

data like id, value, and timestamps of sending/receiving/processing the packet. For each

experiment, the total end-to-end latency was calculate the for transferring data packets

produced by things to either fog or cloud nodes for processing. To generate a “continuous

data stream”, 25k of packets were sent by the thing node, for each topology. For each sent

packet the recipient node fetch the data and log the timestamp of which it has been received

and then transferred to either the next recipient (in case of two-hops interactions) or sent

pack to the thing node (in case of one-hop interactions). In term of evaluation, the packets

are aggregated at the thing’s node and compute the round-trip to extract the end-to-end

latency per packet.

85

Figure 4.4: Number of packets per latency in T → C → F configuration1

0 2 4 6 8 10

Latency (ms)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

N
u

m
b

e
r

o
f

P
a

c
k

e
ts

17193

5362

1025

934
339 123 18 6

T-F-C

Figure 4.5: Number of packets per latency in T → F → C configuration2

86

Figure 4.6: Number of packets per latency in T → C configuration3

0 1 2 3 4 5 6 7 8

Latency (ms)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

N
u

m
b

e
r

o
f

P
a

c
k

e
ts

17582

5225

1809
314

53 14 3

T-F

Figure 4.7: Number of packets per latency in T → F configuration4

87

After calculating the latency for each packet, they have been grouped based on the

end-to-end latency as presented in Figures 4.4 to 4.7. Reminder, the evaluation results are

based on 25k of packets that have been fixed for all configurations to ensure consistency.

Figure 4.4 shows packets latency of Config1:T→C→F, Figure 4.5 shows packets latency

of Config2:T→F→C, and similarly Figure 4.6 and 4.7 shows packets latency of their cor-

respondence topology. To explain more, figures are simply grouping the packets based on

latency in each configuration, fog example, in Figure 4.4 there were 210 packets needing

round-trip delay of 5 millisecond in Config1:T→C→F topology. The delay in receiving some

packets can be down to either packets transfer delay due to channel congestion that occurs

with high traffic (i.e., high frequency), or the impact propagation delay to far cloud node (the

hired cloud were based in Germany). Moreover, Figures 4.5, 4.6 and 4.7 also groups the

25k packets based on the end-to-end latency in each topology configuration. It is clear that

adopting fog as first hop, first recipient to thing’s data, will help in providing the lowest

delay. In fact, this result proved in Figure 4.8, where the delay mean and the standard de-

viation (STD) were computed for each of the four configurations, clearly Config2:T→F→C

and Config4:T→F have the lowest mean and lowest STD, thus lowest latency.

Config 1 Config 2 Config 3 Config 4

Physical Topology Configuration

0

5

10

15

20

25

D
e

la
y

 (
m

s
)

Mean STD

Figure 4.8: Delays means and STDs (for 25k of packets) for each configuration

88

Figure 4.9 demonstrates the total end-to-end latency in each coordination configuration

for streaming data continuously up to 25k of packets. It is clear that Config4:T → F

topology consumes less time (i.e., lowest delay) than any other of three configurations to

send the same amount of sensor-emitted data (i.e., 25k packets). These results reflect the

recommendation of HR for Config4:T→ F in the case of frequency criterion with continuous

stream, and NR in Config1: T → C → F and Config3: T → C configurations as they take

more than 22k milliseconds and 16k milliseconds, respectively, for total round-trip of the

25k of packets. In term of delays average and STD, Config4:T→ F topology still outperform

other topology configurations as per Figure 4.8.

There is a clear run-time improvement in Config2: T → F → C, Config3: T → C, and

Config4: T → F topologies in Figure 4.5 to 4.7 respectively, compared to the worst case

of run-time of Config1: T → C → F in Figure 4.4, this results are depicted in Figure 4.10.

For further clarification on Figure 4.10, Config4 T → F topology in Figure 4.7 spends

around 53% less time to serve the 25k packets compared to Config1: T → C → F in Fig-

ure 4.4; whereas Config2: T → F → C in Figure 4.5 consumes 40% less time compared

to the same benchmark, and Config3: T → C in Figure 4.6 is only 26%. It worth also

comparing Config2: T → F → C, and Config4: T → F topologies with Config3: T → C

since it is the most common topology for today IoT systems/applications. Moreover, the

results shows that Config2: T→ F→ C, and Config4: T→ F topologies are still outperform

Config3: T → C in term of run-time for the 25k packets, as they have the lowest round-trip

time, more precisely the run-time improvement of Config2: T→ F→ C, and Config4: T→ F

are 36% and 18%, respectively, compared with the run-time for Config3: T → C.

The results presented in Figures 4.4 to 4.10 proven that the proposed recommendations

in section 4.3 are valid. To explain more, the results in Figures 4.8, 4.9 and 4.10 for

Config4: T → F and Config2: T → F → C are in line with our recommendations for both

the time criterion (reflect the delay) and the frequency criterion (reflect the traffic of 25k

packets) of Config2: T → F → C and Config4: T → F topologies being recommended, while

Config1: T → C → F Config3: T → C topologies being not-recommended.

89

Config 1 Config 2 Config 3 Config 4

Physical Topology Configurations

0

0.5

1

1.5

2

2.5

D
e

la
y

 (
m

s
)

10
4

Figure 4.9: Total latency (for 25k of packets) for each configuration

Config 2 Config 3 Config 4

Physical Topology Configuration

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n

ta
g

e
 R

e
d

u
c
ti

o
n

 %

Figure 4.10: Percentage performance improvement of T→ F→ C, T→ C and T→ F

90

4.5 Chapter Summary

Fog-cloud collaboration has become doable due of the recent advances in storage, network-

ing, and processing capabilities of fog nodes. This chapter presented a fog-cloud collabo-

ration model that assists organizations wishing to ride the IoT wave, in determining where

data should be sent (cloud, fog, or cloud & fog concurrently) and in what order (cloud, fog,

or cloud & fog concurrently). To this end, a set of data-recipient selection criteria - fre-

quency, sensitivity, freshness, time, volume, and criticality - have been proposed ensuring a

smooth collaboration. Hence this chapter have addressed RO2 in term of to proposes data

recipient criteria in fog/cloud environment, thus fulfill RQ2.

This fog-cloud collaboration was illustrated with different levels of recommendations

about the appropriate data recipients. For instance an IoT application that is keen to han-

dle continuous data-streaming would not consider sending data from things to clouds but

from things to fogs. Contrarily, an IoT application that is keen to handle high amounts

of data-exchange would consider sending data from things to clouds but not from things

to fogs. Different concerns and different priorities mean different data recipients. For val-

idation purposes, a healthcare-driven IoT application along with a test-bed, that features

real sensors (temperature and humidity AM2302) and fog node (RPi2 model B) and cloud

data-centre (4 core virtual private server) platforms, was permitted to perform different

experiments that demonstrated the technical feasibility of the coordination model as well

as the appropriateness of recommending one coordination model over another. The ex-

periments targeted frequency and time criterion along with the continuous stream feature.

The evaluation results proven that the proposed recommendations and set of criteria that

defines where data of things should be sent (cloud, fog, or both) are valid as the results

for Config4: T → F and Config2: T → F → C are in line with our recommendations for

both the time criterion (reflect the delay) and the frequency criterion (reflect the traf-

fic) of Config2: T → F → C and Config4: T → F topologies being recommended, while

Config1: T → C → F and Config3: T → C topologies being not-recommended. Since this

chapter have discussed the fog-cloud collaboration model, the next chapter discusses the

{og-2-{og coordination model and Fog Resource manAgeMEnt Scheme (FRAMES) for op-

timal resource managements and workload distributions for fog computing.

91

CHAPTER 5

Coordination Model of Fog-to-Fog

Stability leads to instability. The more stable

things become and the longer things are stable, the

more unstable they will be when the crisis hits.

Hyman Minsky

5.1 Introduction

T
he main advantage of fog computing is the proximity to end-users devices, thus fog’s

hardware and software resources are placed “closer” to things allowing services that

rely on IoT-things’ inputs to be carried with minimal delay [14, 37], hence benefiting real-

time applications. However, fog nodes can quickly become congested when the number of

arrived service requests exceed the fog’s capability [14, 3]. Consequently, service latency

occurs [14]. In addition, the potential of fog congestion occurrence is high due to the limita-

tions of fog capabilities in comparison to cloud [1, 26]. Therefore, fog resource management

is the most important issue/aspect of congested fog nodes [1, 15, 108], as poor resource

management can lead to fog congestion which causes latency and inefficiency for services

within the fog layer [6, 26]. OpenFog [38] reports that, although fog computing provides ex-

tensive peer-to-peer interconnection for communication purposes with the clouds, its nodes

run in silos, where no collaboration capability, for job processing, is available. Therefore,

fog resource management is needed to unlock the silos and free them from the historical

stovepipes working pattern. In fact, poor resource management can cause latency and in-

efficiency for services within the fog [6, 26]. Therefore, in this chapter will propose a fog

nodes that are able to outsource their hardware resources and participate in coordination

with other fogs to achieve a single task.

The contributions of this chapter are threefold; i) the {og-2-{og coordination model that

achieves an optimal workload among the collaborated fog nodes. This coordination model

allow fogs to outsource their resource. ii) a Fog Resource manAgeMEnt Scheme (FRAMES)

that promotes load balancing to address the latency concern of service request’s received

from things. We adopt the notion of fog-as-a-service [157] where each fog node hosts local

computation, networking and storage capabilities. and iii) a formal mathematical model

that backs the decision of load balancing among fog nodes via offloading. The offloading

model considers not only the queue length of the service packets, but also variant node

capabilities as well as different data packets or request types, such as, heavy-weight data

packets from a CCTV and low-weight data packets from sensors. The proposed models

and their algorithms outperformed the output of two benchmark algorithms; Random Walk

Algorithm (RWA) and Neighbouring Fogs Algorithm (NFA).

93

5.2 Fog Resource manAgeMEnt Scheme

Although fog nodes are placed “closer” to IoT things so, that, latency is “taken care” of,

these nodes can quickly become congested when the number of requests soliciting their

services exceed their capabilities [14] [3]. The fog layer in the IoT architecture consists of

heterogeneous devices clustered together and forming what is called “fog domains”. Each

fog device/node has it is own coverage range where the desired fog services are provided. In

fact, due to node heterogeneity, service types and sizes (e.g., processing speed and storage

capacity) vary from one fog node to another, thus its unclear how fog services are managed

and provided. Many questions arise: “How can fog’s services be provided?” and “Who does

manage and monitor fog resources consumption and provisioning?” in order to evaluate

the QoS and performance of the fog devices. To fill this gap, Fog Resource manAgeMEnt

Scheme (FRAMES) is proposed. This section discusses FRAMES, which involves managing

fog resources status and provides network analysis and statistics for fog resource provision-

ing and consumption. Figure 5.1 shows the conceptual diagram of FRAMES. The main

functionality is to periodically monitoring fogs’ statuses and network loads.

5.2.1 Fog management scheme

Fog nodes/devices can be any device with storage, computing, and network capabilities.

Fog can be directly installed by an individual user or network administrator who wants

to benefit from desired fog services. Therefore, FRAMES is based on the fog node mesh

distribution architecture [20, 4], which is similar to the distribution of WiFi access point

topology [4] (i.e., installing routers in a distributed manner with respect to coverage range).

Thus, network administrators install multiple interconnected networks of fog nodes in public

places (e.g., cities) and private places (e.g., homes) to distribute fog services. This way of

fog services distribution is achieved through collaboration between cloud providers, IoT

operators, and network infrastructure providers. FRAMES can manage the distribution of

fog nodes as well as the monitoring of performance and resources managements in the fog

layer. FRAMES includes three main parties which take over the process of managing fog

services and coherence as per Figure 5.2.

94

Figure 5.1: Overview of the Fog Resource manAgeMEnt Scheme

• Fog Portal: is a distributed software, which is located within each fog domain and

forms an intermediate connector between the fog nodes and services’ users. This

portal features a knowledge-base on a connected fog domain and cloud-based data

repository to provide data about all the available fog domains and the services pro-

vided by each fog node, thus share data/statistics between fog nodes. The procedure

of declaring new/existing fog services via the fog portal starts when the fog owner

connects the actual fog node to the IoT network. Thus, as soon as the node is up

and running, it will be detected by the local network and assign a unique static IP

address to the device, and at this point the node will ping the portal to register de-

95

FRAMES

Attache Fog node to local network

Register node

Fog nodeUser / Admin Portal Pinger

User Confirmation

Assign IP

Verify node
Open Session

Ping IP

Respond

Confirm node

loop

Set Ping

Service

Ping IP

Respond

Declare Services

Assign Services

Service Initiated

Nodes status report

Figure 5.2: Sequence diagram showing FRAMES interactions

vice details in the fog portal. During the registration process, all device information

and capabilities of the device are required, such as, device CPU clock, storage size,

network capacity, MAC addresses identifier alongside with the IP address assigned

by the network which will be used to identify the node. At this time, or thereafter,

the fog owner can visit the portal and assign/declare the desired fog services.

• Fog Pinger: is an automated ping utility, which is run by FRAMES on a periodic

schedule (set according network/admin needs) to check the status of registered fog

nodes in each individual domain. The outcome will be reported to the main manage-

ment portal upon which action is taken in case a fog node is down. The ping utility

operate by sending Internet Control Message Protocol (ICMP) echo request packets

which is very tiny in term of size, more precisely, it is 84 Bytes including the ICMP

and IP headers [158], hence it dose not cause an overhead load in the network. More-

over, the pinger is network’s admin feature that uses the services of the Internet

Control Message Protocol (ICMP) which encapsulate in an IP header. Thus, pinger

96

operates on the Network layer of the Open Systems Interconnection (OSI) model.

• Network Monitor: part of the FRAMES duties is to monitor and control the com-

puting resources of the fogs within the network. FRAMES tracks fog’s resource con-

sumption, maintains resource availability of each fog, and periodically reports to the

administrator with an analytical report. Providing analytic and processed statistics

to the services provider helps to efficiently maintain nodes resources and conditions

to deliver services with high performance.

5.2.2 Fog Workload Balancing

Considering a scenario where a fog node accepts a data processing request from a thing; it

will process the request and respond back. However, when the fog node is busy processing

other requests, it may only be able to process part of the payload and offload the remaining

parts to other fog nodes. Hence, there are two approaches to model interactions among

fog nodes to distribute the load. First, the centralised model, which relies on a central

node that controls the offload interaction among the fog nodes. Second, the decentralised

model, which relies on a universal protocol that allows direct interactions among nodes. In

the decentralised/distributed model, there is no need for a centralised node to share the

state of fog nodes, instead, FRAMES can help each fog node run a protocol to distribute

their updated state information to the neighbouring nodes. Then, each fog node holds a

dynamically updated list of best nodes that can serve the offloaded tasks. The distributed

model is more suitable for scenarios where things or fog nodes are mobile (e.g., Internet of

moving things [159]) to support the mobility and flexibility of data acquisition. Therefore,

we adopt this model of interactions in the F2F coordination model. The procedure of

sharing the overload among fog nodes is as follows:

• When to offload a service request? the decision of a fog node to support the process-

ing of a received service request, part of the request or offloading the entire request to

another fog is based on computing the response time of that fog. The response time

of each fog will be computed periodically based on the fog’s current load (i.e., queue

size) and service request travel time (minimal latency always preferable). The pro-

cedure of offloading a received request by a fog node is as follows: once a service

97

request(s) is received by the fog node, it checks the request payload based on packet’s

size (i.e., heavy or light) and calculates the potential response time based on the

current requests that are waiting, and also under-processing, in its queue. Meantime,

the fog sends requests for coordination to all neighbouring nodes within its domain.

It is worth noting that request-and-response times are considered part of the service

latency. However, it is very low and even negligible in the overall service latency

as the link rate among fogs is usually around 100 Mbps [14], which is very high.

Packet’s payload size is adopted as heavy-weight data packets (e.g. CCTV data) and

low-weight data packets (e.g., sensors data) as it can be more accurate than naming

a data type/format from an application, due to the fact that similar application may

give different data payload sizes, also this approach is in line with [14, 160, 161].

The coordination request among fog nodes includes information about the type of

service request received and/or awaiting processing; whereas the response from other

fog nodes to the sending fog will be with time estimation for processing that request.

Thereafter, if the estimated time by the fog is less than the expected response time by

the thing (i.e., service deadline), the service will be accepted for processing and enter

the queue of the fog. Otherwise, the fog will offload the service to another fog, which

provides the lowest latency estimation, or redirects the service request to the cloud

in case no fogs are available to handle the service. Simply put, offloading happens

when a fog node has a heavy load. In the other extreme case when all fog nodes have

heavy loads, offloading becomes useless. Thereof, it is more effective when there is a

high load variance among participant nodes.

• Where to offload a service request? each fog has a list of best-suitable nodes with

whom it can collaborate (i.e., reachability features table includes the estimated com-

puting and response-time), when needed. This list is generated based on node’s

locations and their neighbouring nodes, i.e, the list will include all nodes that are di-

rectly reachable from the current fog node sorted by node distances from low to high.

When a node is about to get or become congested1, it can share the load with nodes

from the list based on the payload size received. Thus, the list of best neighbour-

1The term “congested node” applies to any node that has a high traffic, which may cause a
latency issue for the incoming service requests.

98

ing nodes is maintained periodically by each fog node. The process of selecting and

sorting the best neighbour nodes is based on the possibilities of coordination between

each other and being able to provide service processing with low latency and able to

meet the deadline for the service request. Moreover, the procedure of selecting the

best node takes into account the different request types as well as a node’s capabilities

and availability, thus, the list will be sorted by best node to the top, and best node is

the one that can provide the lowest service latency and is available for coordination.

The best node selection and offloading algorithms are explained in Section 5.3.10. It

is worth noting that the list of best neighbouring should be updated not only period-

ically but also upon scenarios where a significant change occurs, such as, adding or

removing node(s) to or from the fog domain. This helps keep the list accurate and

avoid issues of inconsistency when there are changes within the fog domain. There-

fore, the list should be updated on the following offloading occasions: (i) when the

fog sends request of status updates to other fog nodes; (ii) adding a new fog node to

the fog domain; (iii) removing a fog node from the fog domain; and (iv) when a fog

node goes off-line. These interactions and management are handled by the FRAMES.

To explain more, fog nodes can join and leave a fog domain by setting this through

FRAMES by updating the fog portal to add/remove a fog node and the fog pinger

utility to monitor the status periodically. Updating FRAMES may cause changes to

the fog network topology, thus fog nodes within the affected domain will be notified

by FRAMES to allow fog nodes re-sorting their list of best neighbouring fog node for

coordination.

99

5.3 Fog-2-Fog Coordination Model

This section discusses the network model that supports F2F coordination. It also discusses

potential sources of delays that could impact this coordination. Mostly used notations in

this chapter are given in Table 5.1.

5.3.1 Network Model

The communication among fog nodes in the context of F2F coordination is modelled as an

undirected graph, so that all fog nodes are reachable for each other. Having G = 〈N,L,W 〉,

where N is a set of thing, fog, and cloud nodes, thus, G = N I ∪NF ∪NC respectively. The

notation L denotes the set of communication links between all nodes across the things, fog

and cloud layers. While the notation W is the set of edge weights between nodes, according

to the distance between them, hence the longer the distance, the higher the weight is. Thus,

propagation delay Dp depends on the edge weight between two nodes.

5.3.2 Service Delay

A service request can be defined as a set of tasks that are processed completely to meet

the desired service’s requirements. Processing a service request can happen over any of the

three layers (i.e., thing, fog, and cloud). Hereafter, FRAMES calculate the total delay taken

to process a service. Service delay (Sd) for tn request is expressed in Equation 5.1:

Sd = ρFi ∗ [DF
t +DF

p +DF
c]

+ ρCi ∗ [DC
t +DC

p +DC
c]

(5.1)

Where ρIi is the probability that tn processes the data locally at the things layer, ρFi

is the probability of processing the service at the fog layer, and ρCi is the probability that

the service is processed at the cloud layer; ρIi + ρFi + ρCi = 1. SIp is the average processing

delay of the tn when it processes data. DF
p is propagation delay, and DF

t is the sum of all

transmission delays. Similarly, DC
p is propagation delay for cloud server, and DC

t is the sum

of all transmission delays to the cloud.

100

Table 5.1: Notations used in the thesis

Symbol Description

t, n, T thing, index of t, set of things
f , i, F fog, index of f , set of fogs
λ service arrival rate to fog layer
µ fog node service rate
ρFi probability of sending the request to the fog
ρCi probability of sending the request directly to the cloud
ρIi probability that t processes the data locally
Dt transmission delay
Dp propagation delay
ps propagation speed
Dc computational delay
Dque queuing delay
Dproc processing delay
lp packet size in bits
b ↑ upload bandwidth
dtsfci total delay by fi to process task ts, and c refer to fi capacity

S, s Set of services, one service
sw service workload
sd service deadline
τs total time required to process a service
τque is the queuing time
τproc service processing time
ρ system usage
%size queue size
τ sique queuing time for s at the resources of fog fi
fw fog workload
f ci processing capacity of the fog node Fi
τ fisw time to process sw on fi
nSl number of light services
nSh number of heavy services

101

Figure 5.3: Four sources could delay service processing

5.3.3 Delay Sources

Figure 5.3 shows four delay sources; transmission delay (Dt), propagation delay (Dp), queu-

ing delay (Dque) and processing delay (Dproc). These delay sources can seriously impact

service performance and meeting deadline, hence causing latency. To correctly calculate

the delay, it’s important to be clear about where the service will be processed and what pa-

rameters are involved in the processing. Therefore, the focus of FRAMES is on minimising

service processing latency over the fog layer, via F2F coordination, hence achieving mini-

mal service transmission delay (Dt), propagation delay (Dp), and computational delay (Dc)

which includes both queuing delay (Dque) and processing delay (Dproc).

5.3.4 Transmission Delay

Transmission Delay (Dt) is the time taken by a sender (i.e., thing) to transmit the data

packets over the network. To calculate the transmission time that is required by a particular

thing, we should know the packet size or packet length lp in bits and data rate (i.e., upload

bandwidth) b ↑. Thus, the sum of transmission delay Dn
t for thing t node index n is

calculated using Equation 5.2.

Dt =
lp
b ↑

102

Dn
t =

∑ lnp
b ↑

(5.2)

b ↑ is the upload bandwidth which refers to the maximum data rate in bps (bits per

second) at which the sender can send packets on the network link. The transmission delays

between other layers, such as fog to cloud, are calculated using the same approach and

based on lp and b ↑.

5.3.5 Propagation Delay

Propagation Delay (Dp) is the time required to transmit all data packets over a physical

link from source (e.g., thing) to destination (e.g., fog). The delay will be computed using

the length of the physical link to destination ld and propagation speed ps. The ld can be

calculated using the latitude and longitude of the thing and fog to find out the length. Thus,

the propagation delay Dn
p for a tn can be calculated using Equation 5.3. The propagation

delays between other layers, such as fog to cloud, are calculated using the same approach

in Equation 5.3 and based on ld, and ps.

Dn
p =

lnd
ps

(5.3)

5.3.6 Computational Delay

Computational Delay (Dc) is the total time taken by fi to compute a service requested

by tn. This time includes both queuing delay (Dque) and processing delay (Dproc). The

Dque is the period of time spent by a data packet inside the queue/buffer of a fog node

until it gets served. While, the Dproc is the time consumed by the fog node to process the

received data/packet(s). The Dc will give the actual time required for the service request

to be processed according to the fog node’s capability and its current load.

Moreover, as mentioned before, IoT requests can be defined as a set of sub- /tasks, thus,

these tasks can be processed in a sequential manner, parallel manner, or a mix. Figure 5.4

demonstrates the different possible approaches for processing a service. For a service with

sequential tasks the process delay is the sum of all task delays, while the process delay

for a parallel processing will be the maximum latencies among all tasks. Therefore, the

103

processing delay for a service that can be processed immediately without waiting in the

queue will be calculated using Equation 5.4.

Ds
proc = maxq→Qs(

∑
t∈Qq

s

dtsfci),∀q ∈ Q,∀c ∈ C (5.4)

Where dtsfci
is the total time delay consumed by fi to process task ts, which belongs to

the service s with processing sequence q, and c denotes the total capability (i.e., CPU) of fi.

As mentioned before, Equation 5.4 is used to calculate the total time-delay when a service

is immediately processed by a fog node.

Figure 5.4: Three types of service processing

Figure 5.5: Queuing system

104

Next, we will discuss the scenario when a service request arrives at the fog and has to

wait in a queue due to the fog’s current load. When the fog is congested (i.e., busy) the

arriving services are queued in the fog buffer until the fog becomes available to process the

received requests according to priorities. In this case the key factor for service latency will

be the average waiting time of a service at the buffer, which is based on the length of the

buffer/queue, in addition, the processing time for the services are as per Figure 5.5, where

λ is the average service arrival rate and µ is the average serving/processing rate for a fog.

In any queuing system, the network can be modelled using three parameters A/P/n,

which according to Erlang-C [1] these are; A is service arrival rate, P is the service time

probability density, and n the number of fog nodes. Therefore, we model the fog system

network in a similar approach since it has queue/buffer within its network topology. Hence

the fog network is modelled as as M/M/n, where the first M is the services arrival rate

according to the Poisson process with average rate λi for fi. The second M is the indication

of service rate exponentially distributed over n number of fog nodes and having the mean

service of 1/µ. In the fog system, n is the set of heterogeneous fog nodes with different

capabilities. Thus, when n > 1 the first service in the queue will be served by the fog that

is currently available (i.e., queue = φ) and will process the service, or offload it to the first

node that becomes available through a periodic checking of the reachability table within the

fog domain. The total time for a service, is the time for queuing τque and processing τproc

as follow:

τs = τ sque + τproc

Hence, the total time for τs can be computed by Equation 5.5.

τs =

[
n−1∑
x=0

(nx)!(1− ρ2)

(nρ)n−x
+

1− ρ
ρ

]−1

(5.5)

where ρ is the system utilisation, obtained using Equation 5.6.

105

ρ =
arrivalRate

serviceRate
=

n∑
x=1

λ

µx
(5.6)

The µ can be obtained by µ =
lp
Lc

having lp average packet size in bits, and Lc is the link

transmission capacity (unit is bits/second). It is worth noting that the inverse of service

rate is the average service time Lc
lp

. To find a queue size and compute the average number

of service packets in the queue we use Equation 5.7:

%size =
ρ([Pw

s (n,ρ)](nρ)n

n!(1−ρ))

1− ρ
(5.7)

Where Ps is the probability of number of service packets in the fog system and calculated

using Equation 5.8:

Pws (n, ρ) =

[
n−1∑
x=0

(nρ)x

x!
+

(nρ)n

n!(1− ρ)

]−1

(5.8)

Equation 5.8 provides the probability of the newly arrived packets that are not processed

immediately in the fog layer and, thus, have to wait. Hence, to obtain the probability of

packets that are directly processed we use Equation 5.9.

P ds = 1− (Ps(n, ρ)) (5.9)

Next, we calculate the average delay for a service packet in a fog’s queue. This will help

evaluate the performance of fog by the FRAMES and point out the congested node based

on %size and queuing time τque for a process. Thus, the queuing time for a service request

is calculated using Equation 5.10.

τ sique =
ρ(P

w
s (nρ)n

n!(1−ρ))

λ− λρ
(5.10)

Where τ sique is the queuing time τque for service s at the resources of fog node i, λ is the

service rate and ρ is the system utilisation. To compute the total time for a service’s request

106

in the fog system, its generally by adding the processing delay to τ sque as per Equation 5.11.

τ sic = τ sique +
1

µ
(5.11)

5.3.7 Fog Workload

Fog workload fw refers to the overall usage of a fog node’s CPU as cycles per second, which

is consumed during the processing of a particular service request. Thus, there is a limits

and constraint for node capability, which leads to a limitation of the abilities for processing

different type of services. (i.e., heavy or light). Therefore, the workload assigned to a fog

node fw should not exceed the total capacity of the fog node f ci at anytime.

fw ≤ f ci , ∀f ∈ F (5.12)

A service that operates/runs or is provided by a fog node can serve several end-users

in the network. Thus, the total ratio of CPU usage by a service task (or tasks in case of

parallel processing) should not exceed the total resources allocated for that specific service.

This is because these allocated resources are considered to be the total fw that can be

provided by this specific fog node for this particular service. Equation 5.13 computes the

total resources (rs) allocated to process all tasks ts for a service s.

fsrs = sw =
n∑
t=1

Cfits , dse ≤ f ic, ∀s ∈ S, ∀t ∈ Ts (5.13)

The total fog’s workload capacity (fc) depends on the actual hardware specification of

the allocated device. The assignment variable sw (i.e., total service workload) is set so

that total service processing workload does not exceed fc, as per Equation 5.13, where Cfits

denotes the total resource (CPU in consumption in hertz, having hertz=cycles/second) con-

sumed by a service’s tasks on fog node fi.

For more realistic scenarios, the services workload has been separated depending on

the service request type, having a heavy-weight and low-weight service request according

107

to service packet’s size. For instance, when a service only processes a small data packets

from sensors, this will consume low computational power, thus, the workload on fog is

low. While, in services that perform heavy real-time video processing, the workload will be

high on this fog node. Therefore, services workload (sw) on fogs can vary for each service

depending on service type. The fw for all services is the sum of each service workload

multipled by λ as per Equation 5.14. Thus, fw should be less than the fc assignment

variable (i.e., fw <= fc).

fw =

n∑
x=1

swx .λs, ∀s ∈ S (5.14)

5.3.8 Average Delay in a Fog Node

Fog node is a device located within the local network and equipped with communication

protocol and computation power. We assume that nodes at the fog layer receive service

packets from IoT nodes for processing and it has enough buffer size to accommodate the

incoming packets. Thus, the services arrival λ traffic to fog nodes will be according to

Poisson and fog processing rate is exponentially distributed over fog nodes according to

light-services processing (µ) and heavy-services processing rate (µ′). To compute the

waiting for a service packets on a specific fog node, it will be through calculating the

total time for processing the current heavy and light services in the fog buffer/queue. For

example, to obtain/calculate the average waiting time for a service s that arrived at fi at a

specific timestamp, it will be through the total time consumed by fi to process all current

service’s packets according to their types. Equation 5.15 computes the average waiting time

for a newly arrived service on fi, having nSh refer to the number of heavy-services and nSl

refer to the number of light-services.

nSh =
∑

sfih ,∀sh ∈ S

nSl =
∑

sfil ,∀sl ∈ S

τ fisw =
nSh
µ′

+
nSl
µ

(5.15)

108

It worth mentioning that, if fi queue is not empty, i.e., we have

(nSh + nSl) 6= φ

Then the

queue = (nSh + nSl)− 1

This means that there are mixed types of service packets currently in the buffer/queue

and only one packet is currently in processing.

5.3.9 Problem Formulation and Constraints

It is crucial to guarantee minimal service delay to end-users during service processing at

the fog layer. The four sources of delay mentioned in Figure 5.3 are included in the latency

minimising schema. The total latency for a service sent from tn to fi is computed by adding

the time of uploading a service’s packets (τ�) to the waiting time for the service in the fog

queue (τque) until it gets processed. The delay for processing the service (τproc) and the

time to respond back (τ�) to tn is also added to the total latency for the service as per

Equation 5.16. For simplification, we assume that(τ�=τ�), having ([τ�=τ�]=2τ��) because

logically the returned packets are normally a similar or smaller size than the sent packet.

τs = τ� + τ sque + τproc + τ�,∀s ∈ S

τs = τ sque + τproc + 2τ��,∀s ∈ S (5.16)

We address the problem of having an optimal workload on fog nodes alongside achiev-

ing minimal delay for IoT services. Thus, achieving a reasonable load includes execut-

ing/processing the desired services within the threshold limit of fog capability. In addition,

low latency for IoT services includes delivering the service results within the required pe-

riod, i.e., before service deadline (sd) with the desired QoS and QoE. Therefore, the research

problem in 5.17 indicates that the maximum time required to process a service τs should

not exceed the service deadline sd.

109

P : max[τs] 6 sd,∀s ∈ S (5.17)

s.t. fminc 6 fw 6 f
max
c (5.18)∑

λs 6
∑

µf (5.19)

P ds (n, p) > serviceLevel (5.20)

λs
min[Dp]−−−−−→ fi (5.21)

τs 6 sd,∀s ∈ S (5.22)

The constraints are on reducing service latency. Therefore, the constraints are written

with the focus on achieving minimal service delay. Constraint (5.18), indicates that (fw)

is strictly bound by an upper limit (fmaxc) and lower limit (fminc) which is related to fog

capabilities based on CPU frequency (unit hertz). Constraint (5.19) imposes that the total

traffic arrival rate (λs) to a fog domain should not exceed the service rate (µf) of that specific

fog domain. Constraint (5.20) imposes that the probability of directly processed services

should be greater than or equal to the desired service level. Constraint (5.21) imposes

the first destination for the IoT thing node’s packets generated will be to a fog node with

minimal cost of propagation delay within the fog domain. Ideally, lowest propagation delay

is for the nearest fog node. Finally, constraint (5.22) is strictly bound to the service time τs

within the limit of service deadline sd.

5.3.10 Offloading Model

The offloading model proposes to balance the load within the fog domain by distributing

service traffic from the congested fog nodes to other fogs within the domain. To balance

services traffic in fogs domain, we assume that fogs at any given location are reachable

to each other within the same fog domain as per our network model in Section 5.3.1,

which models the fog network as a mesh network; this assumption is in line with the work

in [3] and [162]. In this research, we consider a real-world scenario of service flows where

services arrival rates can significantly vary from one fog node to another [3] depending on

fog location, This consideration from constraint 5.21 (λs
min[Dp]−−−−−→ fi) that is services are

110

Loaded Fog Semi Idle FogIdle Fog

City Centre Edge City Centre Car park

Figure 5.6: Loaded, idle and, semi-idle fog nodes based on λs
min[Dp]−−−−→ fi

directed to the nearest fog from the thing for processing. Hence, Figure 5.6 demonstrates

the scenario where fogs can vary in their traffic load due to their geo-location. In a similar

scenario, offloading the traffic from loaded fog node to idle fog node can be crucial to

mitigate the load and keep the service latency at the minimal.

For example, given that only mobile vehicles are considered in traditional VANET, the

authors in [163] discuss how mobile vehicles (which are loaded nodes) and parked vehi-

cles (which are idle or semi-idle nodes) should work together “as fog nodes” to transmit

information and process requests to minimise the network load on mobile vehicles, this to

increase efficiency and reduce latency. It should be noted that the latency (time variable)

and money variable have a linear relationship with each other - they impact directly on each

other. For example, in intelligent transportation systems discussed in [164], the vehicular

communications prove reducing the traffic congestion and, hence, the Round-trip Delay

Time (RDT) thereby cutting down the fuel consumption (money variable).

The decision factors where a node is congested and offloading is significantly required

to aid fog workload (fw) are associated with the service traffic arrival rate (λs) and total

processing rate (i.e., service rate µ) which is down to fog CPU frequency (i.e., node capacity).

In addition, the service processing time τs ideally should not exceed service deadline (sd).

Therefore, to make the decision of offloading by a fog node is when having τs > sd, as

111

per Probability 5.23, having (Os) refers to the offloading service decision:

Os =

1, if τs > sd

0, otherwise

(5.23)

Thus:

τs > sd, ∀s ∈ S

τ sque + τproc + τ� > sd

In Probability 5.23, Os value is set to either 0 or 1, where 0 refers to no offload is required,

while 1 refers to offloading is significantly required as the newly arrived service will suffer

from latency and will not be able to meet the service deadline sd. Hence, service offloading

is required to aid minimising fog workload and meantime avoid service delay to end-users.

112

Algorithm 1: Maintain Fog Load

Input: Fog (Fi); FogCapacity (Fc); QueueSize (Qs)
Parameters : Offload (Os); OverLoad (Ol); Services (S); ServiceType (St)
Initialisation
:

Fi = φ; Fc = φ; Qs = φ; S = φ

Result: Determine Fog overload, if any.
1 Procedure 1. Overload Threshold by
2 Fc = F c

i . Fc initiate fog

3 Qs =←− getQueueSize(Fi)
4 S = list{Qs} . get list services

5 S = sort(S, by St)
6 for each s ∈ S do
7 τ sic = τ sique + 1

µ

8 if (τ sic ≥ Sd) || λ ≥ µ) then
9 setF lag(Os) = 1

10 break;

11 else
12 setF lag(Os) = 0
13 end

14 end
15 Fque = timeCostFun(s, τ sc)
16 Fi ←− Fque
17 return (Fi, Os)

18 End
19 Procedure 2. Determine the Overload by
20 get (Fi, Os)
21 Fc = getCapaxity(Fi)

22 µ = Fc

F i
que

23 if (Os == 1 || λ ≥ µ) then
24 for each s ∈ Fque do
25 S = getServices(out : s← τ sc ≥ Sd)
26 end
27 Fque = Fque − S
28 Ol = S

29 else
30 get(Fi, Os)
31 continue

32 end
33 return Ol

34 End

113

Algorithm 1 has been developed to detect the fog nodes that suffer from the congestion

issue, and determining the overload packets that needs offloading. The goal of this algorithm

is to answer the question of When to offload? and What to offload?. The first part of the

algorithm (Procedure 1) determines if the fog node is congested or not. This starts by

getting fog queue size and queued services sorted by their types (i.e., heavy-services and

light-services) as per lines 1-5. Later, lines 6-8 examine if one or more services in the queue

will miss their deadline Sd, or if the service arrival rate λ is bigger than the outcome of the

fog node µ (i.e., fog service rate). If any of the conditions is satisfied, a flag indicates that

the fog node is congested as per line 9. The second part of the algorithm (Procedure 2)

determines the overload by computing the number of service requests that are causing the

congestion as per lines 24-26. The overload Ol will be held in a list that contains reference

to all service requests that require offloading to other fog nodes as per lines 27-28. It worth

noting that there is no intermediate processes to be executed between procedure 1 and 2,

hence procedure 2 run immediately after procedure 1. The outcome of this algorithm will

feed into Algorithm 2.

To balance the services on fog nodes and to achieve optimal workload and minimal

service delay, the offloading to the best available fog node is adopted, so that, the best

available fog node can deliver the desired services within the scheduled time (i.e., τ < ds).

Therefore, to obtain the best node, which will handle the overload, we compute the service

time τs for the services requiring offloading among all available nodes using Equation 5.24,

thus, having some constraints on the node that participates in the process to handle the

overload such as load limit.

min[τs] = min

n∑
i=1

[τ fique + τ fiproc + τ�] (5.24)

s.t. fminc 6 fw 6 f
max
c∑

λs 6
∑

µf

τs 6 sd,∀s ∈ S

114

The best available nodes are those that provide a service with minimal delay. To find

these fog nodes, Algorithm 2 is developed. Algorithm 2 will find the best fog node to handle

the overload on the congested fog node, and then offload the overload from the congested fog

node. In addition, the goal of the algorithm is to answer the question of Where to offload?.

Algorithm 2: Service Offloading

Input: FogNode (Fn); FogLoad (Fl); OverLoad (Ol).
Parameters : FogCapacity (Fc); Propagation (Dp).
Initialisation
:

Fn = φ; Fc = φ; Fl = φ; Ol = φ.

Result: Share the Overload with best available node
1 Procedure 1. Determine best available node by
2 FL = list{φ} . FL initiate fog list

3 FL = list[Fn]←− getFogNodes(out : (Fn, Fc))
4 FL = sort(FL, by Fc DESC)
5 for each Fn ∈ FL do
6 if Fn←− (Fl ≥ Fcmax) then
7 FL = pop(Fn) . remove busy node

8 else
9 τs =

∑n
i=1[τ ique + τ ipro + τ�]

10 if (τs < sd) then
11 list.add(Fn, τs)
12 continue

13 else
14 FL = pop(Fn)
15 end

16 end

17 end
18 return FL
19 End
20 Procedure 2. Handover the Overload by
21 if FL 6= φ then
22 Fn = min[FL(τs, Dp)])
23 F n

l = Fl +Ol

24 else
25 goto: Procedure 1;
26 end

27 End

115

The first part of the Algorithm 2, Procedure 1, shows the process of finding the best

available node(s) for handling the overload pointed to in Algorithm 1. Lines 2-3 of the

algorithm initiate the list of active fog nodes in the domain alongside the node’s capacity

and current load (i.e., queue size). The list of available fog nodes will be refined by removing

the nodes that are already busy with other services (i.e., λi = µi) as per lines 6-8. The

remaining part of Procedure 1, lines 9-18 compute the time required for a service request

to be run on each of the available fog nodes. If the time is within the limit allowed for the

service (i.e, before Sd), the algorithm will keep the fog node in the list and log the expected

service time against the fog node ID as per lines 9-12. If the τs on Fn is greater than Sd,

then Fn will be removed from the list as per lines 13-15. The second part of Algorithm 2,

Procedure 2, receives the list of best available nodes. If the list is not empty, that means

there is at least one fog node that is able to take the overload for processing. However, if

there is more than one node in the list, the system will direct the overload to a fog node

that can provide minimal τs and has the lowest propagation delay Dp as per lines 21-23. It

worth noting that there is no intermediate processes to be executed between procedure 1

and 2, hence procedure 2 run immediately after procedure 1.

5.4 System Evaluation

In this section, the Fog-2-Fog coordination model is evaluated through a MATLAB based

simulation. The simulation setting and functions are built according to FRAMES which

is about providing optimal fog workload with minimal latency for IoT services. A sci-

entific and comprehensive network latency has been calculated, including time delays to

compute heavy-packets, light-packets, mixed types of packets and latency per fog node

according to their capacities. This is to demonstrate the superior performance of the pro-

posed Fog-2-Fof coordination model. The results have been validated against two bench-

mark algorithms; Random Walk Algorithm (RWA) [132, 133], and Neighbouring Fogs Algo-

rithm (NFA) [165]. Simulation settings are presented in the following subsection, followed

by a discussion of the achieved simulations results.

116

5.4.1 Experiment Configurations

This section describes the adopted MATLAB simulation settings along with the setup pa-

rameters. The configurations settings are according to the model proposed in Section 5.3,

hence it specifies the network topology, propagation and transmission delay, link bandwidth

and fog nodes capabilities, as follows:

• Network topology: this has been modelled as an indirect graph the represents fog mesh

network at the fog layer. Fifteen fog nodes (fn = 15) were used in the simulation and

remain the same topology with 15 fog nodes throughout all experiments and during

the evaluation of all algorithms. These nodes are connected together through internal

communication link based on links transmission speed. Moreover, the links between

nodes are weighted based on the propagation time between nodes, for instance, if Dp

between fog1 and fog2 is two second, then the link weight between both nodes is

(fog1 2←→fog2). Also, the services arriving at the fog layer are assigned to fog based

on the smallest Dp between the node and source, which has the smallest distance. It

worth noting that there is no explicit effect/changes of using random topology (i.e., fog

nodes can join and leave during run-time) as the FRAMES, using the portal and

pinger utilities, will notify other fog nodes when an updates is available. Thus, when

a fog node get congested and needs to offload a request, it will have access to only

fog nodes reported by FRAMES and no matter whether they are 10, 15 or 20.

• Network bandwidth: link bandwidth depends on the type of service, thus, heavy-

packets provided by heavy services will require more bandwidth compare to light-

packets generated by light services. Therefore, for light-packets (e.g., data packets

from sensors) the communication bandwidth used has a transmission rate of 250

Kbps [161], which is equivalent to 2.0× 106 hertz). Such communication protocol is

the IEEE 802.15.4, and ZigBee. While for heavy-packets (e.g., data packets from cam-

era) the communication bandwidth used with a transmission rate of 54 Mbps [160],

which is equivalence to 4.3 × 108 hertz) [160]. Such communication protocol is the

IEEE 802.11a/g. The transmission rate between the fog nodes is expected to be

higher, around ' 100 Mbps [14].

117

• Transmission and propagation delays: the transmission delay Dt for a packet depends

on the packet size lp alongside the associated upload bandwidth b�. Hence, impose

an average packet size that will vary according to the type of packet (i.e., heavy and

light packets). The average packet size for light-packets is 0.1 KB, while the average

packet size for heavy-packets is 80 KB [14]. With regard to the propagation delay

Dp, the packet round trip time (i.e., τ��) adopted and inline with [14] by having:

τ�� = 0.03× ld + 5

Where ld is the distance with unit km, and τ�� time unit is ms.

• Fog node capabilities consider the service rate µ that varies from one fog node

to another. The capability of a fog node will highly affect the processing capac-

ity (i.e., performance) of the fog node. Thus, a fog node’s capability is determined

by CPU frequency. hence a fog node’s CPU variant and the range between 0.2 GHz

to 1.5 GHz [166].

5.4.2 Benchmark Algorithms

In order to validate the results achieved by the proposed Fog-2-Fog coordination model

and the offloading algorithms, two benchmarks algorithms have been considered:

1. Random Walk Algorithm (RWA) [132, 133], which imposes that arriving service re-

quests are assigned to the nearest fog node to the data source. If the fog is congested

it will offload the service randomly to another fog node. In this scenario. This makes

the assumption that each fog node within the domain has the same probability of

being selected.

2. Neighbouring Fogs Algorithm (NFA) [165], which imposes that the congested fog node

will offload the overload to the nearest fog node with bigger capacity.

Moreover, our comparison also includes the typical service distribution based on as-

signing service’s packets to the nearest node to the IoT thing with No Offloading Al-

gorithm (NOA). We refer to the proposed offloading algorithm as Optimal Fog Algo-

rithm (OFA).

118

5.4.3 Performance Evaluation and Discussion

The performance metric we used is the average service time that reflects the efficiency

of service completion time (aka amount of delay/latency). The lower the average service

time (min[τs]), the better the efficiency of service and the QoS and QoE.

Figure 5.7 illustrates the performance of our OFA based on the average response time

for all received service requests according to a service’s packet types. Also, it provides a

comparison between the results of OFA and the results obtained from other algorithms

mentioned in Section 5.4.2. The simulation settings for this experiment is as follows:

• Fog nodes with different capabilities, hence, nodes vary in their service rate µ.

• Fog nodes capability based on CPU frequency with a minimum of 200 × 106 hertz,

incremented by 100 hertz until it gets to maximum CPU capability of 15× 108.

• Service arrival rate λ = 3× 102 packet per second as in [3], and λ is fixed during the

experiment to ensure all algorithms have the same traffic arrival rate.

Figures 5.7a, 5.7b, and 5.7c are grouped by packet types, having heavy-packets versus

light-packets versus mixed-packets. In Figure 5.7a, the packets type is mixed (MTP), having

a random number of heavy and light packets. However, the random number is fixed through

out the experiment to ensure consistency across all algorithms. In Figures 5.7b and 5.7c,

the packets are set to either all heavy-packets (AHP) or all light-packets (ALP). This

is to examine the performance based on different scenarios. In Figure 5.7 the vertical line

represents the average latency per algorithm to serve all arriving services, and the horizontal

line is the number of iterations carried out to ensure that the obtained results are consistent

and not random. It is clear that OFA has the lowest service latency among other algorithms

through all iterations and with all types of packets. It is obvious that NOA has the largest

service time because it does not consider offloading when a fog node becomes congested.

Hence, we end-up having a small node capacity with large queue size (i.e., µi < λi), and

a large node capacity with low queue size. The performance of RWA and NFA are better

than NOA but still higher than our OFA. However, RWA has the worst performance with

MTP and AHP as it randomly offloads the overload, which is a relatively blind algorithm as

it does not consider the current fog workload (fw) and the propagation delay (Dp) between

119

0 5 10 15 20 25 30 35 40 45 50

Number Of Iterations

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

A
ve

ra
ge

 L
at

en
cy

 (s
)

NOA NFA RWA OFA

(a) Mixed types of packets (MTP)

0 5 10 15 20 25 30 35 40 45 50

Number Of Iterations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
ve

ra
ge

 L
at

en
cy

 (s
)

NOA NFA RWA OFA

(b) All heavy packets (AHP)

0 5 10 15 20 25 30 35 40 45 50

Number Of Iterations

0.032

0.034

0.036

0.038

0.04

0.042

0.044

0.046

0.048

A
ve

ra
ge

 L
at

en
cy

 (s
)

NOA NFA RWA OFA

(c) All light packets (ALP)

Figure 5.7: Average latency according to offloading model

120

sender and receiver. It worth noting that the OFA results in Figure 5.7 are mostly steady

because the evaluation has been done over 50 iterations and in each iteration the mean value

of processing all packet is taken, hence the mean mostly steady, as in most other algorithms

in Figure 5.7b and 5.7c.

The next simulations were conducted based on service latency per fog node. Similar to

previous experiments, we use fog nodes with different capabilities based on CPU frequency

with a minimum of 200 × 106 hertz, incremented by 100 hertz until it gets to maximum

CPU capability of 15 × 108, having Fn = 14. In this simulation, we increment the service

arrival rate so, that, the total packet received is one million service requests. The packet

type in this experiment is mixed, having a random number of heavy-packets and light-

packets. Figure 5.8 shows the average latency per fog node. It is clear that OFA achieves

a consistent average latency. In contrast between OFA, on the one hand, and NFA and

RWA, on the other hand, OFA has the lowest average latency between fog nodes 1 to 7,

but greater average latency from node 8, and thereafter. However, the average latency

difference is much higher for NFA and RWA in comparison to OFA for fog nodes from 1 to

7 compared to the average latency differences from node 9 to 14. This difference accrues

as OFA workload distribution strategy, OFA tries to achieve balanced service distribution

based on node capacity. Therefore, the work assigned to fog nodes considers the overall

capacity and current load before it offloads a request, while NFA and RWA are relatively

blind in this manner. Hence, OFA achieves almost consistent latency on each individual

node, while the average latency for NFA and RWA vary and are inconsistent.

To prove the optimal distribution of packet with OFA we run a new experiment and

recall the settings from the previous experiment. However, in this experiment, the vertical

line represents service usage (i.e., number of packets) as per Figure 5.9. The fog nodes are

sorted from smallest capacity (i.e., lowest CPU) to largest (i.e., largest CPU), having the

first node with 200×106 hertz and node 14 with 800×106 hertz. It is clear that the packets

distribution with OFA is completely different from NFA and RWA as it distributes packets

according to the fog node capacity. Hence, the first node receives fewer packets and the last

node receives more packets. In comparison with NFA and RWA, the packet distribution

on average is steady among all fog nodes regardless of the node capacity, which causes

121

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fog Nodes

0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

s
)

NOA NFA RWA OFA

13 14

0.5

1

1.5

Figure 5.8: Average latency per node

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fog Nodes

0

0.5

1

1.5

2

2.5

3

3.5

P
a
c
k
e
ts

 L
o

a
d

 (
#
C

y
c
le

s
)

10
9

NOA NFA RWA OFA

Figure 5.9: Average load on nodes

122

6.5 7 7.5 8 8.5 9 9.5 10

Packet Index 10
4

0.5

1

1.5

2

2.5

3

L
a
te

n
c
y
 (

s
)

NOA NFA RWA OFA

9.95 9.96 9.97 9.98 9.99 10

10
4

1

1.5

2

2.5

(a) Packet index upto 104

8.4 8.45 8.5 8.55 8.6 8.65 8.7 8.75 8.8 8.85 8.9

Packet Index 10
6

2.4

2.6

2.8

3

3.2

L
a

te
n

c
y

 (
s

)

NOA NFA RWA OFA

(b) Packet index upto 106 to show the variations

Figure 5.10: Latency per packet

the issue of latency as, on the one hand, fog nodes with small CPU frequency consume

significant time to process all received packets, while, on the other hand, fog nodes with

large CPU frequency have already finished processing the received packets as per the results

in Figure 5.8.

123

Figure 5.10 shows the impact of increasing the number of packets on latency. During

simulation, service’s packets are varied from one packet to 10×104 packets in Figure 5.10a;

thus, the packet type is fixed to heavy-packet for consistency. The service utilisation rate

is an incremental parameter from 1% to 100%, thus, this rate is fixed at any given times-

tamps, for example, if the service utilisation rate is 50%, all algorithms; OFA, NAF, RWA,

and NOA will receive the same rate. It is obvious that increasing the number of arrived

packets (i.e., increase the service arrival rate λ) will increase the overall latency. The total

latency and performance of the algorithms vary; OFA has the lowest service latency as

per Figure 5.10a. The service latency is stable with small delay of approximately 0.6 second

for the received packets upto 6.5×104, thereafter, the latency start to increase significantly

for NOA, RWA, and NAF. While, OFA remains stable with less than 1.2 second latency for

all received packets and upto 10×104 packet. Moreover, in Figure 5.10b, we have increased

the packets utilisation to 10×106 to show the continuous latency variations for the different

algorithms compared to OFA. It is clear that OFA has a sustainable packets processing with

the increase in service packets (i.e., high traffic), in terms of latency, as it has the lowest

packet latencies.

Moreover, in the new experiment, we increase the packet arrival rate λ to 15 × 104 to

monitor how the offloading performance and service latency will be effected. Latency will

be increased for all offloading algorithms. However, the incremental rate will matter as this

will reflect the sustainability of the offloading algorithm. Figure 5.11 shows the maximum

and average latencies for the 15 × 104 packets (with type heavy) based on the offloading

algorithms. In comparison between the maximum latencies for all offloading algorithms

in Figure 5.10 and 5.11, it is clear that the increment of maximum latency for NFA, NOA,

and RWA is significantly more than the maximum latency of OFA, as in Figure 5.10 the

maximum latency for a packet with OFA is around 1.2 second, and in Figure 5.11 the

maximum latency is 0.8 second. Whereas, within NFA and RWA the maximum latency is

2.1 and 2.8 seconds, respectively, in Figure 5.10, while the maximum latency is 2.7 and 3.2

seconds, respectively, in Figure 5.11. It is clear that OFA outperform NFA and RWA in

either cases in terms of achieving faster response time.

124

NFA NOA OFA RWA
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
a

x
im

u
m

 L
a

te
n

c
y

 (
s

)

Figure 5.11: Maximum latency upon heavy-packets

5.5 Chapter Summary

This chapter focuses on the practicality and management of fog computing. Although fog

computing is recognized as a computing model that suits IoT systems/applications, it is still

not widely used due to the spatial and temporal dynamics of IoT thing’s distribution that

makes the management and distribution of fog nodes difficult. Also, this could make the

computations loads on fogs vary significantly. Therefore, some fog nodes could be lightly

loaded, while others are not, causing fog congestion hence latency.

In this chapter, a novel Fog Resource manAgeMEnt Scheme (FRAMES) has been pro-

posed to crystallise fog distribution and management with an appropriate service load dis-

tribution and allocation. Also, service load reallocation via service request(s) offloading

among participated fog nodes within one domain to: i) achieve minimal latency for IoT

services, and ii) allocate minimal load on fog nodes. FRAMES proposes/allow Fog-2-Fog

coordination, which turned out to be a feasible solution that enables fog traffic management

125

via service request offloading in fog based network architecture that serves the purpose of

minimizing the average response time for real-time IoT services. Through the extensive

experiments, it is clear that FRAMES and its proposed offloading algorithms significantly

impact the overall latency of the IoT services. Thus, the proper resources managements

with the accurate offloading decisions, the services response time is significantly improved.

Also, the number of fog nodes and their capacities will also impact services delays. This

chapter have addressed RO3 as it has investigated the barriers that might impede fog in

term of resource managements and the approach to provide fog services, also addressed

RO4 in term of the design and develop of a comprehensive solution that manages the fog

network resources. Hence this chapter fulfill RQ3 and RQ4.

From the experiment’s results, it is clear that the proposed OFA has the lowest service

response time in comparison with RWA and NFA. Moreover, OFA has not only outperformed

on RWA and NFA in latency, but also in the service packets distribution over fog nodes upon

their capabilities. In general, if all fog nodes have low load, offloading is unnecessary, and if

all fog nodes have heavy loads, offloading will not help to reduce the delay. Offloading only

helps when there is a high degree of variance among the fog nodes. OFA has the potential

to achieve a sustainable network paradigm to highlight the significance and benefits of

adopting the fog computing paradigm. Having the fog-cloud collaboration model discussed

in previous chapter and the fog-2-fog model discussed in this chapter, the next chapter

will look on having a secure IoT environment for node’s interactions and resources sharing

among fog nodes through the fog COMputIng Trust manageMENT (COMITMENT) model.

126

CHAPTER 6

Fog Computing Trust Management

In questions of science, the authority of a thousand is

not worth the humble reasoning of a single individual

Galileo Galilei

6.1 Introduction

F
og computing is generally considered to be more secure than cloud computing for the

following reasons: Firstly, the collected data is transiently maintained and analyzed

on local fog nodes closest to data sources, which decreases the dependency on the Internet

connections. Secondly, local data storage, exchange and analysis potentially make it more

difficult for hackers to gain access to user’s data, since there can be separate and different

security barriers at different fog nodes. This limits the amount of user data that could

be accessed in any given data breach compared to a more centralized cloud computing

environment. However, fog computing cannot be deemed to be secure, since it still inherits

various security risks from cloud computing. In general, the fog nodes and clouds are honest

but curious. They are deployed by fog vendors to offer specific services honestly to users

for their own benefits. On one hand, for monetary reasons, they may not deviate from the

protocols agreed upon among the ones involved, on the other hand, they may snoop on the

content of maintained data and the personal information about data owners. Therefore, the

fog nodes could be honest-but-curious, even malicious. Further, malicious fog nodes might

acquire personal information about users, resulting in the privacy leakage for users. Thus,

there exist several challenges for preserving security and privacy in fog computing [103, 23].

In fog computing, fog-based services are generally owned by different parties for vari-

ous reasons: (i) the deployment choice that may include the selection of Internet service

providers or wireless carriers, (ii) businesses extending their existing cloud-based services

to the edge for performance improvement, (iii) offering spare resources on the local private

cloud as fog services to local businesses on lease [23]. This flexibility of different providers

offering different fog-based services complicates the trust situation between fog nodes. More-

over, the devices used by the fog users are often considered resourceful in terms of their

capabilities, but they are still incapable of executing certain complex tasks such as those

required in applications like image processing, virtual reality, augmented reality and smart

transportation [167]. Thus, such tasks are offloaded and user’s control over data is handed

over to the fog layer where fog nodes may work independently or in the coordination (Fog-2-

Fog coordinations) on the tasks to achieve the overall objective. Since, the outsourced data

can be transferred to a rogue fog node, an adversary can tamper or steal user confidential

128

data and can easily launch more attacks. A rogue node would be a malicious fog device

that appears to be legitimate and coaxes end users to use them, but, in reality, these nodes

are malicious in nature. Various cryptographic-based approaches exist that can effectively

prevent external attack, but are not useful in case of internal attacks where rogue fog nodes

are already part of the application using legitimate identities. We, therefore, resort to trust

to “single out” malicious fog nodes and mitigate security risk, respectively. Fog nodes are

expected to be collaboratively monitored by their neighboring nodes, based on Fog-2-Fog

model, for any sign of deviation from acceptable behaviors and predict their reliability for

handling future jobs based on past reputation.

Therefore, in this chapter a fog computing trust management approach is proposed.

The focus of the proposed approach is to ensure that the fog computing layer can be

secure and efficient. Hence, ensure i) Quality of Service (QoS) for fog node to achieve

maximum bandwidth and deal with the service requests with minimal latency and low

error rate, ii) Quality of Protection (QoP) for fog nodes to protect the received data during

processing as well as transferring or sharing the data with other fogs (e.g., service integrity

and confidentiality). The major contributions are threefold:

1. Fog COMITMENT: COMputIng Trust manageMENT approach to impart useful

prognostic information on fogs trustworthiness. Thus, providing a secure and trusted

fog computing environment to share node’s resources and exchange data securely and

efficiently in Fog-2-Fog collaboration model.

2. A load balancing algorithm to monitor fog’s resources (i.e., CPU consumption), active

fog processes (e.g., stakeholder services processes), and the incoming services requests

volume onto fog. Thereof, it is able to monitor fog’s performance and to promote load

balancing via offloading (Fog-2-Fog) to address the latency concern on fog nodes,

thus, triggering the offloading function upon fog congestion. The offloading function

and algorithm will be aided with a trustworthiness function to avoid coordination

with malicious fog nodes.

3. Trust and Recommendation model with an algorithm that helps fog nodes make the

right decision for selecting the appropriate fog node(s) for collaboration during the

129

offloading process. Hence, this process includes assessing the trustworthiness level

of the nominated fog nodes to ensure that the QoP and QoS provided by hosted

fogs are meet.

6.2 Fog Computing Trust Management Model

Before we dive into the Fog COMputIng Trust manageMENT (COMITMENT) details, it

is worth mentioning the network environment adopted for the fog computing. The network

topology adopted a distributed-based fog topology where nodes are physically distributed

over different locations and connected to each other via a communication protocol forming

a mesh networks. Thus every node has a unique identity address (e.g., IP), so the fog nodes

are reachable to each other without a central controller to help resource sharing and service

requests offloading. In addition, there is no centralised trust authority among fogs to point

out the trusted nodes within the network, hence each fog node compute the trust evaluation

periodically to its neighbouring fog nodes and stores the generated list of trusted fog nodes

locally through COMITMENT. Here are some importance preliminaries that are required

for COMITMENT.

• Fog Quality of Service (QoS): we refer to fog QoS as the ability of fog to achieve max-

imum bandwidth (associated with the time to upload and download a packet τ��) and

deal with the service requests with minimal latency and low error rate. The problem

preliminaries associated with QoS are the fog’s workload (fx), service workload on

fog (sfiw) and the total time required to process a service (τs).

• Fog Quality of Protection (QoP): we refer to fog QoP as the degree to which the fog

protects the received data during processing as well as transferring or sharing the

data with other fogs. The QoP properties (e.g., service integrity and confidential-

ity) are defined according to the type of processes and services provided by the fog.

QoP problem preliminaries are associated with the proposed trustworthiness model

and based on direct trust (τda,b) and recommendation/indirect trust (τ ra,b).

• Fog Secure Service Level Agreement (SSLA): this refers to the commitment between

two fogs in delivering a service according to a certain level of quality, availability and

130

protection. Thus, SSLA includes the problem preliminaries associated with both QoS

and QoP. Thus, service requirements of both QoS and QoP should be provided by

the collaborating fog nodes.

• Fog Requirements of Protection (RoP): is a set of security requirements which includes

the security factors required for delivering the desired services, thus RoP defines and

measures the QoP for a fog node.

• Level of Trust (LoT): is a score that refers to the trustworthiness among fogs. LoT is

computed based on the previous coordinations experiences, and is periodically up-

dated after each coordination. The problem preliminaries associated with LoT are

the experience satisfaction score ESa,b, the α and β which logs the satisfied and un-

satisfied experience, respectively. LoT indicates the level of trust or distrust between

the fogs, therefore, the LoT score used is based on a fuzzy logic where the score one is

an indicator of absolute trust and the score zero is an indicator of absolute distrust.

COMITMENT is a software-based approach that is installed on each fog node within

the fog layer. COMITMENT is responsible for providing a secure and trusted environment

for fog nodes to share their resources and exchange data packets, COMITMENT architec-

ture is shown in Figure 6.1. Thus, COMITMENT provides a concise decision for the fog

node to point out the best fog node that it can cooperate with, more precisely the fog node

that provide lowest latency (for best QoS and QoE) and secure data sharing and process-

ing (for best QoP) during the fog-2-fog coordination. The decision not only includes the

best fog node that can handle the jobs efficiently but also the most trusted fog nodes that

could offer/provide best QoS (e.g., low latency) and best QoP (e.g., meeting the SSLA).

The offloading model is to balance the workload and service traffic within the fog layer by

distributing service requests from the congested fog node to another fog node in a secure

manner. In order to enable COMITMENT to select the trusted node, it essential to assess

both the QoP and QoS provided by the fog nodes that are possibly hosting the service deliv-

ery. This can be achieved through checking the trust level of each fog node. The trust level

is evaluated based on; i) a direct experiences which is based on direct interaction among

the collaborating fog nodes in the past and/or present interactions along with different

interactions experiences, ii) an indirect experiences which is based on recommendations

131

Figure 6.1: Architecture of the proposed COMITMENT approach, including the
different types of fog’s statuses and interactions

from neighbouring fog nodes in case of no previous experiences between the two fog nodes

that are intended to collaborate with each other.

Obviously, the trust level will be computed based on the previous coordinations sat-

isfactions, hence the self experiences obtained from direct interactions will always have a

higher weight than recommendations from neighbouring fogs because the trustworthiness

among fogs is subjective and asymmetric as per fog security requirements in Section 3.3.

The most used notations in this chapter are given in Table 6.1. The main procedures and

processes run by COMITMENT are categorised as follows:

1. Fog performance: COMITMENT periodically monitors fog’s resources (e.g., CPU

consumption), active processes (e.g., stakeholder’s services processes), and the in-

coming services requests traffic on the fog node. This process is to monitor fog per-

132

formance to identify resource exhausted services that potentially can be an attack.

COMITMENT will trigger the load balancing function via offloading upon fog’s over-

load detection, thus a trustworthy fog node can be called upon to handle the overload.

This process is discussed further in Section 6.3.

2. Fog interactions: upon overload detection, COMITMENT has the responsibility to

handle the process of finding the best neighbouring nodes that can handle the over-

load securely and efficiently. This process includes assessing the trust level of the

nominated fog nodes for sharing the overload. This process ensures that the QoP

and QoS provided by the hosted fog node meets the SSLA standard of the service

and user expectations about the desired service, for example, service run with no

delay and assured data protection. This process is discussed further in Section 6.4. It

worth noting that fog node’s failures during or before a cooperation is establishing is

handled by FRAMES, as discussed in previous chapter (Section 5.2), the fog pinger

utility will notify FRAMES upon a fog node being unresponsive (i.e., failure) and

unable to handle processes, hence other fog nodes in the domain will be notified to

act accordingly with both data feeds from FRAMES and COMITMENT.

133

Table 6.1: Notations used in the paper

Symbol Description

t, n, T thing, index of t, set of things
f , i, F fog, index of f , set of fogs
λ service arrival rate to fog layer
µ fog node service rate
S, s set of services, one service
sw service workload
sfiw service workload for fog node (fi)
sd service deadline
τs total time required to process a service
ts service’s tasks
rs fog node resources
τque is the queuing time
τpro service processing time
ρ system usage
τ sique queuing time for s at the resources of fog fi
fc fog capacity
fw fog workload
f ci processing capacity of the fog node fi
f srs total fog resources (rs) allocated to processes service (s)
Dp propagation delay
τ�� time to upload and download a packet
αfa,fb logs the satisfied experience from foga to fogb
βfa,fb logs the unsatisfied experience from foga to fogb
ESa,b experience satisfaction from foga to fogb
nint number of direct interactions between the two fogs
rfa,fb recommendation of foga toward fogb
LoT (fa, fb) level of trust score of foga toward fogb
Cfi
ts total CPU (in hertz), consumed by a ts on fog node fi

τ da,b direct trust of fa toward fb
τ ra,b indirect trust of fa toward fb (recommendation)

134

6.3 Fog Performance: Safe Load Balancing

One of COMITMENT’s roles is to keep tracking the performance of a fog node so it

achieves the best efficiency. The important factor that COMITMENT monitors is fog’s

workload (fw), which refers to the overall usage of a fog’s CPU that is consumed during

the processing of a particular service’s request. COMITMENT tries to identify resource

exhausted services that can potentially affect the performance of the fog node or if it been

attacked, therefore an action must be taken, such as terminating the running services and/or

offloading them safely to other fog nodes.

As mentioned before, the total CPU used by the running services should not exceed the

allocated fog node resources for a service. The total resources allocated to process a service

are based on the type of service packets (heavy-packets and low-packets) and the current

load of the fog. Equation 6.1 (recall from Section 5.3) computes the total resources (rs)

allocated to process all tasks (ts) for a service (s).

f srs = sw =
n∑
t=1

Cfi
ts , dse ≤ fc,∀s ∈ S,∀t ∈ Ts (6.1)

The total fog’s workload capacity (fc) depends on the actual hardware specification of

the allocated device. The assignment variable sw (i.e., total service workload) is set so that

total service processing workload does not exceed fc, as per Equation 6.1, where Cfits denotes

the total resource (CPU consumption in hertz, having hertz=cycles/second) consumed by

a service’s tasks on fog node fi. COMITMENT’s main fog performance constraints and

safe offloading algorithm are discussed in the following subsections.

6.3.1 Problem Formulation and Constraints

COMITMENT’s main focus is to deliver the IoT services with best QoS and QoP. Hence,

COMITMENT aims at delivering IoT services securely with minimal delay. The total

latency for a service’s request sent from tn to fi is computed by adding the time of uploading

a service’s packets (τ�) to the waiting time in the fog node queue (τque) until it gets processed.

The delay for processing the service (τpro) and the time to respond back (τ�) to tn is also

135

added with the total latency for the service as per Equation 6.2 (recall from Section 5.3).

τs = τ� + τ sque + τpro + τ�,∀s ∈ S

τs = τ sque + τpro + 2τ��,∀s ∈ S (6.2)

COMITMENT brings a new constraint to the problem formulation of fog computing

in Equation 6.3. The new constraint is associated with the Secure Service Level Agree-

ment (SSLA). Moreover, since COMITMENT is keen to ensure the QoP, it use SSLA as

one of the main constraint to ensure the quality of delivery of user desired services. There-

fore, the problem can be formulated as in Equation 6.3, where low latency includes delivering

the services before the deadline (sd) with the desired QoS, also the SSLA should be met

according to the service’s requirements of protection (QoP).

P : max[τs] 6 sd, ∀s ∈ S (6.3)

s.t. fminc 6 fw 6 f
max
c (6.4)∑

λs 6
∑

µf (6.5)

fQoP > SRoP (6.6)

λs
min[Dp]−−−−−→ fi (6.7)

τs 6 sd,∀s ∈ S (6.8)

The constraints main focuses are on the QoS and QoP, Therefore, they can be written as

follows; Constraint (6.4), indicates that (fw) is strictly bound by an upper limit (fmaxc) and

lower limit (fminc) which is related to fog capabilities based on CPU frequency (unit hertz).

Constraint (6.5) imposes that the total traffic arrival rate (λs) to a fog domain should not

exceed the service rate (µf) of that specific fog domain. Constraint (6.6) indicates that the

QoP provided by fog should be either equal to or greater (i.e., better) than the RoP of the

desired service. Constraint (6.7) imposes that the first destination for the IoT thing node’s

packets generated will be to a fog node with minimal cost of propagation delay within the

136

fog domain. Ideally, lowest propagation delay is for the nearest fog node. Finally, constraint

(6.8) strictly binds the service time τs within the limit of service deadline sd.

6.3.2 Safe Offloading Model

The decision factors where a node is congested and offloading is required rely significantly

on fog workload (fw) and SSLA. The fw is mainly associated with the service traffic arrival

rate (λs), total service rate (µ) and the fog node’s capability(i.e., CPU frequency), while the

SSLA is mainly associated with the service protection and quality. Therefore, the offloading

decision made by a fog node is dependent on Probability 6.9, where i) the service delivery

time by fog (fτs) is greater than the service deadline (τs > sd), ii) the fog node can not

provide the required SSLA for a service’s request, received from an end-user, in other words,

fog QoP (fQoP) is less than the service requirement of protection (SRoP).

Os =

1, if fτs > Sd

1, if fQoP < SRoP

0, otherwise

(6.9)

Probability 6.9 is the decision maker for the COMITMENT model to either allow the

fog to process the service request or offload the service requests to another fog node. In

Probability 6.9, Os value is set to either 0 or 1, where 0 refers to no offload is required and

1 refers to offloading is required. When the fog node makes the decision for offloading, it

has to find the alternative fog node to deliver the offloaded service request. Thus, having

a workload limit and both QoS and QoP constraints on the fog node that participates in

handling the overload and/or delivering the service. Hence, for this process, the fog node

has to do the following:

1. compute the service time τs for the service requires offloading among all available fog

nodes using Equation 6.10.

137

min[τs] =
n∑
i=1

[τ ique + τ ipro + τ�] (6.10)

s.t. τs 6 sd, ∀s ∈ S

fQoP > SRoP

2. check the trustworthiness of the fog nodes in handling the service processing according

to the desired SSLA, more details on finding fog’s trustworthiness in Section 6.4.

Algorithm 3 is developed to find the best available fogs to aid the congested fog node and

provide the best service SSLA, then offload the service request to the identified fog node.

The first part of the algorithm, Procedure 1, shows the process of finding the best available

fog node(s) for coordination. Lines 2-3 of the algorithm initiate the list of active fog nodes

in the domain alongside the fog’s capacity and current load (i.e., queue size). The list of

available nodes will be refined by removing the fog nodes that are already busy processing

other services (i.e., λi = µi) as per lines 6-8, or their QoP is not enough to meet the service’s

RoP as per lines 9-11. The remaining part of Procedure 1, lines 12-22 will compute the

time required for the service to run on each of the available fog nodes. If the time is within

the limit allowed for the service (i.e, before Sd), the system will keep the node in the list

and log the expected service time against the fog node as per lines 13-15. If the τs on Fn

is greater than Sd, then Fn will be removed from list as per lines 16-18. The second part

of the algorithm, Procedure 2, receives the list of best available fog nodes that are able to

meet the service’s QoS and QoP. Hence, the fog node can deliver service with no latency

providing adequate SSLA that meets the service’s RoP. If the list is not empty, this means

there is at least one fog node able to process the service. However, if there is more than

one fog node in the list, the system will direct the overload to a node that can provide;

minimal τs, best QoP and has the lowest propagation delay Dp as per lines 21-23.

138

Algorithm 3: Service Offloading

Input: FogNode (Fn); FogLoad (Fl); OverLoad (Ol); RoP (SRoP).
Parameters : FogCapacity (Fc); Propagation (Dp); FogQoP (fQoP)
Initialisation
:

Fn = φ; Fc = φ; Fl = φ; Ol = φ.

Result: Share the Overload with best available node
1 Procedure 1. Determine best available node by
2 FL = list{φ} . FL initiate fog list

3 FL = list[Fn]←− getFogNodes(out : (Fn, Fc))
4 FL = sort(FL, by Fc DESC)
5 for each Fn ∈ FL do
6 if Fn←− (Fl ≥ Fcmax) then
7 FL = pop(Fn) . remove busy node

8 else
9 if Fn←− (SRoP ≥ fQoP) then

10 FL = pop(Fn) . remove busy node

11 else
12 τs =

∑n
i=1[τ ique + τ ipro + τ�]

13 if (τs < sd) then
14 list.add(Fn, τs)
15 continue

16 else
17 FL = pop(Fn)
18 end

19 end

20 end

21 end
22 return FL
23 End
24 Procedure 2. Handover the Overload by
25 if FL 6= φ then
26 Fn = min[FL(τs, Dp)]) && best[FL(QoP)]
27 F n

l = Fl +Ol

28 else
29 goto:1
30 end

31 End

139

6.4 Fog interactions: Trust and Recommendation

This section will propose a model that helps fog nodes to make a right decision for selecting

the appropriate fog node to collaborate in delivering the desired service to the end-user.

Generally, in any network architecture there will be two types of fog nodes, Trusted fog

nodes and Malicious fog nodes. Malicious fog nodes are defined as fogs that seek to

breach user privacy or any security principles, hence these fog nodes are under attack that

affects the fog’s performance and efficiency. Such malicious fog nodes exhibit behaviour

such as i) packets drop with bandwidth consumption so that no other legitimate fog node

can use them, ii) stale packets are injected into the network to congest the network and

cause confusion other fog nodes, and iii) purposely delay services and dispose user’s data

and breach their privacy [168]. While the Trusted fog node is defined as fogs which are

working with full capacity to satisfy users and services requirements, thus providing highest

QoS and QoP possible. These features make the trusted fog nodes vulnerable, hence they

are exposed to attacks by malicious fog nodes. In the following subsections we will propose a

trust and recommendation model to help trusted fog nodes to identify malicious fog nodes

and avoid dealing or collaborating with them. The trust model assists fogs to find other

fog nodes trustworthiness based on previous direct experience, while the recommendation

model assists fogs to find other fog nodes trustworthiness based on collecting trustworthiness

recommendations from neighbouring fog nodes, when current fog nodes have no previous

interactions to rely on, hence they seek recommendations.

6.4.1 Trust - Direct Experiences

In the fog-2-fog coordination model, the direct communication between the fog nodes is

evaluated based on the quality-of-service (QoS) and quality-of-protection (QoP) for the ser-

vices provided by both collaborating fog nodes, thus, each fog node scores the coordination

experiences against the partner fog node in terms of both QoS and QoP. The coordination

experiences score is logged locally by each fog node after every interaction, this to be used

in the future to predict/assist the coordination success and trustworthiness between each

other in the future interactions. This can be seen as a direct experience as both fog nodes

can evaluate each other based on their own experiences and not based on recommendation

140

from other fog nodes, thus, this evaluation helps a fog to determine the LoT against its

partner fog node.

Moreover, the history of past interactions between fog nodes is essential to assess node’s

trustworthiness. Obviously, from the past direct interactions, the fog nodes that have a

positive history should have a positive/good impact on the LoT score. While the nodes

that have a negative history should have a negative/bad impact on the LoT score. There-

fore, in the proposed model, it is essential for each fog node in the fog domain to log

the score of its Experience Satisfaction (ES) during the direct interactions with other fog

nodes. The ES score is a binary value, hence can be either zero or one, where one is indi-

cation of trust/satisfied and zero is indication of distrust/unsatisfied. Thus, the ES score

will be given upon meeting the QoS (e.g., low latency) and QoP (e.g., data protection).

Bayesian network is adopted to evaluate the direct satisfaction experiences based on direct

interactions between fog nodes. Bayesian has been adopted because it has proven results

with peer-2-peer network modelling in terms of trust/reputation and in line with [35, 169].

The satisfaction experience parameter of fa toward fb is represented by ES score ESa,b.

The value of ES is a binary value, either it is set to 1 for satisfied experience or to 0 for

unsatisfied experience during the interactions.

The ES is distributed between satisfied and unsatisfied experiences (i.e., distributing of

1s and 0s) according to Bernoulli trial distribution, thus, referring to the probability of satis-

fied experience by a positive experience parameter pa,b according to Beta distribution, hence,

the posterior Pr(pa,b|Sa,b). The direct trust τda,b of fa toward fb is computed as per Equa-

tion 6.11.

τ da,b =
αfa,fb

αfa,fb + βfa,fb
∈ [0− 1] (6.11)

Where the αfa,fb and βfa,fb refer to the parameters of Beta distribution, thus, αfa,fb logs

the satisfied experience, while βfa,fb logs the unsatisfied experience. Both αfa,fb and βfa,fb

are computed and updated after every direct interaction between fa and fb with a consid-

eration for the trust decay as per Equations 6.12 and 6.13.

141

α′fa,fb = ed∆t.αfa,fb + ESa,b (6.12)

β′fa,fb = ed∆t.βfa,fb + 1− ESa,b (6.13)

Where α′fa,fb and β′fa,fb refers to the new scores, while αfa,fb and βfa,fb refers to the

old scores. The ed∆t refers to the exponential decay, thus, d is the decay factor and the ∆t

is the trust update interval. It worth noting that d is a small value to represent the trust

decay over the execution/run time.

In order to make the trusted network reliable and scalable, the fog node should not bur-

den its resources with redundant trust scores and only logs the most recent ES score against

the fog node (e.g., fa ⇐⇒ ES) along with the number of interactions between the two fog

nodes. Therefore, the ES score is an accumulative score and it is periodically updated and

logged in an ESscore as a mapping function as per Equation 6.14. Where fa−→fb maps the

interaction from foga to fogb and nint refers to the number of direct interactions between

the two fog nodes.

ESscore(a, b) =< fa −→ fb, n(int), αfa,fb, βfa,fb, LoT > (6.14)

It is worth noting that in previous research the initial value of α and β is set to null or 1 as

there is no previous knowledge and no prior interactions between the two fog nodes. How-

ever, we adopt a recommendation based approach to obtain the initial value of α and β

through seeking a recommendation from a neighbouring node(s) that has the same QoP,

this is discussed in Section 6.4.2. If no initial value can be obtained from either the direct

experience or the recommendations, then the initial value of α and β is set to 1 since no

prior knowledge is available and in line with [35].

142

6.4.2 Recommendations - Indirect Experiences

In this research, we refer to the recommendations as an indirect trust experience as a fog

node can not evaluate its partner’s trustworthiness directly based on its own experiences

as there is no prior knowledge (i.e., no direct interactions in the past), instead it makes

the trustworthiness evaluation based on recommendations from neighbouring fog nodes.

In the recommendations model we adopt the design concept of distributed Collaborating

Filtering (CF) [170, 35] to obtain a trustworthiness score from neighbouring fog nodes that

share similar interests [35]. Therefore, CF classifies the received recommendations based on

recommender party into two types:-

• Recommendations from trusted fog nodes: this includes recommendations provided

from a trusted fog node based on our trust model in Section 6.4.1. The recommenders

of this type of recommendations are evaluated based on their LoT from past inter-

actions with the desired fog node. Thus, they should have a satisfactory experience

score obtained from positive/secure past interactions prior to making a recommenda-

tion. With this type of recommender its sufficient to check the LoT without checking

the QoP and SSLA (service specific) as it should be already met, prior to previous

interactions. The fog nodes that are seeking recommendation from this type of rec-

ommenders are likely to have a general (i.e., non subjective) trust score toward the

desired recommender fog nodes.

• Recommendations from community fog nodes: these recommendations are provided

from fog nodes that have the same service interests as the desired fog node. It is

not necessarily for the recommender of this type of recommendations to have a LoT

or previous interactions. However, the recommender should share the same service’s

interests with regard to the QoP and SSLA toward the desired IoT services and the

one provided by the desired fog node. Hence, in such case, fog nodes that have

the same sentiment towards the desired fog node. The fog nodes that are seeking

recommendation from this type of recommenders are likely to have a similar subjective

trust score toward the desired recommender fog nodes.

143

It is worth noting that in order to consider the recommendations provided from the two

type of recommenders, trusted fog nodes and community fog nodes, we first evaluate the rela-

tionship between the trustor fog and the recommender fog node to avoid intruder/malicious

neighbouring fog nodes. Evaluating the relationship will be based on the type of the rec-

ommender, if a trusted fog node has a satisfactory LoT score, then we can consider the

recommendation, otherwise, ignoring the recommendation. Whereas, if the recommenda-

tion is from a community fog node, we first check if the recommender fog meets the QoP,

thus meeting all the SSLA’s requirements of protection (RoP shared by trusty fog node)

before we can consider its recommendation. Hence, recommendation will only be consid-

ered if the recommenders have similar SSLA’s RoP standards (i.e., providing the same QoS

and QoP experiences). Moreover, the trustor fog nodes will weigh the recommendations

provided by the recommenders fog nodes toward the trustee fog node to get the overall

trustworthiness as per Equations 6.15.

r(a, b) =
∑
rp∈R

[wrp × rfa,fb], R ∈ [m, c] (6.15)

Where wm and wc is the weight of recommendations obtained from trusted fog nodes and

community fog nodes, respectively. Thus, total recommendation value/score obtained from

the recommenders is 1, thus, wm +wc = 1, having the value of wm and wc is a number be-

tween 0 and 1 (i.e., 0 ≤ wm, wc ≤ 1). The rfa,fb denotes the recommendation of foga toward

fogb. Each fog node can send a recommendation request to its neighbouring fog nodes and

upon receiving the response (recommendation score), the fog weight the recommendations

from all recommenders and calculates the over all indirect trust using Equations 6.16.

τ ra,b =
rfa,fb∑nr

i=0 rfa,fb(a, b)
(6.16)

Since the outcome of the trust score τ ra,b that has been obtained from the recommen-

dations is a value between 0 to 1, therefore, we apply the fuzzy logic function to determine

the level of trust as per the fuzzy logic determination in Figure 6.2, where 1 is indicator of

absolute trust and 0 is indicator of utter distrust.

144

Algorithm 4: Proposed Recommendation Model

Input: FogNodea (fa); FogNodeb (fb); SSLA
Result: LoT from neighbouring fogs (τ ra,b) for fa towards fb
Initial : τ ra,b = φ; FL = list{φ}
Params : trustScore (τ ra,b); FogList (FL); recommend (r)

1 Procedure 1: get trusted fog for recommendation by
2 FL = list[Fn]←− getNeighbourFogs(out : (Fn, LoT)) ;
3 FL = sort(FL, by LoT DESC) ;
4 for each Fn ∈ FL do
5 if Fn −→ untrusted by Fa then
6 FL = pop(Fn) ; . remove untrusted node

7 else
8 Fn = mr{fb, SSLA} ;
9 FL = update(Fn, r, out : FL) ; . update list adding

r

10 end

11 end
12 return FL ;

13 End

14 Procedure 2: Compute trustworthiness by
15 FL = list[Fn, r] ; . the new fog list with r

16 FL = sort(FL, by LoT DESC) ;
17 for each Fn ∈ FL do
18 r(fn, fb) =

∑
rp∈R[wrp × rfn,fb], R ∈ [m, c]

19 end

20 τ ra,b = r(a,b)∑nr
i=0 r(a,b)

; . compute the overall trustworthiness

21 return τ ra,b ;

22 End

145

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Low Medium High

LoT Score

Figure 6.2: Level of Trust (LOT) according to fuzzy logic

Algorithm 4 elaborates the process of seeking a recommendations from a neighbouring

fog node. Considering a scenario where fog fa wishes to interact with fog fb and it has no

previous interactions history, fa go through the Procedures 1 and 2.

Procedures 1: fa will try to seek recommendations from neighbouring fog nodes to get

the trustworthiness of fb, so for this, fa asks fog nodes fc, fd, fe, for example, for recommen-

dations on the trustworthiness of fb. The recommendation requests are sent only to trusted

fog nodes, i.e., trusted by fa as per lines 3-6. The recommendation messages request will be

sent to the trusted fog nodes in the format of mr = {fb, SSLA} as per lines 7-10, where the

first part, in this case fb, is the desired fog node for checking its trustworthiness, while the

other part, the SSLA, is the Secure Service Level Agreement, which is a set of requirements

to be used in the evaluation of the trust score of fb by the recommender. It is worth noting

that the SSLA parameters are set according to fa QoP that is based on the RoP parame-

ters for a specific service. The recommenders, i.e., fc, fd, fe..fn fog nodes, will evaluate the

trustworthiness toward the desired fog (i.e. fb) based on the SSLA requirements from past

interactions experiences, using the proposed trust model in Section 6.4.1 to compute LoT.

Then, the trust score is returned to the trustee fog node as per line 12.

In Procedures 2:, the fa estimates the trustworthiness of fb according to the gained

recommendations, thus, the fog fa will decide whether fb is trusty and can deliver the

146

desired service or not. Hence, the trustworthiness estimation will be computed using Equa-

tions 6.16 after filtering the recommendation by the weight of the recommender according

to Equations 6.15, as per lines 14-22.

6.4.3 Reputation Assessment

The reputation assessment process will provide the output of the final LoT score which will

be used to identify the trustworthiness of a particular fog. In this process, both trust (i.e., di-

rect experiences) and recommendations (i.e., indirect experiences) will be involved to get

the LoT score. However, the trust score and recommendations score will be considered in

different weights, scores from direct experiences will always have a higher weight, this is

due to the level of satisfactory/unsatisfactory experience gained from direct interactions in

previous coordinations. Hence, the score of recommendations will be only considered with

a higher weight when there are not enough direct interactions between the two fog nodes.

The LoT function LoT (fa, fb) in Equation 6.17 computes the LoT score which will be used

by the desired fog node to make the final decision whether to collaborate or not with the

candidate fog node.

LoT (fa, fb) =

γ
δ

 [τ ra,b, τ
d
a,b] = γ.τ ra,b + δ.τ da,b (6.17)

where δ and γ represent the corresponding weights of the direct (τd) and indirect (τ r)

trust score respectively. The score of LoT will be an indication of the level of trust (or

distrust) between two fog nodes. For example, the LoT score provided by the func-

tion LoT (fa, fb) ∈ [0−1] refers to the LoT score of fa trust (or distrust) toward fb according

to the previous direct/indirect experiences with fb. The LoT score will be used based on a

fuzzy logic as in Figure 6.2. The fuzzy logic function classifies the LoT score into three main

parts, Low, Medium and High to represent the trustworthiness between the two fog nodes.

Hence the score of 1 is the indicator of absolute trust, while the score of 0 is the indicator

of utter distrust. It worth noting that the LoT score, computed using Equation 6.17 is

asymmetric and not transitive, hence, each fog node has it’s own LoT score that defines

fog’s QoP. To explain more, LoT score is asymmetric means if fa finds fb is trustworthy

147

based on fa LoT score towards fogb, it is not necessarily that fb finds fa is trustworthy.

Similarly, the LoT score is not transitive means if foga trust fogb and fogb trust fogc, it is

not necessarily true that foga trusts fogc.

6.5 System Evaluation

In this section, we evaluate the proposed COMITMENT model for a secure Fog-2-Fog

coordination, which aims at providing secure offloading for fog node service requests. The

proposed COMITMENT model has been simulated using MATLAB (2018b) on a Lenovo

ideaPad with Intel Core i5 processor and 8GB of RAM. Simulation settings are presented

in the following subsection (Section 6.5.1), followed by the results and discussion (Sec-

tion 6.5.2) on the COMITMENT simulation results.

6.5.1 Experiment Configurations

The system characteristics adopted during the simulations are presented in Table 6.2. We

specify the simulation settings in terms of network topology, propagation and transmission

delay, link bandwidth and fogs capabilities.

Table 6.2: Simulation Settings

Parameter Value

Operating system Win 8.1
Simulation environment Matlab 2018b
Number of fog nodes 15
Fog CPU [0.2− 1.5]GHz
Network topology mesh
Number of service’s requests 105

Package Size [0.1− 80]KB
Bandwidth up-to 54Mbps

• Network Topology: this has been modelled as an indirect graph, represents fog nodes

as a mesh network. The simulation has 15 fog nodes (i.e., fn = 15) connected together

through internal communication link. The links between nodes are weighted based

on the propagation delay (Dp) among fog nodes, for instance, if Dp between fog1

and fog2 is four seconds, then the link will be represented as (f1 4←→f2). It is worth

148

nothing that the services arriving at the fog layer are assigned to a fog node with the

smallest distance (i.e., smallest Dp).

• Network Bandwidth: the link bandwidth depends on the type of service request,

hence, heavy-request will require more bandwidth then light-request. For light-

request (e.g., data packets from sensors) the communication bandwidth used has a

transmission rate of 250Kbps [171]. While, for the heavy-packets (e.g., data packets

from camera) the communication bandwidth used with a transmission rate of 54Mbps [160].

The transmission rate between the fog nodes is expected to be higher ' 100Mbps [14].

• Transmission delay: Dt for a packet is obtained from packet size lp alongside with the

associated upload bandwidth b�. Therefore, we impose the average packet size that

will vary according to the type of packet (i.e., heavy and light packets). The average

packet size for light-packets is 0.1KB, while the average packet size for heavy-packets

is 80KB [14].

• Propagation delay: Dp for a packet is based on the round trip time (i.e., τ��), in line

with [14, 172], τ�� computed as τ�� = 0.03× ld + 5, where ld is the distance with unit

km, and the τ�� time unit is ms.

• Fog nodes capabilities: fog nodes are simulated with different capabilities, hence,

the service rate (µ) will vary from one fog node to another. The capabilities of

fog nodes will significantly affect the processing ability (i.e., performance) of the fog

node. The capability of the fog node is determined by the CPU frequency, therefore,

fog nodes vary in CPU frequency having the CPU frequency ranging from 0.2GHz

to 1.5GHz [166].

• Fogs interactions: as we adopted a Bayesian network to evaluate the satisfaction expe-

rience among collaborating fog nodes, each fog node develops a naive Bayes network

model for all other fog nodes that it has interacted with. This is achieved by locally

storing the binary values of ES score, which is either satisfying or unsatisfying

interaction, denoted by 1 and 0, respectively. Then, computing the LoT score based

on all the past interactions/coordinations between nodes and which will be used to

identify the trustworthiness of the partner fog node.

149

6.5.2 Performance Evaluation and Discussion

This section demonstrates the numerical results of the simulation experimentation on the

proposed secure COMITMENT model. This to validate the accuracy of the secure offloading

in Fog-2-Fog coordinations based on the COMITMENT approach to finding trusted fog

nodes and avoiding malicious fog nodes.

10 15 20 25 30 35 40 45 50

Number Of Iterations

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

s
)

No Offloading Nearest Fog Oflloading (NFO) Random Walks Offloading (RWO) Proposed Offloading

Figure 6.3: Average latency against two benchmark algorithms (RWO and NFO) and
based on mixed type of packets

We first evaluate the performance of the Secure Offloading Algorithm (SOA) against

two benchmark algorithms: i) Random Walks Offloading (RWO) [132, 133]. ii) Nearest Fog

Offloading (NFO) [45, 165]. Figure 6.3 demonstrates the performance based on the average

response time to all received service requests considering different packet types (i.e., heavy-

packets and light-packets), however, the random number of heavy or light packets is fixed

through out the experiment to ensure consistency in terms of load utilization against all

the offloading algorithms. During the simulation of this experiment, we set the fog nodes

with different capabilities, hence, fog nodes will vary in their service rate µ (as they have

different capabilities). Thus, the capability of a fog node set is based on CPU frequency

150

with a minimum of 300×106Hertz, incremented by 100Hertz until it get to maximum CPU

capability of 17× 108Hertz. In addition, service arrival rate λ = 2× 102 packets per second

as in [3], and λ is fixed during the experiment to ensure all the offloading algorithms have

the same traffic arrival rate. Figure 6.3 shows the outcome of this experiment, thus the

vertical line represents the average latency per algorithm to process service requests, and

the horizontal line is the number of iterations carried out to ensure that the obtained results

are consistent and not due to chance. It is clear that SOA has the lowest processing latency

among other algorithms through all iterations. The highest processing time goes for No

Offloading Consideration (NOC) as it does not consider the offloading when a node becomes

congested. Hence, it ends up having small node capacity with large queue size (i.e., µi < λi),

and large node capacity with low queue size. The performance of RWO and NFO are better

than NOC but still higher than SOA.

The following experiment was conducted based on packets distribution over the three

offloading algorithms (i.e., SOA, RWO and NFO) on the fog nodes. The experiment settings

are similar to our previous experiment, except having fixed packet type (i.e., all heavy or

light packets) to ensure consistency. Figure 6.4 shows packet distribution, Figure6.4a shows

packet’s distribution according to SOA. While, Figure 6.4b shows packet’s distribution

according to RWO and NFO. It is clear that SOA has more sustainable packet’s distribution

compared to RWO and NFO, this due to the workload distribution strategy that each

algorithm is uses. The SOA adopting the strategy and algorithm in Section 6.3 which allow

the workload distribution on fog nodes based on not only fog’s capabilities, but also thier

current workload (i.e., queue size and active processes). Thus SOA distributes the packets

with respect to fog node’s capabilities. While, the other methods were relatively blind

as they have not considered the current load (fw) of fog nodes, rather they just allocate

services according to the algorithm’s policy.

151

(a) Average packets distribution according to SOA

(b) Average packets distribution according to RWO and NFO

Figure 6.4: Packets distribution

152

200 250 300 350 400 450 500

Collaboration requests

0.3

0.4

0.5

0.6

0.7

0.8

M
a

li
c

e
 S

c
o

re

Secure request Malicious request Anonymous

Figure 6.5: Coordination requests according to their type; secure, malicious and
anonymous requests based on the LoT score

Figure 6.5 shows the results of detecting a malicious event (i.e., malicious coordination

requests) in Fog-2-Fog coordination. The malicious event detection is according to the

LoT score. In this figure (Figure 6.5), the number of service requests is set to 1K and we

have distributed the 1K requests in two iterations with this experiment. The first iteration

is used to make enough coordinations between the fog nodes, so that they have a precise

LoT score against each other, this mainly for simulation purposes to allow COMITMENT

compute LoT score among nodes, however, even when there is no previous coordination

among nodes, then the recommendations approach (Section 6.4.2) is triggered to compute

the LoT score. The second iteration is where the COMITMENT operates on the fog nodes

to observe the Fog-2-Fog interactions and flag for any malicious events. The coordination

requests in Fog-2-Fog are grouped according to request’s type; secure, malicious and

anonymous requests as per Figure 6.5. The coordination requests are grouped based on

the LoT score produced by the LoT function and according to the fuzzy logic in Figure 6.2.

153

0 10 20 30 40 50 60 70 80

Malice Fog %

0

100

200

300

400

500

600

700

800

900

1000

C
o

ll
a
b

o
ra

ti
o

n
s

Aborted collaboration Successful collaboration

Figure 6.6: Average number of successful and aborted coordinations according to
the percentage of malicious fogs

It is worth noting that the anonymous coordination requests in the figure are down to the

fact that either there isn’t enough LoT score gained from the past coordinations in Fog-2-

Fog, or the gained LoT score on the borderline of the trustworthiness for a particular fog

node.

In the Fog-2-Fog coordinations, requests are accepted/declined according to LoT.

The different types of coordination requests; secure, malicious and anonymous requests

will control the decision of whether a coordination can be accepted or rejected between two

fog nodes. Figure 6.6 shows the average number of successful and aborted coordinations

according to the percentage of malicious fog nodes within the network. In this experiment,

the initial percentage of malicious fog nodes in the network is 5%, then it increases by 5%

up until we have 75% of the fog nodes being malicious. Through out the experiment, we

observe the average number of successful and aborted coordinations requests. Although,

154

0

15
14

13
12

11
10

0.2

9
8

R
everse Fog nodes

157 14
136 12

115 10
94

Fog nodes
8

0.4

73 6

L
o

T
 s

c
o

re

52 4
31 2

10
0

0.6

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X: 13

Y: 4

Z: 0.44

X: 4

Y: 13

Z: 0.7368

Figure 6.7: LoT score for the 15 participated fogs against each other proven that LoT
is asymmetric

the successful and aborted coordinations are fluctuating while increasing the number of

malicious fog nodes due to have higher average of amicable coordinations at a specific times-

tamp, however it is clear that with the increase in the malicious fog nodes in the network;

the number of successful coordinations will be reduced and the number of aborted coordi-

nations will be increased as per Figure 6.6 due to the increase of malicious fogs/events in

the Fog-2-Fog coordinations.

The next experiment is about fog node’s trustworthiness policy, having the LoT score

asymmetric and not transitive. Thus, each fog node has its own LoT score that defines its

QoP, hence, if foga finds fogb is trustworthy based on foga LoT score that meets its RoP

towards fogb, it is not necessarily that fogb finds foga is trustworthy. Figure 6.7 shows the

corresponding three dimensional view of the LoT score of the 15 participating fog nodes

against each other. It is clear that the fog nodes have different LoT scores against each

other, for example, the LoT score from fog4 to fog13 is 0.7, while the the LoT score from

fog13 to fog4 is 0.4 as shown in the highlighted points in Figure 6.7. It is worth noting

that the highest LoT score is 1, thus it is classified according to a fuzzy logic function into

155

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fog Index

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
L

o
T

 S
c

o
re

LoT for fog 1 to all LoT for fog 5 to all

Figure 6.8: Lot score for fog1 and fog5 proven that LoT is not transitive

three main parts, Low, Medium and High to represent the trustworthiness between two fog

nodes. Hence the LoT score of 1 is the indicator of absolute trust, while the score of 0 is

the indicator of utter distrust. Similarly, the LoT score is not transitive, for example, if

foga trusts fogb and fogb trusts fogc, it is not necessarily true that foga trusts fogc. This

transitive property of fog nodes is proven in Figure 6.8. In this figure, the fog node fog1

trust fog node fog5 and fog node fog5 trust fog2, while fog1 finds fog2 not trustworthy.

6.6 Chapter Summary

Fog computing puts a substantial amount of cloud computing facilities at the edge of a

network as opposed to establishing dedicated channels to a more centralized remote cloud

infrastructure. This approach reduces service latency, and improves data security. Al-

though, fog computing is generally considered to be more secure than cloud computing,

there exist several challenges for preserving security and privacy in fog computing due to

156

the presence of rogue and malicious fog nodes that are undertaking attack within the net-

works. These malicious fog nodes appear to be legitimate and coaxes other fog nodes, but,

in reality, these nodes are malicious in nature.

This chapter presented the Fog COMputIng Trust manageMENT (COMITMENT) ap-

proach. COMITMENT is a software-based approach that is responsible for providing a

secure and trusted environment for fog nodes to share their resources and exchange data

packets. COMITMENT helps fog nodes in making concise decisions for the fog node to

point out the best node that it can cooperate with. The decision not only includes the

best fog node that can handle the jobs efficiently but also the most trusted fog nodes that

could provide best QoS and QoP. COMITMENT’s main procedures and processes look

after the safe offloading and finding best fog nodes for coordination based on trust and

recommendations models to avoid malicious fog nodes.

COMITMENT and it’s Secure Offloading Algorithm (SOA) has outperformed the com-

petitive benchmark algorithms, namely Random Walks Offloading (RWO) and Nearest Fog

Offloading (NFO) in the experiments to verify the validity and performance. The exper-

iments were conducted on the performance (in terms of latency) and packets distribution

over fog nodes in the Fog-2-Fog model. In addition, the evaluation results proven that

COMITMENT able to identify fog node’s trustworthiness and detecting malicious events

and attacks as it’s proven by increasing the malicious fog nodes in the network, the number

of successful coordination will be reduced and the number of aborted coordination will be

increased. The decision of offloading and requests accepts/declines was made according to

the LoT score. Moreover, the evaluation results proven that the LoT score is asymmetric

and not transitive, hence, each fog node has it’s own LoT score, to explain more if fa finds

fb is trustworthy based on fa LoT score towards fogb, it is not necessarily that fb finds

fa is trustworthy. Similarly, it’s proven that the LoT score is not transitive means if foga

trust fogb and fogb trust fogc, it is not necessarily true that foga trusts fogc. Hence, by

ensuring the level of security and trust within the network, the RO5 has been addressed,

thus RQ5 and RQ6 are fulfilled.

157

CHAPTER 7

Conclusions and Future Directions

I may not have gone where I intended to go, but

I think I have ended up where I needed to be.

Douglas Adams

7.1 Conclusion

T
he Internet of Things has become, indeed, a reality. IoT technology is expanding sig-

nificantly, thus, the IoT has become a trend that promises a substantial economic and

scientific value for industry and academia in the upcoming years. However, the expanding

of the IoT and its technologies nature has brought challenges (e.g., such as data handling

and resource management) to the current networking paradigms (e.g., cloud computing)

due to the tremendous amount of data that are generated every second or even millisec-

ond. A novel computing paradigm which is introduced to support and unleash the full

extent of the IoT is fog computing. Fog computing as a concept was introduced in the

last few years, hence, the corresponding studies/research on this computing paradigm are

still in their infancy. Although the theoretical aspects of fog computing have already been

introduced, there is a lack of concrete fog-based solutions that fulfill the full stack of IoT

requirements (e.g., fast processing and resource management). Hence, this thesis comes into

the action to fulfill the requirement of developing a comprehensive and concrete solution to

tackle the limitations/challenges (refer to Section 2.4.3) of deploying fog computing in the

IoT network.

The scope and focus of this thesis is to have a stable performance for fog computing

to aid the IoT-services. Aspects related to the performance stability of fog computing

involve the development of reliable resource management and trusted network. Hence, this

is to ensure best Quality of Service (QoS), Quality of Experience (QoE) and Quality of

Protection (QoP) to the end-users. In this thesis, the proposed fog-based solutions and

algorithms are designed to address the limitations of; (i) network resources management by

an efficient resource provisioning algorithm to ensure the QoS, (ii) services reliability and

availability in high-traffic network, hence to ensure the QoE, and, (iii) security and privacy

through evolving trusted network environment for fogs to share resources and data, hence

avoiding malicious attacks to ensure the QoP. The solutions and algorithms for the above

mentioned challenges are integrated in the proposed Cognitive Fog (CF).

The fundamental contributions and results of this thesis are concluded and grouped

based on the inspired Research Questions (RQ):

159

• The contribution for RQ1 is the novel development of CF computing to empower

fog nodes with reasoning, learning, and adaptation capabilities so that, it would

weave these fog nodes into services provisioning models. CF advocates that fog can

interpret the gathered/received data in a way that mimics the process of cognition in

the human mind. The operations of CF run over four connected worlds; data world

that features both raw and filtered data, processes world featuring processing models,

fog world featuring the CF processes and controls, and finally the things world that

is controlled by the CF to adapt with environment changes. Moreover, one of the

important characteristics of CF is node federations, which is about gathering multiple

fog nodes to perform/achieve a specific task in a certain situation. There are two types

of federations; planned and ad-hoc federations. Planned federations are formed at the

design-time, while ad-hoc federations are formed at run-time. The performance of

the developed CF test-bed shows that fog can perform better on repeated processes.

The core concepts and design of cognitive fog are discussed in Chapter 3.

• The contribution for RQ2 is the collaboration model of fog and cloud with a set of

criteria for selecting data recipients. These criteria define where data of things should

be sent (cloud, fog, or both) and in what order (cloud then fog or fog then cloud or

both concurrently). This fog-cloud collaboration was illustrated with different levels

of recommendations about the appropriate data recipients. For instance an IoT appli-

cation that is keen to handle continuous data-streaming would not consider sending

data from things to clouds but from things to fogs. Contrarily, an IoT application

that is keen to handle a high amount of data-exchange would consider sending data

from things to clouds but not from things to fogs. Different concerns and different

priorities mean different data recipients. This is supported by a healthcare driven

IoT case study deployed on a test-bed to demonstrate fog-cloud collaboration. The

experiments targeted frequency and time criteria along with the continuous stream

feature. The objective was to assist engineers who are in-charge of developing IoT ap-

plications to know what is best for their system/network. The fog-cloud collaboration

and criteria for selecting data recipients are discussed in Chapter 4.

160

• The contribution for RQ3 and partially RQ4 is a novel Fog Resource manAgeMEnt

Scheme (FRAMES) that promotes load balancing to address the latency concern

of service request’s received from things. This is based on the load distribution

algorithm in the Fog-2-Fog coordination model that achieves an optimal workload

among the collaborative nodes. The load distribution model considers not only the

queue length of a node, but also the node’s capabilities (i.e., CPU frequency) and their

performance with different request types, such as, heavy-request (e.g., from sensor)

and light-request (i.e., from CCTV). FRAMES is discussed in Chapter 5.

• The contribution for RQ4 and RQ5 is a mathematical model that backs the decision

of load balancing among fog nodes. This investigate the time delay issue and the

requests offloading opportunities in the Fog-2-Fog coordination model. Hence, a

time-cost function is developed to compute the time-cost for a service to be processed

in multi-nodes based on the number of participant nodes and network conditions.

Simulation results shows that the proposed Optimal Fog Algorithm (OFA) has the

lowest service response time in comparison with two benchmark algorithms named;

Random Walk Algorithm (RWA) and Neighbouring Fogs Algorithm (NFA). Moreover,

OFA not only outperformed RWA and NFA in latency, but also in the service’s packets

distribution over nodes dependent upon their capabilities. The mathematical model

was discussed in Chapter 5.

• The contribution for RQ6 is met by introducing a novel Fog COMputIng Trust

manageMENT (COMITMENT) approach to impart useful prognostic information on

networked nodes trustworthiness. Hence, providing a secure and trusted networking

environment for nodes to share their resources and exchange data securely and effi-

ciently. This is achieved based on a novel trust/recommendation model and algorithm

that helps nodes make the right decision for selecting the appropriate fog nodes to

collaborate with in the Fog-2-Fog coordination environment. This to support during

the offloading processes to avoid malicious nodes and attacks. Thereof, this process

includes assessing the trustworthiness level of the nominated nodes to ensure that the

QoP and QoS are met by the hosting node before a coordination is formed. COMIT-

MENT outperformed the competitive benchmark algorithms in the experiments to

161

verify the validity and performance. The experiments were conducted on the perfor-

mance (in term of latency), fog node’s trustworthiness, packets distribution over fog

nodes and detecting malicious event and attacks in the Fog-2-Fog model. The core

concepts and design of COMITMENT and the trust and recommendation model are

discussed in Chapter 5.

The overall evaluation results of the proposed algorithms that reflection thesis con-

tributions are promising. Defining the Cognitive Fog (CF) functional and non-functional

requirements that fit under the umbrella of performance requirements (i.e., functional re-

quirements) and general security requirements (i.e., non-functional requirements) helps in

adding fog during both fog-cloud collaborations and fog-2-fog coordination within the

IoT network. To explain more, with regards to fog-cloud collaborations, the set of data-

recipient selection criteria - frequency, sensitivity, freshness, time, volume, etc - have been

proposed to define where data of things should be sent (cloud, fog, or both) are valid based

on the evaluation results. The results proven for Config4: T → F and Config2: T → F → C

are in line with our recommendations for both the time criterion (reflect the delay) and

the frequency criterion (reflect the traffic) of T → F → C and T → F topologies being

recommended, while T → C → F and T → C topologies being not-recommended. More-

over, with regards to fog-2-fog coordination, FRAMES results proven that the proposed

OFA has the lowest service response time in comparison with RWA and NFA, also, OFA

has not only outperformed on RWA and NFA in latency, but also in the service packets

distribution over fog nodes upon their capabilities. In term of network security, the eval-

uation results proven that COMITMENT able to identify fog node’s trustworthiness and

detecting malicious events and attacks as it’s proven by increasing the malicious fog nodes

in the network, the number of successful coordination will be reduced and the number of

aborted coordination will be increased due to the ability of identifying malicious event. The

decision of offloading and requests accepts/declines was made according to the LoT score

which accurate as it’s has been proven that the LoT score is asymmetric and not transitive,

hence, each fog node has it’s own LoT score, to explain more if fa finds fb is trustworthy

based on fa LoT score towards fogb, it is not necessarily that fb finds fa is trustworthy.

Similarly, it’s proven that the LoT score is not transitive means if foga trust fogb and fogb

trust fogc, it is not necessarily true that foga trusts fogc.

162

7.2 Future Directions

Since fog computing is a recent and emerging research field, there are many open research

questions and promising research directions. In this thesis, a CF test-bed, collaboration and

coordination models and algorithms were presented to aid the deployment of fog computing

in the IoT network. However, this work can be extended in many possible directions as

there are a number of approaches, boundaries and special cases which require attention

from the research community, such as, the impact of encrypted traffic in CF on the cog-

nitive capabilities and learning activities. The listing below presents some possible future

improvements of the CF.

• Energy-efficient network: The energy property has not been studied in the pro-

posed work. Therefore this could be an interesting research direction due to the

amount of energy that is being consumed in such networking activities. The annual

energy consumption of US data-centres was estimated at 91 billion kilowatt-hours in

2013 which is enough to power all households in New York City for two years [173]. It

is even expected to have increased to approximately 140 billion kilowatt-hours in 2020

which will cost US 13 billion annually [174]. Hence, improving the energy-efficiency

computing paradigm is a research problem of the utmost interest in academia and

industry.

• Supporting big data mining: the largest percentage of data produced today is

coming from media, videos and other similar data streams which became a very impor-

tant source in training data mining and machine learning algorithms used for research

and commercial purposes. The problem of learning from such data streams presents

unprecedented challenges, especially in resource-constrained scenarios. Therefore, fog

computing can be adopted to aid the analysis of such massive data streams that re-

quires a set of techniques dedicated to help in running experiments and implement

algorithms to deal with scalability and performance challenges. Hence, fog computing

could have the potential to aid data mining techniques.

163

• Container-based services: container technology has emerged recently and gained

popularity among the Research and Development (R&D) community. There are sev-

eral benefits of adopting container technology, such as resource efficiency and density.

Instead of hardware level virtualization, containers use operating system level virtu-

alization. Only the application, and the libraries and file system needed are packed

in a container. It enables not only lightweight deployment and easy migration, but

also can increase the scalability and the cross-platform compatibility which will be

beneficial to fog computing. In order to provide an efficient container powered fog

nodes services, algorithms regarding container service orchestration, and scheduling

and migration algorithms need to be investigated.

• Fog landscape nodes rearrangements: the fog nodes arrangements in the fog

landscape is a promising research direction to be considered in the future work. After

a specific number of fog nodes in the fog landscape fail, it is likely that the topology

constellation/arrangements is not optimal in terms of latency, bandwidth, location

mapping, and connection preservation. Therefore, the rearrangement of fog nodes to

build a new effective nodes topology is a noteworthy aspect for future work.

164

7.3 Final Remarks

In conclusion, this thesis focuses on developing a stable performance for fog computing to

aid the IoT-services and cloud computing in the ever growing industry of smart things, hence

ensuring best Quality of Service (QoS), Quality of Experience (QoE), and the Quality of

Protection (QoP) to the end-users. Aspects related to the performance stability of fog

computing involve the development of:

• Cognitive fog nodes: in order to allow fog nodes to be cognitive, a reasonable

training is required to allow the learning processes to enrich nodes knowledge, hence

the decision of fog in participating in processes.

• Reliable resources management: the resources management is mostly controlled

by the scheduling and offloading algorithms. In general, if all fog nodes have low

loads, offloading is unnecessary, and if all fog nodes have heavy load, offloading will

not help to reduce the delay. Offloading only helps when there is a high degree of

variance among the fog nodes.

• Trusted networks: identifying malicious fog nodes is not an easy task. Also, in-

creasing the safety measures for security/privacy can increase the overall process-

ing/checking time, hence reducing the QoE. Therefore, a network specific security

and privacy arrangements should be considered to endure both QoE and QoP.

165

Bibliography

[1] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload allocation in

fog-cloud computing toward balanced delay and power consumption,” IEEE Internet

of Things Journal, vol. 3, pp. 1171–1181, Dec 2016.

[2] Q. Fan and N. Ansari, “Towards workload balancing in fog computing empowered

iot,” IEEE Transactions on Network Science and Engineering, pp. 1–1, 2018.

[3] X. Wang, Z. Ning, and L. Wang, “Offloading in internet of vehicles: A fog-enabled

real-time traffic management system,” IEEE Transactions on Industrial Informatics,

vol. 14, pp. 4568–4578, Oct 2018.

[4] W. Kim and S. Chung, “User-participatory fog computing architecture and its man-

agement schemes for improving feasibility,” IEEE Access, vol. 6, pp. 20262–20278,

2018.

[5] X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopoulos, and R. Ran-

jan, “Iotsim: A simulator for analysing iot applications,” Journal of Systems Archi-

tecture, vol. 72, pp. 93 – 107, 2017. Design Automation for Embedded Ubiquitous

Computing Systems.

[6] S. Ningning, G. Chao, A. Xingshuo, and Z. Qiang, “Fog computing dynamic load

balancing mechanism based on graph repartitioning,” China Communications, vol. 13,

pp. 156–164, March 2016.

[7] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and re-

search challenges,” Journal of Internet Services and Applications, vol. 1, pp. 7–18,

May 2010.

166

[8] L. Wang, G. von Laszewski, A. Younge, X. He, M. Kunze, J. Tao, and C. Fu, “Cloud

computing: a perspective study,” New Generation Computing, vol. 28, pp. 137–146,

Apr 2010.

[9] J. Sun, G. Zhu, G. Sun, D. Liao, Y. Li, A. K. Sangaiah, M. Ramachandran, and

V. Chang, “A reliability-aware approach for resource efficient virtual network function

deployment,” IEEE Access, vol. 6, pp. 18238–18250, 2018.

[10] F. Mattern and C. Floerkemeier, From the Internet of Computers to the Internet of

Things, pp. 242–259. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

[11] M. Al-khafajiy, T. Baker, A. Waraich, D. Al-Jumeily, and A. Hussain, “Iot-fog op-

timal workload via fog offloading,” in 2018 IEEE/ACM International Conference on

Utility and Cloud Computing Companion (UCC Companion), pp. 359–364, Dec 2018.

[12] C. Systems, “Fog computing and the internet of things: Extend the cloud to where

the things are,” 2016.

[13] D. Evans, “The internet of things: How the next evolution of the internet is changing

everything,” Cisco Internet Business Solutions Group (IBSG), vol. 1, pp. 1–11, 01

2011.

[14] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing iot service delay via

fog offloading,” IEEE Internet of Things Journal, vol. 5, pp. 998–1010, April 2018.

[15] S. Khanagha, H. Volberda, and I. Oshri, “Business model renewal and ambidexterity:

Structural alteration and strategy formation process during transition to a cloud

business model,” R and D Management, vol. 44, 06 2014.

[16] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the

internet of things,” in Proceedings of the First Edition of the MCC Workshop on

Mobile Cloud Computing, MCC ’12, (New York, NY, USA), pp. 13–16, ACM, 2012.

[17] M. Al-khafajiy, T. Baker, H. Al-Libawy, A. Waraich, C. Chalmers, and O. Alfandi,

“Fog computing framework for internet of things applications,” in 2018 11th Interna-

tional Conference on Developments in eSystems Engineering (DeSE), pp. 71–77, Sep.

2018.

167

[18] K. Kang, W. Cong, and T. Luo, “Fog computing for vehicular ad-hoc networks:

Paradigms, scenarios, and issues,” The Journal of China Universities of Posts and

Telecommunications, vol. 23, pp. 56–96, 04 2016.

[19] S. Soo, C. Chang, and S. N. Srirama, “Proactive service discovery in fog computing

using mobile ad hoc social network in proximity,” in 2016 IEEE International Con-

ference on Internet of Things (iThings) and IEEE Green Computing and Commu-

nications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)

and IEEE Smart Data (SmartData), pp. 561–566, Dec 2016.

[20] M. Al-khafajiy, L. Webster, T. Baker, and A. Waraich, “Towards fog driven iot health-

care: challenges and framework of fog computing in healthcare,” in In Proceedings of

the 2nd International Conference on Future Networks and Distributed Systems, p. 9,

ACM, Jun 26 2018.

[21] Z. Maamar, T. Baker, N. Faci, E. Ugljanin, M. Al-Khafajiy, and V. Buregio, “Towards

a seamless coordination of cloud and fog: Illustration through the internet-of-things,”

The 34th ACM/SIGAPP Symposium on Applied Computing, 2019.

[22] Z. Maamar, T. Baker, N. Faci, E. Ugljanin, Y. Atif, M. Al-Khafajiy, and M. Sell-

ami, “Cognitive computing meets the internet of things,” in Proceedings of the 13th

International Conference on Software Technologies :, pp. 741–746, 2018.

[23] S. Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog computing: A survey,” in

International conference on wireless algorithms, systems, and applications, pp. 685–

695, Springer, 2015.

[24] M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing: Fundamental, net-

work applications, and research challenges,” IEEE Communications Surveys Tutori-

als, vol. 20, pp. 1826–1857, thirdquarter 2018.

[25] B. McMillin and T. Zhang, “Fog computing for smart living,” Computer, vol. 50,

pp. 5–5, Feb 2017.

168

[26] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos,

“A comprehensive survey on fog computing: State-of-the-art and research challenges,”

IEEE Communications Surveys Tutorials, vol. 20, pp. 416–464, Firstquarter 2018.

[27] K. H. Abdulkareem, M. A. Mohammed, S. S. Gunasekaran, M. N. Al-Mhiqani, A. A.

Mutlag, S. A. Mostafa, N. S. Ali, and D. A. Ibrahim, “A review of fog computing and

machine learning: Concepts, applications, challenges, and open issues,” IEEE Access,

vol. 7, pp. 153123–153140, 2019.

[28] P. Habibi, M. Farhoudi, S. Kazemian, S. Khorsandi, and A. Leon-Garcia, “Fog com-

puting: A comprehensive architectural survey,” IEEE Access, vol. 8, pp. 69105–69133,

2020.

[29] M. Al-khafajiy, T. Baker, H. Al-Libawy, Z. Maamar, M. Aloqaily, and Y. Jararweh,

“Improving fog computing performance via fog-2-fog collaboration,” Future Genera-

tion Computer Systems, vol. 100, pp. 266–280, 2019.

[30] D. Puthal, R. Ranjan, A. Nanda, P. Nanda, P. P. Jayaraman, and A. Y. Zomaya,

“Secure authentication and load balancing of distributed edge datacenters,” Journal

of Parallel and Distributed Computing, vol. 124, pp. 60–69, 2019.

[31] M. Al-khafajiy, T. Baker, A. Waraich, D. Al-Jumeily, and A. Hussain, “Iot-fog optimal

workload via fog offloading,” in 2018 IEEE/ACM International Conference on Utility

and Cloud Computing Companion, pp. 359–364, IEEE, Dec 17 2018.

[32] X. Wang, L. T. Yang, X. Xie, J. Jin, and M. J. Deen, “A cloud-edge computing frame-

work for cyber-physical-social services,” IEEE Communications Magazine, vol. 55,

pp. 80–85, Nov 2017.

[33] D. Puthal, S. Nepal, R. Ranjan, and J. Chen, “Threats to networking cloud and edge

datacenters in the internet of things,” IEEE Cloud Computing, vol. 3, pp. 64–71, May

2016.

[34] D. Puthal, S. P. Mohanty, S. A. Bhavake, G. Morgan, and R. Ranjan, “Fog comput-

ing security challenges and future directions [energy and security],” IEEE Consumer

Electronics Magazine, vol. 8, no. 3, pp. 92–96, 2019.

169

[35] R. Chen, J. Guo, and F. Bao, “Trust management for soa-based iot and its application

to service composition,” IEEE Transactions on Services Computing, vol. 30, p. 3, Oct

2014.

[36] A. Dastjerdi, H. Gupta, R. Calheiros, S. Ghosh, and R. Buyya, “Fog Computing:

principles, architectures, and applications,” in Internet of Things, Morgan Kaufmann,

2016.

[37] A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani, and C. Z. Patrikakis, “A

cooperative fog approach for effective workload balancing,” IEEE Cloud Computing,

vol. 4, pp. 36–45, March 2017.

[38] O. C. A. W. Group, OpenFog reference architecture for fog computing. Avail-

able at https://www.openfogconsortium.org/wp-content/uploads/OpenFog_

Reference_Architecture_2_09_17-FINAL.pdf, Last Visit: February.10.2019.

[39] M. Al-khafajiy, T. Baker, H. Al-Libawy, Z. Maamar, M. Aloqaily, and Y. Jararweh,

“Improving fog computing performance via fog-2-fog collaboration,” Future Genera-

tion Computer Systems, vol. 100, pp. 266–280, 2019.

[40] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong,

and J. P. Jue, “All one needs to know about fog computing and related edge computing

paradigms: A complete survey,” Journal of Systems Architecture, 2019.

[41] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the

internet of things,” in Proceedings of the first edition of the MCC workshop on Mobile

cloud computing, pp. 13–16, ACM, 2012.

[42] J. Zhou, Z. Cao, X. Dong, and A. V. Vasilakos, “Security and privacy for cloud-based

iot: Challenges,” IEEE Communications Magazine, vol. 55, no. 1, pp. 26–33, 2017.

[43] T. Wang, G. Zhang, A. Liu, M. Z. A. Bhuiyan, and Q. Jin, A secure IoT service

architecture with an efficient balance dynamics based on cloud and edge computing.

IEEE Internet of Things Journal, 2018.

170

 https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf
 https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf

[44] C. Alcaraz, R. Roman, P. Najera, and J. Lopez, “Security of industrial sensor network-

based remote substations in the context of the internet of things,” Ad Hoc Networks,

vol. 11, no. 3, pp. 1091–1104, 2013.

[45] Y. Xiao and M. Krunz, “Qoe and power efficiency tradeoff for fog computing networks

with fog node cooperation,” in Conference on Computer Communications (I. I. 2017-

ieee, ed.), pp. 1–9, IEEE, 2017.

[46] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing: architecture,

key technologies, applications and open issues,” Journal of network and computer

applications, vol. 98, pp. 27–42, 2017.

[47] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the internet of things realize

its potential,” Computer, vol. 49, no. 8, pp. 112–116, 2016.

[48] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design science

research methodology for information systems research,” Journal of management in-

formation systems, vol. 24, no. 3, pp. 45–77, 2007.

[49] J. W. Creswell and J. D. Creswell, Research design: Qualitative, quantitative, and

mixed methods approaches. Sage publications, 2017.

[50] M. Al-khafajiy, L. Webster, T. Baker, and A. Waraich, “Towards fog driven iot health-

care: Challenges and framework of fog computing in healthcare,” in Proceedings of the

2Nd International Conference on Future Networks and Distributed Systems, ICFNDS

’18, (New York, NY, USA), pp. 9:1–9:7, ACM, 2018.

[51] M. Abdmeziem, D. Tandjaoui, and I. Romdhani, “Architecting the Internet of Things:

State of the Art,” in Robots and Sensor Clouds (A. Koubaa and E. Shakshuki, eds.),

Springer International Publishing, 2016.

[52] P. Barnaghi and A. Sheth, “On Searching the Internet of Things: Requirements and

Challenges,” IEEE Intelligent Systems, vol. 31, no. 6, 2016.

[53] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A

vision, architectural elements, and future directions,” Future generation computer

systems, vol. 29, no. 7, pp. 1645–1660, 2013.

171

[54] DZone, “The Internet of Things, Application, Protocls, and Best Practices,”

tech. rep., https://dzone.com/guides/iot-applications-protocols-and-best-practices,

2017 (visited in May 2017).

[55] P. Mell, T. Grance, et al., “The nist definition of cloud computing,” 2011.

[56] T. Dillon, C. Wu, and E. Chang, “Cloud computing: issues and challenges,” in 2010

24th IEEE international conference on advanced information networking and appli-

cations, pp. 27–33, Ieee, 2010.

[57] M. Boniface, B. Nasser, J. Papay, S. C. Phillips, A. Servin, X. Yang, Z. Zlatev, S. V.

Gogouvitis, G. Katsaros, K. Konstanteli, et al., “Platform-as-a-service architecture

for real-time quality of service management in clouds,” in 2010 Fifth International

Conference on Internet and Web Applications and Services, pp. 155–160, IEEE, 2010.

[58] R. Jain and S. Paul, “Network virtualization and software defined networking for cloud

computing: a survey,” IEEE Communications Magazine, vol. 51, no. 11, pp. 24–31,

2013.

[59] A. Hameed, A. Khoshkbarforoushha, R. Ranjan, P. P. Jayaraman, J. Kolodziej,

P. Balaji, S. Zeadally, Q. M. Malluhi, N. Tziritas, A. Vishnu, et al., “A survey and

taxonomy on energy efficient resource allocation techniques for cloud computing sys-

tems,” Computing, vol. 98, no. 7, pp. 751–774, 2016.

[60] S. M. Parikh, “A survey on cloud computing resource allocation techniques,” in 2013

Nirma University International Conference on Engineering (NUiCONE), pp. 1–5,

IEEE, 2013.

[61] J. Gibson, R. Rondeau, D. Eveleigh, and Q. Tan, “Benefits and challenges of three

cloud computing service models,” in 2012 Fourth International Conference on Com-

putational Aspects of Social Networks (CASoN), pp. 198–205, IEEE, 2012.

[62] S. Ullah and Z. Xuefeng, “Cloud computing research challenges,” arXiv preprint

arXiv:1304.3203, 2013.

172

[63] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload allocation in

fog-cloud computing toward balanced delay and power consumption,” IEEE Internet

of Things Journal, vol. 3, no. 6, pp. 1171–1181, 2016.

[64] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y. Xiang, and

R. Ranjan, “Fog computing: Survey of trends, architectures, requirements, and re-

search directions,” IEEE access, vol. 6, pp. 47980–48009, 2018.

[65] C. Avasalcai, I. Murturi, and S. Dustdar, “Edge and fog: A survey, use cases, and

future challenges,” Fog Computing: Theory and Practice, pp. 43–65, 2020.

[66] A. Taivalsaari and T. Mikkonen, “A Roadmap to the Programmable World: Software

Challenges in the IoT Era,” IEEE Software, vol. 34, no. 1, 2017.

[67] M. Satyanarayanan, P. Bahl, R. Cáceres, and N. Davies, “The Case for VM-based

Cloudlets in Mobile Computing,” IEEE Pervasive Computing, vol. 8, no. 4, 2009.

[68] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog Computing: A Platform for

Internet of Things and Analytics,” in Big Data and Internet of Things: A Roadmap

for Smart Environments, Studies in Computational Intelligence, Cisco, Springer In-

ternational Publishing, 2014.

[69] B. Varghese, N. Wang, D. Nikolopoulos, and R. Buyya, “Feasibility of Fog Comput-

ing,” arXiv preprint arXiv:1701.05451, 2017.

[70] M. Aazam and E. Huh, “Fog Computing and Smart Gateway Based Communica-

tion for Cloud of Things,” in Proceedings of the International Conference on Future

Internet of Things and Cloud (FiCloud’2014), (Barcelona, Spain), 2014.

[71] G. Lewis, S. Echeverŕıa, S. Simanta, B. Bradshaw, and J. Root, “Tactical Cloudlets:

Moving Cloud Computing to the Edge,” in Proceedings of the IEEE Military Com-

munications Conference (MILCOM’2014), (Baltimore, USA), 2014.

[72] M. Yannuzzi, R. Milito, R. Serral-Gracià, D. Montero, and M. Nemirovsky, “Key

ingredients in an iot recipe: Fog computing, cloud computing, and more fog comput-

ing,” in 2014 IEEE 19th International Workshop on Computer Aided Modeling and

Design of Communication Links and Networks (CAMAD), pp. 325–329, IEEE, 2014.

173

[73] I. Petri, J. Diaz-Montes, O. Rana, Y. Rezgui, M. Parashar, and L. Bittencourt,

“Coordinating Data Analysis & Management in Multi-Layered Clouds,” in Pro-

ceedings of the EAI International Conference on Cloud, Networking for IoT Sys-

tems (CN4IoT’2015), (Rome, Italy), 2015.

[74] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos, “Fog Orchestration

for Internet of Things Services,” IEEE Internet Computing, vol. 21, no. 2, March-

April 2017.

[75] D. Chekired, L. Khoukhi, and H. T. Mouftah, “Industrial IoT Data Scheduling Based

on Hierarchical Fog Computing: A Key for Enabling Smart Factory,” IEEE Trans.

Industrial Informatics, vol. 14, no. 10, 2018.

[76] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of iot: Applications, chal-

lenges, and opportunities with china perspective,” IEEE Internet of Things journal,

vol. 1, no. 4, pp. 349–359, 2014.

[77] R. Van Kranenburg and A. Bassi, “Iot challenges,” Communications in Mobile Com-

puting, vol. 1, no. 1, p. 9, 2012.

[78] R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan, “Internet of things (iot) secu-

rity: Current status, challenges and prospective measures,” in 2015 10th International

Conference for Internet Technology and Secured Transactions (ICITST), pp. 336–341,

IEEE, 2015.

[79] I. Lee and K. Lee, “The internet of things (iot): Applications, investments, and

challenges for enterprises,” Business Horizons, vol. 58, no. 4, pp. 431–440, 2015.

[80] J. Rivera and R. van der Meulen, “Gartner says the internet of things will transform

the data center,” Retrieved August, vol. 5, p. 2014, 2014.

[81] S. A. Al-Qaseemi, H. A. Almulhim, M. F. Almulhim, and S. R. Chaudhry, “Iot archi-

tecture challenges and issues: Lack of standardization,” in 2016 Future Technologies

Conference (FTC), pp. 731–738, IEEE, 2016.

[82] A. Pal and B. Purushothaman, IoT technical challenges and solutions. Artech House,

2016.

174

[83] A.-R. Sadeghi, C. Wachsmann, and M. Waidner, “Security and privacy challenges in

industrial internet of things,” in 2015 52nd ACM/EDAC/IEEE Design Automation

Conference (DAC), pp. 1–6, IEEE, 2015.

[84] E. Levy, “Crossover: online pests plaguing the off line world,” IEEE Security &

Privacy, vol. 1, no. 6, pp. 71–73, 2003.

[85] Z. B. Celik, E. Fernandes, E. Pauley, G. Tan, and P. McDaniel, “Program analysis of

commodity iot applications for security and privacy: Challenges and opportunities,”

ACM Computing Surveys (CSUR), vol. 52, no. 4, p. 74, 2019.

[86] K. Rawlinson, “Hp study reveals 70 percent of internet of things devices vulnerable

to attack,” HP, 2014.

[87] E. Bertino and N. Islam, “Botnets and internet of things security,” Computer, no. 2,

pp. 76–79, 2017.

[88] S. Aguzzi, D. Bradshaw, M. Canning, M. Cansfield, P. Carter, G. Cattaneo, S. Gus-

meroli, G. Micheletti, D. Rotondi, and R. Stevens, “Definition of a research and

innovation policy leveraging cloud computing and iot combination,” Final Report,

European Commission, SMART, vol. 37, p. 2013, 2013.

[89] A. Botta, W. De Donato, V. Persico, and A. Pescapé, “Integration of cloud comput-

ing and internet of things: a survey,” Future generation computer systems, vol. 56,

pp. 684–700, 2016.

[90] H. Arasteh, V. Hosseinnezhad, V. Loia, A. Tommasetti, O. Troisi, M. Shafie-Khah,

and P. Siano, “Iot-based smart cities: a survey,” in 2016 IEEE 16th International

Conference on Environment and Electrical Engineering (EEEIC), pp. 1–6, IEEE,

2016.

[91] M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing: Fundamental, net-

work applications, and research challenges,” IEEE Communications Surveys Tutori-

als, vol. 20, pp. 1826–1857, thirdquarter 2018.

175

[92] M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing: Fundamental, net-

work applications, and research challenges,” IEEE Communications Surveys Tutori-

als, vol. 20, pp. 1826–1857, thirdquarter 2018.

[93] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the Suitability of Fog Comput-

ing in the Context of Internet of Things,” IEEE Transactions on Cloud Computing,

vol. 6, no. 1, pp. 46–59, 2018.

[94] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middleware for

internet of things: A survey,” IEEE Internet of Things Journal, vol. 3, pp. 70–95,

Feb 2016.

[95] T. Wang, J. Zhou, A. Liu, M. Z. A. Bhuiyan, G. Wang, and W. Jia, “Fog-based

computing and storage offloading for data synchronization in iot,” IEEE Internet of

Things Journal, vol. 6, no. 3, pp. 4272–4282, 2018.

[96] M. Chiang and T. Zhang, “Fog and iot: An overview of research opportunities,” IEEE

Internet of Things Journal, vol. 3, no. 6, pp. 854–864, 2016.

[97] G. Zhang, F. Shen, Y. Yang, H. Qian, and W. Yao, “Fair task offloading among

fog nodes in fog computing networks,” in 2018 IEEE International Conference on

Communications (ICC), pp. 1–6, IEEE, 2018.

[98] C. Fricker, F. Guillemin, P. Robert, and G. Thompson, “Analysis of an offloading

scheme for data centers in the framework of fog computing,” ACM Trans. Model.

Perform. Eval. Comput. Syst., vol. 1, pp. 16:1–16:18, Sept. 2016.

[99] M. A. Hassan, M. Xiao, Q. Wei, and S. Chen, “Help your mobile applications with

fog computing,” in 2015 12th Annual IEEE International Conference on Sensing,

Communication, and Networking - Workshops (SECON Workshops), pp. 1–6, June

2015.

[100] S. Ningning, G. Chao, A. Xingshuo, and Z. Qiang, “Fog computing dynamic load

balancing mechanism based on graph repartitioning,” China Communications, vol. 13,

pp. 156–164, March 2016.

176

[101] I. Stojmenovic and S. Wen, “The Fog Computing Paradigm: Scenarios and Secu-

rity Issues,” Proceedings of the 2014 Federated Conference on Computer Science and

Information Systems, vol. 2, pp. 1–8, 2014.

[102] R. Roman, J. Lopez, and M. Manbo, “Mobile edge computing, fog et al.: A survey

and analysis of security threats and challenges,” Future Gener. Comput. Syst., vol. 78,

pp. 680–698, January 2018.

[103] J. Ni, K. Zhang, X. Lin, and X. S. Shen, “Securing fog computing for internet of things

applications: Challenges and solutions,” IEEE Communications Surveys & Tutorials,

vol. 20, no. 1, pp. 601–628, 2017.

[104] S. A. Soleymani, A. H. Abdullah, M. Zareei, M. H. Anisi, C. Vargas-Rosales, M. K.

Khan, and S. Goudarzi, “A secure trust model based on fuzzy logic in vehicular ad

hoc networks with fog computing,” IEEE Access, vol. 5, pp. 15619–15629, 2017.

[105] M. Al-khafajiy, T. Baker, C. Chalmers, M. Asim, H. Kolivand, M. Fahim, and

A. Waraich, “Remote health monitoring of elderly through wearable sensors,” Multi-

media Tools and Applications, Jan 2019.

[106] W. Masri, I. Al Ridhawi, N. Mostafa, and P. Pourghomi, “Minimizing delay in iot

systems through collaborative fog-to-fog (f2f) communication,” in 2017 Ninth Inter-

national Conference on Ubiquitous and Future Networks (ICUFN), pp. 1005–1010,

IEEE, 2017.

[107] B. Ottenwälder, B. Koldehofe, K. Rothermel, and U. Ramachandran, “Migcep: Oper-

ator migration for mobility driven distributed complex event processing,” in Proceed-

ings of the 7th ACM International Conference on Distributed Event-based Systems,

DEBS ’13, (New York, NY, USA), pp. 183–194, ACM, 2013.

[108] S. Agarwal, S. Yadav, and A. Yadav, “An efficient architecture and algorithm for

resource provisioning in fog computing,” International Journal of Information Engi-

neering and Electronic Business, vol. 8, pp. 48–61, 01 2016.

177

[109] A. Heil, M. Knoll, and T. Weis, “The internet of things-context-based device feder-

ations,” in 2007 40th Annual Hawaii International Conference on System Sciences

(HICSS’07), pp. 58–58, IEEE, 2007.

[110] W. Mathlouthi and N. B. B. Saoud, “Flexible composition of system of systems on

cloud federation,” in 2017 IEEE 5th International Conference on Future Internet of

Things and Cloud (FiCloud), pp. 358–365, IEEE, 2017.

[111] J. Sun, S. Sun, K. Li, D. Liao, A. K. Sangaiah, and V. Chang, “Efficient algorithm for

traffic engineering in cloud-of-things and edge computing,” Computers and Electrical

Engineering, vol. 69, pp. 610 – 627, 2018.

[112] L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu, “Resource allocation strategy in fog

computing based on priced timed petri nets,” IEEE Internet of Things Journal, vol. 4,

pp. 1216–1228, Oct 2017.

[113] F. Al-Turjman, “Cognitive caching for the future sensors in fog networking,” Pervasive

and Mobile Computing, vol. 42, pp. 317–334, 2017.

[114] F. Jalali, O. J. Smith, T. Lynar, and F. Suits, “Cognitive iot gateways: automatic

task sharing and switching between cloud and edge/fog computing,” in Proceedings

of the SIGCOMM Posters and Demos, pp. 121–123, ACM, 2017.

[115] Y. Wang, Y. Xiang, J. Zhang, W. Zhou, G. Wei, and L. T. Yang, “Internet traf-

fic classification using constrained clustering,” IEEE Transactions on Parallel and

Distributed Systems, vol. 25, pp. 2932–2943, Nov 2014.

[116] J. Ni, K. Zhang, X. Lin, and S. Shen, “Securing fog computing for internet of things

applications: Challenges and solutions,” IEEE Communications Surveys & Tutorials,

vol. 20, no. 1, pp. 601–628, 2018.

[117] S. F. Abedin, M. G. R. Alam, N. H. Tran, and C. S. Hong, “A fog based system

model for cooperative iot node pairing using matching theory,” in 2015 17th Asia-

Pacific Network Operations and Management Symposium (APNOMS), pp. 309–314,

Aug 2015.

178

[118] A. Alrawais, A. Alhothaily, C. Hu, and X. Cheng, “Fog computing for the internet

of things: Security and privacy issues,” IEEE Internet ComputingMar, vol. 1, no. 21,

p. 2, 2017.

[119] T. Wang, G. Zhang, M. D. Z. A. Bhuiyan, A. Liu, W. Jia, and M. Xie, A novel

trust mechanism based on fog computing in sensor–cloud system. Future Generation

Computer Systems, 2018.

[120] A. M. Elmisery, S. Rho, and D. Botvich, “A fog based middleware for automated com-

pliance with oecd privacy principles in internet of healthcare things,” IEEE Access,

vol. 4, pp. 8418–8441, 2016.

[121] S. A. Soleymani, A. H. Abdullah, M. Zareei, M. H. Anisi, C. Vargas-Rosales, M. K.

Khan, and S. Goudarzi, “A secure trust model based on fuzzy logic in vehicular ad

hoc networks with fog computing,” IEEE Access, vol. 5, pp. 15619–15629, 2017.

[122] M. Henze, R. Hummen, R. Matzutt, and K. Wehrle, “A trust point-based security

architecture for sensor data in the cloud,” In Trusted Cloud Computing, pp. 77–106,

2014.

[123] L. Galluccio, S. Milardo, G. Morabito, and P. S. S. wise: Design, “Prototyping and

experimentation of a stateful sdn solution for wireless sensor networks,” in 2015 IEEE

Conference on Computer Communications (INFOCOM), pp. 513–521, IEEE, 2015.

[124] J.-H. Cho, A. Swami, and R. Chen, “A survey on trust management for mobile ad hoc

networks,” IEEE Communications Surveys & Tutorials, vol. 13, no. 4, pp. 562–583,

2010.

[125] Q. Li, A. Malip, K. M. Martin, S.-L. Ng, and J. Zhang, “A reputation-based announce-

ment scheme for vanets,” IEEE Transactions on Vehicular Technology, vol. 61, no. 9,

pp. 4095–4108, 2012.

[126] R. Chen, F. Bao, M. Chang, and J.-H. Cho, “Dynamic trust management for de-

lay tolerant networks and its application to secure routing,” IEEE Transactions on

Parallel and Distributed Systems, vol. 25, no. 5, pp. 1200–1210, 2013.

179

[127] J. Ren, Y. Zhang, K. Zhang, and S. X. S. Sacrm, “Social aware crowdsourcing

with reputation management in mobile sensing,” Computer Communications, vol. 65,

pp. 55–65, 2015.

[128] K. Hwang, S. Kulkareni, and Y. Hu., “Cloud security with virtualized defense and

reputation-based trust mangement,” in 2009 Eighth IEEE International Conference

on Dependable, (IEEE), pp. 717–722, Autonomic and Secure Computing, 2009.

[129] J. Jiang, G. Han, F. Wang, L. Shu, and M. Guizani, “An efficient distributed trust

model for wireless sensor networks,” IEEE transactions on parallel and distributed

systems, vol. 26, no. 5, pp. 1228–1237, 2015.

[130] Q. Fan and N. Ansari, “Towards workload balancing in fog computing empowered

iot,” IEEE Transactions on Network Science and Engineering, 2018.

[131] C.-H. Hong and B. Varghese, “Resource management in fog/edge computing: A sur-

vey,” arXiv preprint arXiv:1810.00305, 2018.

[132] Q. Zhu, B. Si, F. Yang, and Y. Ma, “Task offloading decision in fog computing

system,” China Communications, vol. 14, pp. 59–68, Nov 2017.

[133] C. Fricker, F. Guillemin, P. Robert, and G. Thompson, “Analysis of an offloading

scheme for data centers in the framework of fog computing,” ACM Trans. Model.

Perform. Eval. Comput. Syst., vol. 1, pp. 16:1–16:18, Sept. 2016.

[134] T. He, E. N. Ciftcioglu, S. Wang, and K. S. Chan, “Location privacy in mobile edge

clouds: A chaff-based approach,” IEEE Journal on Selected Areas in Communica-

tions, vol. 35, no. 11, pp. 2625–2636, 2017.

[135] M. Chen and Y. Hao, “Task offloading for mobile edge computing in software defined

ultra-dense network,” IEEE Journal on Selected Areas in Communications, vol. 36,

no. 3, pp. 587–597, 2018.

[136] N. K. Giang, M. Blackstock, R. Lea, and V. C. Leung, “Developing iot applications

in the fog: A distributed dataflow approach,” in 2015 5th International Conference

on the Internet of Things (IOT), pp. 155–162, IEEE, 2015.

180

[137] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the suitability of fog computing

in the context of internet of things,” IEEE Transactions on Cloud Computing, vol. 6,

no. 1, pp. 46–59, 2015.

[138] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner, “Optimized iot

service placement in the fog,” Service Oriented Computing and Applications, vol. 11,

pp. 427–443, Dec 2017.

[139] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A toolkit for

modeling and simulation of resource management techniques in the internet of things,

edge and fog computing environments,” Software: Practice and Experience, vol. 47,

no. 9, pp. 1275–1296, 2017.

[140] W. Shen, J. Yu, H. Xia, H. Zhang, X. Lu, and R. Hao, “Light-weight and privacy-

preserving secure cloud auditing scheme for group users via the third party medium,”

Journal of Network and Computer Applications, vol. 82, pp. 56 – 64, 2017.

[141] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos, “Fog orchestration

for internet of things services,” IEEE Internet Computing, vol. 21, pp. 16–24, Mar

2017.

[142] P. Liu, L. Hartung, and S. Banerjee, “Lightweight multitenancy at the network’s

extreme edge,” Computer, vol. 50, no. 10, pp. 50–57, 2017.

[143] K. Bhardwaj, J. C. Miranda, and A. Gavrilovska, “Towards iot-ddos prevention using

edge computing,” in USENIX Workshop on Hot Topics in Edge Computing (HotEdge

18), (Boston, MA), USENIX Association, 2018.

[144] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos, “Enorm: A framework

for edge node resource management,” IEEE Transactions on Services Computing,

pp. 1–1, 2018.

[145] C. Vallati, A. Virdis, E. Mingozzi, and G. Stea, “Exploiting lte d2d communications

in m2m fog platforms: Deployment and practical issues,” in 2015 IEEE 2nd World

Forum on Internet of Things (WF-IoT), pp. 585–590, Dec 2015.

181

[146] I. Azimi, A. Anzanpour, A. M. Rahmani, T. Pahikkala, M. Levorato, P. Liljeberg,

and N. Dutt, “Hich: Hierarchical fog-assisted computing architecture for healthcare

iot,” ACM Trans. Embed. Comput. Syst., vol. 16, pp. 174:1–174:20, Sept. 2017.

[147] E. K. Markakis, K. Karras, A. Sideris, G. Alexiou, and E. Pallis, “Computing, caching,

and communication at the edge: The cornerstone for building a versatile 5g ecosys-

tem,” IEEE Communications Magazine, vol. 55, pp. 152–157, Nov 2017.

[148] L. Chen and J. Xu, “Socially trusted collaborative edge computing in ultra dense

networks,” in Proceedings of the Second ACM/IEEE Symposium on Edge Computing,

SEC ’17, (New York, NY, USA), pp. 9:1–9:11, ACM, 2017.

[149] J. Ni, K. Zhang, X. Lin, and X. S. Shen, “Securing fog computing for internet of things

applications: Challenges and solutions,” IEEE Communications Surveys Tutorials,

vol. 20, pp. 601–628, Firstquarter 2018.

[150] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y. Xiang, and

R. Ranjan, “Fog computing: Survey of trends, architectures, requirements, and re-

search directions,” IEEE Access, vol. 6, pp. 47980–48009, 2018.

[151] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. Goren, and C. Mahmoudi, “Fog

computing conceptual model, recommendations of the national institute of standards

and technology,” NIST Special publication, pp. 500–325, 2018.

[152] V. Sarafov, “Comparison of iot data protocol overhead,” Proceedings of the Seminars

of Future Internet (FI) and Innovative Internet Technologies and Mobile Communi-

cation (IITM), 2018.

[153] A. Sheth, “Internet of things to smart iot through semantic, cognitive, and perceptual

computing,” IEEE Intelligent Systems, vol. 31, no. 2, pp. 108–112, 2016.

[154] Logicworks, “Why Vendor Lock-In Remains a Big Roadblock to Cloud Suc-

cess,” September 2016 (checked out in April 2017). www.cloudcomputing-

news.net/news/2016/sep/01/vendor-lock-in-is-big-roadblock-to-cloud-success-

survey-finds.

182

[155] X. Masip-Bruin, E. Maŕın-Tordera, G. Tashakor, A. Jukan, and G. Ren, “Foggy

Clouds and Cloudy Fogs: A Real Need for Coordinated Management of Fog-to-Cloud

Computing Systems,” IEEE Wireless Communications, vol. 5, no. 23, October 2016.

[156] A. Meola, “The Critical Role of Infrastructure in the Internet of Things,” (last

checked out October 2017) October 2016. uk.businessinsider.com/internet-of-things-

infrastructure-architecture-management-2016-10.

[157] H. Atlam, R. Walters, and G. Wills, “Fog computing and the internet of things: a

review,” Big Data and Cognitive Computing, vol. 2, no. 2, p. 10, 2018.

[158] S. Kumar, “Ping attack–how bad is it?,” Computers & Security, vol. 25, no. 5, pp. 332–

337, 2006.

[159] K. Gao, Q. Wang, and L. Xi, “Controlling moving object in the internet of things,”

International Journal of Advancements in Computing Technology, vol. 4, pp. 83–90,

03 2012.

[160] M. J. Canet, V. Almenar, J. Marin-Roig, and J. Valls, “Time synchronization for

the ieee 802.11a/g wlan standard,” in 2007 IEEE 18th International Symposium on

Personal, Indoor and Mobile Radio Communications, pp. 1–5, Sep. 2007.

[161] Y. Sahni, J. Cao, S. Zhang, and L. Yang, “Edge mesh: A new paradigm to enable

distributed intelligence in internet of things,” IEEE Access, vol. 5, pp. 16441–16458,

2017.

[162] M. A. Salahuddin, A. Al-Fuqaha, and M. Guizani, “Reinforcement learning for re-

source provisioning in the vehicular cloud,” IEEE Wireless Communications, vol. 23,

pp. 128–135, August 2016.

[163] G. Sun, L. Song, H. Yu, V. Chang, X. Du, and M. Guizani, “V2v routing in a vanet

based on the autoregressive integrated moving average model,” IEEE Transactions

on Vehicular Technology, vol. 68, no. 1, pp. 908–922, 2019.

[164] X. Jiang, H. S. Ghadikolaei, G. Fodor, E. Modiano, Z. Pang, M. Zorzi, and C. Fis-

chione, “Low-latency networking: Where latency lurks and how to tame it,” Proceed-

ings of the IEEE, vol. 107, no. 2, 2019.

183

[165] A. Bozorgchenani, D. Tarchi, and G. E. Corazza, “An energy and delay-efficient

partial offloading technique for fog computing architectures,” in GLOBECOM 2017 -

2017 IEEE Global Communications Conference, pp. 1–6, Dec 2017.

[166] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile edge com-

puting: Task allocation and computational frequency scaling,” IEEE Transactions on

Communications, vol. 65, pp. 3571–3584, Aug 2017.

[167] M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog computing for iot:

Review, enabling technologies, and research opportunities,” Future Generation Com-

puter Systems, vol. 87, pp. 278–289, 2018.

[168] R. Saini and M. Khari, “Defining malicious behavior of a node and its defensive

methods in ad hoc network,” International Journal of Computer ApplicationsApr;,

vol. 20, no. 4, pp. 18–21, 2011.

[169] A. Josang and R. Ismail, “The beta reputation system,” in In Proceedings of the 15th

bled electronic commerce conference, pp. 2502–2511, 5, Jun 17 2002.

[170] X. Yang, Y. Guo, Y. Liu, and H. Steck, “A survey of collaborative filtering based

social recommender systems,” Computer Communications, vol. 41, pp. 1–10, 2014.

[171] Y. Sahni, J. Cao, S. Zhang, and A. Yang L. Edge Mesh:, “new paradigm to enable

distributed intelligence in internet of things,” IEEE access, vol. 5, pp. 16441–58, 2017.

[172] A. Qureshi, Power-demand routing in massive geo-distributed systems. Massachusetts

Institute of Technology, 2010. Doctoral dissertation.

[173] J. Son, Integrated provisioning of compute and network resources in Software-Defined

Cloud Data Centers. PhD thesis, 2018.

[174] P. Delforge, “America’s data centers consuming and wasting growing amounts of

energy,” Natural Resource Defence Councle, 2014.

184

	Abstract
	Preface
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Introduction
	Motivation: cognitive, reliable and trusted fog
	Research Problem and Questions
	Thesis Aim and Objectives
	Research Methodology
	Contributions to Knowledge
	Thesis Organisation

	Background and Literature Review
	Introduction
	Background
	Internet of Things (IoT)
	Cloud Computing
	Fog Computing
	Cloud versus Fog Computing in IoT

	Cloud and Fog Co-Existence in IoT
	IoT and Data Processing Mediums Challenges
	IoT Challenges
	Cloud Challenges In IoT
	Fog Challenges In IoT

	Related Works
	Research Criteria
	Existing Work Limitations
	Gap Analysis

	Chapter Summary

	Design Principles and Preparation
	Introduction
	Fog Networks Architecture
	Network topology
	IoT services requests workflow

	Design Principles and Requirements
	Design Principles
	Fog Performance Requirements
	Fog Security Requirements

	Cognitive Fog Model
	Fog Cognition
	Fog Federation

	Case Study and Testbed Setup
	Case Study - Patients Monitoring
	Testbed and experiment configurations
	Performance evaluation

	Chapter Summary

	Collaboration Model of Fog and Cloud
	Introduction
	Collaboration Model of Fog and Cloud
	Foundations of fog-cloud collaboration model

	Criteria for Selecting Data Recipients
	System Evaluation
	Case Study - Healthcare
	Test-bed and experiment configurations
	Performance Evaluation

	Chapter Summary

	Coordination Model of Fog-to-Fog
	Introduction
	Fog Resource manAgeMEnt Scheme
	Fog management scheme
	Fog Workload Balancing

	Fog-2-Fog Coordination Model
	Network Model
	Service Delay
	Delay Sources
	Transmission Delay
	Propagation Delay
	Computational Delay
	Fog Workload
	Average Delay in a Fog Node
	Problem Formulation and Constraints
	Offloading Model

	System Evaluation
	Experiment Configurations
	Benchmark Algorithms
	Performance Evaluation and Discussion

	Chapter Summary

	Fog Computing Trust Management
	Introduction
	Fog Computing Trust Management Model
	Fog Performance: Safe Load Balancing
	Problem Formulation and Constraints
	Safe Offloading Model

	Fog interactions: Trust and Recommendation
	Trust - Direct Experiences
	Recommendations - Indirect Experiences
	Reputation Assessment

	System Evaluation
	Experiment Configurations
	Performance Evaluation and Discussion

	Chapter Summary

	Conclusions and Future Directions
	Conclusion
	Future Directions
	Final Remarks

