1,316 research outputs found

    Context gathering in Ubiquitous Environments: Enhanced Service Discovery

    Get PDF
    Delivering individualized services that conform to the user’s current situation will form the focus of ubiquitous environments. A description of the networked environment at a semantic level will necessitate contextually oriented knowledge acquisition methods. This then engenders unique challenges for the crucial step of resource discovery. A number of service discovery protocols exist to perform this role. In this paper, we identify the requirements inherent for such an environment and investigate the suitability of the available protocols against these. A suitable candidate solution is proposed with an implementation with semantic extensions and reference points for further enhancements

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Cross-Layer Routing Based on Semantic Web Services Discovery with Energy Evaluation and Optimization in MANET

    Get PDF
    The web services discovery process in mobile adhoc networks is considered as a very difficult challenge due to the continuous change in the topology of the network and also the lack of a fixed central directory for publishing web services. Several approaches have been proposed which are based on either keywords or identifiers representing the service to be searched or by using a specific scenario of discovery. All of those proposed solutions try to respect the constraints of ad hoc networks such as energy, bandwidth, throughput ... etc. In this paper we present our new proposed model for measuring the cost of the overall energy consumption in ad hoc networks depending on the web services discovery protocols. We also present a new optimized web services discovery protocol in MANET based on cross_layer routing techniques with the dissemination in the routing process at the same time the semantic web services information and a Discovery_Diameter parameter that we have proposed to limit the area of discovery in the network. Finally, we present simulation results of our defined approach showing a significant optimization of the energy consumption level and the average throughput

    Information-Centric Semantic Web of Things

    Get PDF
    In the Semantic Web of Things (SWoT) paradigm, a plethora of micro-devices permeates an environment. Storage and information processing are decentralized: each component conveys and even processes a (very) small amount of annotated metadata. In this perspective, the node-centric Internet networking model is inadequate. This paper presents a framework for resource discovery in semantic-enhanced pervasive environments leveraging an information-centric networking approach. Information gathered through different Internet of Things (IoT) technologies can be exploited by both ubiquitous and Web-based semantic-aware applications through a uniform set of operations. Experimental results and a case study support sustainability and effectiveness of the proposal

    Internet of Things Architectures, Technologies, Applications, Challenges, and Future Directions for Enhanced Living Environments and Healthcare Systems: A Review

    Get PDF
    Internet of Things (IoT) is an evolution of the Internet and has been gaining increased attention from researchers in both academic and industrial environments. Successive technological enhancements make the development of intelligent systems with a high capacity for communication and data collection possible, providing several opportunities for numerous IoT applications, particularly healthcare systems. Despite all the advantages, there are still several open issues that represent the main challenges for IoT, e.g., accessibility, portability, interoperability, information security, and privacy. IoT provides important characteristics to healthcare systems, such as availability, mobility, and scalability, that o er an architectural basis for numerous high technological healthcare applications, such as real-time patient monitoring, environmental and indoor quality monitoring, and ubiquitous and pervasive information access that benefits health professionals and patients. The constant scientific innovations make it possible to develop IoT devices through countless services for sensing, data fusing, and logging capabilities that lead to several advancements for enhanced living environments (ELEs). This paper reviews the current state of the art on IoT architectures for ELEs and healthcare systems, with a focus on the technologies, applications, challenges, opportunities, open-source platforms, and operating systems. Furthermore, this document synthesizes the existing body of knowledge and identifies common threads and gaps that open up new significant and challenging future research directions.info:eu-repo/semantics/publishedVersio

    Privacy conscious architecture for personal information transfer from a personal trusted device to an HTTP based service

    Get PDF
    Modern services request personal information from their customers. The personal information is not needed only for identifying the customer but also for customising the service for each customer. In this paper we first analyse the existing approaches for personal information handling and point out their weaknesses. We desribe an architecture for the delivery of personal information from the customer to the HTTP based service in the Internet. For personal information storing our architecture relies on a mobile device, such as a customer’s mobile phone. The access of the service is conducted with a traditional desktop computer. The information is transmitted to the service on request via a desktop computer that fetches the information from a mobile device over a wireless link. The goal of our approach is to simplify the use of services by helping the customer to provide the required personal information. Furthermore our approach is designed so that existing services require only minor changes. We introduce methods for the customer to control his own privacy by providing notation to define the required security measures for automated data transfer. Finally we discuss the possible security risks of our architecture

    Internet of Things Strategic Research Roadmap

    Get PDF
    Internet of Things (IoT) is an integrated part of Future Internet including existing and evolving Internet and network developments and could be conceptually defined as a dynamic global network infrastructure with self configuring capabilities based on standard and interoperable communication protocols where physical and virtual “things” have identities, physical attributes, and virtual personalities, use intelligent interfaces, and are seamlessly integrated into the information network
    corecore