1,220 research outputs found

    Mobile heritage practices. Implications for scholarly research, user experience design, and evaluation methods using mobile apps.

    Get PDF
    Mobile heritage apps have become one of the most popular means for audience engagement and curation of museum collections and heritage contexts. This raises practical and ethical questions for both researchers and practitioners, such as: what kind of audience engagement can be built using mobile apps? what are the current approaches? how can audience engagement with these experience be evaluated? how can those experiences be made more resilient, and in turn sustainable? In this thesis I explore experience design scholarships together with personal professional insights to analyse digital heritage practices with a view to accelerating thinking about and critique of mobile apps in particular. As a result, the chapters that follow here look at the evolution of digital heritage practices, examining the cultural, societal, and technological contexts in which mobile heritage apps are developed by the creative media industry, the academic institutions, and how these forces are shaping the user experience design methods. Drawing from studies in digital (critical) heritage, Human-Computer Interaction (HCI), and design thinking, this thesis provides a critical analysis of the development and use of mobile practices for the heritage. Furthermore, through an empirical and embedded approach to research, the thesis also presents auto-ethnographic case studies in order to show evidence that mobile experiences conceptualised by more organic design approaches, can result in more resilient and sustainable heritage practices. By doing so, this thesis encourages a renewed understanding of the pivotal role of these practices in the broader sociocultural, political and environmental changes.AHRC REAC

    Microcredentials to support PBL

    Get PDF

    Incremental schema integration for data wrangling via knowledge graphs

    Get PDF
    Virtual data integration is the current approach to go for data wrangling in data-driven decision-making. In this paper, we focus on automating schema integration, which extracts a homogenised representation of the data source schemata and integrates them into a global schema to enable virtual data integration. Schema integration requires a set of well-known constructs: the data source schemata and wrappers, a global integrated schema and the mappings between them. Based on them, virtual data integration systems enable fast and on-demand data exploration via query rewriting. Unfortunately, the generation of such constructs is currently performed in a largely manual manner, hindering its feasibility in real scenarios. This becomes aggravated when dealing with heterogeneous and evolving data sources. To overcome these issues, we propose a fully-fledged semi-automatic and incremental approach grounded on knowledge graphs to generate the required schema integration constructs in four main steps: bootstrapping, schema matching, schema integration, and generation of system-specific constructs. We also present NextiaDI, a tool implementing our approach. Finally, a comprehensive evaluation is presented to scrutinize our approach.This work was partly supported by the DOGO4ML project, funded by the Spanish Ministerio de Ciencia e Innovación under project PID2020-117191RB-I00, and D3M project, funded by the Spanish Agencia Estatal de Investigación (AEI) under project PDC2021-121195-I00. Javier Flores is supported by contract 2020-DI-027 of the Industrial Doctorate Program of the Government of Catalonia and Consejo Nacional de Ciencia y Tecnología (CONACYT, Mexico). Sergi Nadal is partly supported by the Spanish Ministerio de Ciencia e Innovación, as well as the European Union – NextGenerationEU, under project FJC2020-045809-I.Peer ReviewedPostprint (published version

    The Politics of Platformization: Amsterdam Dialogues on Platform Theory

    Get PDF
    What is platformization and why is it a relevant category in the contemporary political landscape? How is it related to cybernetics and the history of computation? This book tries to answer such questions by engaging in multidisciplinary dialogues about the first ten years of the emerging fields of platform studies and platform theory. It deploys a narrative and playful approach that makes use of anecdotes, personal histories, etymologies, and futurable speculations to investigate both the fragmented genealogy that led to platformization and the organizational and economic trends that guide nowadays platform sociotechnical imaginaries

    A Survey of Graph-based Deep Learning for Anomaly Detection in Distributed Systems

    Full text link
    Anomaly detection is a crucial task in complex distributed systems. A thorough understanding of the requirements and challenges of anomaly detection is pivotal to the security of such systems, especially for real-world deployment. While there are many works and application domains that deal with this problem, few have attempted to provide an in-depth look at such systems. In this survey, we explore the potentials of graph-based algorithms to identify anomalies in distributed systems. These systems can be heterogeneous or homogeneous, which can result in distinct requirements. One of our objectives is to provide an in-depth look at graph-based approaches to conceptually analyze their capability to handle real-world challenges such as heterogeneity and dynamic structure. This study gives an overview of the State-of-the-Art (SotA) research articles in the field and compare and contrast their characteristics. To facilitate a more comprehensive understanding, we present three systems with varying abstractions as use cases. We examine the specific challenges involved in anomaly detection within such systems. Subsequently, we elucidate the efficacy of graphs in such systems and explicate their advantages. We then delve into the SotA methods and highlight their strength and weaknesses, pointing out the areas for possible improvements and future works.Comment: The first two authors (A. Danesh Pazho and G. Alinezhad Noghre) have equal contribution. The article is accepted by IEEE Transactions on Knowledge and Data Engineerin

    Data ethics : building trust : how digital technologies can serve humanity

    Get PDF
    Data is the magic word of the 21st century. As oil in the 20th century and electricity in the 19th century: For citizens, data means support in daily life in almost all activities, from watch to laptop, from kitchen to car, from mobile phone to politics. For business and politics, data means power, dominance, winning the race. Data can be used for good and bad, for services and hacking, for medicine and arms race. How can we build trust in this complex and ambiguous data world? How can digital technologies serve humanity? The 45 articles in this book represent a broad range of ethical reflections and recommendations in eight sections: a) Values, Trust and Law, b) AI, Robots and Humans, c) Health and Neuroscience, d) Religions for Digital Justice, e) Farming, Business, Finance, f) Security, War, Peace, g) Data Governance, Geopolitics, h) Media, Education, Communication. The authors and institutions come from all continents. The book serves as reading material for teachers, students, policy makers, politicians, business, hospitals, NGOs and religious organisations alike. It is an invitation for dialogue, debate and building trust! The book is a continuation of the volume “Cyber Ethics 4.0” published in 2018 by the same editors

    Lifelong Learning in the Clinical Open World

    Get PDF
    Despite mounting evidence that data drift causes deep learning models to deteriorate over time, the majority of medical imaging research is developed for - and evaluated on - static close-world environments. There have been exciting advances in the automatic detection and segmentation of diagnostically-relevant findings. Yet the few studies that attempt to validate their performance in actual clinics are met with disappointing results and little utility as perceived by healthcare professionals. This is largely due to the many factors that introduce shifts in medical image data distribution, from changes in the acquisition practices to naturally occurring variations in the patient population and disease manifestation. If we truly wish to leverage deep learning technologies to alleviate the workload of clinicians and drive forward the democratization of health care, we must move away from close-world assumptions and start designing systems for the dynamic open world. This entails, first, the establishment of reliable quality assurance mechanisms with methods from the fields of uncertainty estimation, out-of-distribution detection, and domain-aware prediction appraisal. Part I of the thesis summarizes my contributions to this area. I first propose two approaches that identify outliers by monitoring a self-supervised objective or by quantifying the distance to training samples in a low-dimensional latent space. I then explore how to maximize the diversity among members of a deep ensemble for improved calibration and robustness; and present a lightweight method to detect low-quality lung lesion segmentation masks using domain knowledge. Of course, detecting failures is only the first step. We ideally want to train models that are reliable in the open world for a large portion of the data. Out-of-distribution generalization and domain adaptation may increase robustness, but only to a certain extent. As time goes on, models can only maintain acceptable performance if they continue learning with newly acquired cases that reflect changes in the data distribution. The goal of continual learning is to adapt to changes in the environment without forgetting previous knowledge. One practical strategy to approach this is expansion, whereby multiple parametrizations of the model are trained and the most appropriate one is selected during inference. In the second part of the thesis, I present two expansion-based methods that do not rely on information regarding when or how the data distribution changes. Even when appropriate mechanisms are in place to fail safely and accumulate knowledge over time, this will only translate to clinical usage insofar as the regulatory framework allows it. Current regulations in the USA and European Union only authorize locked systems that do not learn post-deployment. Fortunately, regulatory bodies are noting the need for a modern lifecycle regulatory approach. I review these efforts, along with other practical aspects of developing systems that learn through their lifecycle, in the third part of the thesis. We are finally at a stage where healthcare professionals and regulators are embracing deep learning. The number of commercially available diagnostic radiology systems is also quickly rising. This opens up our chance - and responsibility - to show that these systems can be safe and effective throughout their lifespan

    Application of knowledge management principles to support maintenance strategies in healthcare organisations

    Get PDF
    Healthcare is a vital service that touches people's lives on a daily basis by providing treatment and resolving patients' health problems through the staff. Human lives are ultimately dependent on the skilled hands of the staff and those who manage the infrastructure that supports the daily operations of the service, making it a compelling reason for a dedicated research study. However, the UK healthcare sector is undergoing rapid changes, driven by rising costs, technological advancements, changing patient expectations, and increasing pressure to deliver sustainable healthcare. With the global rise in healthcare challenges, the need for sustainable healthcare delivery has become imperative. Sustainable healthcare delivery requires the integration of various practices that enhance the efficiency and effectiveness of healthcare infrastructural assets. One critical area that requires attention is the management of healthcare facilities. Healthcare facilitiesis considered one of the core elements in the delivery of effective healthcare services, as shortcomings in the provision of facilities management (FM) services in hospitals may have much more drastic negative effects than in any other general forms of buildings. An essential element in healthcare FM is linked to the relationship between action and knowledge. With a full sense of understanding of infrastructural assets, it is possible to improve, manage and make buildings suitable to the needs of users and to ensure the functionality of the structure and processes. The premise of FM is that an organisation's effectiveness and efficiency are linked to the physical environment in which it operates and that improving the environment can result in direct benefits in operational performance. The goal of healthcare FM is to support the achievement of organisational mission and goals by designing and managing space and infrastructural assets in the best combination of suitability, efficiency, and cost. In operational terms, performance refers to how well a building contributes to fulfilling its intended functions. Therefore, comprehensive deployment of efficient FM approaches is essential for ensuring quality healthcare provision while positively impacting overall patient experiences. In this regard, incorporating knowledge management (KM) principles into hospitals' FM processes contributes significantly to ensuring sustainable healthcare provision and enhancement of patient experiences. Organisations implementing KM principles are better positioned to navigate the constantly evolving business ecosystem easily. Furthermore, KM is vital in processes and service improvement, strategic decision-making, and organisational adaptation and renewal. In this regard, KM principles can be applied to improve hospital FM, thereby ensuring sustainable healthcare delivery. Knowledge management assumes that organisations that manage their organisational and individual knowledge more effectively will be able to cope more successfully with the challenges of the new business ecosystem. There is also the argument that KM plays a crucial role in improving processes and services, strategic decision-making, and adapting and renewing an organisation. The goal of KM is to aid action – providing "a knowledge pull" rather than the information overload most people experience in healthcare FM. Other motivations for seeking better KM in healthcare FM include patient safety, evidence-based care, and cost efficiency as the dominant drivers. The most evidence exists for the success of such approaches at knowledge bottlenecks, such as infection prevention and control, working safely, compliances, automated systems and reminders, and recall based on best practices. The ability to cultivate, nurture and maximise knowledge at multiple levels and in multiple contexts is one of the most significant challenges for those responsible for KM. However, despite the potential benefits, applying KM principles in hospital facilities is still limited. There is a lack of understanding of how KM can be effectively applied in this context, and few studies have explored the potential challenges and opportunities associated with implementing KM principles in hospitals facilities for sustainable healthcare delivery. This study explores applying KM principles to support maintenance strategies in healthcare organisations. The study also explores the challenges and opportunities, for healthcare organisations and FM practitioners, in operationalising a framework which draws the interconnectedness between healthcare. The study begins by defining healthcare FM and its importance in the healthcare industry. It then discusses the concept of KM and the different types of knowledge that are relevant in the healthcare FM sector. The study also examines the challenges that healthcare FM face in managing knowledge and how the application of KM principles can help to overcome these challenges. The study then explores the different KM strategies that can be applied in healthcare FM. The KM benefits include improved patient outcomes, reduced costs, increased efficiency, and enhanced collaboration among healthcare professionals. Additionally, issues like creating a culture of innovation, technology, and benchmarking are considered. In addition, a framework that integrates the essential concepts of KM in healthcare FM will be presented and discussed. The field of KM is introduced as a complex adaptive system with numerous possibilities and challenges. In this context, and in consideration of healthcare FM, five objectives have been formulated to achieve the research aim. As part of the research, a number of objectives will be evaluated, including appraising the concept of KM and how knowledge is created, stored, transferred, and utilised in healthcare FM, evaluating the impact of organisational structure on job satisfaction as well as exploring how cultural differences impact knowledge sharing and performance in healthcare FM organisations. This study uses a combination of qualitative methods, such as meetings, observations, document analysis (internal and external), and semi-structured interviews, to discover the subjective experiences of healthcare FM employees and to understand the phenomenon within a real-world context and attitudes of healthcare FM as the data collection method, using open questions to allow probing where appropriate and facilitating KM development in the delivery and practice of healthcare FM. The study describes the research methodology using the theoretical concept of the "research onion". The qualitative research was conducted in the NHS acute and non-acute hospitals in Northwest England. Findings from the research study revealed that while the concept of KM has grown significantly in recent years, KM in healthcare FM has received little or no attention. The target population was fifty (five FM directors, five academics, five industry experts, ten managers, ten supervisors, five team leaders and ten operatives). These seven groups were purposively selected as the target population because they play a crucial role in KM enhancement in healthcare FM. Face-to-face interviews were conducted with all participants based on their pre-determined availability. Out of the 50-target population, only 25 were successfully interviewed to the point of saturation. Data collected from the interview were coded and analysed using NVivo to identify themes and patterns related to KM in healthcare FM. The study is divided into eight major sections. First, it discusses literature findings regarding healthcare FM and KM, including underlying trends in FM, KM in general, and KM in healthcare FM. Second, the research establishes the study's methodology, introducing the five research objectives, questions and hypothesis. The chapter introduces the literature on methodology elements, including philosophical views and inquiry strategies. The interview and data analysis look at the feedback from the interviews. Lastly, a conclusion and recommendation summarise the research objectives and suggest further research. Overall, this study highlights the importance of KM in healthcare FM and provides insights for healthcare FM directors, managers, supervisors, academia, researchers and operatives on effectively leveraging knowledge to improve patient care and organisational effectiveness
    corecore