
c© 2019 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions of
the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Access

Open Journal of Databases (OJDB)
Volume 6, Issue 1, 2019

http://www.ronpub.com/ojdb
ISSN 2199-3459

Ontology-Based Data Access to Big Data
Simon Schiff, Ralf Möller, Özgür L. Özçep

Institute of Information Systems (IFIS), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany,
{schiff, moeller, oezcep}@ifis.uni-luebeck.de

ABSTRACT

Recent approaches to ontology-based data access (OBDA) have extended the focus from relational database systems
to other types of backends such as cluster frameworks in order to cope with the four Vs associated with big data:
volume, veracity, variety and velocity (stream processing). The abstraction that an ontology provides is a benefit
from the enduser point of view, but it represents a challenge for developers because high-level queries must be
transformed into queries executable on the backend level. In this paper, we discuss and evaluate an OBDA system
that uses STARQL (Streaming and Temporal ontology Access with a Reasoning-based Query Language), as a high-
level query language to access data stored in a SPARK cluster framework. The development of the STARQL-SPARK
engine show that there is a need to provide a homogeneous interface to access both static and temporal as well as
streaming data because cluster frameworks usually lack such an interface. The experimental evaluation shows that
building a scalable OBDA system that runs with SPARK is more than plug-and-play as one needs to know quite well
the data formats and the data organisation in the cluster framework.

TYPE OF PAPER AND KEYWORDS

Regular Research Paper: streams, OBDA, big data, RDF, cluster framework, SPARK

1 INTRODUCTION

The information processing paradigm of ontology-based
data access (OBDA) [11] has gained much attention
in research groups working on description logics, the
semantic web, Datalog, and database systems. But
it has become of interest also for the industry [17],
mainly due to recent efforts of extending OBDA for
handling temporal data [6, 3] and stream data [13, 8, 28,
26, 17] as well as efforts of addressing the needs for
enabling statistical analytics: aggregation on concrete
domains, temporal operators, and operators for time-
series analysis etc. [16].

This paper is accepted at the Workshop on High-Level Declarative
Stream Processing (HiDeSt 2018) held in conjunction with the
41st German Conference on Artificial Intelligence (KI) in Berlin,
Germany. The proceedings of HiDeSt@KI 2018 are published in
the Open Journal of Databases (OJDB) as special issue.

In an OBDA system, different components have to
be set up, fined-tuned, and co-ordinated in order to
enable robust and scalable query answering: A query-
engine which allows formulating ontology-level queries;
a reformulation engine, which rewrites ontology-level
queries into queries covering the entailments of the tbox;
an unfolding mechanism that unfolds the queries into
queries of the backend data sources, and, finally, the
backend sources which contain the data.

Whereas in the early days of OBDA, the backend
sources were mainly simple relational database systems,
recent theoretical and practical developments on
distributed storage systems and their extensive use in
industry, in particular for statistical analytics on big data,
have also raised interest in using cluster frameworks as
potential backends in an OBDA system. As of now, a
lot of cluster frameworks and data stream management

21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RonPub -- Research Online Publishing

https://core.ac.uk/display/304105798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
http://www.ronpub.com/ojdb

Open Journal of Databases (OJDB), Volume 6, Issue 1, 2019

systems for processing streaming and static data have
been established. These provide APIs to programming
languages such as Java, Scala, Python but sometimes
also to declarative query languages such as SQL.
However, not all cluster frameworks are appropriate
backends for an OBDA system with analytics. Because
of this there are only few publications dealing with
OBDA for non-relational DBs, even fewer systems
using non-relational (cluster) frameworks, and actually
no OBDA system working with cluster frameworks
supporting real-time stream processing.

One of the current cluster frameworks that has
attracted much attention is the open source Apache
framework SPARK1. It is mainly intended for batch
processing big static data and comes with various
extensions and APIs (in particular an SQL API [2])
as well as useful libraries such as a machine learning
library. Recently added extensions of SPARK (such
as SPARKStream and SPARKStructuredStreaming) are
intended for designing systems for processing real-time
streams.

In this paper, we present our insights in designing and
experimentally evaluating an OBDA system that uses
SPARK as a backend system and the query language
STARQL [23, 26, 27, 22] as ontology-level query
language. We built a small prototype testing SPARK
as a potential backend for the STARQL query engine
based on the SPARK SQL API and evaluated it with
sensor-measurement data. The main scenarios were real-
time (continuous) querying and historical querying. In
historical querying one accesses historical, aka temporal
data, in a sequential manner from the backend source
(here SPARK). Historical querying can be used for
the purpose of reactive diagnostics where real-time
scenarios are re-produced by simulating a stream of data
read from the historical DB in order to diagnose potential
causes of faulty or erroneous behavior of monitored
systems. A detailed description of the results can be
found in the project deliverable 5.4 [25]. The software
as well as the underlying data are publicly available2.

The main insights are the following:

1. It means only moderate efforts to adapt an OBDA
engine that works with relational DBs or relational
data stream management systems to other backends
if these provide a robust SQL API. More concretely:
the STARQL OBDA engine developed in the
OPTIQUE project3, which works with ExaStream
[29, 19] as backend, and the stand-alone STARQL
prototype working with PostGreSQL as backend
were easily adapted to work with SPARK as

1 http://spark.apache.org/
2 https://github.com/SimonUzL/STARQL
3 http://optique-project.eu/

backend.

2. The resulting STARQL-SPARK query engine
shows similar performance in processing historical
data as the STARQL-ExaStream engine developed
in the OPTIQUE project and the STARQL-
PostGreSQL prototype. Nonetheless, reaching
this performance also depends on finding the
right configuration parameters when setting up the
cluster. Even then, SPARK showed memory leaks
which we explain by the fact that intermediate
tables are materialized and not maintained as views.

3. The stream processing capabilities of SPARK 2.0.0
and its extensions are either very basic, not fully
specified in their semantics or not fully developed
yet. In particular, we saw that a stream extension
of SPARK, called SPARKStream, offers only very
basic means for stream processing. It does not even
provide declarative means for specifying window
parameters. As it does not allow applying the SQL
API, window parameters have to be programmed
by hand. The SPARKStructuredStreaming
extension on the other hand, offers a new data
structure on top of SPARKStream that can be
used together with the SPARK SQL API. Hence,
SPARKStructuredStreaming is an appropriate
streaming backend with a declarative interface.
But in its current stadium in SPARK 2.0.0, it lacks
still most of the functionality, so that we could not
test it with the same parameters as used for the
STARQL-Ontop-ExaStream system. All in all one
has to deal separately with the access to historical
data and the access to real-time data. So it is a real
benefit to have an OBDA query language (such as
STARQL) with a semantics that works in the same
way for historical and streaming data.

2 OBDA WITH STARQL

STARQL (Streaming and Temporal ontology Access
with a Reasoning-based Query Language) is a stream-
temporal query framework that was implemented as a
submodule of the OPTIQUE software platform [14, 16,
17] and in various stand-alone prototypes described in
[20, 22]. It extends the paradigm of ontology-based data
access OBDA [11] to temporal and streaming data.

The main idea of OBDA query answering is to
represent the knowledge of the domain of interest in
a declarative knowledge, aka ontology, and access the
data via a high-level query that refers to the ontology’s
vocabulary, aka signature. The non-terminological part
of the ontology, called the abox, is a virtual view of
the data produced by mapping rules. Formulated in a

22

http://spark.apache.org/
https://github.com/SimonUzL/STARQL
http://optique-project.eu/

S. Schiff, R. Möller, Ö. L. Özçep: Ontology-Based Data Access to Big Data

description logic, the abox can have many different first-
order logic (FOL) models that represent the possible
worlds for the domain of interest. These can be
constrained to intended ones by the so-called tbox, which
contains the terminological part of the ontology.

In classical OBDA, query answering w.r.t. the
ontology consists mainly of three steps. The ontology-
level query is rewritten into a new query in which the
consequences of the tbox are compiled into the query.
Then, the rewritten query, which is an FOL query, is
unfolded w.r.t. the mapping rules into a query of the
data source, e.g., a relational database. This query is
evaluated and the answers are returned as answers of the
original query.

In the following, we illustrate the different OBDA
aspects that are implemented in STARQL with a small
example query which was also used (in a slightly simpler
form) in our experimental evaluation in a measurement
scenario as query MonInc. Thereby we will recapitulate
shortly the main bits of the syntax and semantics of
STARQL. Detailed descriptions of the syntax and its
denotational semantics can be found in [26, 23, 24].

The STARQL query in Figure 1 formalizes a typical
information need: Starting with the 21st of November
2015, output every minute those temperature sensors
in the measurement stream Meas whose value grew
monotonically in the last 6 minutes and declare them as
sensors with a recent monotonic increase.

Many keywords and operators in the STARQL query
language are borrowed—and hence should be known—
from the standard web language SPARQL4, but there
are some specific differences, in particular w.r.t. the
HAVING clause in conjunction with a sequencing
strategy.

Prefix declarations (l. 1) work in the same way as
in SPARQL. Streams are created using the keyword
CREATE STREAM. The stream is given a specific
name (here Sout) that can be referenced in other
STARQL queries. The CONSTRUCT operator (l. 7) fixes
the required format of the output stream. STARQL
uses the named-graph notation of SPARQL for fixing
a basic graph pattern (BGP) and for attaching a time
expression to it, either NOW for the running time as in
the CONSTRUCT operator, or a state index i, j as in the
HAVING clause (l. 15).

The resources to which the query refers are specified
using the keyword FROM (l. 8). Following this keyword
one may specify one or more input streams (by names
or further stream expressions) and, optionally, URIs
references to a tbox and one or more static aboxes. In
this example, only one stream is referenced, the input
stream named Meas. The tbox contains terminological

4 https://www.w3.org/TR/rdf-sparql-query/

knowledge, in particular, it contains axioms stating
that all temperature sensors are sensors and that all
burner-tip temperature sensors are temperature sensors.
Factual knowledge on the sensors is stored in the (static)
aboxes. For example, the abox may contain assertions {
:tcc125 a BttSensor, :tcc125 :attached
:c1, c1 :loc assembly1 } stating that there
is a burner tip temperature sensor named tcc125
that is attached to some component c1 located at
assembly1. There is no explicit statement that tcc125
is a temperature sensor, this can be derived only with the
axioms of the tbox—hence rewriting the query is needed
in order to capture all relevant answers.

The input streams consist of timestamped RDF tuples
(again represented by named-graphs). The measurement
stream Meas here consists of timestamped BGPs of
the form GRAPH t1 { ?s :hasVal ?y } stating
that ?s has value ?y at time t1. The input
streams can either be materialized RDF streams or,
following the classical OBDA approach, virtual RDF
streams: They are defined as views via mapping
rules on relational streams of the backend system.
For example, assuming a relational measurement
stream Measurement (time,sensor,value) a
mapping rule as shown in Figure 2 generates a (virtual)
stream of timestamped RDF triples of the mentioned
form.

The window operator [NOW - "PT6M", NOW]
-> "PT1M" following the input stream gives snapshots
of the stream with the slide of 1 minute and range of 6
minutes (all stream elements within last 6 minutes).

The WHERE clause (line 12) specifies the sensors ?s
that the information need asks for, namely temperature
sensors. It is evaluated against the static abox(es)
only. The stream-temporal conditions are specified in
the HAVING clause (lines 14–16). In this example the
condition is the formalization of the monotonic increase
of the values. A sequencing method (here the built-in
standard sequencing StdSeq) maps an input stream to a
sequence of aboxes (annotated by states i,j) according
to a grouping criterion. In standard sequencing all stream
elements with the same timestamp are put into the same
state mini abox. Testing for conditions at a state is
done with the SPARQL sub-graph mechanism. So, e.g.,
GRAPH i {?s :hasVal ?x } (l. 15) asks whether
?s shows value ?y at state i.

The evolvement of the time NOW is specified in the
pulse declaration (l. 4). It is meant to describe the times
on which data are put into the output stream. The role
of the pulse is to synchronize the different input streams,
which may have different slides attached to them. In our
example, the information need is meant to be applied
on historical data, i.e., data stored in a static database
with a dedicated time column. Hence one can specify a

23

https://www.w3.org/TR/rdf-sparql-query/

Open Journal of Databases (OJDB), Volume 6, Issue 1, 2019

1 PREFIX : <http://www.siemens.com/Optique/OptiquePattern#>
2 CREATE PULSE pulseA WITH
3 START = "2015-11-21T00:00:00CEST"ˆˆXSD:DATETIME
4 FREQUENCY = "PT1M"ˆˆXSD:DURATION
5

6 CREATE STREAM Sout AS
7 CONSTRUCT GRAPH NOW { ?s a :RecentMonInc }
8 FROM STREAM Meas [NOW - "PT6M"ˆˆXSD:DURATION, NOW] -> "PT1M"ˆˆXSD:DURATION,
9 STATIC ABOX <http://www.siemens.com/Optique/OptiquePattern/Astatic>,

10 TBOX <http://www.siemens.com/Optique/OptiquePattern/tbox>
11 USING PULSE pulseA
12 WHERE {?s a :TemperatureSensor}
13 SEQUENCE BY StdSeq AS SEQ1
14 HAVING FORALL i, j IN SEQ1 ?x,?y(
15 IF ((GRAPH i { ?s :hasVal ?x } AND GRAPH j { ?s :hasVal ?y }) AND i < j)
16 THEN ?x <= ?y)

Figure 1: STARQL Query monotonic increasing

GRAPH t { s :hasVal v } ←−
select sensor as s, time as t,
value as v from Measurement

Figure 2: Example mapping rule

START date (l. 3) from which on to start the streaming.
But sometimes the same information need is required
on real-time data. In this case, in essence, the same
STARQL query can be used by dropping the START
keyword. In particular STARQL offers the possibility to
integrate real-time data with historic data (as described
in [15]). Such a homogeneous interface is a real benefit
for engineers which aim at sophisticated predictions on
real-time data based on recorded streams.

3 APACHE SPARK CLUSTERS

Apache SPARK is a cluster computing framework
which has recently gained much interest because it
shows scalability and robustness performances in the
range of MapReduce [12] (or outperforms it according
to [30]) and because it comes with a useful set of
APIs, in particular two APIs used in our experimental
evaluations: SPARK SQL, which provides an API
to relational data with queries written in SQL, and
SPARKStream which allows accessing streams from
Kafka, Flume, HDFS, TCP ports or the local file system.
In the following we sketch the necessary bits of the
SPARK architecture and its extensions that are needed
to understand our experimental evaluations.

A SPARK cluster consists of one master and many
workers that communicate with the master via SSH.
Applications on a cluster are initiated by a script. The

so-called driver program, which is running on the master
node, coordinates and manages the process on the
workers. It starts the main method of the application
program. The driver program requests all available
executors via the cluster manager which runs on the
workers. Subsequently, the program code is transmitted
to the executor and tasks are started. Results of the
workers are received back to the driver program. In
order to process the data, the executor must have access
to a shared file system. In our experiments, we used
the Hadoop File System (HDFS) which provides a
sophisticated blockwise storage of data on the workers.

Unlike applications that were written for a Hadoop
cluster and that use MapReduce, within a SPARK cluster
interim results can be kept in main memory. This
prevents slow read/write operations from/to the hard
disk. Furthermore lost intermediate results can be
calculated again in parallel by other nodes in case a
worker node fails. SPARK provides an abstraction
model called Resilient Distributed Datasets (RDD)
which hides from the developer potential node failures.
An RDD is a very basic data structure divided into
partitions. The partitions are distributed to the worker
nodes and can be processed in parallel.

RDDs can be generated from data stored in a file
system or can be the result of applying operations to
other RDDs. Those operations are either transformations
or actions. The main difference is that SPARK only
remembers transformations in a lineage but does not
compute them. Only if an action has to be processed
does the cluster become active and starts calculating all
transformations up to the action (inclusively). Examples
of transformations are map(f), which maps every element
e to f(e) in the new RDD, or filter(f), which filters all
elements according to a Boolean condition f , and many
more. Examples of actions are collect(), which sends all
elements of an RDD to the driver program, or count(),

24

S. Schiff, R. Möller, Ö. L. Özçep: Ontology-Based Data Access to Big Data

which returns the number of elements in an RDD.

The API SPARK SQL uses DataFrames as the
abstraction model in the same way SPARK uses RDDs.
DataFrames can be regarded as RDDs of row objects.
Internally, however, these are stored column wise and
the row objects are calculated only if the user wants to
access them via the respective Java, Scala or Python
API. This storage type is much more compact than
that of using Java/Python objects, which is a big
advantage for in-memory processing. DataFrames can
be obtained from existing RDDs or from various sources.
Unlike the RDDs, they have a schema similar to a
table in a database. All common SQL data types are
supported, such as Double, Decimal, String, Timestamp
and Boolean. Similar to RDDs, DataFrames are
calculated only when actions are applied. The resulting
optimizations are handled for DataFrames with a special
optimizer called Catalyst.

The main abstract data model of the API
SPARKStream is a DStream which is defined as a
(potentially infinite) sequence of RDDs. A DStream
can be built from various resources such as a TCP port,
Kafka, Flume or from HDFS. The grouping of elements
into a RDD is specified with a time interval. Moreover,
SPARKStream provides a window operator with a
range (width of window) and a slide (update frequency)
parameter.

SPARKStream has several drawbacks. DStreams
consists of a sequence of RDDs which are low level
data structures. In particular, RDDs do not have
schemes associated with them so they are not directly
available for SQL processing. Hence, they would have
to be transformed to DStreams with a specified schema.
Another drawback is that SPARKStream does not handle
asynchronous streams. Because of these reasons a new
streaming library called SPARKStructuredStreaming
was developed. It is part of the SPARK 2.0.0 release
and was in alpha stadium when we experimented
with it. SPARKStructuredStreaming still relies on
DataFrames. But note that DataFrames can be
generated not only from static data but also from
streaming data. Unfortunately, the set of operations
provided for DataFrames that are produced from streams
does not cover (yet) all operations for DataFrames
that are produced from static data. So, e.g., it
is still not possible to join two DataFrames coming
from streams. SPARKStructuredStreaming provides a
window operator with a range and a slide parameter. But
now the contents of the window operator are determined
by the timestamps of the data elements and not by their
arrival order.

4 STARQL-SPARK ENGINE:
IMPLEMENTATION & TESTS

We implemented a prototypical application for a stream-
temporal query answering system using STARQL as the
query language, Ontop [10] for rewriting (and partly for
unfolding) and SPARK 2.0.0 as the backend system. As
in the case of the sub-module of the OPTIQUE platform,
this software allows answering historical queries as well
as continuous queries over realtime streams.

All tests were conducted with 9 virtual machines
(VMs) where one was the master and all others were
workers (see Figure 3). The master runs on a PowerEdge
R530 server which has two Intel Xeon E5-2620 v3
processors 2,4GHz with 6 Core / 12 threads and 64 GB
DDR4-SDRAM. 8 worker VMs are run on a PowerEdge
C6320 with four data nodes. The data nodes have 2
Intel Xeon E5-2620 v3 processors 2,4GHz, 6 Core / 12
threads and 32 GB DDR4-SDRAM, resp. On all data
nodes VMWare ESXi 6.0 is run. The ESXi is booted
by SD (R530), SSD (C6320), resp. Every data node
may use 2TB (2x2TB as RAID 1) for virtual data file
systems (VMFS). The RAID controller are Dell PERC
H330. Additionally, every VM may access 1 TB storage
as RAID 0. The data nodes are connected via an 10 Gbit
Ethernet to the server. As switch a Netgear XS708E is
used. All VMs use VLAN with MTU 9000. The master
has 8 cores and 8 GB ram. Each worker VM has 4 cores
and 8 GB ram. On every data node two VMs are running.
For the tests we used the Hadoop File System. Though
replication is possible in Hadoop, for our tests we did not
replicate data on the nodes in order to save space. This
caused no problem as no node was down in the tests.

Within the tests we used four different STARQL
queries three of which are linear and one is quadratic.
The listings for the queries can be found on the website
of this engine5. Here we describe them shortly:

• Filter: The linear threshold query asks for all
sensors with name TC258 and temperature value
smaller than 999.

• Max: The maximum query asks for the current
maximum value and all maximum values within the
last 5 minutes for all sensors.

• TempPeaks: The linear peak query asks for all
temperature peaks in all sensors.

• MonInc: The quadratic monotonic increase query
asks for all sensors showing a monotonic increase
of the temperature.

5 https://github.com/SimonUzL/STARQL

25

https://github.com/SimonUzL/STARQL

Open Journal of Databases (OJDB), Volume 6, Issue 1, 2019

spark00

spark02

spark06

spark03

spark07

spark01

spark05

spark04

spark08
data node data node data node data node

Hadoop File System (HDFS)

Figure 3: Spark cluster configuration for tests

Assembly(Id,Name) Assemblypart(Id,Name,Part)
Sensor(Id,Assemblypart,Name,Type) Measurement(Timestamp,Sensor,Value)

Figure 4: Schema for sensor data

For testing historical processing we used a
PostGreSQL DB with a simple schema given in
Figure 4.

The sensor data for the Measurement table were
generated randomly with a java method. We produced
four different sized CSV files in plain ASCII text with 17
sensors and temperature values between 4◦C and 126◦C
for every minute.

As in other OBDA based systems one has to specify
next to the data source also mappings and the ontology.
These can be found on the accompanying website to
this paper. The ontology is in DL-lite and covers a
simple hierarchy of sensors and values. The data are read
in via a SPARK API from a PostGreSQL DB and are
stored in HDFS. For the latter, the so-called Parquet data
format with Snappy compression6 is used. The Snappy
compression is tailored towards time minimization and
not towards space minimization. Nonetheless, within the
tests Snappy was able to compress the data to 25 % of
the original size.

All data such as those from the PostGreSQL table
Measurement are registered via a name in a catalog
such that they can be referenced within SQL queries.
Then, all SQL queries resulting from a transformation of
the STARQL queries are executed in a loop. All interim
results of the SQL queries are calculated and stored with
their name in the catalog. Only for the measurement data
a non-SQL construct was used: In order to group the data
w.r.t. the specified window intervals, we relied on the
SPARKStructuredStreaming window described before.

For an adequate comparison of SPARK SQL with
PostGreSQL w.r.t. query answering times we set up next
to the SPARK cluster configuration mentioned above
also a SPARK configuration using only one core of the

6 https://google.github.io/snappy/

processor on the master VM because PostGreSQL can
use only one core per session. Moreover, PostGreSQL
was also installed on the master VM.

For the comparison we used two different files with
randomly generated measurements, a 2,7 MB file and a
1 GB file. As can be seen from Table 1, SPARK manages
to process the 1 GB data file faster than PostGreSQL
does—even if configured to use one core only. Only
in case of the Filter query, PostGreSQL is faster than
SPARK with one core. An explanation for this is that
there is an index over the data with which PostGreSQL
finds relevant data quite faster than SPARK—SPARK
does not provide means of indexing. This latter fact of
SPARK being slower than PostGreSQL in answering the
Filter query holds also for the smaller data file. Even
more it is also slower regarding the TempPeaks query.
If one uses the whole cluster then SPARK in general is
slower than PostGreSQL due to the overhead produced
by scheduling, starting the tasks, and moving the data
around within the cluster.

We tested the scalability of the SPARK cluster by
rising the number of worker VMs. For this, SPARK
was configured such that on every VM one worker with
4 executors was started. Every executor is assigned
one of the four available cores. In order to assign also
the operating system ram, only 6 GB of the 8 GB was
assigned to the worker. Only 1TB hard disk of SPARK
was used to store interim results from the ram. So, no
two VMs have written jointly on a disk.

As illustrated in Figure 5(a) the query answering times
decrease with increasing number of worker VMs up to
some limit number. In case of the GB data file this limit
is given by 4 nodes. Using more than 4 nodes makes the
query answering times even worse—which may be due
to the order in which the worker VMs were chosen. Pairs
of workers are running on a data node. During the test

26

https://google.github.io/snappy/

S. Schiff, R. Möller, Ö. L. Özçep: Ontology-Based Data Access to Big Data

Table 1: Using PostGreSQL vs. SPARK SQL as backend for 1 GB & 2,7 MB data

Query PostGreSQL SPARK with 1 core SPARK cluster data size
Filter 12min 33sec 20min 41sec 5min 24sec

MonInc 4h 17min 7sec 1h 31min 34sec 11min 29sec
Max > 40h 2h 5min 9sec 16min 56sec 1 GB

TempPeaks 4h 3min 58sec 1h 43m 23sec 10min 13sec
Filter 2sec 12sec 17sec

MonInc 34sec 25sec 36sec
Max 3min 45s 26sec 34sec 2,7 MB

TempPeaks 10sec 20sec 27sec

(a) Scalability w.r.t. STARQL query TempPeak

(b) SQL query with a Group By

Figure 5: Scalability test results

27

Open Journal of Databases (OJDB), Volume 6, Issue 1, 2019

SELECT sensor, avg(value),
max(value), count(value)

FROM measurement
GROUP BY sensor

Figure 6: Test SQL query on measurement data

the VMs were chosen such that no two of them access
the data on the data node at the same time. The pairs of
workers have a common hard disk controller and use the
same network adapter.

Figure 5(b) shows the results of running a simple SQL
query (Figure 6) on the 1 GB file with Measurement
data: This query leads to heavy data load in the cluster
network. Here we used the same order of choosing the
workers as for the experiment from Figure 5(a). Indeed,
starting from 4 nodes the response times increase. For
larger data files (2 GB say) this is mitigated.

Whereas the tests for historical reasoning reported
above were conducted on randomly generated
measurement data, the results reported in the following
concern a fragment of the large data set which was
provided by SIEMENS on a hard disk in the OPTIQUE
project. For the tests with SPARK we took a 69 GB
file containing anonymized measurement data of 3900
sensors in a range of 6 years. Next to the concrete
query answering times for the 69 GB data set, we give
in Table 2 rough estimations of the required query
answering times interpolated to the 1.5TB data set, the
full set of SIEMENS data. We used the four STARQL
queries mentioned before.

Considering the query answering times, one can see
that there are still opportunities for optimizations of the
STARQL + Ontop + SPARK engine. In particular, for
the big data set we realized that we could not use the
configuration that was used in case of the PostGreSQL
backend. Successful query answering without crashes
over the 69 GB data set was possible only with a new
configuration. A look in the logs revealed that some
partitions could not be found. The reason was that some
of the nodes were overloaded with processing their jobs
so that they could not react to requests of other nodes
in time. Because of this fact we configured the SPARK
cluster such that every executor is allowed to use only
3 of 4 cores. Furthermore every VM was given 12 GB
RAM instead of 8 GB so that the operating system could
use 4 GB and rely on one core.

For the queries Filter, MonInc, and TempPeaks
we made further configuration changes: The
spark.reducer.maxSizeInFlight specifies
the buffer size of each task. It was decreased from
48m to 4m. The spark.default.parallelism

parameter determines the possible number of partitions
of the results. It was set to 10000.

For the Max query even these adaptations could
not prevent memory out of bound exceptions. Hence
spark.default.parallelism was increased to
30000 and spark.shuffle.partitions was set
to 3000. With the latter, smaller partitions are kept within
the shuffle phase in the working memory.

SPARKStream provides an API to realtime data. As
mentioned before, a drawback of SPARKStream is the
fact that it supports only RDDs and not DataFrames,
which are required in order to apply SPARK SQL.
Hence, first, one has to transform RDDs to DataFrames,
second, query the DataFrames with SPARK SQL
querying and then retransform into RDDs. But as
DataFrames have schemes this means that one has to
invent a schema before the SPARK application can be
run.

In order to test the streaming application, we wrote
a small temperature value software that generates every
minute some random temperature value where the
number of sensors can be chosen by the user of the
generator. For all queries the window was specified with
a one-minute update. The query answering times for
queries MonInc and TempPeaks are proportional to the
number of sensors (see Figure 7).

5 RELATED WORK

With its unique features partly illustrated above, namely
its sequencing operation, its support of time-series
functions, and its specific (window) semantics, previous
STARQL engines complemented the collection of state-
of-the-art RDF stream processing engines, among them
the engines for the languages C-SPARQL [4], CQELS
[28], SPARQLStream [8], EP-SPARQL [1], TEF-
SPARQL [18] and StreamQR [9]. An overview of all
features supported by the STARQL in comparison to
other RDF stream engines can be found in [17].

With the new OBDA system on the basis of STARQL
and SPARK we provide one of the few OBDA
implementations that use a non-relational database
system as backend. [7] reports on a OBDA system using
the NoSQL MongoDB. [21] and [5] give theoretical
considerations on how to handle NoSQL DBs that are
based on key-value records. Our system is unique in
that it exploits the streaming capabilities of a cluster
framework used as backend system.

6 CONCLUSION

This paper described a proof-of-concept implementation
of an OBDA system that uses a cluster framework as

28

S. Schiff, R. Möller, Ö. L. Özçep: Ontology-Based Data Access to Big Data

Table 2: Query answering times for SIEMENS measurement data

Query SPARK with 69 GB Estimation for SPARK with 1.5 TB
Filter 5h 27m 43s 5d

MonInc 25h 25m 8s 23d
Max 19h 36m 9s 18d

TempPeaks 26h 51m 34s 25d

Figure 7: Query answering times depending on number of sensors

a backend. As we relied on the SQL API of the
SPARK framework, the adaptation of an already present
OBDA system is easy. But guaranteeing scalable query
answering requires tuning of various parameters of the
cluster. And even then, it is not guaranteed to have
achieved the possible optimum which would require
using native operators on the backend instead of the
SQL API. In future work we plan to address a direct
compilation of STARQL to native SPARK functions on
RDDs. An additional item for future work is to use
SPARKStructuredStreaming instead of SPARKStream
as backend.

REFERENCES

[1] D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic,
“Ep-sparql: a unified language for event processing
and stream reasoning,” in WWW, 2011, pp. 635–
644.

[2] M. Armbrust, R. S. Xin, C. Lian, Y. Huai,
D. Liu, J. K. Bradley, X. Meng, T. Kaftan,

M. J. Franklin, A. Ghodsi, and M. Zaharia,
“Spark SQL: Relational data processing in spark,”
in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
ser. SIGMOD ’15. New York, NY, USA: ACM,
2015, pp. 1383–1394.

[3] A. Artale, R. Kontchakov, F. Wolter, and
M. Zakharyaschev, “Temporal description logic for
ontology-based data access,” in IJCAI 2013, 2013,
pp. 711–717.

[4] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and
M. Grossniklaus, “C-sparql: a continuous query
language for rdf data streams,” Int. J. Semantic
Computing, vol. 4, no. 1, pp. 3–25, 2010.

[5] M. Bienvenu, P. Bourhis, M. Mugnier, S. Tison,
and F. Ulliana, “Ontology-mediated query
answering for key-value stores,” in Proceedings of
the Twenty-Sixth International Joint Conference
on Artificial Intelligence, C. Sierra, Ed., 2017, pp.
844–851.

29

Open Journal of Databases (OJDB), Volume 6, Issue 1, 2019

[6] S. Borgwardt, M. Lippmann, and V. Thost,
“Temporal query answering in the description logic
DL-Lite,” in FroCos 2013, ser. LNCS, vol. 8152,
2013, pp. 165–180.

[7] E. Botoeva, D. Calvanese, B. Cogrel, M. Rezk,
and G. Xiao, “OBDA beyond relational DBs:
A study for MongoDB,” in Proceedings of the
29th International Workshop on Description Logics
(DL 2016), vol. 1577, 2016.

[8] J.-P. Calbimonte, O. Corcho, and A. J. G. Gray,
“Enabling ontology-based access to streaming data
sources,” in Proceedings of the 9th international
semantic web conference on The semantic web -
Volume Part I, ser. ISWC’10, Berlin, Heidelberg,
2010, pp. 96–111.

[9] J.-P. Calbimonte, J. Mora, and O. Corcho, “Query
rewriting in rdf stream processing,” in Proceedings
of the 13th International Conference on The
Semantic Web. Latest Advances and New Domains
- Volume 9678. Berlin, Heidelberg: Springer-
Verlag, 2016, pp. 486–502.

[10] D. Calvanese, B. Cogrel, S. Komla-Ebri,
R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-
Muro, and G. Xiao, “Ontop: Answering SPARQL
queries over relational databases,” Semantic Web,
vol. 8, no. 3, pp. 471–487, 2017.

[11] D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, A. Poggi, M. Rodrı́guez-Muro, and
R. Rosati, “Ontologies and databases: The DL-
Lite approach,” in 5th Int. Reasoning Web Summer
School (RW 2009), ser. LNCS. Springer, 2009,
vol. 5689, pp. 255–356.

[12] J. Dean and S. Ghemawat, “Mapreduce: Simplified
data processing on large clusters,” in OSDI, 2004,
pp. 137–150.

[13] E. Della Valle, S. Ceri, D. Barbieri, D. Braga,
and A. Campi, “A first step towards stream
reasoning,” in Future Internet – FIS 2008, ser.
LNCS. Springer, 2009, vol. 5468, pp. 72–81.

[14] M. Giese, A. Soylu, G. Vega-Gorgojo, A. Waaler,
P. Haase, E. Jiménez-Ruiz, D. Lanti, M. Rezk,
G. Xiao, Ö. L. Özçep, and R. Rosati, “Optique:
Zooming in on big data,” IEEE Computer, vol. 48,
no. 3, pp. 60–67, 2015.

[15] E. Kharlamov, S. Brandt, E. Jiménez-
Ruiz, Y. Kotidis, S. Lamparter, T. Mailis,
C. Neuenstadt, Ö. L. Özçep, C. Pinkel, C. Svingos,
D. Zheleznyakov, I. Horrocks, Y. E. Ioannidis,
and R. Möller, “Ontology-based integration
of streaming and static relational data with
optique,” in Proceedings of the 2016 International

Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June
26 - July 01, 2016, F. Özcan, G. Koutrika, and
S. Madden, Eds. ACM, 2016, pp. 2109–2112.

[16] E. Kharlamov, Y. Kotidis, T. Mailis, C. Neuenstadt,
C. Nikolaou, Ö. L. Özçep, C. Svingos,
D. Zheleznyakov, S. Brandt, I. Horrocks, Y. E.
Ioannidis, S. Lamparter, and R. Möller, “Towards
analytics aware ontology based access to static and
streaming data,” in The Semantic Web - ISWC 2016
- 15th International Semantic Web Conference,
Kobe, Japan, October 17-21, 2016, Proceedings,
Part II, ser. Lecture Notes in Computer Science,
P. T. Groth, E. Simperl, A. J. G. Gray, M. Sabou,
M. Krötzsch, F. Lécué, F. Flöck, and Y. Gil, Eds.,
vol. 9982, 2016, pp. 344–362.

[17] E. Kharlamov, T. Mailis, G. Mehdi, C. Neuenstadt,
O. L. Özçep, M. Roshchin, N. Solomakhina,
A. Soylu, C. Svingos, S. Brandt, M. Giese,
Y. Ioannidis, S. Lamparter, R. Möller, Y. Kotidis,
and A. Waaler, “Semantic access to streaming and
static data at Siemens,” Web Semantics: Science,
Services and Agents on the World Wide Web,
vol. 44, pp. 54–74, 2017.

[18] J.-U. Kietz, T. Scharrenbach, L. Fischer, M. K.
Nguyen, and A. Bernstein, “Tef-sparql: The ddis
query-language for time annotated event and fact
triple-streams,” University of Zurich, Department
of Informatics (IFI), Tech. Rep. IFI-2013.07, 2013.

[19] H. Kllapi, P. Sakkos, A. Delis, D. Gunopulos,
and Y. Ioannidis, “Elastic processing of analytical
query workloads on iaas clouds,” arXiv preprint
arXiv:1501.01070, 2015.

[20] R. Möller, C. Neuenstadt, and Özgür. L. Özçep,
“Deliverable D5.2 – OBDA with temporal and
stream-oriented queries: Optimization techniques,”
EU, Deliverable FP7-318338, October 2014.

[21] M. Mugnier, M. Rousset, and F. Ulliana,
“Ontology-mediated queries for NOSQL
databases,” in Proceedings of the 29th
International Workshop on Description Logics,
Cape Town, South Africa, April 22-25, 2016.,
M. Lenzerini and R. Peñaloza, Eds., vol. 1577,
2016.

[22] C. Neuenstadt, R. Möller, and Özgür. L. Özçep,
“OBDA for temporal querying and streams with
STARQL,” in HiDeSt ’15—Proceedings of the
First Workshop on High-Level Declarative Stream
Processing (co-located with KI 2015), ser. CEUR
Workshop Proceedings, D. Nicklas and Özgür. L.
Özçep, Eds., vol. 1447. CEUR-WS.org, 2015, pp.
70–75.

30

S. Schiff, R. Möller, Ö. L. Özçep: Ontology-Based Data Access to Big Data

[23] Ö. L.. Özçep and R. Möller, “Ontology based
data access on temporal and streaming data,” in
Reasoning Web. Reasoning and the Web in the Big
Data Era, ser. Lecture Notes in Computer Science,
M. Koubarakis, G. Stamou, G. Stoilos, I. Horrocks,
P. Kolaitis, G. Lausen, and G. Weikum, Eds., vol.
8714., 2014.

[24] Ö. L. Özçep, R. Möller, C. Neuenstadt,
D. Zheleznyakov, and E. Kharlamov, “Deliverable
D5.1 – a semantics for temporal and stream-based
query answering in an OBDA context,” EU,
Deliverable FP7-318338, October 2013.

[25] Ö. L. Özçep, C. Neuenstadt, and R. Möller,
“Deliverable d5.4—optimizations for temporal and
continuous query answering and their quantitative
evaluation,” EU, Deliverable FP7-318338, October
2016.

[26] Özgür. L. Özçep, R. Möller, and C. Neuenstadt,
“A stream-temporal query language for ontology
based data access,” in KI 2014, ser. LNCS,
vol. 8736. Springer International Publishing
Switzerland, 2014, pp. 183–194.

[27] Özgür. L. Özçep, R. Möller, and C. Neuenstadt,
“Stream-query compilation with ontologies,”
in Poceedings of the 28th Australasian Joint
Conference on Artificial Intelligence 2015 (AI
2015), ser. LNAI, B. Pfahringer and J. Renz, Eds.,

vol. 9457. Springer International Publishing,
2015.

[28] D. L. Phuoc, M. Dao-Tran, J. X. Parreira,
and M. Hauswirth, “A native and adaptive
approach for unified processing of linked streams
and linked data,” in The Semantic Web -
ISWC 2011 - 10th International Semantic Web
Conference, Bonn, Germany, October 23-27,
2011, Proceedings, Part I, ser. Lecture Notes in
Computer Science, L. Aroyo, C. Welty, H. Alani,
J. Taylor, A. Bernstein, L. Kagal, N. F. Noy, and
E. Blomqvist, Eds., vol. 7031. Springer, 2011, pp.
370–388.

[29] M. M. Tsangaris, G. Kakaletris, H. Kllapi,
G. Papanikos, F. Pentaris, P. Polydoras, E. Sitaridi,
V. Stoumpos, and Y. E. Ioannidis, “Dataflow
processing and optimization on grid and cloud
infrastructures.” IEEE Data Eng. Bull., vol. 32,
no. 1, pp. 67–74, 2009.

[30] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing,” in Proceedings of the 9th USENIX
Conference on Networked Systems Design and
Implementation, ser. NSDI’12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 2–2.

31

Open Journal of Databases (OJDB), Volume 6, Issue 1, 2019

AUTHOR BIOGRAPHIES

Simon Schiff is a master
student in Computer Science
at the Institute of Information
Systems (University of Lübeck)
mentored by Ralf Möller. The
results of his bachelor thesis
are the main contributions to
this paper. He is preparing his
master thesis for optimizing
stream query processing within
the STARQL engine using an

incremental window update algorithm.

Ralf Möller is Full Professor
for Computer Science at
University of Lübeck and heads
the Institute of Information
Systems. He was Associate
Professor for Computer Science
at Hamburg University of
Technology from 2003 to 2014.

From 2001 to 2003 he was Professor at the University
of Applied Sciences in Wedel/Germany. In 1996 he
received the degree Dr. rer. nat. from the University of
Hamburg and successfully submitted his Habilitation
thesis in 2001 also at the University of Hamburg. Prof.
Möller was a co-organizer of several international
workshops and is the author of numerous workshop and
conference papers as well as several book and journal
contributions (h-index 33). He served as a reviewer
for all major journals and conference in the knowledge
representation and reasoning area, and has been PI in
numerous EU projects. In the EU FP7 project Optique
(www.optique.org), in which abstraction for data access
involving ontologies and first-order mapping rules have
been investigated in the context of integrating high-pace
streaming and high-volume static data, he was the leader
of the work package on time and streams.

Özgür Lütfü Özçep is a
member of the Information
Systems Institute at University
of Lübeck since 2014. He
worked as a postdoc researcher
at Hamburg University of
Technology (TUHH) from 2010
to 2014. Before joining TUHH
he did his PhD at University
of Hamburg as a researcher
in the Institute for Knowledge
and Language Processing

and has taught different course on logics, software
programming and knowledge based systems. His PhD
thesis dealt with aspects of belief revision, a highly
interdisciplinary research topic lying in the intersection
of logics, computer science, theory of sciences, and
philosophy. After his PhD thesis he contributed to
research on combining/extending description logics
with other knowledge representation formalisms such
as spatial logics—as done in the DFG funded project
GeoDL—and to research on ontology-based stream
processing—as done in the EU FP7 project Optique.
Currently he is habilitating on representation theorems
in computer science.

32

	Introduction
	Obda with Starql
	Apache Spark Clusters
	Starql-Spark Engine: Implementation & Tests
	Related Work
	Conclusion

