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Abstract
Motivated by two industrial use cases that involve detecting events of interest in (asynchronous) time
series from sensors in manufacturing rigs and gas turbines, we design an expressive rule language
DslD equipped with interval aggregate functions (such as weighted average over a time interval),
Allen’s interval relations and various metric constructs. We demonstrate how to model events in the
uses cases in terms of DslD programs. We show that answering DslD queries in our use cases can be
reduced to evaluating SQL queries. Our experiments with the use cases, carried out on the Apache
Spark system, show that such SQL queries scale well on large real-world datasets.
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1 Introduction

Our concern in this paper is spotting events a domain expert is interested in among time-
stamped sensor log data stored in a database. The amount of sensor data produced in all
areas of modern life is proliferating with a tremendous speed, probably even faster than the
volume of social media data. In the industrial sector, in particular manufacturing, sensor
data is crucial for monitoring, control, various types of analytics (descriptive, predictive and
prescriptive), decision-making as well as research aiming to improve processes and products.
Sensor data is key to the ‘fourth industrial revolution’ in global manufacturing [30, 22], which
is witnessed by the German Industrie 4.0 programme and the smart manufacturing initiatives
in the United States.

The scenario we are interested in is querying historical (rather than streaming) sensor data
stored in a database with the aim of detecting temporal events that can help to explain, predict
and improve the behaviour of the system in question. A typical example (cf. [17, 29, 18, 6])
is querying data from gas turbine sensors measuring the active power, rotor speed, blade
temperature, etc. and stored at Siemens remote diagnostic centres, where service engineers
are looking for events such as
active power trip, which happens when the active power was above 1.5MW for a period of

at least 10 seconds, maximum 3 seconds after which there was a period of at least one
minute where the active power was below 0.15MW; to avoid short-term fluctuations, the
value of active power should be smoothed out by taking the simple moving average of the
raw power measurements over the last 5 seconds.

However, accessing data generated by sensors and finding the events of interest is hard
because the engineers and researchers with domain expertise necessary to interpret the data
usually lack the knowledge required to independently interact with databases and formalise
temporal queries such as the one in the example above. Following the current workflow at
Siemens, the engineer usually asks an IT specialist to produce a custom-made script (in a
proprietary signal processing language) such as

message (" active power trip ") =
$t1: eval(>, simpleMovingAverage (# activePower , 5s), 1.5):

for (>= 10s)
&&

eval(<, simpleMovingAverage (# activePower , 5s), 0.15):
start(after [0s, 3s] $t1:end ):

for (>= 1m);

and run it over the sensor data.
A fundamentally different approach is offered by ontology-based data access and manage-

ment [26, 23, 32] (OBDA, for short), a semantic technology that has been developed over
the past decade with the aim of facilitating access to various types of data. The role of
ontologies in OBDA is threefold: to integrate distributed and heterogeneous data sources,
to enrich incomplete data with background knowledge, and to provide a user-friendly and
familiar vocabulary for querying. Unfortunately, however, the existing standard ontology
languages are not able to represent temporal events, let alone those that depend on aggregated
numerical data. Extending the OBDA paradigm to temporal data has recently become an
active research area in semantic technologies [25, 16, 10, 3, 5, 19, 2, 9, 15]. For example, the
active power trip event (without smoothing the active power measurements) was captured in
the language datalogMTL, a combination of metric temporal logic MTL with datalog [6]; see
formula (2) in Section 3. MTL for signal monitoring was also used in [24].
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Figure 1 A simplified course of force measurements for a drilling process.

One of the aims of this paper is to design an ontology language that could capture interval
aggregate functions such as simple moving average together with various metric constructs.
Although aggregates in the context of OBDA have been considered [8, 19, 21], they were
allowed only in queries, and so again an IT middleman may be needed to assist the user. In
description logics, aggregation features were introduced over concrete domains, but reasoning
with them is often undecidable [4]. A first-order aggregate logic was investigated in [13]. For
datalog with monotonic aggregates, see [28] and references therein.

The second real-world use case motivating our language concerns the experimental invest-
igation of drilling processes [14]. In manufacturing research, large numbers of experimental
drilling processes, such as the one in Fig. 1, are executed using a wide range of different tools
and process parameters. Sensors are used to surveil these processes and generate data, which
is then analysed in order to identify, e.g., ways to reduce tool wear, maximise productivity
and ensure product quality. To achieve these goals, researchers define intervals of interest
(say, processes leading to quality anomalies or those that were interrupted by tool breaks)
within such readings and use them to select data for further analysis.

An essential difference from the turbine use case is that, in contrast to the active power
trip event described as a sequence of timestamp-value pairs satisfying explicit numerical
bounds on their values, now we are looking for certain sequences of shapes such as an interval
when the force is increasing (tapping), followed by an interval when the force is stable
(drilling) and then by an interval when the force is decreasing (exiting). The duration of
each of these intervals and the force values may vary widely due to different combinations of
workpiece materials, tools, process parameters and tool wear.

To tackle this problem, we further extend our language with the Allen interval relations [1]
such as after (A), begins (B), etc., using which we can capture the normal drilling event with
the following rule:

NormalDrilling(x)← Tapping(x1), Drilling(x2), Exiting(x3),
x1 A x2, x2 A x3, x is (x1 ] x3 ] x3),

where x and the xi are intervals over the real numbers, ] returns the union of intervals in case
it is also connected, that is, an interval, and the predicates Tapping(x1), Drilling(x2) and
Exiting(x3) involve complex interval aggregation to smooth out the fluctuating measurements
of force and ensure that it is increasing, stable and decreasing, respectively. An OBDA
ontology language, combining datalog with a fragment of the Halpern-Shoham logic HS [12],
which uses modal operators interpreted by Allen’s relations, was introduced in [20, 7].

In this paper, motivated by the sufficiently representative use cases outlined above, we
propose a framework of rule-based languages for ontology-mediated queries over sensor log
data stored in a database. The framework, provisionally called DslD (datalog for sensor log
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15:4 Two-Dimensional Rule Language for Querying Sensor Log Data

data), contains unary predicates for representing events over temporal intervals and binary
predicates for capturing numerical sensor measurements over temporal intervals and also the
results of aggregation. Thus, DslD is essentially two-dimensional, with a temporal dimension
comprising intervals over the real numbers R and a (measurement) value dimension R. DslD
also contains built-in predicates for expressing quantitative constraints on intervals and
values, and the Allen interval relations for representing qualitative constraints. Finally,
DslD allows one to define built-in interval aggregation operators that, given a (functional)
relation, say, representing measurements, returns their moving or weighted average, compute
its coalescing (maximal intervals with the same value), etc. Our goal in this paper is to check
experimentally, using the two real-world scenarios and data, whether ontology-mediated
queries formulated in DslD can be evaluated efficiently by standard database engines.

The structure of the paper is as follows. In Section 2, we define the syntax and procedural
semantics of DslD. In Sections 3 and 4, we write DslD programs for the turbine and drilling
use cases. In Section 5, we show how to reduce answering queries mediated by DslD programs
from our use cases to evaluation of SQL queries. In Section 6, we report on testing such SQL
translations in our use cases. Finally, we conclude and describe future work in Section 7.

2 Syntax and Semantics of DslD

We begin by defining the syntax of the ontology language DslD, datalog for sensor log data,
which is designed to represent data and knowledge about events in sensor-based systems.
As the main temporal entity we take the notion of interval over the set (R, <) of real
numbers. More precisely, an interval, ι, is any nonempty subset of R of the form 〈t1, t2〉,
where t1, t2 ∈ R ∪ {−∞,∞}, ‘〈’ is ‘(’ or ‘[’ and ‘〉’ is ‘)’ or ‘]’. Note that we admit punctual
intervals of the form [t, t]. We denote by intR the set of all intervals over R and by |ι| the
length of a bounded interval ι. Sensor measurements are deemed to be real numbers. We write
R(ι, v) to say that v ∈ R is the value measured by sensor R over the interval ι ∈ intR, and
we write A(ι) to say that event A occurs in the interval ι. Thus, DslD has unary and binary
predicate symbols only. Let A1, A2, . . . be a list of unary predicate symbols and R1, R2, . . .

a list of binary predicate symbols in DslD; we refer to them as signature predicates.

Interval and Value Terms. We distinguish between two sorts of variables and terms. The
variables x,y, . . . of sort interval range over intR, while the variables x, y, . . . of sort value
range over R. Constants of sort interval are concrete intervals with rational end-points (from
Q ∪ {−∞,∞}). The language contains various (partial) functions of sort interval, which
include the intersection ]and union ] of intervals defined by taking

ι

]

ι′ =
{
ι ∩ ι′, if ι ∩ ι′ 6= ∅,
undefined, otherwise;

ι ] ι′ =
{
ι ∪ ι′, if ι ∩ ι′ 6= ∅,
undefined, otherwise.

The language also includes the length function | · |, which is undefined for unbounded
intervals; the functions lshiftr and rshiftr, for r ∈ Q, that shift the left and, respectively,
right end of a given interval by r: for example, lshift−1 maps every interval ι = 〈b, e〉 to
lshift−1(ι) = 〈b − 1, e〉; the functions lextr and rextr that extend the left and, respectively,
right end of ι = 〈b, e〉 to an interval 〈b, b+ r〉 and, respectively, 〈e− r, e〉; and possibly other
useful operations on intervals. Terms of sort interval are built from variables and constants
of sort interval using these functions. Likewise, constants of sort value are rational numbers;
functions of sort value include standard x+ y, x− y, x× y, |x|, etc.; terms of sort value are
built from variables and constants of sort value using functions of sort value.
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Bullt-in Predicates. Apart from the signature predicates, the language of DslD contains a
wide range of built-in predicates. To begin with, we have the standard =, 6=, <, ≤, etc. over R.
Next, DslD features binary predicates for the Allen interval relations [1] over intR: after (A),
begins (B), ends (E), during (D), later (L), overlaps (O) and their inverses Ā, B̄, etc. Finally,
DslD has unary discretisation predicates D〈〉s,b, for s, b ∈ Q, which are particularly useful with
aggregation: the interpretation of D〈〉s,b comprises all intervals of the form 〈s+ ib, s+ (i+ 1)b〉,
for i ∈ Z; see examples in Section 4.

Aggregation Functionals. An aggregation functional is a function over binary relations R
on intR × R. We illustrate the notion on a number of examples, where the restriction of
a relation R to interval ι ∈ intR will be denoted by Rι = {(ι′, v′) ∈ R | ι′ ∩ ι 6= ∅}. Now,
consider

max(R) =
{(
ι, max

(ι′,v′)∈Rι
v′) | ι ∈ intR and ι ⊆ domR

}
,

where domR =
⋃

(ι,v)∈R ι is the domain of R. This aggregation functional returns a relation
with the maximum value of R on any subinterval of its domain. Another typical example is
the simple moving average:

sma(R) =
{(
ι,

1
|Rι|

∑
(ι′,v′)∈Rι

v′) | ι ∈ intR, ι ⊆ domR and Rι is finite
}
.

To define other aggregation functionals, we require the following definition: we say that R is
a functional relation if v1 = v2, for any (ι1, v1), (ι2, v2) ∈ R with ι1 ∩ ι2 6= ∅. In this case, R
gives rise to the function fR : domR→ R defined by taking

fR(t) = v, for all t ∈ ι with (ι, v) ∈ R.

The weighted average is defined on functional relations R as

wavg(R) =
{(
ι,

1
|ι|

∫
ι

fR(x) dx
)
| ι ∈ intR is bounded and ι ⊆ domR

}
,

and wavg(R) = ∅ for non-functional relations R. Note that, since wavg(R) is defined on all
subintervals of domR, it is not a functional relation in general.

Another important aggregation functional is coalescing, which is defined on functional
relations R by taking

coalesce(R) =
{

(ι, v) | ι ∈ intR is maximal with ι ⊆ domR

and fR(x) = v, for all x ∈ ι
}
,

and coalesce(R) = ∅ for non-functional R. Note that coalesce(R) is a functional relation
and fR = fcoalesce(R). For unary predicates A over intR, we define coalescing by taking
coalesce(A) = {ι | (ι, 0) ∈ coalesce(A× {0})}.

DslD Programs and Data Instances. There are four types of atoms in DslD. By a pure
atom we mean a formula of the form A(x) and R(x, y), for signature predicates A and R,
interval variable x and value variable y. A built-in atom is any well-formed atomic formula
with a built-in predicate and appropriately typed interval and value terms. A binding atom
is an expression x is t or x is t, where x is a variable and t a term of sort interval, and x a
variable and t a term of sort value. Aggregate atoms are defined recursively as

agg{(x, y) | α1, . . . , αk}, coalesce{x | α1, . . . , αk},

TIME 2019
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where agg is an aggregation functional and the αi are (pure, built-in, binding or aggregate)
atoms.

A rule in DslD is an expression of the form

α← β1, . . . , βn, (1)

where α is a pure atom and the βi are atoms. As usual in datalog, we call α the head of the
rule and β1, . . . , βn its body. A DslD program, Π, is a finite set of rules. Data atoms take
the form A(%) and R(%, c), where % is a constant of type interval and c a constant of type
value. A data instance, D, is a finite set of data atoms.

Note that we do not impose the standard Datalog safety conditions, so rules such as
A(x)← B(y) are allowed. This leads to the problem that all the intervals with ends from the
data instance D will be returned as a result of the query A(x) over D, if any assertion B(ι)
is in D, according to the semantics below. However, all the rules in our use cases described
below are safe in the sense the problem above does not occur.

Semantics of DslD Programs. We next define the procedural semantics of DslD programs.
By an assignment, s, we understand a map from interval variables x to intR and from value
variables x to R. The definition of s is inductively extended to terms in a standard way: for
instance, s(c) = c, for any constant c. Note, however, that the extended s is in general a
partial function: for example, s([0, 1] ] [2, 3]) is undefined.

Let Π be a DslD program and D a data instance. We first set

A0
i =

{
ι ∈ intR | Ai(ι) ∈ D

}
, R0

i =
{

(ι, v) ∈ intR × R | Ri(ι, v) ∈ D
}
, i ≥ 1,

and I0 = (A0
1, . . . , R

0
1, . . . ). Suppose next inductively that Iξ = (Aξ1, . . . , R

ξ
1, . . . ), for an

ordinal ξ, and s is a substitution. We define a truth-relation Iξ, s |= α as follow:
Iξ, s |= Ai(x) iff s(x) ∈ Aξi ;
Iξ, s |= Ri(x, y) iff (s(x), s(y)) ∈ Rξi ;
Iξ, s |= (t 6= t′) if s(t) and s(t′) are both defined with s(t) 6= s(t′), and similarly for other
types of built-in atom;
Iξ, s |= x is t if s(x) and s(t) are both defined with s(x) = s(t), and similarly for x is t;
Iξ, s |= D

〈〉
s,b(t) iff s(t) = 〈s+ ib, s+ (i+ 1)b〉, for some i ∈ Z;

Iξ, s |= agg{(x, y) | α1, . . . , αk} iff (s(x), s(y)) ∈ agg(R), where

R =
{

(s′(x), s′(y)) | there is s′ such that Iξ, s′ |= αj for all j, 1 ≤ j ≤ k
}

;

Iξ, s |= coalesce{x | α1, . . . , αk} iff s(x) ∈ coalesce(A), where

A =
{
s′(x) | there is s′ such that Iξ, s′ |= αj for all j, 1 ≤ j ≤ k

}
.

Given Iξ, we define Iξ+1 = (Aξ+1
1 , . . . , Rξ+1

1 , . . . ) as follows. For each Ai, we set Aξ+1
i to be

Aξi together with all s(x) such that Π contains Ai(x)← β1, . . . , βn and Iξ, s |= βj for all j,
1 ≤ j ≤ n; and analogously for Rξ+1

i . For a limit ordinal ζ, we set Iζ = (Aζ1, . . . , R
ζ
1, . . . ),

where Aζi =
⋃
ξ<ζ A

ξ
i and Rζi =

⋃
ξ<ζ R

ξ
i . The construction is terminated when Iξ = Iξ+1,

which should happen for some ξ not exceeding the smallest ordinal, 2ℵ0+, whose cardinality
is greater than 2ℵ0 .
I Example 1. Consider the data instance D = {A([0, 1])} and a DslD program Π with the
following rules:

A(x)← A(y), x is rshift1(y),
B(x)← coalesce{x | A(x)},
B(x)← B(y), x is lshift−1(y).
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In this case, Iω comprises A([0, n]), for 0 < n, B([m,n]), for m < 0 < n, and B([0,∞)); Iω·2
also contains B([m,∞)), for m < 0, and Iω·2 = Iω·2+1.

Ontology-Mediated Queries. By a conjunctive query (CQ) we mean a first-order formula
q(x1, . . . ,xn) = ∃y1, . . . ,yk, y1, . . . yk Φ, where Φ is a conjunction of pure atoms with signa-
ture predicates whose variables are among the xi, yi, yi. Using the tuple x̄ = (x1, . . . ,xn),
we denote this CQ by q(x̄) and call (Π, q(x̄)) an ontology-mediated query (OMQ). A certain
answer to the OMQ (Π, q(x̄)) over the data instance D is any tuple ā = (ι1, . . . , ιn) such
that the ends of the intervals ιi occur in D and I2ℵ0+

, s |= q(x̄), where s maps the variables
in x̄ to the respective constants in ā.

We leave the investigation of semantical and computational properties of answering DslD
OMQs to future work, focusing below on representing and querying events in our use cases,
where DslD programs do not involve recursion.

3 The Gas Turbine Use Case

We illustrate the expressive power of DslD and its semantics by representing and querying
the active power trip event formulated in Section 1. We assume that the turbine sensors
measure various parameters such as the active power, blade temperature, etc. asynchronously,
and that the measurement data is stored in a database as relations ActivePower([t, t′), v)
stating that the measured value of the active power over the interval [t, t′) was v.

The active power trip event was considered in [6], where the raw measurement data was
first aggregated to avoid short-term fluctuations and then pre-processed by defining temporal
concepts (unary predicates) ‘active power below 0.15MW’ and ‘active power above 1.5MW’
by means of fairly complex SQL views. After that, the active power trip was captured by
means of the following MTL rule, where, for example, �[b,e]ϕ (or [b,e]ϕ) is true at moment t
if and only if ϕ is true at every (respectively, some) moment in the interval [t− b, t− e]:

ActivePowerTrip ← �[0,1m]ActivePowerBelow0.15 ∧

[60s,63s] �[0,10s] ActivePowerAbove1.5. (2)

Unlike the one-dimensional metric temporal logic MTL, the language DslD is two-dimensional
and allows us to aggregate the raw data by taking, as required, the simple moving average of
the raw power measurements over the last 5 seconds and define the active power trip in a
DslD program Πapt using the following two rules:

ActivePowerTrip(w)←
z is lshift1m(x), |x| ≥ 1m, coalesce{x | y < 0.15, Power(x, y)},
coalesce{y | y is lshift60s(rshift63s(u)),

u is lshift10s(x), |x| ≥ 10s, coalesce{x | y > 1.5, Power(x, y)}},
w is z

]

y,

Power(x, v)← ActivePower(x, v′), y is rext5s(x), sma{(y, v) | ActivePower(y, v)}. (3)

Note that, for example, the two x in the coalesce atoms in the first rule are in fact independent
because the second is within the scope of another coalesce and does not belong to its head.
Thus, the second rule says that the value of Power in an interval x, for which the data
contains a value of ActivePower, is defined as the simple moving average of ActivePower
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�[0,10s]ActivePowerAbove1.5

ActivePowerTrip

ActivePower

Power

[60s,63s] �[0,10s] ActivePowerAbove1.5
�[0,1m]ActivePowerBelow0.15

Figure 2 A data instance and the interpretation of Πapt with the respective subformulas of (2).

over the 5s window spanning to the past from the right end of x. For example, consider a
data instance with the measurements

ActivePower([00:01:10, 00:01:12), 2.3),ActivePower([00:01:12, 00:01:13), 2.5), . . .

shown in the middle part of Fig. 2. In this case, the interpretation I2ℵ0+ will contain

Power([00:01:10, 00:01:12), 2.3),Power([00:01:12, 00:01:13), 2.4), . . .

In the first rule of Πapt , variable u representing �[0,10s]ActivePowerAbove1.5 will be instanti-
ated by [00:01:20, 00:01:22); variable y corresponding to [60s,63s]�[0,10s]ActivePowerAbove1.5
will be instantiated by [00:02:20, 00:02:25), while z for �[0,1m]ActivePowerBelow0.15 by
[00:02:22, 00:02:26). As a result, the atom ActivePowerTrip(w) will be true in the interval
w = [00:02:22, 00:02:25), exactly where ActivePowerTrip defined by (2) is true.

4 The Drilling Rigs Use Case

Next, we consider several types of drilling process and model them in DslD.

Drilling Process. We begin with the process shown in Fig. 1, which can be defined as a
sequence of three sub-processes following each other. First, the drill makes contact with
the workpiece, and the borehole is created (tapping). In this phase, the diameter increases,
which results in increasing process forces. Then, the diameter, and therefore the process
forces stay almost constant (drilling), until the drill breaks through on the other side of the
plate, which results in a decrease of process forces (exiting).

Figure 3 shows sensor data from force measurements sampled at 2kHz. This signal,
however, does not resemble the anticipated shape, which is based on the expectations
of domain experts. These expectations are concerned with a particular low-frequency
phenomenon. Higher frequency signals within the sampled data are therefore considered
noise and need to be filtered accordingly. A simple version of such a filter is moving
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Figure 3 Filtered data compared with expected shapes for time constants determined based on
analytical estimation (left) and respective spectrum before and after aggregation (right).

average [27]. The parameters of this filter can be determined based on domain knowledge,
which is also illustrated in Fig. 3. The drilling process is captured by the following rules:

AvgForce(x, y)← wavg{(x, y) | Force(x, y)},

DAvgForce(x, y)← wavg{(x, y) | Force(x, y)}, D[,)
0,13s(x), (4)

ForceDelta(x, z)← DAvgForce(x, y),DAvgForce(x′, y′),x A x′, z is (y − y′), (5)
IncForce(x)← coalesce{x | ForceDelta(x, d), d > 0.1},

ConstForce(x)← coalesce{x | ForceDelta(x, d), |d| ≤ 0.1},
DecForce(x)← coalesce{x | ForceDelta(x, d), d < −0.1},

SimpleDrilling(x)← IncForce(x1),max{(x1, y1) | AvgForce(x1, y1)}, x1 A x2,

ConstForce(x2),max{(x2, y2) | AvgForce(x2, y2)}, x2 A x3,

DecForce(x3),max{(x3, y3) | AvgForce(x3, y3)},
|y1 − y2| < y2 × 0.05, |y2 − y3| < y3 × 0.05,
x is (x1 ] x2 ] x3). (6)

Smooth Drilling. Drilling processes can be further classified based on other characteristics
of the force measurements. Throughout such a drilling process, however, anomalies can
occur, the simplest of which is the presence of significant peaks that might come, for example,
from material inhomogeneities. In this sense, a smooth drilling process can be identified by
comparing the maximum and minimum values within the simple drilling event:

Drilling(x)← ConstForce(x),
SmoothDrilling(x)← SimpleDrilling(x), Drilling(x1), x1 ⊆ x, AvgForce(x1, y),

max{(x1, y1) | AvgForce(x1, y1)}, y1 − y ≤ 0.1× y,
min{(x1, y2) | AvgForce(x1, y2)}, y − y2 ≤ 0.1× y.

Unstable Drilling. The unstable drilling process event can be classified based on the standard
deviation of the force readings. Even though they might look similar based on their average
process forces in each phase, unstable processes will have significantly higher standard
deviation compared to the stable ones. Again, the threshold that would be used here has to
be determined based on domain knowledge:

SmoothDrilling(x)← SimpleDrilling(x), Drilling(x1), x1 ⊆ x, AvgForce(x1, y),
sdev{(x1, y1) | Force(x1, y1)}, |y1 − y| ≤ 0.1 × y,

TIME 2019
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Figure 4 Electrical power readings for a se-
quence of similar cuts until a tool break oc-
curred [11].

Figure 5 Total electrical power input (Pel) for
a production machine while manufacturing three
similar parts.

where sdev is an aggregation functional computing the standard deviation.

Tool Break. Tool breaks happen regularly in industrial production processes. Example
power readings for such an event are depicted in Fig. 4. In this example, power is directly
related to apparent process forces. As a consequence, force readings would differ from the
displayed power readings only by a constant conversion factor. To identify tool breaks, we
simply find any patterns that match the concept simple drilling but are shorter than the
expected duration:

ToolBreak(x)← SimpleDrilling(x), ExpectedDrillingTime(x, y), |x| ≤ y,

where ExpectedDrillingTime(x, y) specifies the expected time of drilling for given drill model,
material thickness, etc. and is defined by means of mappings.

Energy Per Tool. Closely related to tool wear is the remaining tool lifetime. One way to
determine this measure from sensor data is the amount of accumulated electrical energy that
was used to drive a given tool. To illustrate, consider Fig. 5 showing power measurements
for a production machine. Within the observed window, three similar parts (having the
same geometric features) are manufactured using two different tools. To calculate the energy
per tool, the power measurements need to be integrated over the intervals in which the
respective tool was active. Before doing so, however, it is necessary to deduct the base load
of the machine. The base load is defined as the machine’s (electrical) power demand without
material removal, which can be due to auxiliary systems or power loss in bearings. We use
the following DslD rules:

Pbase(x, v)← SimpleDrilling(y),x is lext−10s(y),wavg{(x, v) | Power(x, v)},
Ptool(x, u)← wavg{(x, v) | Power(x, v)},Pbase(x′, v′),x ⊆ x′, u is v − v′,
Etool(x, v)← int{(x, v) | Ptool(x, v)},SimpleDrilling(x),

where, for a functional relation R, aggregation functional int(R) is defined as

int(R) =
{(
ι,

∫
ι

fR(x) dx
)
| ι ∈ intR is bounded and ι ⊆ domR

}
.
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5 Evaluating DslD by SQL

In this section, we show that answering DslD OMQs in our use cases can be reduced to
evaluation of SQL queries. First of all, we observe that our DslD programs are non-recursive.
Our query answering algorithm for DslD is an extension of the classical algorithm for
evaluating non-recursive datalog programs; see, e.g., [31]. In a nutshell, the algorithm
introduces views for all head predicates, and computes these views in a bottom-up fashion
following the dependency relation. For each unary predicate A, we create a view A with
columns begin and end; for each binary predicate R, we create a view R with columns begin,
end and value. When translating non-recursive DslD to SQL, the Allen relations and metric
constructs can be implemented in a straightforward way. It is much more challenging to deal
with aggregation atoms.

We illustrate our translation with examples. To start, we show how to deal with the simple
drilling use case. First, we compute the predicate DAvgForce in rule (4), which depends on
the view Force(begin, end, value). We need to deal with the discretisation predicate
D

[,)
0,13s, which ‘splits’ the rows of the Force view into windows of 13s. For convenience, we

assume that we have an auxiliary table nums(id) storing enough numbers 0, 1, . . . . The
following view D_force discretises Force. In the resulting view, each row contains a split
interval [begin, end), which is contained in the window [w_begin, w_end):
CREATE VIEW D_force AS (

SELECT GREATEST (begin , nums.id * 13) AS begin ,
LEAST (( nums.id + 1) * 13, end) AS end ,
Force.value AS value ,
nums.id * 13 AS w_begin , (nums.id + 1)* 13 AS w_end

FROM Force , nums
WHERE begin / 13 <= nums.id AND nums.id <= end / 13

);

The usage of the auxiliary table nums is not always necessary, since it can be generated on
the fly with a function like generate_series. Alternatively, one can also simulate this join
by user-defined functions.

Then, we are ready to define the view AvgForceP by grouping the rows of D_force
according to their windows and computing the weighted average by means of the built-in
aggregate function SUM:
CREATE VIEW AvgForceP AS (

SELECT MIN(begin) AS begin , MAX(end) AS end ,
SUM(value * (end - begin )) / SUM(end - begin) AS value

FROM D_force
GROUP BY w_begin , w_end

);

Note that, in general, many aggregation functionals (such as coalesce in rule (6)) cannot be
defined directly by means of built-in aggregate functions in SQL, and one needs to introduce
user-defined aggregate functions (UDAFs) according to the SQL engine, e.g., Apache Spark1
and MS SQL Server2. With UDAFs, the coalesce operator can be implemented using, e.g.,
the standard algorithm [33].

Next, for the predicate ForceDelta, we introduce the view capturing rule (5):

1 https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/expressions/
UserDefinedAggregateFunction.html

2 https://docs.microsoft.com/en-us/sql/relational-databases/clr-integration-database-
objects-user-defined-functions/clr-user-defined-aggregates
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Figure 6 Running times (in seconds) of the active power trip OMQ.

CREATE VIEW ForceDelta AS (
SELECT a1.begin , a1.end , a2.value - a1.value AS value
FROM AvgForceP a1 , AvgForceP a2
WHERE a1.end = a2.begin

);

Other predicates in this simple drilling use case can be computed in a similar way. Eventually,
the view SimpleDrilling will compute all instances of the predicate SimpleDrilling.

Finally, we consider the turbine use case. The major technical difference is the handling
of windows. For rule (3), which does not have a discretisation predicate in the body, we
can define time-based windows for each row relying on the range-based windows in the
standard SQL query language. In this example, assuming that the data is provided in table
tb_power(ts, value), the time-based window can be defined as follows:
CREATE VIEW SmaPower AS (

SELECT LAG(ts ,1) OVER (ORDER BY ts) AS begin ,
ts AS end , AVG(value) OVER W AS avg

FROM tb_power
WINDOW W AS

(ORDER BY ts RANGE BETWEEN 5 PRECEDING AND 0 FOLLOWING )
);

While the approach described above works for the aggregation functionals, built-in and
discretisation predicates, and the rules involved in our use cases, we leave the general
algorithm for non-recursive DslD OMQs to further investigation. (We conjecture that query
answering for arbitrary DslD OMQs is undecidable.)

6 Evaluation

We evaluated the SQL translations of the DslD OMQs defined in our two use cases over
large amounts of data. For the turbine use case, we have 4 days of power data in the form of
(timestamp, value) pairs for one running turbine. We replicated this sample to imitate the
data for one turbine over 10 different periods ranging from 32 to 320 months (from 0.23 GB
to 2.3 GB). For the drilling use case, we collected 2.6 GB of real data from a manufacturing
company. This data contains force and power measurements associated with timestamps
from one drilling tool. We ran our experiments on an AWS server with an Intel Xeon
Platinum-8175 processor having 8 logical cores at 2.5 GHz and 64 GB of RAM. The SQL
queries were executed on Apache Spark 2.4.0.
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Figure 7 Running times (in seconds) for evaluation of the drilling OMQs.

Figure 6 illustrates the execution times for the SQL translation of the active power trip
OMQ in the turbine use case (Section 3), while Figure 7 shows the times for OMQs in the
drilling use case (Section 4). Both sets of results from the two use cases show that the
execution times scale linearly over monotonically increasing data. As expected, in the cases
where we can benefit from discretisation predicates (as in the drilling use case DslD OMQs)
the computation load reduces significantly. On the other hand, the active power trip program
requires row by row windowing, and this leads to additional work load compared to the cases
involving discretisation predicates.

7 Conclusion

As shown by the two use cases considered in this paper, engineers analysing the behaviour
of industrial systems by detecting events in sensor log data are facing a challenging task of
representing those events in terms of the existing query languages: the queries have complex
structure with numerous complex subqueries. The OBDA paradigm would drastically simplify
the engineers’ work if the events in question could be captured in ontologies rather than
queries. Based on the use cases, we proposed a suitable OBDA ontology language DslD,
featuring aggregate functionals, Allen’s interval relations and various metric constructs. We
showed that the non-recursive fragment of DslD is enough to capture the events in our cases
and can be translated into sufficiently efficient SQL queries, which we tested on real-world
data. We achieved good performance results with large amounts of data.

Encouraged by the satisfaction of the involved engineers, we are planning to do a proper
user study to see how well the engineers can use this language. Further, an investigation of
theoretical properties of the proposed language and optimisation techniques will be conducted.
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