437 research outputs found

    Five Challenges for the Semantic Sensor Web

    Get PDF
    The combination of sensor networks with the Web, web services and database technologies, was named some years ago as the Sensor Web or the Sensor Internet. Most efforts in this area focused on the provision of platforms that could be used to build sensor-based applications more efficiently, considering some of the most important challenges in sensor-based data management and sensor network configuration. The introduction of semantics into these platforms provides the opportunity of going a step forward into the understanding, management and use of sensor-based data sources, and this is a topic being explored by ongoing initiatives. In this paper we go through some of the most relevant challenges of the current Sensor Web, and describe some ongoing work and open opportunities for the introduction of semantics in this context

    Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    Get PDF
    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is soun

    Views from the coalface: chemo-sensors, sensor networks and the semantic sensor web

    Get PDF
    Currently millions of sensors are being deployed in sensor networks across the world. These networks generate vast quantities of heterogeneous data across various levels of spatial and temporal granularity. Sensors range from single-point in situ sensors to remote satellite sensors which can cover the globe. The semantic sensor web in principle should allow for the unification of the web with the real-word. In this position paper, we discuss the major challenges to this unification from the perspective of sensor developers (especially chemo-sensors) and integrating sensors data in real-world deployments. These challenges include: (1) identifying the quality of the data; (2) heterogeneity of data sources and data transport methods; (3) integrating data streams from different sources and modalities (esp. contextual information), and (4) pushing intelligence to the sensor level

    Enabling query technologies for the semantic sensor web

    Get PDF
    Sensor networks are increasingly being deployed in the environment for many different purposes. The observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse this data, for other purposes than those for which they were originally set up. The authors propose an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. In this article, the authors describe the theoretical foundations and technologies that enable exposing semantically enriched sensor metadata, and querying sensor observations through SPARQL extensions, using query rewriting and data translation techniques according to mapping languages, and managing both pull and push delivery modes

    Serverless GEO Labels for the Semantic Sensor Web

    Get PDF

    A core ontological model for semantic sensor web infrastructures

    Get PDF
    Semantic Sensor Web infrastructures use ontology-based models to represent the data that they manage; however, up to now, these ontological models do not allow representing all the characteristics of distributed, heterogeneous, and web-accessible sensor data. This paper describes a core ontological model for Semantic Sensor Web infrastructures that covers these characteristics and that has been built with a focus on reusability. This ontological model is composed of different modules that deal, on the one hand, with infrastructure data and, on the other hand, with data from a specific domain, that is, the coastal flood emergency planning domain. The paper also presents a set of guidelines, followed during the ontological model development, to satisfy a common set of requirements related to modelling domain-specific features of interest and properties. In addition, the paper includes the results obtained after an exhaustive evaluation of the developed ontologies along different aspects (i.e., vocabulary, syntax, structure, semantics, representation, and context)

    Position paper on realizing smart products: challenges for Semantic Web technologies

    Get PDF
    In the rapidly developing space of novel technologies that combine sensing and semantic technologies, research on smart products has the potential of establishing a research field in itself. In this paper, we synthesize existing work in this area in order to define and characterize smart products. We then reflect on a set of challenges that semantic technologies are likely to face in this domain. Finally, in order to initiate discussion in the workshop, we sketch an initial comparison of smart products and semantic sensor networks from the perspective of knowledge technologies

    Estimating Fire Weather Indices via Semantic Reasoning over Wireless Sensor Network Data Streams

    Full text link
    Wildfires are frequent, devastating events in Australia that regularly cause significant loss of life and widespread property damage. Fire weather indices are a widely-adopted method for measuring fire danger and they play a significant role in issuing bushfire warnings and in anticipating demand for bushfire management resources. Existing systems that calculate fire weather indices are limited due to low spatial and temporal resolution. Localized wireless sensor networks, on the other hand, gather continuous sensor data measuring variables such as air temperature, relative humidity, rainfall and wind speed at high resolutions. However, using wireless sensor networks to estimate fire weather indices is a challenge due to data quality issues, lack of standard data formats and lack of agreement on thresholds and methods for calculating fire weather indices. Within the scope of this paper, we propose a standardized approach to calculating Fire Weather Indices (a.k.a. fire danger ratings) and overcome a number of the challenges by applying Semantic Web Technologies to the processing of data streams from a wireless sensor network deployed in the Springbrook region of South East Queensland. This paper describes the underlying ontologies, the semantic reasoning and the Semantic Fire Weather Index (SFWI) system that we have developed to enable domain experts to specify and adapt rules for calculating Fire Weather Indices. We also describe the Web-based mapping interface that we have developed, that enables users to improve their understanding of how fire weather indices vary over time within a particular region.Finally, we discuss our evaluation results that indicate that the proposed system outperforms state-of-the-art techniques in terms of accuracy, precision and query performance.Comment: 20pages, 12 figure

    A semantic sensor web framework for proactive environmental monitoring and control.

    Get PDF
    Doctor of Philosophy in Computer Science, University of KwaZulu-Natal, Westville, 2017.Observing and monitoring of the natural and built environments is crucial for main- taining and preserving human life. Environmental monitoring applications typically incorporate some sensor technology to continually observe specific features of inter- est in the physical environment and transmitting data emanating from these sensors to a computing system for analysis. Semantic Sensor Web technology supports se- mantic enrichment of sensor data and provides expressive analytic techniques for data fusion, situation detection and situation analysis. Despite the promising successes of the Semantic Sensor Web technology, current Semantic Sensor Web frameworks are typically focused at developing applications for detecting and reacting to situations detected from current or past observations. While these reactive applications provide a quick response to detected situations to minimize adverse effects, they are limited when it comes to anticipating future adverse situations and determining proactive control actions to prevent or mitigate these situations. Most current Semantic Sensor Web frameworks lack two essential mechanisms required to achieve proactive control, namely, mechanisms for antici- pating the future and coherent mechanisms for consistent decision processing and planning. Designing and developing proactive monitoring and control Semantic Sensor Web applications is challenging. It requires incorporating and integrating different tech- niques for supporting situation detection, situation prediction, decision making and planning in a coherent framework. This research proposes a coherent Semantic Sen- sor Web framework for proactive monitoring and control. It incorporates ontology to facilitate situation detection from streaming sensor observations, statistical ma- chine learning for situation prediction and Markov Decision Processes for decision making and planning. The efficacy and use of the framework is evaluated through the development of two different prototype applications. The first application is for proactive monitoring and control of indoor air quality to avoid poor air quality situations. The second is for proactive monitoring and control of electricity usage in blocks of residential houses to prevent strain on the national grid. These appli- cations show the effectiveness of the proposed framework for developing Semantic Sensor Web applications that proactively avert unwanted environmental situations before they occur
    • 

    corecore