3,971 research outputs found

    Programming patterns and development guidelines for Semantic Sensor Grids (SemSorGrid4Env)

    No full text
    The web of Linked Data holds great potential for the creation of semantic applications that can combine self-describing structured data from many sources including sensor networks. Such applications build upon the success of an earlier generation of 'rapidly developed' applications that utilised RESTful APIs. This deliverable details experience, best practice, and design patterns for developing high-level web-based APIs in support of semantic web applications and mashups for sensor grids. Its main contributions are a proposal for combining Linked Data with RESTful application development summarised through a set of design principles; and the application of these design principles to Semantic Sensor Grids through the development of a High-Level API for Observations. These are supported by implementations of the High-Level API for Observations in software, and example semantic mashups that utilise the API

    Implementation and Deployment of a Library of the High-level Application Programming Interfaces (SemSorGrid4Env)

    No full text
    The high-level API service is designed to support rapid development of thin web applications and mashups beyond the state of the art in GIS, while maintaining compatibility with existing tools and expectations. It provides a fully configurable API, while maintaining a separation of concerns between domain experts, service administrators and mashup developers. It adheres to REST and Linked Data principles, and provides a novel bridge between standards-based (OGC O&M) and Semantic Web approaches. This document discusses the background motivations for the HLAPI (including experiences gained from any previously implemented versions), before moving onto specific details of the final implementation, including configuration and deployment instructions, as well as a full tutorial to assist mashup developers with using the exposed observation data

    MusA: Using Indoor Positioning and Navigation to Enhance Cultural Experiences in a museum

    Get PDF
    In recent years there has been a growing interest into the use of multimedia mobile guides in museum environments. Mobile devices have the capabilities to detect the user context and to provide pieces of information suitable to help visitors discovering and following the logical and emotional connections that develop during the visit. In this scenario, location based services (LBS) currently represent an asset, and the choice of the technology to determine users' position, combined with the definition of methods that can effectively convey information, become key issues in the design process. In this work, we present MusA (Museum Assistant), a general framework for the development of multimedia interactive guides for mobile devices. Its main feature is a vision-based indoor positioning system that allows the provision of several LBS, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits according to visitors' personal interest and curiosity. Starting from the thorough description of the system architecture, the article presents the implementation of two mobile guides, developed to respectively address adults and children, and discusses the evaluation of the user experience and the visitors' appreciation of these application

    Interoperability in IoT through the semantic profiling of objects

    Get PDF
    The emergence of smarter and broader people-oriented IoT applications and services requires interoperability at both data and knowledge levels. However, although some semantic IoT architectures have been proposed, achieving a high degree of interoperability requires dealing with a sea of non-integrated data, scattered across vertical silos. Also, these architectures do not fit into the machine-to-machine requirements, as data annotation has no knowledge on object interactions behind arriving data. This paper presents a vision of how to overcome these issues. More specifically, the semantic profiling of objects, through CoRE related standards, is envisaged as the key for data integration, allowing more powerful data annotation, validation, and reasoning. These are the key blocks for the development of intelligent applications.Portuguese Science and Technology Foundation (FCT) [UID/MULTI/00631/2013

    Managed ecosystems of networked objects

    Get PDF
    Small embedded devices such as sensors and actuators will become the cornerstone of the Future Internet. To this end, generic, open and secure communication and service platforms are needed in order to be able to exploit the new business opportunities these devices bring. In this paper, we evaluate the current efforts to integrate sensors and actuators into the Internet and identify the limitations at the level of cooperation of these Internet-connected objects and the possible intelligence at the end points. As a solution, we propose the concept of Managed Ecosystem of Networked Objects, which aims to create a smart network architecture for groups of Internet-connected objects by combining network virtualization and clean-slate end-to-end protocol design. The concept maps to many real-life scenarios and should empower application developers to use sensor data in an easy and natural way. At the same time, the concept introduces many new challenging research problems, but their realization could offer a meaningful contribution to the realization of the Internet of Things

    EAGLE—A Scalable Query Processing Engine for Linked Sensor Data

    Get PDF
    Recently, many approaches have been proposed to manage sensor data using semantic web technologies for effective heterogeneous data integration. However, our empirical observations revealed that these solutions primarily focused on semantic relationships and unfortunately paid less attention to spatio–temporal correlations. Most semantic approaches do not have spatio–temporal support. Some of them have attempted to provide full spatio–temporal support, but have poor performance for complex spatio–temporal aggregate queries. In addition, while the volume of sensor data is rapidly growing, the challenge of querying and managing the massive volumes of data generated by sensing devices still remains unsolved. In this article, we introduce EAGLE, a spatio–temporal query engine for querying sensor data based on the linked data model. The ultimate goal of EAGLE is to provide an elastic and scalable system which allows fast searching and analysis with respect to the relationships of space, time and semantics in sensor data. We also extend SPARQL with a set of new query operators in order to support spatio–temporal computing in the linked sensor data context.EC/H2020/732679/EU/ACTivating InnoVative IoT smart living environments for AGEing well/ACTIVAGEEC/H2020/661180/EU/A Scalable and Elastic Platform for Near-Realtime Analytics for The Graph of Everything/SMARTE

    Mixing the reactive with the personal: Opportunities for end-user programming in personal information management

    No full text
    The transition of personal information management (PIM) tools off the desktop to the Web presents an opportunity to augment these tools with capabilities provided by the wealth of real-time information readily available. In this chapter, we describe a personal information assistance engine that lets end-users delegate to it various simple context- and activity-reactive tasks and reminders. Our system, Atomate, treats RSS/ATOM feeds from social networking and life-tracking sites as sensor streams, integrating information from such feeds into a simple unified RDF world model representing people, places and things and their time-varying states and activities. Combined with other information sources on the web, including the user's online calendar, web-based e-mail client, news feeds and messaging services, Atomate can be made to automatically carry out a variety of simple tasks for the user, ranging from context-aware filtering and messaging, to sharing and social coordination actions. Atomate's open architecture and world model easily accommodate new information sources and actions via the addition of feeds and web services. To make routine use of the system easy for non-programmers, Atomate provides a constrained-input natural language interface (CNLI) for behavior specification, and a direct-manipulation interface for inspecting and updating its world model

    Experimentation as a service over semantically interoperable Internet of Things testbeds

    Get PDF
    Infrastructures enabling experimental assessment of Internet of Things (IoT) solutions are scarce. Moreover, such infrastructures are typically bound to a specific application domain, thus, not facilitating the testing of solutions with a horizontal approach. This paper presents a platform that supports Experimentation as s Service (EaaS) over a federation of IoT testbeds. This platform brings two major advances. Firstly, it leverages semantic web technologies to enable interoperability so that testbed agnostic access to the underlying facilities is allowed. Secondly, a set of tools ease both the experimentation workflow and the federation of other IoT deployments, independently of their domain of interest. Apart from the platform specification, the paper presents how this design has been actually instantiated into a cloud-based EaaS platform that has been used for supporting a wide variety of novel experiments targeting different research and innovation challenges. In this respect, the paper summarizes some of the experiences from these experiments and the key performance metrics that this instance of the platform has exhibited during the experimentation
    corecore