14,471 research outputs found

    Seed Mass and Morphology in Outcrossing and Selfing Species of Clarkia (Onagraceae): An SEM Study

    Get PDF
    Seeds from three pairs of outcrossing-selfing sister taxa from the genus Clarkia (farewell-to-spring, Onagraceae)—Clarkia unguiculata, Clarkia exilis, Clarkia xantiana ssp. xantiana and ssp. parviflora, and Clarkia concinna ssp. concinna and ssp. automixa—were studied to assess the effects of contrasting mating systems on seed mass and seed morphology. For each outcrossing-selfing comparison, the seed mass of the selfing taxon was less than that of the outcrossing taxon. Seed mass typically differed significantly among populations within a taxon. Scanning electron microscopy showed that the seeds from all these taxa share several characteristics: a bullet to shield shape, a reticulate exotesta pattern, presence of crystals in the seed coat, and a seed coat that varies in thickness over the length of the seed. No morphological feature reliably distinguished seeds of outcrossing taxa from those of selfing taxa. The lack of morphological differences in conjunction with the consistent differences in seed mass between selfing and outcrossing seeds in these taxa supports the hypothesis that evolutionary forces have acted only on seed mass and not on seed morphology

    Hybridisation generates a hopeful monster: a hermaphroditic selfing cichlid

    Get PDF
    Compared to other phylogenetic groups, self-fertilization (selfing) is exceedingly rare in vertebrates and is known to occur only in one small clade of fishes. Here we report observing one F1 hybrid individual that developed into a functional hermaphrodite after crossing two closely related sexually reproducing species of cichlids. Microsatellite alleles segregated consistent with selfing and Mendelian inheritance and we could rule out different modes of parthenogenesis including automixis. We discuss why selfing is not more commonly observed in vertebrates in nature, and the role of hybridisation in the evolution of novel trait

    Bayesian co-estimation of selfing rate and locus-specific mutation rates for a partially selfing population

    Full text link
    We present a Bayesian method for characterizing the mating system of populations reproducing through a mixture of self-fertilization and random outcrossing. Our method uses patterns of genetic variation across the genome as a basis for inference about pure hermaphroditism, androdioecy, and gynodioecy. We extend the standard coalescence model to accommodate these mating systems, accounting explicitly for multilocus identity disequilibrium, inbreeding depression, and variation in fertility among mating types. We incorporate the Ewens Sampling Formula (ESF) under the infinite-alleles model of mutation to obtain a novel expression for the likelihood of mating system parameters. Our Markov chain Monte Carlo (MCMC) algorithm assigns locus-specific mutation rates, drawn from a common mutation rate distribution that is itself estimated from the data using a Dirichlet Process Prior (DPP) model. Among the parameters jointly inferred are the population-wide rate of self-fertilization, locus-specific mutation rates, and the number of generations since the most recent outcrossing event for each sampled individual

    Self-pollination by sliding pollen in Caulokaempferia coenobialis (Zingiberaceae)

    Get PDF
    Caulokaempferia coenobialis (Zingiberaceae) forms dense populations on steep cliffs in shady, humid monsoon forests in south China. It produces few consecutively opening bright yellow flowers that are 3 cm long and oriented parallel to the ground. Upon anther dehiscence at about 0600 hours, each pollen sac releases a drop of pollen onto the horizontally oriented style, and the two drops then merge to form an oily film that slowly flows toward the stigma, carrying out self-pollination between about 1500 and 0730 hours the next day. The distance covered by the pollen film is ca. 3 mm. There is no significant difference in fruit set between experimentally cross- and self-pollinated flowers or between naturally pollinated and bagged flowers. The low pollen/ovule ratio of 664 probably relates to the pollen grains being held together by pollen-connecting threads. The latter ensure that pollen grains always arrive as multiples, and this is the first report of such threads in the Zingiberaceae. During 35 h of observation at several locations and during three flowering periods, only three individual bees, five flies, and two butterflies visited single flowers. It remained unclear whether they affected pollination because no return visits were observed. The automatic selfing by pollen that reaches the stigma ca. 9 h after the onset of anthesis apparently constitutes a case of delayed selfing, providing reproductive reassurance in situations of low pollinator visitation

    A genome-wide investigation of the worldwide invader Sargassum muticum shows high success albeit (almost) no genetic diversity

    Get PDF
    Twenty years of genetic studies of marine invaders have shown that successful invaders are often characterized by native and introduced populations displaying similar levels of genetic diversity. This pattern is presumably due to high propagule pressure and repeated introductions. The opposite pattern is reported in this study of the brown seaweed, Sargassum muticum, an emblematic species for circumglobal invasions. Albeit demonstrating polymorphism in the native range, microsatellites failed to detect any genetic variation over 1,269 individuals sampled from 46 locations over the Pacific-Atlantic introduction range. Single-nucleotide polymorphisms (SNPs) obtained from ddRAD sequencing revealed some genetic variation, but confirmed severe founder events in both the Pacific and Atlantic introduction ranges. Our study thus exemplifies the need for extreme caution in interpreting neutral genetic diversity as a proxy for invasive potential. Our results confirm a previously hypothesized transoceanic secondary introduction from NE Pacific to Europe. However, the SNP panel unexpectedly revealed two additional distinct genetic origins of introductions. Also, conversely to scenarios based on historical records, southern rather than northern NE Pacific populations could have seeded most of the European populations. Finally, the most recently introduced populations showed the lowest selfing rates, suggesting higher levels of recombination might be beneficial at the early stage of the introduction process (i.e., facilitating evolutionary novelties), whereas uniparental reproduction might be favored later in sustainably established populations (i.e., sustaining local adaptation).Agence Nationale de la Recherche - ANR-10-BTBR-04; European Regional Development Fund; Fundacao para a Ciencia e a Tecnologia - SFRH/BPD/107878/2015, UID/Multi/04326/2016, UID/Multi/04326/2019; Brittany Region;info:eu-repo/semantics/publishedVersio

    Potential inbreeding in a small population of a mass flowering species, Xanthorrhoea johnsonii (Xanthorrhoaceae): is your mother my father?

    Get PDF
    Xanthorrhoea johnsonii is a long lived slow growing perennial understorey species, that produces a large quantity of passively dispersed seed every 3-5 years. Reproductive maturity is not reached until 20-30 years of age. The temporal asynchrony of the flowering event in this population was analogous to geographic isolation through fragmentation. A small population of plants flowering in isolation provided the opportunity to examine outcrossing rates, genetic diversity and the paternity of progeny at a small spatial scale (0.2 ha). The geographic location and physical characteristics of the adult plants were recorded, and both adults and their seed were sampled for genetic analysis. Four microsatellite loci were screened for genetic diversity and spatial structure analysis. A population outcrossing rate was estimated, as well as the number of paternal parents required to resolve the progeny multilocus genotypes. High genetic diversity was found in both adults and progeny with an estimated 97% outcrossing rate. All maternal lines required several paternal contributors, with no evidence of dominant paternal genotypes. Pollen transfer occurred between both geographically close and distant plants
    corecore