4,586 research outputs found

    Self-organized cortical map formation by guiding connections

    Get PDF
    We describe an algorithm for self-organizing connections from a source array to a target array of neurons that is inspired by neural growth cone guidance. Each source neuron projects a Gaussian pattern of connections to the target layer. Learning modifies the pattern center location. The small number of parameters required to specify connectivity has enabled this algorithm\u27s implementation in a neuromorphic silicon system. We demonstrate that this algorithm can lead to topographic feature maps similar to those observed in the visual cortex, and characterize its operation as function maximization, which connects this approach with other models of cortical map formation

    Developmental disorders

    Get PDF
    Introduction: Connectionist models have recently provided a concrete computational platform from which to explore how different initial constraints in the cognitive system can interact with an environment to generate the behaviors we find in normal development (Elman et al., 1996; Mareschal & Thomas, 2000). In this sense, networks embody several principles inherent to Piagetian theory, the major developmental theory of the twentieth century. By extension, these models provide the opportunity to explore how shifts in these initial constraints (or boundary conditions) can result in the emergence of the abnormal behaviors we find in atypical development. Although this field is very new, connectionist models have already been put forward to explain disordered language development in Specific Language Impairment (Hoeffner & McClelland, 1993), Williams Syndrome (Thomas & Karmiloff-Smith, 1999), and developmental dyslexia (Seidenberg and colleagues, see e.g. Harm & Seidenberg, in press); to explain unusual characteristics of perceptual discrimination in autism (Cohen, 1994; Gustafsson, 1997); and to explore the emergence of disordered cortical feature maps using a neurobiologically constrained model (Oliver, Johnson, Karmiloff-Smith, & Pennington, in press). In this entry, we will examine the types of initial constraints that connectionist modelers typically build in to their models, and how variations in these constraints have been proposed as possible accounts of the causes of particular developmental disorders. In particular, we will examine the claim that these constraints are candidates for what will constitute innate knowledge. First, however, we need to consider a current debate concerning whether developmental disorders are a useful tool to explore the (possibly innate) structure of the normal cognitive system. We will find that connectionist approaches are much more consistent with one side of this debate than the other

    A Neural Model of Visually Guided Steering, Obstacle Avoidance, and Route Selection

    Full text link
    A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3D virtual reality environment to determine the position of objects based on motion discotinuities, and computes heading direction, or the direction of self-motion, from global optic flow. The cortical representation of heading interacts with the representations of a goal and obstacles such that the goal acts as an attractor of heading, while obstacles act as repellers. In addition the model maintains fixation on the goal object by generating smooth pursuit eye movements. Eye rotations can distort the optic flow field, complicating heading perception, and the model uses extraretinal signals to correct for this distortion and accurately represent heading. The model explains how motion processing mechanisms in cortical areas MT, MST, and VIP can be used to guide steering. The model quantitatively simulates human psychophysical data about visually-guided steering, obstacle avoidance, and route selection.Air Force Office of Scientific Research (F4960-01-1-0397); National Geospatial-Intelligence Agency (NMA201-01-1-2016); National Science Foundation (NSF SBE-0354378); Office of Naval Research (N00014-01-1-0624

    A biologically inspired meta-control navigation system for the Psikharpax rat robot

    Get PDF
    A biologically inspired navigation system for the mobile rat-like robot named Psikharpax is presented, allowing for self-localization and autonomous navigation in an initially unknown environment. The ability of parts of the model (e. g. the strategy selection mechanism) to reproduce rat behavioral data in various maze tasks has been validated before in simulations. But the capacity of the model to work on a real robot platform had not been tested. This paper presents our work on the implementation on the Psikharpax robot of two independent navigation strategies (a place-based planning strategy and a cue-guided taxon strategy) and a strategy selection meta-controller. We show how our robot can memorize which was the optimal strategy in each situation, by means of a reinforcement learning algorithm. Moreover, a context detector enables the controller to quickly adapt to changes in the environment-recognized as new contexts-and to restore previously acquired strategy preferences when a previously experienced context is recognized. This produces adaptivity closer to rat behavioral performance and constitutes a computational proposition of the role of the rat prefrontal cortex in strategy shifting. Moreover, such a brain-inspired meta-controller may provide an advancement for learning architectures in robotics

    Human Conscious Experience is Four-Dimensional and has a Neural Correlate Modeled by Einstein's Special Theory of Relativity

    Get PDF
    In humans, knowing the world occurs through spatial-temporal experiences and interpretations. Conscious experience is the direct observation of conscious events. It makes up the content of consciousness. Conscious experience is organized in four dimensions. It is an orientation in space and time, an understanding of the position of the observer in space and time. A neural correlate for four-dimensional conscious experience has been found in the human brain which is modeled by Einstein’s Special Theory of Relativity. Spacetime intervals are fundamentally involved in the organization of coherent conscious experiences. They account for why conscious experience appears to us the way it does. They also account for assessment of causality and past-future relationships, the integration of higher cognitive functions, and the implementation of goal-directed behaviors. Spacetime intervals in effect compose and direct our conscious life. The relativistic concept closes the explanatory gap and solves the hard problem of consciousness (how something subjective like conscious experience can arise in something physical like the brain). There is a place in physics for consciousness. We describe all physical phenomena through conscious experience, whether they be described at the quantum level or classical level. Since spacetime intervals direct the formation of all conscious experiences and all physical phenomena are described through conscious experience, the equation formulating spacetime intervals contains the information from which all observable phenomena may be deduced. It might therefore be considered expression of a theory of everything

    What do faculties specializing in brain and neural sciences think about, and how do they approach, brain-friendly teaching-learning in Iran?

    Get PDF
    Objective: to investigate the perspectives and experiences of the faculties specializing in brain and neural sciences regarding brain-friendly teaching-learning in Iran. Methods: 17 faculties from 5 universities were selected by purposive sampling (2018). In-depth semi-structured interviews with directed content analysis were used. Results: 31 sub-subcategories, 10 subcategories, and 4 categories were formed according to the “General teaching model”. “Mentorship” was a newly added category. Conclusions: A neuro-educational approach that consider the roles of the learner’s brain uniqueness, executive function facilitation, and the valence system are important to learning. Such learning can be facilitated through cognitive load considerations, repetition, deep questioning, visualization, feedback, and reflection. The contextualized, problem-oriented, social, multi-sensory, experiential, spaced learning, and brain-friendly evaluation must be considered. Mentorship is important for coaching and emotional facilitation

    Coverage, Continuity and Visual Cortical Architecture

    Get PDF
    The primary visual cortex of many mammals contains a continuous representation of visual space, with a roughly repetitive aperiodic map of orientation preferences superimposed. It was recently found that orientation preference maps (OPMs) obey statistical laws which are apparently invariant among species widely separated in eutherian evolution. Here, we examine whether one of the most prominent models for the optimization of cortical maps, the elastic net (EN) model, can reproduce this common design. The EN model generates representations which optimally trade of stimulus space coverage and map continuity. While this model has been used in numerous studies, no analytical results about the precise layout of the predicted OPMs have been obtained so far. We present a mathematical approach to analytically calculate the cortical representations predicted by the EN model for the joint mapping of stimulus position and orientation. We find that in all previously studied regimes, predicted OPM layouts are perfectly periodic. An unbiased search through the EN parameter space identifies a novel regime of aperiodic OPMs with pinwheel densities lower than found in experiments. In an extreme limit, aperiodic OPMs quantitatively resembling experimental observations emerge. Stabilization of these layouts results from strong nonlocal interactions rather than from a coverage-continuity-compromise. Our results demonstrate that optimization models for stimulus representations dominated by nonlocal suppressive interactions are in principle capable of correctly predicting the common OPM design. They question that visual cortical feature representations can be explained by a coverage-continuity-compromise.Comment: 100 pages, including an Appendix, 21 + 7 figure

    Wiring optimization explanation in neuroscience: What is Special about it?

    Get PDF
    This paper examines the explanatory distinctness of wiring optimization models in neuroscience. Wiring optimization models aim to represent the organizational features of neural and brain systems as optimal (or near-optimal) solutions to wiring optimization problems. My claim is that that wiring optimization models provide design explanations. In particular, they support ideal interventions on the decision variables of the relevant design problem and assess the impact of such interventions on the viability of the target system

    Diffusion imaging and tractography of congenital brain malformations.

    Get PDF
    Diffusion imaging is an MRI modality that measures the microscopic molecular motion of water in order to investigate white matter microstructure. The modality has been used extensively in recent years to investigate the neuroanatomical basis of congenital brain malformations. We review the basic principles of diffusion imaging and of specific techniques, including diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI). We show how DTI and HARDI, and their application to fiber tractography, has elucidated the aberrant connectivity underlying a number of congenital brain malformations. Finally, we discuss potential uses for diffusion imaging of developmental disorders in the clinical and research realms

    Microenvironments Matter:Advances in Brain-on-Chip

    Get PDF
    To highlight the particular needs with respect to modeling the unique and complex organization of the human brain structure, we reviewed the state-of-the-art in devising brain models with engineered instructive microenvironments. To acquire a better perspective on the brain’s working mechanisms, we first summarize the importance of regional stiffness gradients in brain tissue, varying per layer and the cellular diversities of the layers. Through this, one can acquire an understanding of the essential parameters in emulating the brain in vitro. In addition to the brain’s organizational architecture, we addressed also how the mechanical properties have an impact on neuronal cell responses. In this respect, advanced in vitro platforms emerged and profoundly changed the methods of brain modeling efforts from the past, mainly focusing on animal or cell line research. The main challenges in imitating features of the brain in a dish are with regard to composition and functionality. In neurobiological research, there are now methods that aim to cope with such challenges by the self-assembly of human-derived pluripotent stem cells (hPSCs), i.e., brainoids. Alternatively, these brainoids can be used stand-alone or in conjunction with Brain-on-Chip (BoC) platform technology, 3D-printed gels, and other types of engineered guidance features. Currently, advanced in vitro methods have made a giant leap forward regarding cost-effectiveness, ease-of-use, and availability. We bring these recent developments together into one review. We believe our conclusions will give a novel perspective towards advancing instructive microenvironments for BoCs and the understanding of the brain’s cellular functions either in modeling healthy or diseased states of the brain.</p
    • 

    corecore