474 research outputs found

    Embodied Evolution in Collective Robotics: A Review

    Get PDF
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl

    A Review of Platforms for the Development of Agent Systems

    Full text link
    Agent-based computing is an active field of research with the goal of building autonomous software of hardware entities. This task is often facilitated by the use of dedicated, specialized frameworks. For almost thirty years, many such agent platforms have been developed. Meanwhile, some of them have been abandoned, others continue their development and new platforms are released. This paper presents a up-to-date review of the existing agent platforms and also a historical perspective of this domain. It aims to serve as a reference point for people interested in developing agent systems. This work details the main characteristics of the included agent platforms, together with links to specific projects where they have been used. It distinguishes between the active platforms and those no longer under development or with unclear status. It also classifies the agent platforms as general purpose ones, free or commercial, and specialized ones, which can be used for particular types of applications.Comment: 40 pages, 2 figures, 9 tables, 83 reference

    The Impact of Teams in Multiagent Systems

    Get PDF
    Across many domains, the ability to work in teams can magnify a group's abilities beyond the capabilities of any individual. While the science of teamwork is typically studied in organizational psychology (OP) and areas of biology, understanding how multiple agents can work together is an important topic in artificial intelligence (AI) and multiagent systems (MAS). Teams in AI have taken many forms, including ad hoc teamwork [Stone et al., 2010], hierarchical structures of rule-based agents [Tambe, 1997], and teams of multiagent reinforcement learning (MARL) agents [Baker et al., 2020]. Despite significant evidence in the natural world about the impact of family structure on child development and health [Lee et al., 2015; Umberson et al., 2020], the impact of team structure on the policies that individual learning agents develop is not often explicitly studied. In this thesis, we hypothesize that teams can provide significant advantages in guiding the development of policies for individual agents that learn from experience. We focus on mixed-motive domains, where long-term global welfare is maximized through global cooperation. We present a model of multiagent teams with individual learning agents inspired by OP and early work using teams in AI, and introduce credo, a model that defines how agents optimize their behavior for the goals of various groups they belong to: themselves (a group of one), any teams they belong to, and the entire system. We find that teams help agents develop cooperative policies with agents in other teams despite game-theoretic incentives to defect in various settings that are robust to some amount of selfishness. While previous work assumed that a fully cooperative population (all agents share rewards) obtain the best possible performance in mixed-motive domains [Yang et al., 2020; Gemp et al., 2020], we show that there exist multiple configurations of team structures and credo parameters that achieve about 33% more reward than the fully cooperative system. Agents in these scenarios learn more effective joint policies while maintaining high reward equality. Inspired by these results, we derive theoretical underpinnings that characterize settings where teammates may be beneficial, or not beneficial, for learning. We also propose a preliminary credo-regulating agent architecture to autonomously discover favorable learning conditions in challenging settings

    Recent trends in robot learning and evolution for swarm robotics

    Get PDF
    Swarm robotics is a promising approach to control large groups of robots. However, designing the individual behavior of the robots so that a desired collective behavior emerges is still a major challenge. In recent years, many advances in the automatic design of control software for robot swarms have been made, thus making automatic design a promising tool to address this challenge. In this article, I highlight and discuss recent advances and trends in offline robot evolution, embodied evolution, and offline robot learning for swarm robotics. For each approach, I describe recent design methods of interest, and commonly encountered challenges. In addition to the review, I provide a perspective on recent trends and discuss how they might influence future research to help address the remaining challenges of designing robot swarms

    Data Analytics on Online Labor Markets: Opportunities and Challenges

    Full text link
    The data-driven economy has led to a significant shortage of data scientists. To address this shortage, this study explores the prospects of outsourcing data analysis tasks to freelancers available on online labor markets (OLMs) by identifying the essential factors for this endeavor. Specifically, we explore the skills required from freelancers, collect information about the skills present on major OLMs, and identify the main hurdles for out-/crowd-sourcing data analysis. Adopting a sequential mixed-method approach, we interviewed 20 data scientists and subsequently surveyed 80 respondents from OLMs. Besides confirming the need for expected skills such as technical/mathematical capabilities, it also identifies less known ones such as domain understanding, an eye for aesthetic data visualization, good communication skills, and a natural understanding of the possibilities/limitations of data analysis in general. Finally, it elucidates obstacles for crowdsourcing like the communication overhead, knowledge gaps, quality assurance, and data confidentiality, which need to be mitigated

    Working notes of the KI \u2796 Workshop on Agent Oriented Programming and Distributed Systems

    Get PDF
    Agent-oriented techniques are likely to be the next significant breakthrough in software development process. They provide a uniform approach throughout the analysis, design and implementation phases in the development life cycle. Agent-oriented techniques are a natural extension to object-oriented techniques, but while there is a whole pIethora of analysis and design methods in the object-oriented paradigm, very little work has been reported on design and analysis methods in the agent-oriented community. After surveying and examining a number of well-known object-oriented design and analysis methods, we argue that none of these methods, provide the adequate model for the design and analysis of multi-agent systems. Therefore, we propose a new agent-specific methodology that is based on and builds upon object-oriented methods. We identify three major models that need to be build during the development of multi-agent applications and describe the process of building these models

    A complex network approach to urban growth

    Get PDF
    The economic geography can be viewed as a large and growing network of interacting activities. This fundamental network structure and the large size of such systems makes complex networks an attractive model for its analysis. In this paper we propose the use of complex networks for geographical modeling and demonstrate how such an application can be combined with a cellular model to produce output that is consistent with large scale regularities such as power laws and fractality. Complex networks can provide a stringent framework for growth dynamic modeling where concepts from e.g. spatial interaction models and multiplicative growth models can be combined with the flexible representation of land and behavior found in cellular automata and agent-based models. In addition, there exists a large body of theory for the analysis of complex networks that have direct applications for urban geographic problems. The intended use of such models is twofold: i) to address the problem of how the empirically observed hierarchical structure of settlements can be explained as a stationary property of a stochastic evolutionary process rather than as equilibrium points in a dynamics, and, ii) to improve the prediction quality of applied urban modeling.evolutionary economics, complex networks, urban growth
    • …
    corecore