4,452 research outputs found

    Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device

    Full text link
    We report the first demonstrations of both quadrature squeezed vacuum and photon number difference squeezing generated in an integrated nanophotonic device. Squeezed light is generated via strongly driven spontaneous four-wave mixing below threshold in silicon nitride microring resonators. The generated light is characterized with both homodyne detection and direct measurements of photon statistics using photon number-resolving transition edge sensors. We measure 1.0(1)1.0(1)~dB of broadband quadrature squeezing (โˆผ4{\sim}4~dB inferred on-chip) and 1.5(3)1.5(3)~dB of photon number difference squeezing (โˆผ7{\sim}7~dB inferred on-chip). Nearly-single temporal mode operation is achieved, with raw unheralded second-order correlations g(2)g^{(2)} as high as 1.87(1)1.87(1) measured (โˆผ1.9{\sim}1.9~when corrected for noise). Multi-photon events of over 10 photons are directly detected with rates exceeding any previous quantum optical demonstration using integrated nanophotonics. These results will have an enabling impact on scaling continuous variable quantum technology.Comment: Significant improvements and updates to photon number squeezing results and discussions, including results on single temporal mode operatio

    ๊ณ ์† DRAM ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์œ„ํ•œ ์ „์•• ๋ฐ ์˜จ๋„์— ๋‘”๊ฐํ•œ ํด๋ก ํŒจ์Šค์™€ ์œ„์ƒ ์˜ค๋ฅ˜ ๊ต์ •๊ธฐ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ์ •๋•๊ท .To cope with problems caused by the high-speed operation of the dynamic random access memory (DRAM) interface, several approaches are proposed that are focused on the clock path of the DRAM. Two delay-locked loop (DLL) based schemes, a forwarded-clock (FC) receiver (RX) with self-tracking loop and a quadrature error corrector, are proposed. Moreover, an open-loop based scheme is presented for drift compensation in the clock distribution. The open-loop scheme consumes less power consumption and reduces design complexity. The FC RX uses DLLs to compensate for voltage and temperature (VT) drift in unmatched memory interfaces. The self-tracking loop consists of two-stage cascaded DLLs to operate in a DRAM environment. With the write training and the proposed DLL, the timing relationship between the data and the sampling clock is always optimal. The proposed scheme compensates for delay drift without relying on data transitions or re-training. The proposed FC RX is fabricated in 65-nm CMOS process and has an active area containing 4 data lanes of 0.0329 mm2. After the write training is completed at the supply voltage of 1 V, the measured timing margin remains larger than 0.31-unit interval (UI) when the supply voltage drifts in the range of 0.94 V and 1.06 V from the training voltage, 1 V. At the data rate of 6.4 Gb/s, the proposed FC RX achieves an energy efficiency of 0.45 pJ/bit. Contrary to the aforementioned scheme, an open-loop-based voltage drift compensation method is proposed to minimize power consumption and occupied area. The overall clock distribution is composed of a current mode logic (CML) path and a CMOS path. In the proposed scheme, the architecture of the CML-to-CMOS converter (C2C) and the inverter is changed to compensate for supply voltage drift. The bias generator provides bias voltages to the C2C and inverters according to supply voltage for delay adjustment. The proposed clock tree is fabricated in 40 nm CMOS process and the active area is 0.004 mm2. When the supply voltage is modulated by a sinusoidal wave with 1 MHz, 100 mV peak-to-peak swing from the center of 1.1 V, applying the proposed scheme reduces the measured root-mean-square (RMS) jitter from 3.77 psRMS to 1.61 psRMS. At 6 GHz output clock, the power consumption of the proposed scheme is 11.02 mW. A DLL-based quadrature error corrector (QEC) with a wide correction range is proposed for the DRAM whose clocks are distributed over several millimeters. The quadrature error is corrected by adjusting delay lines using information from the phase error detector. The proposed error correction method minimizes increased jitter due to phase error correction by setting at least one of the delay lines in the quadrature clock path to the minimum delay. In addition, the asynchronous calibration on-off scheme reduces power consumption after calibration is complete. The proposed QEC is fabricated in 40 nm CMOS process and has an active area of 0.048 mm2. The proposed QEC exhibits a wide correctable error range of 101.6 ps and the remaining phase errors are less than 2.18ยฐ from 0.8 GHz to 2.3 GHz clock. At 2.3 GHz, the QEC contributes 0.53 psRMS jitter. Also, at 2.3 GHz, the power consumption is reduced from 8.89 mW to 3.39 mW when the calibration is off.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋™์  ๋žœ๋ค ์•ก์„ธ์Šค ๋ฉ”๋ชจ๋ฆฌ (DRAM)์˜ ์†๋„๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ํด๋ก ํŒจ์Šค์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ์— ๋Œ€์ฒ˜ํ•˜๊ธฐ ์œ„ํ•œ ์„ธ ๊ฐ€์ง€ ํšŒ๋กœ๋“ค์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ํšŒ๋กœ๋“ค ์ค‘ ๋‘ ๋ฐฉ์‹๋“ค์€ ์ง€์—ฐ๋™๊ธฐ๋ฃจํ”„ (delay-locked loop) ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜์˜€๊ณ  ๋‚˜๋จธ์ง€ ํ•œ ๋ฐฉ์‹์€ ๋ฉด์ ๊ณผ ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ์˜คํ”ˆ ๋ฃจํ”„ ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. DRAM์˜ ๋น„์ •ํ•ฉ ์ˆ˜์‹ ๊ธฐ ๊ตฌ์กฐ์—์„œ ๋ฐ์ดํ„ฐ ํŒจ์Šค์™€ ํด๋ก ํŒจ์Šค ๊ฐ„์˜ ์ง€์—ฐ ๋ถˆ์ผ์น˜๋กœ ์ธํ•ด ์ „์•• ๋ฐ ์˜จ๋„ ๋ณ€ํ™”์— ๋”ฐ๋ผ ์…‹์—… ํƒ€์ž„ ๋ฐ ํ™€๋“œ ํƒ€์ž„์ด ์ค„์–ด๋“œ๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ง€์—ฐ๋™๊ธฐ๋ฃจํ”„๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ์ง€์—ฐ๋™๊ธฐ๋ฃจํ”„ ํšŒ๋กœ๋Š” DRAM ํ™˜๊ฒฝ์—์„œ ๋™์ž‘ํ•˜๋„๋ก ๋‘ ๊ฐœ์˜ ์ง€์—ฐ๋™๊ธฐ๋ฃจํ”„๋กœ ๋‚˜๋ˆ„์—ˆ๋‹ค. ๋˜ํ•œ ์ดˆ๊ธฐ ์“ฐ๊ธฐ ํ›ˆ๋ จ์„ ํ†ตํ•ด ๋ฐ์ดํ„ฐ์™€ ํด๋ก์„ ํƒ€์ด๋ฐ ๋งˆ์ง„ ๊ด€์ ์—์„œ ์ตœ์ ์˜ ์œ„์น˜์— ๋‘˜ ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ œ์•ˆํ•˜๋Š” ๋ฐฉ์‹์€ ๋ฐ์ดํ„ฐ ์ฒœ์ด ์ •๋ณด๊ฐ€ ํ•„์š”ํ•˜์ง€ ์•Š๋‹ค. 65-nm CMOS ๊ณต์ •์„ ์ด์šฉํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง„ ์นฉ์€ 6.4 Gb/s์—์„œ 0.45 pJ/bit์˜ ์—๋„ˆ์ง€ ํšจ์œจ์„ ๊ฐ€์ง„๋‹ค. ๋˜ํ•œ 1 V์—์„œ ์“ฐ๊ธฐ ํ›ˆ๋ จ ๋ฐ ์ง€์—ฐ๋™๊ธฐ๋ฃจํ”„๋ฅผ ๊ณ ์ •์‹œํ‚ค๊ณ  0.94 V์—์„œ 1.06 V๊นŒ์ง€ ๊ณต๊ธ‰ ์ „์••์ด ๋ฐ”๋€Œ์—ˆ์„ ๋•Œ ํƒ€์ด๋ฐ ๋งˆ์ง„์€ 0.31 UI๋ณด๋‹ค ํฐ ๊ฐ’์„ ์œ ์ง€ํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ ์ œ์•ˆํ•˜๋Š” ํšŒ๋กœ๋Š” ํด๋ก ๋ถ„ํฌ ํŠธ๋ฆฌ์—์„œ ์ „์•• ๋ณ€ํ™”๋กœ ์ธํ•ด ํด๋ก ํŒจ์Šค์˜ ์ง€์—ฐ์ด ๋‹ฌ๋ผ์ง€๋Š” ๊ฒƒ์„ ์•ž์„œ ์ œ์‹œํ•œ ๋ฐฉ์‹๊ณผ ๋‹ฌ๋ฆฌ ์˜คํ”ˆ ๋ฃจํ”„ ๋ฐฉ์‹์œผ๋กœ ๋ณด์ƒํ•˜์˜€๋‹ค. ๊ธฐ์กด ํด๋ก ํŒจ์Šค์˜ ์ธ๋ฒ„ํ„ฐ์™€ CML-to-CMOS ๋ณ€ํ™˜๊ธฐ์˜ ๊ตฌ์กฐ๋ฅผ ๋ณ€๊ฒฝํ•˜์—ฌ ๋ฐ”์ด์–ด์Šค ์ƒ์„ฑ ํšŒ๋กœ์—์„œ ์ƒ์„ฑํ•œ ๊ณต๊ธ‰ ์ „์••์— ๋”ฐ๋ผ ๋ฐ”๋€Œ๋Š” ๋ฐ”์ด์–ด์Šค ์ „์••์„ ๊ฐ€์ง€๊ณ  ์ง€์—ฐ์„ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜์˜€๋‹ค. 40-nm CMOS ๊ณต์ •์„ ์ด์šฉํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง„ ์นฉ์˜ 6 GHz ํด๋ก์—์„œ์˜ ์ „๋ ฅ ์†Œ๋ชจ๋Š” 11.02 mW๋กœ ์ธก์ •๋˜์—ˆ๋‹ค. 1.1 V ์ค‘์‹ฌ์œผ๋กœ 1 MHz, 100 mV ํ”ผํฌ ํˆฌ ํ”ผํฌ๋ฅผ ๊ฐ€์ง€๋Š” ์‚ฌ์ธํŒŒ ์„ฑ๋ถ„์œผ๋กœ ๊ณต๊ธ‰ ์ „์••์„ ๋ณ€์กฐํ•˜์˜€์„ ๋•Œ ์ œ์•ˆํ•œ ๋ฐฉ์‹์—์„œ์˜ ์ง€ํ„ฐ๋Š” ๊ธฐ์กด ๋ฐฉ์‹์˜ 3.77 psRMS์—์„œ 1.61 psRMS๋กœ ์ค„์–ด๋“ค์—ˆ๋‹ค. DRAM์˜ ์†ก์‹ ๊ธฐ ๊ตฌ์กฐ์—์„œ ๋‹ค์ค‘ ์œ„์ƒ ํด๋ก ๊ฐ„์˜ ์œ„์ƒ ์˜ค์ฐจ๋Š” ์†ก์‹ ๋œ ๋ฐ์ดํ„ฐ์˜ ๋ฐ์ดํ„ฐ ์œ ํšจ ์ฐฝ์„ ๊ฐ์†Œ์‹œํ‚จ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ง€์—ฐ๋™๊ธฐ๋ฃจํ”„๋ฅผ ๋„์ž…ํ•˜๊ฒŒ ๋˜๋ฉด ์ฆ๊ฐ€๋œ ์ง€์—ฐ์œผ๋กœ ์ธํ•ด ์œ„์ƒ์ด ๊ต์ •๋œ ํด๋ก์—์„œ ์ง€ํ„ฐ๊ฐ€ ์ฆ๊ฐ€ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ฆ๊ฐ€๋œ ์ง€ํ„ฐ๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ์œ„์ƒ ๊ต์ •์œผ๋กœ ์ธํ•ด ์ฆ๊ฐ€๋œ ์ง€์—ฐ์„ ์ตœ์†Œํ™”ํ•˜๋Š” ์œ„์ƒ ๊ต์ • ํšŒ๋กœ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ๋˜ํ•œ ์œ ํœด ์ƒํƒœ์—์„œ ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ์œ„์ƒ ์˜ค์ฐจ๋ฅผ ๊ต์ •ํ•˜๋Š” ํšŒ๋กœ๋ฅผ ์ž…๋ ฅ ํด๋ก๊ณผ ๋น„๋™๊ธฐ์‹์œผ๋กœ ๋Œ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ• ๋˜ํ•œ ์ œ์•ˆํ•˜์˜€๋‹ค. 40-nm CMOS ๊ณต์ •์„ ์ด์šฉํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง„ ์นฉ์˜ ์œ„์ƒ ๊ต์ • ๋ฒ”์œ„๋Š” 101.6 ps์ด๊ณ  0.8 GHz ๋ถ€ํ„ฐ 2.3 GHz๊นŒ์ง€์˜ ๋™์ž‘ ์ฃผํŒŒ์ˆ˜ ๋ฒ”์œ„์—์„œ ์œ„์ƒ ๊ต์ •๊ธฐ์˜ ์ถœ๋ ฅ ํด๋ก์˜ ์œ„์ƒ ์˜ค์ฐจ๋Š” 2.18ยฐ๋ณด๋‹ค ์ž‘๋‹ค. ์ œ์•ˆํ•˜๋Š” ์œ„์ƒ ๊ต์ • ํšŒ๋กœ๋กœ ์ธํ•ด ์ถ”๊ฐ€๋œ ์ง€ํ„ฐ๋Š” 2.3 GHz์—์„œ 0.53 psRMS์ด๊ณ  ๊ต์ • ํšŒ๋กœ๋ฅผ ๊ป์„ ๋•Œ ์ „๋ ฅ ์†Œ๋ชจ๋Š” ๊ต์ • ํšŒ๋กœ๊ฐ€ ์ผœ์กŒ์„ ๋•Œ์ธ 8.89 mW์—์„œ 3.39 mW๋กœ ์ค„์–ด๋“ค์—ˆ๋‹ค.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 4 Chapter 2 Background on DRAM Interface 5 2.1 Overview 5 2.2 Memory Interface 7 Chapter 3 Background on DLL 11 3.1 Overview 11 3.2 Building Blocks 15 3.2.1 Delay Line 15 3.2.2 Phase Detector 17 3.2.3 Charge Pump 19 3.2.4 Loop filter 20 Chapter 4 Forwarded-Clock Receiver with DLL-based Self-tracking Loop for Unmatched Memory Interfaces 21 4.1 Overview 21 4.2 Proposed Separated DLL 25 4.2.1 Operation of the Proposed Separated DLL 27 4.2.2 Operation of the Digital Loop Filter in DLL 31 4.3 Circuit Implementation 33 4.4 Measurement Results 37 4.4.1 Measurement Setup and Sequence 38 4.4.2 VT Drift Measurement and Simulation 40 Chapter 5 Open-loop-based Voltage Drift Compensation in Clock Distribution 46 5.1 Overview 46 5.2 Prior Works 50 5.3 Voltage Drift Compensation Method 52 5.4 Circuit Implementation 57 5.5 Measurement Results 61 Chapter 6 Quadrature Error Corrector with Minimum Total Delay Tracking 68 6.1 Overview 68 6.2 Prior Works 70 6.3 Quadrature Error Correction Method 73 6.4 Circuit Implementation 82 6.5 Measurement Results 88 Chapter 7 Conclusion 96 Bibliography 98 ์ดˆ๋ก 102Docto

    Advanced digital modulation: Communication techniques and monolithic GaAs technology

    Get PDF
    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case

    Hardware simulation of KU-band spacecraft receiver and bit synchronizer, phase 2, volume 1

    Get PDF
    The acquisition behavior of the PN subsystem of an automatically acquiring spacecraft receiver was studied. A symbol synchronizer subsystem was constructed and integrated into the composite simulation of the receiver. The overall performance of the receiver when subjected to anomalies such as signal fades was evaluated. Potential problems associated with PN/carrier sweep interactions were investigated

    Implementation of a Software Defined Spread Spectrum Communication System

    Get PDF
    The goal of this thesis is to develop a framework to prototype a software defined direct sequence spread spectrum transceiver that can be used as a node in an ad hoc network. We introduce the concept of a software radio, the current state of art, and GNU Radio and its concepts. We discuss in detail the design and development methods of GNU Radio and develop a flowgraph in Python to demonstrate the method of development. We present a mathematical analysis of (DSSS) modulation and demodulation schemes along with the transmitter and receiver design. We use this design to develop an analogous design in GNU Radio using the signal processing blocks that are present in GNU Radio and ones we develop. We perform simulations and tests to validate the algorithms, signal processing blocks and flowgraphs that we developed. We find that the signal acquistion algorithm is capable of determining the code and frequency offset in a received (DSSS) signal. We also find that the carrier tracking loop is capable of tracking the received carrier when the signal has a high (SNR). We conclude that GNU Radio as a technology can be used to prototype transceivers that are highly configurable and expandable. Finally, we identify and suggest some possible areas where this design can be developed and improved further

    All-semiconductor High Power Mode-locked Laser System

    Get PDF
    All-optical synchronization and its application in advanced optical communications have been investigated in this dissertation. Dynamics of all-optical timing synchronization (clock recovery) using multi-section gain-coupled distributed-feedback (MS-GC DFB) lasers are discussed. A record speed of 180-GHz timing synchronization has been demonstrated using this device. An all-optical carrier synchronization (phase and polarization recovery) scheme from PSK (phase shift keying) data is proposed and demonstrated for the first time. As an application of all-optical synchronization, the characterization of advanced modulation formats using a linear optical sampling technique was studied. The full characterization of 10-Gb/s RZ-BPSK (return-to-zero binary PSK) data has been demonstrated. Fast lockup and walk-off of the all-optical timing synchronization process on the order of nanoseconds were measured in both simulation and experiment. Phase stability of the recovered clock from a pseudo-random bit sequence signal can be achieved by limiting the detuning between the frequency of free-running self-pulsation and the input bit rate. The simulation results show that all-optical clock recovery using TS-DFB lasers can maintain a better than 5 % clock phase stability for large variations in power, bit rate and optical carrier frequency of the input data and therefore is suitable for applications in ultrafast optical packet switching. All-optical timing synchronization of 180-Gb/s data streams has been demonstrated using a MS-GC DFB laser. The recovered clock has a jitter of less than 410 fs over a dynamic range of 7 dB. All-optical carrier synchronization from phase modulated data utilizes a phase sensitive oscillator (PSO), which used a phase sensitive amplifier (PSA) as a gain block. Furthermore, all-optical carrier synchronization from 10-Gb/s BPSK data was demonstrated in experiment. The PSA is configured as a nonlinear optical loop mirror (NOLM). A discrete linear system analysis was carried out to understand the stability of the PSO. Complex envelope measurement using coherent linear optical sampling with mode-locked sources is investigated. It is shown that reliable measurement of the phase requires that one of the optical modes of the sampling pulses be locked to the optical carrier of the data signal to be measured. Carrier-envelope offset (CEO) is found to have a negligible effect on the measurement. Measurement errors of the intensity profile and phase depend on the pulsewidth and chirp of the sampling pulses as well as the detuning between the carrier frequencies of the data signal and the center frequency of the sampling source. Characterization of the 10-Gb/s RZ-BPSK signal was demonstrated using the coherent detection technique. Measurements of the optical intensity profile, chirp and constellation diagram were demonstrated. A CW local oscillator was used and electrical sampling was performed using a sampling scope. A novel feedback scheme was used to stabilize homodyne detection

    Dispersions of ellipsoidal particles in a nematic liquid crystal

    Full text link
    Colloidal particles dispersed in a partially ordered medium, such as a liquid crystal (LC) phase, disturb its alignment and are subject to elastic forces. These forces are long-ranged, anisotropic and tunable through temperature or external fields, making them a valuable asset to control colloidal assembly. The latter is very sensitive to the particle geometry since it alters the interactions between the colloids. We here present a detailed numerical analysis of the energetics of elongated objects, namely prolate ellipsoids, immersed in a nematic host. The results, complemented with qualitative experiments, reveal novel LC configurations with peculiar topological properties around the ellipsoids, depending on their aspect ratio and the boundary conditions imposed on the nematic order parameter. The latter also determine the preferred orientation of ellipsoids in the nematic field, because of elastic torques, as well as the morphology of particles aggregates.Comment: 31 pages, 11 figure

    Optoelectronic Circuits for Control of Lightwaves and Microwaves

    Get PDF

    Hardware simulation of Ku-band spacecraft receiver and bit synchronizer, volume 1

    Get PDF
    A hardware simulation which emulates an automatically acquiring transmit receive spread spectrum communication and tracking system and developed for use in future NASA programs involving digital communications is considered. The system architecture and tradeoff analysis that led to the selection of the system to be simulated is presented
    • โ€ฆ
    corecore