
University of Mississippi University of Mississippi

eGrove eGrove

Electronic Theses and Dissertations Graduate School

2012

Implementation of a Software Defined Spread Spectrum Implementation of a Software Defined Spread Spectrum

Communication System Communication System

Mir Ali

Follow this and additional works at: https://egrove.olemiss.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Ali, Mir, "Implementation of a Software Defined Spread Spectrum Communication System" (2012).
Electronic Theses and Dissertations. 33.
https://egrove.olemiss.edu/etd/33

This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more
information, please contact egrove@olemiss.edu.

https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=egrove.olemiss.edu%2Fetd%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/33?utm_source=egrove.olemiss.edu%2Fetd%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

Implementation of a

Software Defined Spread Spectrum

Communication System

A Thesis

Presented for the

Master of Science

Degree

in Engineering Science

The University of Mississippi

Mir Murtuza Ali

Dec 6, 2012

Copyright c� 2012 by Mir Murtuza Ali

All rights reserved

Abstract

The goal of this thesis is to develop a framework to prototype a software defined

direct sequence spread spectrum transceiver that can be used as a node in an ad hoc

network. We introduce the concept of a software radio, the current state of art, and GNU

Radio and its concepts. We discuss in detail the design and development methods of GNU

Radio and develop a flowgraph in Python to demonstrate the method of development. We

present a mathematical analysis of direct-sequence spread-spectrum (DSSS) modulation

and demodulation schemes along with the transmitter and receiver design. We use this

design to develop an analogous design in GNU Radio using the signal processing blocks

that are present in GNU Radio and ones we develop. We perform simulations and tests to

validate the algorithms, signal processing blocks and flowgraphs that we developed. We

find that the signal acquistion algorithm is capable of determining the code and frequency

offset in a received DSSS signal. We also find that the carrier tracking loop is capable of

tracking the received carrier when the signal has a high signal to noise ratio (SNR).

We conclude that GNU Radio as a technology can be used to prototype transceivers

that are highly configurable and expandable. Finally, we identify and suggest some pos-

sible areas where this design can be developed and improved further.

ii

List of Abbreviations

ADC analog-to-digital converter

AGC automatic gain control

AWGN additive white Gaussian noise

BPSK binary phase shift keying

CDMA code division multiple access

CSMA carrier-sense multiple access

CWC Center for Wireless Communications

DAC digital-to-analog converter

DBPSK differential phase-shift keyed

DCO digitally controlled oscillator

DDC digital-down-converter

DPLL digital phase-locked loop

DS-BPSK direct-sequence spread binary-phase-shift-keyed

DSSS direct-sequence spread-spectrum

DUC digital-up-converter

FFT fast Fourier transform

FSF Free Software Foundation

FPGA field programmable gate array

IF intermediate frequency

iii

MAC medium access

MANET mobile ad hoc network

NCO numerically controlled oscillator

PGA programmable gain amplifier

PHY physical layer

PI proportional-integral

PLL phase-locked loop

RF radio frequency

SDR software-defined radio

SNR signal to noise ratio

SoC System on Chip

sps samples per second

USB Universal Serial Bus

USRP Universal Software Radio Peripheral

Acknowledgements

This thesis represents years of work with the Center for Wireless Communications

at University of Mississippi, and because of that, there are a large number of people to

thank. First, thanks to Drs. John N. Daigle, Lei Cao and Allison W. Glisson, my advisors

and committee members. Each have contributed in significant ways to my education,

either through my personal relationships and work experiences with them, or in classroom.

I want to extend a very special thanks to Dr. John N. Daigle under whom I studied

over the past six years. He has always been a constant source of encouragement, advice

and insipiration to me. I feel fortunate to be his student and I look forward to continuing

our relationship in the future.

I would particularly like to thank Dr. Xiao Di and Tao Shi with whom I did

some of my best work as a graduate research assistant at NCPA. My work with them has

contributed to my education and career in many ways.

Finally, I cannot forget the influence of my family, friends and all the students of EE

I worked with over the years. My parents and siblings have been significant role models in

my life and their unwavering support and encouragment has always been of tremendous

help. I am also grateful to my best friends Sadiq, Nishchal, Himanshu, Pradeep and

Swasti for their help and support. I am also thankful to Eli who was always around to

support and bring a smile to me.

University, Mississippi Mir Murtuza Ali

December 2012

v

Table of Contents

1 Introduction 1

1.1 Motivation for the Thesis . 1

1.2 Introduction to SDR . 2

1.3 GNU Radio and USRP . 5

1.4 Outline of Thesis . 6

2 GNU Radio Design 7

2.1 GNU Radio Architecture . 7

2.2 Universal Software Radio Peripheral . 12

2.3 Framework for TCP/IP Communication 15

3 Direct Sequence Spread Spectrum 19

3.1 DS-BPSK Transmitter . 20

3.2 DS-BPSK Receiver . 23

3.3 DS-BPSK based PHY Design in GNU Radio 28

3.3.1 GNU Radio flowgraph of a DS-BPSK Modulator 29

3.3.2 GNU Radio flowgraph of a DS-BPSK Demodulator 31

3.4 Tracking . 33

3.5 Digital Phase Locked Loop Design . 37

3.6 Closed Loop Transfer Function of a DPLL 39

3.7 DS-BPSK Signal Acquisition . 40

4 System Implementation 44

4.1 Channel Model . 44

4.2 Gold Codes . 46

4.3 Testing the Acquistion and Carrier Synchronization blocks 48

4.3.1 Acquisition Tests . 49

4.3.2 Carrier Tracking Tests . 56

5 Conclusions and Future Research 60

Bibliography 61

VITA 65

vi

List of Tables

4.1 Primitive polynomials used . 47

4.2 Settings for channel model . 53

4.3 Equivalent effect in signal . 53

4.4 Settings for test 3 . 58

vii

List of Figures

1.1 Signal processing blocks of a modern communications transceiver system . 3

1.2 Functional block diagram of an ideal software defined radio 3

1.3 Functional block diagram of a practical software defined radio 4

1.4 A Generic block diagram representation of a GNU Radio based SDR . . . 6

2.1 GNU Radio flowgraph . 10

2.2 An example of a GNU Radio flowgraph . 10

2.3 Universal Software Radio Peripheral . 12

2.4 A simple USRP block diagram . 13

2.5 RFX-2400 daughterboard . 15

2.6 tunnel framework . 16

3.1 Functional block diagram of a simple DSSS modulator 20

3.2 A flowgraph representing all the stages of a DSSS demodulation 24

3.3 Functional block diagram of a DSSS demodulator 25

3.4 GNU Radio flow fraph of DS-BPSK modulator 29

3.5 GNU Radio flowgraph of DS-BPSK demodulator 31

3.6 A typical GNU Radio frame . 33

3.7 Functional block diagram of the tracking demodulator 35

3.8 A second order digital phase locked Loop 38

4.1 Gold code generator . 46

4.2 Autocorrelation of G1 . 47

4.3 Cross correlation of G1 with G2 . 47

4.4 Test flowgraph with a channel model block 48

4.5 Modulator output from test 1 . 51

4.6 Channel output from test 1 . 51

4.7 Acquisition results with fL=-1587.3 Hz . 54

4.8 Acquisition results with fL=0 Hz . 54

4.9 Acquisition results with fL=1587.3 Hz . 54

4.10 Acquisition results with fL=-3174.6 Hz . 55

viii

4.11 Acquisition results with fL=-1587.3 Hz . 55

4.12 Acquisition results with fL=0 Hz . 55

4.13 Acquisition results with fL=1587.3 Hz . 55

4.14 Acquisition result with 252 samples . 56

4.15 Acquisition result with 1008 samples . 56

4.16 Inphase component of received signal for Test 3 with Δf=1000 Hz and

SNR=20 dB . 58

4.17 Quadrature component of received signal for Test 3 with Δf=1000 Hz and

SNR=20 dB . 58

4.18 Inphase component of the output signal from tracking loop 59

4.19 Quadrature component of the output signal from tracking loop 59

4.20 Phase error plot for test 3 . 59

Chapter 1

Introduction

The objective of this thesis is to develop a software radio framework to demonstrate

the feasability of using GNU Radio to prototype a mutli-code DSSS transceiver using

Universal Software Radio Peripheral (USRP) that can be used as an ad hoc networking

node, capable of communicating with similar nodes in a mobile ad hoc network.

In this thesis, we start by introducing the concepts of GNU Radio and USRP. We then

discuss the propsed design for the GNU Radio based DSSS transceiver. We then discuss

the implementation of the proposed along with tests and validation of these algorithms.

1.1 Motivation for the Thesis

An ad hoc network is a collection of communication and processing stations that spon-

taneously organize themselves into a network and cooperate to facilitate execution of

distributed applications. In a mobile ad hoc network (MANET), the nodes are free to

move at will and without prior notification. This class of networks has potential to have

enormous impact in a number of emergency domains where an extensive communications

infrastructure is not likely to exist, such as tactical military operations, disaster recovery,

law enforcement and fire fighting.

The Center for Wireless Communications at University of Mississippi, under the lead-

ership of Dr. John N. Daigle, has continuously been involved in research in the area of ad

1

hoc networks during the past one decade. The focus of the present research at Center for

Wireless Communications (CWC) is on developing protocols to manage single radio sys-

tems whose wireless resources are shared among the various functions using code division

multiple access (CDMA).

The specific objectives of this research is described in detail in [4]. One particular

objective of this research is to prototype a multi-code CDMA transceiver that can be used

to perfrom tests that quantify performance of the protocols that were developed at CWC.

In order to develop such a protoype, we decided to use GNU Radio and Universal Software

Radio Peripheral (USRP) to develop a framework that implements multi-code CDMA.

GNU Radio is a software library that provides a framework to develop software radios that

are highly configurable, expandable and scalable. USRP provides the hardware frontend

that works in unison with GNU Radio and together they provide the infrastructure to

prototype a multi-code CDMA transceiver.

1.2 Introduction to SDR

A software-defined radio (SDR) is a radio communication system in which, the compo-

nents that are typically implemented in hardware in a traditional modern digital radio

communication system as represented in Figure 1.1 [18], are instead implemented in soft-

ware which is executing on an embedded computing device or on a personal computer.

An ideal SDR, represented in Figure 1.2, is a reconfigurable radio based solely on

software, and has the analog-to-digital conversion occurring directly at the antenna. The

modulated analog information signal received at the antenna, is immediately converted

to digital domain by an analog-to-digital converter (ADC), and is processed in software

by a computing device [22]. Conversely, in the transmitter section, the software produces

a modulated information signal in digital domain which is converted to an analog signal

by a digital-to-analog converter (DAC) ultimately transmitted through the antenna.

2

RF
Receiver

ADC
Digital
Mixer

Digital
Local

Oscillator

LPF
Decimator

Demod
Decode
Decrypt
Analyze

Receive
Antenna

Receive
Channel
Data

Modulate
Encode
Encrypt
Compress

Interpolation
Filter

Digital
Mixer

Digital
Local

Oscillator

DAC
RF

Transmit

Transmit
AntennaTransmit

Channel
Data

Figure 1.1. Signal processing blocks of a modern communications transceiver system

ADC

DAC

SOFTWARE

Figure 1.2. Functional block diagram of an ideal software defined radio

The ideal SDR architecture of Figure 1.2 imposes some difficult specifications, [19],

upon each of the elements in the system, which necessitates trade-offs towards implement-

ing a practical SDR. Nonetheless, the development of a radio system that can change its

operating frequency, modulation, operating bandwidth and network protocol without the

need to change the system hardware is highly desirable. Figure 1.3 represents a practical

design for a software-defined radio.

In this design, in the receiver, an RF to IF conversion [28] is performed prior to analog-

to-digital conversion. The digital output of ADC is then passed on to the software, where

it is downcoverted from IF to baseband, and processed further for demodulation. Similarly

in the transmitter, the software generates the modulated information signal at baseband,

3

Receive
RF Front-End

ADC
IF Down-Conversion

to
Baseband

Baseband
Demodulation

Transmit
RF Front-End

DAC
IF Up-Conversion

to
IF Band

Baseband
Modulation

SOFTWARE

Figure 1.3. Functional block diagram of a practical software defined radio

digitally upconverts it to IF and sends it to the DAC. The DAC converts the digital

IF signal to an analog IF signal which, after conversion to RF by the RF front-end, is

transmitted through the antenna.

The heart of an SDR is the computing device performing the digital signal processing

in software. This computing device is capable of executing complex signal processing

algorithms in real time that perform functions such as downconversion, upconversion,

modulation, demodulation, encoding, decoding and error checking. Depending upon the

cost, needs, power consumption, architecture, software programming methods and ease

of software reconfigurability, the computing device can be implemented using a field pro-

grammable gate array (FPGA), digital signal processors, general purpose processors, pro-

grammable System on Chip (SoC) or other application specific programmable processors.

As these devices are reprogrammable, an SDR’s function can be modified or, new features

added to it, without requiring changes in hardware.

As the current generation of personal computers (PC) are equipped with high speed

CPUs and high capacity memories, performing complex signal processing tasks in real-

time on them is now possible. With this, a whole new area of research, development

and use of SDR has emerged where PCs running general purpose operating systems such

as Linux are used to perform complex signal processing tasks in real-time. The ease of

developing algorithms on a PC using popular programming languages such as C, C++,

4

Python, and signal processing tools such as MATLAB has helped in attracting more

enthusiasts and researchers towards this technology. Dedicated software frameworks for

implementing software defined radios using PCs are currently being developed and two

such open source frameworks that are available today are GNU Radio [11] and OSSIE [9].

1.3 GNU Radio and USRP

GNU Radio is an open source project of the Free Software Foundation (FSF) that is

currently one of the most popular SDR implementations and is widely used in hobby-

ist, academic and commercial environments. It is a pure software toolkit developed in

C++ and Python programming languages with the design philosophy of performing all

the functions of a digital communication system in software instead of hardware. It can

perform all the essential signal processing tasks such as, source encoding, channel encod-

ing, encryption, decryption, modulation, demodulation, synchronization, multiplexing,

demultiplexing and can be used to implement almost any type of communication system.

As GNU Radio exclusively is a software toolkit, it does absolutely no radio commu-

nication without means to interface it to the radio frequency (RF) domain. A device is

required to interface the digital software domain of GNU Radio to the analog RF domain.

The USRP is one such device that provides the RF Front-End and ADC/DAC capability

to a GNU Radio based SDR. Figure 1.4 represents the block diagram of an SDR that

uses GNU Radio and the USRP.

The USRP consists of two separate units; a motherboard and one or more daugh-

terboards and, is connected through a Universal Serial Bus (USB) cable to a computer

running GNU Radio. The USRP Motherboard performs the intermediate frequency (IF)

signal processing of up and down conversions, decimation, interpolation and filtering

whereas, the final radio frequency’s analog up and down conversion, filtering and ampli-

fication is performed by the daughterboards. This way, the USRP provides the interface

5

Figure 1.4. A Generic block diagram representation of a GNU Radio based SDR

between the analog signal and the digital baseband signal processed by GNU Radio on

the computer and together they form a powerful SDR platform that is easily configurable

and expandable.

1.4 Outline of Thesis

The thesis is organized as follows. The next chapter introduces the user to GNU Radio and

its architecture along with a method to use this technology for communicating between

two ad hoc nodes. Chapter 3 analyses the functioning of a direct-sequence spread binary-

phase-shift-keyed (DS-BPSK) transmitter and receiver. Further, we propose the design

of our framework for implementing a DS-BPSK based physical layer in GNU Radio. In

Chapter 4 we describe the software we developed and present the results from our tests

to validate the algorithms and design. Chapter 5 concludes the thesis.

6

Chapter 2

GNU Radio Design

In this chapter, we begin by describing the architecture of GNU Radio applications. We

introduce the reader to various building blocks of a GNU Radio based SDR applications.

We then discuss a GNU Radio flowgraph development in Python. We later introduce the

hardware used for developing software radios and finally finish the chapter by discussing

the framework for TCP/IP communication using GNU Radio.

2.1 GNU Radio Architecture

GNU Radio is an open-source software package that can run on various hardware plat-

forms. Coupled with USRP, GNU Radio provides an ideal software platform for devel-

oping wireless protocols at the physical and data link layers of the protocol stack. GNU

Radio uses a modular, block-based architecture with a hybrid Python/C++ programming

model that provides a convenient and high performance platform for the development of

software radios. It adopts a flowgraph design, as shown in Figure 2.1, for a simpler

abstraction and visualization of an SDR application.

The GNU Radio framework consists of an extensive library of pre-defined and tested

signal processing units called blocks. Blocks are an abstraction of a C++ class that imple-

ments a certain signal processing function while hiding the inner workings and implemen-

tation details of the class. They are basic operation units that process continuous data

7

streams. Each block has a number of input and output streams. The input to the block is

the data that is used by the signal processing function, and the output of the block is the

data produced by the signal processing function. Currently, GNU Radio provides a large

number of signal processing blocks such as filters, interpolators, decimators, waveform

generators, clock and carrier synchronization blocks, modulators, demodulators, blocks

performing various simple to complex arithmetic operations and transformations.

Although blocks are written in C++, a GNU Radio flowgraph is typically implemented

in Python. Through the use of Simplifed Wrapper and Interface Generator (SWIG)

[12], the C++ classes representing various blocks are imported to a Python environment

and with the use of an extensive API available in GNU Radio an SDR flowgraph is

constructed. This has the advantage of simplifying the procedure to develop an SDR

in GNU Radio as scripting in Python is simpler than developing applications in C++.

The performance critical signal processing tasks are implemented in C++, whereas the

high level organization, flowgraph construction, GUI and other less performance-critical

functions are implemented in Python.

An SDR is built by creating a graph, as shown in Figure 2.1, where the nodes are

units that implement a signal processing function, and the edges that connect these nodes

represent the data flow between the nodes. In GNU Radio the nodes are called blocks,

whereas the edges are often referred to as streams. A typical SDR built in GNU Radio

will have the following elements:

• Sources - A source is a block without an input stream but one or more output

streams. It is the head of the processing chain, and it feeds data into the flowgraph

so that, it is processed by the other signal processing blocks in the flowgraph. A

GNU Radio application will have at least one source. Block A and B in Figure 2.1

represent the source blocks.

• Sinks - A sink is a block without an output stream but one or more input streams. It

8

forms the tail of the processing chain and it is where the signal processing terminates

in the flowgraph. A GNU Radio application will have at least one sink. Block F in

Figure 2.1 represents a sink with two input streams.

• Intermediate Blocks - These blocks are found between a source and the sink and

together they complete a GNU Radio flowgraph. The intermediate blocks have both

input and output streams and they perform the intermediate signal processing in

the flowgraph.

• Flowgraph - A GNU Radio application links together each source and sink pair, as

well as, any intermediate blocks, (blocks C,D,E in Figure 2.1), that are required to

transform the data stream from the source(s) into a format that is understandable

by the sink(s). This interconnection of blocks from the source to a sink forms a

flowgraph. The information in a flowgraph starts at one or more source blocks,

flows sequentially through the intermediate blocks and terminates at one or more

sink blocks. The input to a block is called an input stream whereas, the output

from the block is called an output stream. The flowgraph may include any number

of paths, sources or sinks, as long as there are no loops and no unconnected ports.

• Schedulers - A scheduler is associated with each active flowgraph and is responsible

for moving data through the flowgraph. It iterates through the blocks in a flowgraph,

identifies blocks that have sufficient data on their input(s) and sufficient space on

their output(s) to be able to process data. It then triggers the processing function

for these blocks.

Figure 2.2 represents the flowgraph of a simple GNU Radio application flowgraph

called dbpsk test.py. This application performs differential phase-shift keyed (DBPSK)

modulation on randomly generated bits.

Python script dbpsk test.py shown in Listing 2.1 implements the flowgraph of Figure

9

A
Source

B
Source

C
Intermediate

DSP Block

D
Intermediate

DSP Block

E
Intermediate

DSP Block

F
Sink

Figure 2.1. GNU Radio flowgraph

Figure 2.2. An example of a GNU Radio flowgraph

2.2. It uses the random source block to produce a stream of random bits. The stream

of random bits is then fed into a throttle block that controls the speed of execution of a

GNU Radio flowgraph by preventing it from hogging the CPU. The controlled output of

the throttle block is later fed into a DPSK Mod block that performs DBPSK modulation

on the input bits. The output of the block is a baseband DBPSK signal which we, in

order to complete the flowgraph, discard by feeding it into a null sink block. The null

sink block functions like Unix’s /dev/null file.

Line 1 of Listing 2.1 imports module gr from the gnuradio package which causes most

of the GNU Radio signal processing blocks to be imported into Python environment. This

module is always loaded in a GNU Radio application. Similarly, line 2 imports the GNU

Radio module that provides the functionality of most of the modulators and demodulators

implemented in GNU Radio. Lines 5 to 27 define a class called dbpsk top block which

is derived from gr.top block class. This class is a container for the flowgraph and by

deriving it from gr.top block all the essential functions necessary for creating a flowgraph

10

are inherited.

1 from gnuradio import gr
2 from gnuradio import blks2
3 import numpy
4

5 class dbpsk_top_block(gr.top_block):
6

7 def __init__(self):
8 gr.top_block.__init__(self)
9

10 self.samp_rate = 100000
11 # Generate a list of random bits
12 self.random_bits = map(numpy.random.randint(0, 2, 10000))
13

14 self.random_source = gr.vector_source_b(self.random_bits , True)
15 # DBPSK modulator
16 self.dbpsk_mod = blks2.dbpsk_mod(
17 samples_per_symbol =2,
18 excess_bw =0.35 ,
19 gray_code=False ,
20 verbose=False ,
21 log=False)
22 # rate limiter
23 self.throttle = gr.throttle(gr.sizeof_char , self.samp_rate)
24 # null sink
25 self.null_sink = gr.null_sink(gr.sizeof_gr_complex)
26

27

28 self.connect(self.random_source , self.throttle)
29 self.connect(self.throttle , self.dbpsk_mod)
30 self.connect(self.dbpsk_mod , self.null_sink)
31

32 if __name__ == ’__main__ ’:
33 try:
34 dbpsk_top_block ().run()
35 except KeyboardInterrupt:
36 pass

Listing 2.1. Python script implementing the flowgraph of Figure 2.2

The variable sample rate defines the sample rate of the signals that are generated by

various blocks in the flowgraph. The random source block of the flowgraph is instantiated

as an object of GNU Radio module gr.vector source b. This module repeatedly outputs

a list containing 10000 randomly generated bits (line 12). In line 16 to 21 a DBPSK

modulator is instantiated as an object of module blks2.dbpsk mod. In line 23 a throttle

block is instantiated as an object of class gr.throttle. Similarly, in line 25 a null sink

is instantiated as an object of module gr.null sink.

Once the blocks are instantiated, they are connected together to complete the graph.

11

This is done in lines 28-30. The remaining part of the code is synonymous to a main()

function in a C/C++ program, and is called upon execution of dbpsk test.py.

2.2 Universal Software Radio Peripheral

The USRP is a hardware device designed and manufactured by Ettus Research Inc, and is

widely used as an affordable hardware front end for various software defined radio systems.

Figure 2.3 shows the picture of the first generation USRP. The rest of the discussion in

this section has been included from references [11] and [15].

Figure 2.3. Universal Software Radio Peripheral

12

Figure 2.4. A simple USRP block diagram

As shown in figure 2.4 the USRP consists of the following major components,

• Analog to Digital Converter (ADC) section

• Digital to Analog Converter (DAC) section

• Field Programmable Gate Array (FPGA)

The ADC section consists of four high speed 12-bit ADCs with a sampling rate of

64MHz and capable of digitizing a band as wide as 32MHz. The full scale voltage range of

the ADCs is 2V peak-to-peak and the input is 50Ω differential. A software programmable

gain amplifier (PGA) with an amplifier gain of upto 20dB is used before the ADCs to

amplify the input signal in order to utilize the entire input range of the ADC in case of

weak signals.

The DAC section, which is present in the transmission section, consists of four high

speed 14-bit DACs with a sampling rate of 128MHz and capable of converting a signal of

bandwidth as wide as 64MHz from digital to analog. The DACs are capable of providing

13

an output of 1V peak to a 50Ω differential load. A software PGA with a gain up to 20dB

is also used to amplify the signal after it is coverted to analog by the DACs.

The FPGA section is the most important part of the USRP. The host computer

running the software radio algorithms produces digital signal samples at a lower sample

rate that is incompatible with the ADC/DAC. The FPGA uses the stream of data samples

from the host computer and performs high sample rate signal processing to enable the

resultant digital signal to be compatible with the ADC/DAC requirements. The high

sample-rate processing is performed on the FPGA while the lower sample-rate processing

is done on the host computer running the SDR algorithms.

In signal receive mode the FPGA is programmed to function as a digital-down-

converter (DDC). The output of the ADC is a discrete IF signal at a sample rate of

64Msps with the data bandwidth centered around the intermediate frequency fif . The

FPGA functioning as a DDC translates the bandwidth of this signal from fif to base-

band and reduces the sample rate from 64Msps to a lower rate that is capable of being

transferred over the USB bus and is within the host computer’s processing capability.

When the USRP is used as a transmitter, the FPGA functions as a digital-up-converter

(DUC). The discrete baseband signal generated by the host computer is sent over the

USB bus to the USRP. As the signal generated by the computer is at a lower rate

compared to the DAC sampling rate, the FPGA interpolates the low rate baseband data

signal by a factor N chosen from the range {4, 512} such that the final sample rate of the

interpolated signal is 128Msps. The interpolated signal is then translated from baseband

to an intermediate frequency band by mixing it with an intermediate frequency carrier

and finally the DAC converts the discrete IF signal to an analog IF signal.

The daughterboards transform a USRP motherboard into a complete RF transceiver

system. They are analogous to the RF front end of a radio transceiver system. A daugh-

terboard consists of a programmatically tunable oscillator, a mixer and bandpass filters

14

Figure 2.5. RFX-2400 daughterboard

and it converts the IF signal coming from the USRP motherboard to an RF signal in

transmit mode or converts the received RF signal to an IF signal in the receive mode.

Ettus Research Inc, produces a wide range of daughterboards that function in various

ISM radio bands [5]. In our experiments, we used an RFX-2400 daughterboard which has

a frequency range of 2.3 GHz to 2.9 GHz with a maximum transmit power of 17dBm and

is shown in Figure 2.5.

2.3 Framework for TCP/IP Communication

As indicated earlier, our design goal is to implement a framework to implement functional

prototypes of direct-sequence spread-spectrum (DSSS) based MANET nodes. GNU Radio

provides a framework that integrates Linux’s network layer functionality with the physical

layer (PHY) and medium access (MAC) layer functionality implemented in GNU Radio.

This enables easy prototyping of MANET nodes that are capable of transmitting appli-

cation data that are based on TCP/IP protocol but use a PHY and MAC implemented

in GNU Radio.

Figure 2.6 describes this framework using the TCP/IP model. At the top of the

framework is the Application layer and it represents various TCP/IP based applications

such as SSH, SFTP and Ping. The next block represents the Transport, Network and Link

15

Application

Layer
SSH, HTTP, etc

Transport

Layer

Network

Layer

Data Link

Layer

Physical

Layer

Implemented in GNU Radio

USRP
USB

Virtual N/W

Interface (TAP)

Linux Socket Interface

Provided by Linux

Figure 2.6. tunnel framework

layers which are implemented natively in the Linux kernel. The last block represents the

MAC and Physical layers and are implemented in GNU Radio.

The PHY is interfaced to the upper layers through Linux’s native virtual network

kernel device TUN/TAP [10]. TUN/TAP provides packet reception and transmission

from user space programs and can be used as an Ethernet device, which, instead of

receiving packets from physical media, receives them from user space program and instead

of sending packets via physical media writes them to the user space program. In our

application, the user space program is a Python script that instantiates two threads

called transmit path and receive path. transmit path reads packets from TUN/TAP

and sends it to PHY for transmission while, receive path sends packets received through

PHY to the TUN/TAP device.

Listing 2.2 describes the algorithm used by the user space program to access TUN/-

TAP device to send and receive packets payload using GNU Radio/USRP. In main()

method, an instance of the application class app top block is created. This class upon

initialization creates two objects called transmit path and receive path which run as

16

separate threads. After initialization of these threads, the TUN/TAP interface is opened

for read and write in line 47.

Next we set the carrier sense threshold in line 49 and instantiate the carrier-sense

multiple access (CSMA) object class csma mac. This class consists of two methods;

phy rx callback and main loop(). When PHY receives a packet through receive path

it calls the callback [13] function phy rx callback() and pushes the received payload to

the upper layer by writing the payload object to the TUN/TAP device’s file descriptor

tunnel fd.

main loop() method implements the carrier-sense MAC and it controls the access

of the shared transmission medium. It continuously checks for available packets at the

TUN/TAP interface (line 27). If there is data available, it calls the method carrier sensed(),

which is implemented in the receive path class, to check if there is a carrier detected on

the medium. If carrier sensed() returns True, it means that the channel is busy and

the protocol keeps executing backoff until the channel becomes idle as the transmission

attempt is delayed for a time period equal to delay. This backoff function is implemented

as a thread sleep using the Python method time.sleep(delay). The carrier is sensed

before every transmission attempt and upon a failed transmission attempt, delay is in-

creased exponentially (lines 38-39). When carrier sensed() returns False, the payload

is transmitted by the transmit thread by calling its method send packet(payload).

We utilize this framework in our proposed system to communicate using TCP/IP us-

ing a DS-BPSK based physical layer. The MAC and PHY implementation consists of

implementations of transmit path, receive path and the algorithm for CSMA.

1 class app_top_block(gr.top_block):
2

3 def __init__ ():
4 transmit_path = initialize_transmit_path ()
5 self.connect(transmit_path)
6

7 receive_path = initialize_receive_path ()
8 self.connect(receive_path)

17

9

10 class csma_mac(object):
11

12 def __init__(self , tunnel_fd , transmit_path , receive_path):
13 """
14 Initialize CSMA MAC object
15 """
16

17 def phy_rx_callback(self , ok , payload):
18

19 if ok:
20 os.write(tunnel_fd , payload)
21

22 def main_loop(self):
23

24 minimum_delay = 0.001 # delay in seconds
25

26 while True:
27 payload = os.read(tunnel_fd , PACKET_SIZE)
28

29 if payload is NULL:
30 transmit_path.send_pkt(eof=True)
31 break
32

33 delay = minimum_delay
34

35 while receive_path.carrier_sensed ():
36 sys.stderr.write("Entering back -off period")
37 sleep(delay)
38 if delay < 0.050:
39 delay = delay * 2 # exponential back -off
40

41 transmit_path.send_packet(payload)
42

43 def main():
44

45 app = app_top_block ()
46

47 tunnel_fd = open_tun_interface("/dev/net/tun")
48

49 app.receive_path.set_carrier_threshold(THRESHOLD_dB)
50

51 mac = csma_mac(tunnel_fd , app.transmit_path , app.receive_path)
52

53 mac.main_loop ()
54

55 if __name__ == ’__main__ ’:
56 try:
57 main()
58 except KeyboardInterrupt:
59 pass

Listing 2.2. Python pseudo code describing framework for TCP/IP communication using GNU Radio

18

Chapter 3

Direct Sequence Spread Spectrum

In this chapter, we describe the transmitter and receiver design in GNU Radio for the

proposed DS-BPSK transceiver. We begin by describing a DS-BPSK transmitter and

receiver. Later, we present the GNU Radio flowgraphs for the DS-BPSK transmitter and

the receiver, and identify and describe the functions of the signal processing blocks used

in the flowgraphs. We also identify the native GNU Radio blocks used in the flowgraph

and describe the design of the non-native blocks that were developed.

Spread-spectrum is a telecommunications technique in which the information signal is

spread over a bandwidth considerably greater than is necessary so as to resist jamming

and other interference. In order to be considered spread-spectrum, a signal must have the

following characteristics [23]:

• The transmitted signal energy must occupy a bandwidth which is larger than the

information bit rate and which is approximately independent of the information bit

rate.

• Demodulation must be accomplished, in part, by correlation of the received signal

with a replica of the signal used in the transmitter to spread the information signal.

In spread-spectrum (SS) modulation the lower rate information signal, d(t), is modified

directly or indirectly by a sequence, {cn}, also known as the spreading or chipping sequence

such that, the modified signal occupies a bandwidth that is much larger than that of the

19

original information signal. This subsequent increase in bandwidth results in an improved

system performance of a spread-spectrum communication system without requiring high

signal to noise ratio (SNR).

Although spread-spectrum modulation can be implemented in multiple ways [24, 25],

we adopt direct-sequence spread-spectrum (DSSS) technique utilizing binary phase shift

keying (BPSK) due to its simplicity and ease of implementation. We call the signal

modulated using this technique as DS-BPSK signal. In the following sections, we will

present the design of the DS-BPSK transmitter and receiver that we intend to implement

along with a mathematical representation of the signals that are generated by various

components of the designed system.

3.1 DS-BPSK Transmitter

A DS-BPSK signal is generated by the direct mixing of the data with a spreading waveform

before the final carrier modulation using BPSK. Figure 3.1 represents the functional block

diagram design of a DS-BPSKmodulator. This design is based on the digital DSSS modem

design of [1].

Message
Source

Direct-Sequence
Spreading

Gold-Code
Generator

Complex Baseband
BPSK Modulation

Interpolation
Pulse Shaping

x
�
(t)

IF StageRF Stage
DS-BPSK
Transmission
Signal

d(t) s(t)

c(t)

x(t)

Figure 3.1. Functional block diagram of a simple DSSS modulator

Let d(t) represent a binary data pulse train generated by the Message Source at a

20

rate of 1
Tb

bits per second. If {dm} denotes the sequence of binary data bits, d(t) can be

mathematically represented as,

d(t) =
∞�

m=0

dmδ (t−mTb) , (3.1.1)

where,

dm ∈ {−1, 1} ∀ m ∈ {0, 1, · · · ,∞} . (3.1.2)

Similarly, let c(t) represent a binary pulse train representing a sequence of chips of a

unique Gold-code sequence G of length N generated by the Gold Code Generator at a

rate of 1
Tc

chips per second. In multiple access systems G is chosen from a set of similar

Gold-codes. If {cn} represents the binary chips belonging to the Gold-code sequence, c(t)

can be mathematically represented as,

c(t) =
∞�

n=0

cnδ (t− nTc) , (3.1.3)

where,

cn ∈ {−1, 1} ∀ n ∈ {0, 1, · · · ,∞} . (3.1.4)

d(t) and c(t) are input into a Direct-Sequence Spreading block that performs direct-

sequence spreading on the data sequence bits by multiplying each data bit with N chips of

the Gold-code sequence. If the input bit is dm, the corresponding spread-spectrum signal

is a contiguous set of N spread-spectrum chip pulses and is mathematically represented

as,

sm(t) = dm

N−1�

n=0

cnδ (t− nTc) , (3.1.5)

The ratio of Tb to Tc, is referred to as the processing gain (N) of the spread-spectrum

system and is often used to characterize system performance [24]. Using (3.1.5), the

21

spread-spectrum binary sequence is mathematically represented as:

s(t) =
∞�

m=0

sm (t−mTb)

=
∞�

m=0

dm

N−1�

n=0

cnδ (t− nTc −mTb)

=
∞�

m=0

N−1�

n=0

dmcnδ (t− nTc −mTb) (3.1.6)

s(t) is then passed onto a Complex Baseband Modulator that performs BPSK modulation

on the input spread spectrum bits where, the input bit +1 is converted to complex symbol

(+1+ j0), and −1 is converted to (−1+ j0) to produce, the complex baseband DS-BPSK

signal x(t) consisting of an in-phase component xi(t) as defined in (3.1.7) and a zero

quadrature component xq(t).

xi(t) =
∞�

m=0

N−1�

n=0

dmcnδ (t− nTc −mTb) , (3.1.7)

xq(t) = 0, (3.1.8)

The baseband DS-BPSK signal is then passed to an Interpolation Pulse Shaping block

where each BPSK symbol is interpolated to K samples according to some pulse shaping

function [17]. If rectangular pulse shaping is used, the pulse shaping process yields the

following in-phase and quadrature components for the baseband DS-BPSK output x
�
(t):

x
�
i(t) =

∞�

m=0

N−1�

n=0

K−1�

k=0

dmcn ΠTc

�
t− kTc

K
− nTc −mTb

�
,

x
�
q(t) = 0, (3.1.9)

where ΠTc (.) represents the rectangular pulse defined as,

ΠTc =

1, 0 < t ≤ Tc

−1, otherwise.
(3.1.10)

The pulse-shaped baseband DS-BPSK signal x
�
(t) is then multiplied with digital complex

sinusoid of frequency fIF to produce the digital IF signal xIF(t) as shown in the equation

22

below.

xIF(t) = Re
�
x

�
(t)e−j2πfIFt

�
,

= x
�
i(t) cos (2πfIFt) (3.1.11)

The digital IF signal is then passed on to the DAC block followed by the RF block, where

it is converted to an analog signal and is modulated onto a carrier signal of radio frequency

fc to produce the analog DS-BPSK transmission signal.

3.2 DS-BPSK Receiver

Figure 3.2 represents a functional block diagram of a direct-conversion DS-BPSK receiver.

This design is based upon the design of DSSS modem of [1]. The receiver can be divided

into two separate sections; the Downconversion section and the Baseband Demodulator

section. The downconversion section consists of the RF and IF stages and converts the

received analog DS-BPSK signal into a discrete baseband signal sampled at a rate of

K samples per chip duration (Tc). The baseband demodulator section demodulates the

discrete baseband DS-BPSK signal and determines the transmitted data from the signal.

Let us assume that the transmission DS-BPSK signal was transmitted via a distortion-

less channel having a transmission delay of Td, and was received at the receiver together

with some type of interference and Gaussian noise (AWGN). The received signal can also

suffer from carrier frequency offsets introduced due to Doppler shifts (in case of mobile

receivers), and also due to the physical differences between the local oscillator crystals

in the transmitter and the receiver. If the receiver’s local oscillator is tuned to fc, the

received carrier frequency may appear with respect to the receiver’s local oscillator at an

offset of Δf . Using the definition of the baseband DS-BPSK signal at the transmitter

as shown in (3.1.9) the received discrete complex baseband DS-BPSK signal r(t) at the

23

IF Stage and
Downconversion

RF Stage

Acquisition

Code Synchronization
and

Correlator

Carrier
Synchronization

Received
DS-BPSK Signal

r(t)

r
�
(t)

e−j(2πΔft+�φ) Tacq

cp(t) Δfacq

Decision
Device

{�dm}

Figure 3.2. A flowgraph representing all the stages of a DSSS demodulation

output of the IF Stage and Downconversion block can be represented as,

r(t) = ri(t) + jrq(t) (3.2.1)

where, the in-phase component ri(t) is,

ri(t) = d (t− Td) c (t− Td) cos (2πΔft+ φ) + ni(t) (3.2.2)

=
∞�

m=0

N−1�

n=0

K−1�

k=0

dmcnΠTc

�
t− Td −

kTc

K
− nTc −mTb

�
cos (2πΔft+ φ) + ni(t),

(3.2.3)

and the quadrature component rq(t) is,

rq(t) = d(t− Td)c(t− Td) sin (2πΔft+ φ) + nq(t) (3.2.4)

=
∞�

m=0

N−1�

n=0

K−1�

k=0

dmcnΠTc

�
t− Td −

kTc

K
− nTc −mTb

�
sin (2πΔft+ φ) + nq(t).

(3.2.5)

24

φ in the above equations represents the phase difference between the received carrier

and the local carrier whereas, ni(t) and nq(t) represents the in-phase and quadrature

components of noise present in the received signal.

Demodulation of a spread-spectrum signal is accomplished in part by remodulating it

with the spreading code appropriately delayed as shown in Figure 3.3. This remodula-

tion, or correlation of the received signal with the delayed spreading waveform is called

despreading, and is a critical function in all spread-spectrum systems. Due to the carrier

frequency offset between the transmit and received signals, the spectrum of r(t) is cen-

tered away from the baseband frequency of 0Hz, to the offset frequency Δf . In order to

demodulate the signal correctly, the spectrum of r(t) must be translated to be centered

at 0Hz. This is done by mixing r(t) with the quadrature carrier ej(2πΔft+φ) [21] as shown

in Figure 3.3.

LPFy(t) d(t− Td)

c(t− Td) ej(2πΔft+φ)

Figure 3.3. Functional block diagram of a DSSS demodulator

Spread-spectrum demodulation requires that the transmitter and receiver spreading

waveforms be synchronized at all times. If the two waveforms are out of sync by as little

as one chip, insufficient signal energy will reach the receiver data demodulator for reliable

data detection. This task of achieving and maintaining code synchronization is always

delegated to the receiver.

There are two components to solving this synchronization problem [2, 26]. The first

component is the determination of the signal delay Td and the offset frequency Δf at the

beginning of the demodulation process. This is called code and frequency acquisition and

is described in Section 3.7. It is carried out by the Acquisition block in the DS-BPSK

receiver of Figure 3.2.

25

The second component of the synchronization problem is the problem of maintaining

code and carrier synchronization after initial acquisition. This problem is called code and

carrier tracking and is described in Section 3.4. The carrier synchronization is carried out

by the Carrier Synchronization block and the code synchronization is carrier out by the

Code Synchronization and Correlator block in the DS-BPSK receiver of Figure 3.2.

Once synchronization is established in the DS-BPSK receiver, the synchronization

blocks will generate the following two waveforms:

• The carrier synchronization block generates a quadrature carrier signal that is used

to translate r(t) to baseband before despreading. This quadrature carrier is repre-

sented as,

ej(2πΔft+�φ) = cos
�
2πΔft+ �φ

�
+ j sin

�
2πΔft+ �φ

�
, (3.2.6)

where �φ is the tracking block’s best estimate of the received carrier phase such that

under synchronization,

�φ ≈ φ (3.2.7)

• The code synchronization block generates a local replica of the transmitter’s Gold-

code waveform sampled at the same rate as r(t). This replica is also known as the

prompt signal cp(t), and is synchronized in time with the spreading signal present

on the received signal.

cp(t) =
∞�

m=0

N−1�

n=0

K−1�

k=0

cnΠTc

�
t− �Td −

kTc

K
− nTc −mTd

�
, (3.2.8)

where �Td is the code tracking loop’s best estimate of the received signal delay Td

such that, under synchronization,

�Td ≈ Td (3.2.9)

The prompt signal cp(t) is mixed with the received signal r(t) prior to feeding it to

the carrier synchronization block. This mixing results in despreading of r(t), and the

26

despread product becomes a data modulated carrier signal. The in-phase and quadrature

components of the despread signal r
�
(t) are:

r
�
i(t) =

∞�

m=0

dm cos (2πΔft+ φ) + n
��
i (t),

r
�
q(t) =

∞�

m=0

dm sin (2πΔft+ φ) + n
��
q (t),

(3.2.10)

where, n
��
i (t) and n

��
q (t) are the in-phase and quadrature noise components. The carrier

synchronization block uses the despread signal r
�
(t) to track the carrier and estimate the

carrier phase φ.

In the code synchronization section, r(t) is multiplied with the synchronized local

carrier output of the carrier synchronization block to produce r1(t) where,

r1(t) = r(t)ej(2πΔft+φ). (3.2.11)

When condition of (3.2.7) is satisfied, ignoring the noise component, the in-phase

component of the product (r1i(t)) is devoid of carrier offset and the quadrature component

(r1q(t)) is approximately equal to zero as shown below.

r1i(t) =
∞�

m=0

dm

N−1�

n=0

K−1�

k=0

cnΠTc

�
t− Td −

kTc

K
− nTc −mTb

�
(3.2.12)

r1q(t) ≈ 0 (3.2.13)

r1(t) is then multiplied with the prompt sequence cp(t) and integrated over a period equal

to the spreading sequence period (NTc), to produce a result of integration that can be

used to determine the transmitted bit sequence. Ignoring the noise component, the result

of the correlation for any m over a code period is,

Im ≈ dm

N−1�

n=0

K−1�

k=0

c2nΠ
2
Tc

�
t− Td −

kTc

K
− nTc −mTb

�
(3.2.14)

Due to the excellent autocorrelation properties of Gold-codes, the integration above raises

the power in the data signal by a factor of ‘KN’ while, simultaneously reducing the noise

27

power due to its low cross-correlation values. Ultimately,

Im ≈ KNdm (3.2.15)

The Decision Device compares Im with a predefined threshold TH and outputs the esti-

mated data bit value �dm as,

�dm =

+1 if Im ≥ TH ,

−1 if Im ≤ −TH .
(3.2.16)

3.3 DS-BPSK based PHY Design in GNU Radio

Physical layer is the interface between the medium-access layer and the transmission

medium. It is the entity in charge of acutal transmission using different modulation

schemes over the medium. It performs various encoding and signaling functions such

as encoding, synchronization, modulation, that transform the digital data bits from the

upper layer frames into signals that can be sent over the medium. Similary, it demodulates

and decodes the received signal into digital bits and pushes them to the upper layers to

be transformed into data packets.

As mentioned in the earlier chapter, GNU Radio coupled with USRP provides an

excellent platform for developing PHY for software radios. The implementation of physical

layer in GNU Radio means performing most of the physical layer signaling in software.

Referring to Figure 3.4, the implementation requires development of the transmit path

and receive path classes along with the algorithm for carrier-sense MAC and the physical

layer block that performs baseband binary-phase shift-keyed spread-spectrum modulation

and demodulation.

In the next two subsections we will present the GNU Radio flowgraphs for performing

baseband DS-BPSK modulation and demodulation and also describe the functions of

various native GNU Radio blocks and the custom blocks that are used to implement

these flowgraphs.

28

Unpack Bytes to Bits
gr packed to unpacked bb

Repeat Unpacked Bits
dsss repeat bb

Gold Code Generator
gr file source

DSSS Spreading
gr xor bb

Chips to BPSK
Symbols

gr chunks to symbols bc

Interpolation Pulse
Shaping

gr interp fir filter ccf

USRP
usrp sink

payload from
transmit path

Figure 3.4. GNU Radio flow fraph of DS-BPSK modulator

3.3.1 GNU Radio flowgraph of a DS-BPSK Modulator

Figure 3.4 represents the flowgraph for performing DS-BPSK modulation in GNU Ra-

dio. The input to the flowgraph is the packet payload that is passed on by the class

transmit path by calling it’s method send packet(payload), as seen in Line 41 of List-

ing 2.2. payload is a packet data structure of size PACKET SIZE bytes or less (see Line

27 of Listing 2.2). The flowgraph unpacks these bytes and performs complex baseband

modulation on the unpacked bits as described below.

• gr packed to unpacked bb - This is a native GNU Radio block [7] that converts

a stream of data bytes into an output stream of unpacked bits where, each bit is

represented by a char data type. For example, a data byte {0xAA} is converted

to {0x01 0x00 0x01 0x00 0x01 0x00 0x01 0x00}. The output of this block is

passed on to the next block named dsss repeat bb.

• dsss repeat bb - This is a GNU Radio compliant custom made block with a

C++ class constructor as dsss repeat bb(int length pn, int n spread=1). This

block repeats every input byte a “length pn*n spread” times and outputs them

onto the output stream. This block is used prior to spreading using gr xor bb so

that, the rate of both the inputs to gr xor bb is the same.

29

For example, if length pn=3 and n spread=2 and the input to the block is {0x01},

then the output is {0x01} repeated 6 times, i.e. {0x01 0x01 0x01 0x01 0x01

0x01}. The output of this block is passed as the first input to the next block

gr xor bb.

• gr file source - This is a native GNU Radio block that reads a file repetitively and

outputs the contents of the file onto its output stream [6]. In this flowgraph it repet-

itively reads a binary file containing the Gold-code sequence of length pn length.

For performance reasons we chose to save the Gold-code sequence in a binary file

and read it using gr file source, instead of using the custom Gold-code sequence

generator block that outputs a stream of Gold-code sequence chips.

• gr xor bb - This is a native GNU Radio block that performs exclusive-OR across

all input streams [8]. In this flowgraph, the block performs exclusive-OR over the

output stream of dsss repeat bb, which is the repeated bits of the packet payload,

and the output stream of gr file source which is the Gold-code sequence bits or

chips.

The output is a stream of direct-sequence spread binary signal that is passed onto

the next block gr chunks to symbols bc.

• gr chunks to symbols bc - This is a native GNU Radio block that converts an

input stream of unpacked bytes into an output stream of complex constellation

symbols. The constellation symbols are passed as a vector to the constructor of this

class as shown in [?].

As we are using BPSK modulation the constellation symbol vector passed to this

block is {1+0j,-1+0j}. Each of the direct-sequence spread chips in the output

stream of gr xor bb is converted to a BPSK symbol and passed onto the output

stream of this block.

30

USRP
usrp source

Channel Filter (LPF)
gr fft filter ccc

Automatic Gain
Control

gr agc2 cc

Root-Raised Cosine
Pulse Shaping

gr interp fir filter ccf

Acquisition and
Tracking Demodulator
dsss demodulator cb

Packet
Synchronization

gr correlate access code bb

Packet
Assembly

gr frame sink b

Received
DS-BPSK Signal

Figure 3.5. GNU Radio flowgraph of DS-BPSK demodulator

• usrp sink This block is the GNU Radio’s abstraction of the USRP’s driver. It

provides the interface to set the USRP parameters such as, frequency, interpolation

and gain. As mentioned earlier, in transmit mode, the USRP performs upconversion

of the low rate baseband signal coming over the USB bus to a higher rate discrete

IF signal, before sending it to the daughterboard for the final RF conversion and

transmission.

The interpolation rate chosen for the USRP determines the rate of the data signal

(rb). As the USRP’s DAC consumes samples at a rate of 128M samples per second

(sps) the data rate is effectively controlled by the choice of the interpolation rate

(i) as,

rb =
128×106

i× s
bps, (3.3.1)

where s is the samples per symbol value that was used in the interpolation-pulse-

shaping block.

Finally, the output of the USRP is the DS-BPSK transmission signal.

3.3.2 GNU Radio flowgraph of a DS-BPSK Demodulator

Figure 3.5 represents the flowgraph for performing DS-BPSK demodulation in GNU Ra-

dio. The various blocks and their function is described below.

31

• usrp source - This block is GNU Radio’s abstraction of USRP’s driver when func-

tioning in receive mode. It provides the interface to set the USRP parameters such

as, receiver frequency, decimation rate and gain. In receive mode, the USRP per-

forms downconversion of the received analog signal and transfers the downcoverted

digital samples over the USB bus to be processed on the computer. The decimation

rate chosen for the USRP determines the sampling rate of the signal entering the

computer. As the USRP’s ADC samples the analog signal at 64Msps, the sampling

rate of the baseband signal available to be processed on the computer is effectively

controlled by the choice of the decimation rate (d). If fs is the sampling rate of the

baseband signal,

fs =
64× 106

d
sps, (3.3.2)

represents the baseband signal’s sampling rate. Depending upon the transmitted

signal’s data rate, d is chosen such that the Nyquist criterion is satisfied.

• gr fft filter ccc - This is a native GNU Radio block that implements a fast FFT

filter, with a choice of performing high pass, low pass or band pass filtering. The filter

characteristics are determined through the choice of taps used. In this flowgraph,

this filter functions as a low pass filter that blocks the unwanted frequencies beyond

the baseband signal’s bandwidth and effectively performs the function of a channel

filter of a receiver.

• gr agc2 cc - This is a native GNU Radio block that performs automatic gain control

(AGC). Irrespective of the signal level, the signal coming in from the USRP is always

applied with a constant gain and in order to maintain a relatively constant signal

amplitude automatic gain controlling is necessary. This is done by sampling the

output signal power and comparing it to a reference level. If the output signal level

is too high, a negative signal is fed back to reduce the gain. Conversely, a positive

signal is fed back to increase the gain if the output signal is low.

32

Preamble
Access
Code

Length Offset Data CRC ‘\x55’

Figure 3.6. A typical GNU Radio frame

• dsss demodulator cc - This is the block where the actual demodulation of the

baseband DS-BPSK signal takes place. It detects the presence of the signal through

acquisition, tracks the signal, and demodulates the received signal into its con-

stituent data bits.

The input to the block is a stream of complex samples and the output is a stream

of demodulated bits. We developed this block as a GNU Radio compatible block.

• gr correlate access code bb - This is a native GNU Radio block where frame

synchronization takes place. Figure 3.6 represents the physical layer frame struc-

ture in GNU Radio. Immediately after the preamble, the frame consists of an

access code which is a known vector consisting of bits 1 and 0. For example,

"0101010101111000100" is an access code that is used in some of the GNU Radio

applications. This block uses correlation to determine the position of the access

code in the demodulated stream of bits, coming from the previous block, and thus

determines the start of a new frame.

• gr frame sink b - This is a native GNU Radio block where the demodulated bits

are assembled together to form the data packet and is sent to the application layer.

Ultimately, the application layer processes the data packets received from the physical

layer.

3.4 Tracking

The carrier and code synchronization blocks of Figure 3.2 continuously track the offset

carrier wave and code sequence in order to demodulate the received DS-BPSK signal.

33

Figure 3.7 represents the functional block diagram of the setup that implements these

blocks. It consists of the following two sections:

• Carrier Tracking Loop - The carrier tracking loop is a phase-locked loop (PLL)

that continuously tracks the carrier phase φ of r(t) and generates a local quadrature

carrier e−j(2πΔft+�φ), whose phase �φ matches the carrier phase φ at all times. This

loop consists of the Carrier NCO block, Carrier Loop Filter block and Carrier

Phase Discriminator block.

• Code Tracking Loop - The code tracking loop is a PLL that continuously tracks

the code phase Td and generates the prompt sequence cp(t) of (3.4.1). that is

matched in phase with the spreading-sequence c(t) found in r(t), at all times. cp(t)

is represented The prompt sequence is a discrete sequence sampled at the same rate

as r(t) i.e. K samples per chip and is represented as,

cp(t) =
∞�

m=0

N−1�

n=0

K−1�

k=0

cnΠTc

�
t− �Td −

kTc

K
− nTc −mTd

�
, (3.4.1)

where �Td is the code tracking loop’s best estimate of Td. Along with the prompt

sequence, the code tracking loop generates two more sequences; the early sequence

ce(t) and the late sequence cl(t). ce(t) is the replica code sequence, similar to cp(t),

that has been advanced in time by half a spreading-sequence chip width Tc

2
and is

represented as,

ce(t) = cp

�
t− Tc

2

�
= c

�
t− �Td −

Tc

2

�
. (3.4.2)

Similary, cl(t) is the replica code sequence that has been delayed in time by half a

spreading-sequence chip width of Tc

2
and is represented as,

cl(t) = cp

�
t+

Tc

2

�
= c

�
t− �Td +

Tc

2

�
. (3.4.3)

In Figure 3.7, the blocks, Code NCO, Code Loop Filter, and Code Phase Discrimi-

nator form the code tracking loop.

34

Code NCO
(Gold-code Generator)

Code
Loop
Filter

Code Phase
Discriminator

Late
Correlator

Integrator
Im

Early
Correlator

�
I2e +Q2

e

�
I2l +Q2

l

PLL Phase
Discriminator

Carrier
Loop
Filter

Carrier
NCO

cp(t)

e−j(2πΔft+�φ)

Low Pass
Filter

r(t)

c(t−�Td − Tc

2)

c(t−�Td +
Tc

2)

Figure 3.7. Functional block diagram of the tracking demodulator

• Early-Prompt-Late Correlators - This is a set of correlators that perform cor-

relation between r(t), after it has been corrected for carrier phase, and the early,

prompt and late sequences respectively.

The tracking loops are initialized using the results from acquisition. The carrier NCO’s

initial frequency is set to Δfacq and the prompt code’s initial phase is set to Td. In the

carrier tracking loop, the despread signal r1(t) (3.2.10) is first multiplied with the local

carrier and the product is fed into a low pass filter to produce re(t), where

re(t) = d (t− Td) e
j(φ−�φ). (3.4.4)

The phase error “φe” between the received carrier and the local carrier is determined

by the carrier phase discriminator. The discriminator uses the following equation to

determine the phase error at sampling instance t = mTs.

φe[mTs] = tan−1
�
Im [re(mTs)]

Re [re(mTs)]

�
. (3.4.5)

35

The phase error signal is passed on to the loop filter that produces a filtered value of the

phase error that is used by the carrier NCO to adjust the phase of the local carrier signal

such that, the local and the received carrier are in phase synchronization and

φe(t) = φ− �φ ≈ 0. (3.4.6)

In the code tracking loop, r(t) is multiplied with the local carrier and the product is

passed on to the early and late correlators. In the early correlator, r1(t) is multiplied with

ce(t) and integrated over one code period (NTc) to produce,

Ie = dm cos
�
φ− �φ

�N−1�

n=0

K−1�

k=0

�
cnΠ

�
t− �Td −

kTc

K
− nTc −mTd

�

cnΠ

�
t− �Td −

kTc

K
− nTc −mTd −

Tc

2

��
, (3.4.7)

Qe = dm sin
�
φ− �φ

�N−1�

n=0

K−1�

k=0

�
cnΠ

�
t− �Td −

kTc

K
− nTc −mTd

�

cnΠ

�
t− �Td −

kTc

K
− nTc −mTd −

Tc

2

��
. (3.4.8)

where, Ie and Qe are the result of integration of the in-phase and quadrature components

of r1(t). Similarly, the output of the late correlator is

Il = dm cos
�
φ− �φ

�N−1�

n=0

K−1�

k=0

�
cnΠ

�
t− �Td −

kTc

K
− nTc −mTd

�

cnΠ

�
t− �Td −

kTc

K
− nTc −mTd +

Tc

2

��
, (3.4.9)

Ql = dm sin
�
φ− �φ

�N−1�

n=0

K−1�

k=0

�
cnΠ

�
t− �Td −

kTc

K
− nTc −mTd

�

cnΠ

�
t− �Td −

kTc

K
− nTc −mTd +

Tc

2

��
. (3.4.10)

36

The code phase discriminator uses the results from the integration to determine the

phase difference between the prompt code sequence and the received signal’s code se-

quence. The code phase error is found out as,

ψe =

�
I2e +Q2

e −
�

I2l +Q2
l�

I2e +Q2
e +

�
I2l +Q2

l

(3.4.11)

ψe is passed on to the code loop filter and the filtered output of the filter is used to adjust

the phase of the code NCO. Under lock condition, the magnitudes of early correlation

and late correlation are appromixately equal, i.e.

�
I2e +Q2

e ≈
�

I2l +Q2
l , (3.4.12)

If 0 < ψe < 1, it means that the early sequence is more aligned in phase with the received

code signal than the late sequence, and the prompt sequence’s phase needs to be advanced.

On the other hand, if −1 < ψe < 0, it means that the late sequence is more aligned in

phase with the received code signal than the early sequence, and the prompt sequence’s

phase needs to be delayed.

3.5 Digital Phase Locked Loop Design

In this section we will describe the model of the PLL that we used to implement the

tracking loops mentioned in the previous section. We will describe the design of this

system using its closed loop transfer function and later develop difference equations that

can be used to implement a software algorithm. Figure 3.8 shows the architecture of a

second-order digital phase-locked loop (DPLL) system used to implement the tracking

loops [20]. This system consists of the following components:

• Phase detector - The phase detector determines the difference between the input

phase and the digitally controlled oscillator (DCO) phase. If φi[n] is the phase of

37

�
Φi(z) α

Φe(z)

β

�

�

z−1

Φf (z)

�
z−1

Loop Filter
�
L(z)

�

Digitally Controlled Oscillator
�
N(z)

�

+

−
Φo(z)

+

+

+

+

+

+

Phase
Detector

Figure 3.8. A second order digital phase locked Loop

the input sample at discrete time n and φo[n] is the output of the DCO the phase

detector output φe[n] is,

φe [n] = φi [n]− φo [n] . (3.5.1)

• Loop Filter - A second-order DPLL consists of a proportional-integral (PI) filter

with a proportional gain α and an integral gain β. With a PI loop filter, the PLL

has a steady state error of zero for both phase and frequency steps, which makes

this loop suitable for correcting phase and frequency offsets. The transfer function

of this filter is,

L(z) =
(α + β) z − α

z − 1
. (3.5.2)

If φe[n] is the input to the PI filter at discrete time n, the resulting output of the

filter can be described as

φf [n] = αφe [n] +
n�

m=0

βφe [n−m] , (3.5.3)

where φf [n] is the output of the filter. The integral in the above equation results

from the integral loop in the filter, where we accumulate the phase error from the

38

starting time of operation of the loop, i.e. 0, to the present time n. Using (3.5.1)

we rewrite (3.5.3) as

φf [n] = α {φi [n]− φo [n]}+
n�

m=0

β {φi [n]− φo [n]} . (3.5.4)

• Delay element - z−1 is a delay element.

• Digitally Controlled Oscillator - The output of the filter is then passed on to the

DCO. The DCO is an integrator that accumulates phase and produces an output

that pushes the phase error at the output of the phase detector to zero. The transfer

function of the DCO is,

N(z) =
z

z − 1
(3.5.5)

If φf [n] is the input to the DCO the following difference equation describes its output

at discrete time n.

φo [n] = φo [n− 1] + φf [n] . (3.5.6)

3.6 Closed Loop Transfer Function of a DPLL

With the block diagram and the transfer functions of the components available to us, the

closed loop transfer function of the DPLL is then derived as,

H (z) =
L (z) z−1N (z)

1 + L (z) z−1N (z)
. (3.6.1)

By substituting equations (3.5.2) and (3.5.5) into H(z) and by reducing further, we get

H(z) =
(α + β)

�
z − β

α+β

�

z2 − 2
�
1− α+β

2

�
z + (1− α)

. (3.6.2)

In order to develop a software algorithm that functions as the DPLL represented by H(z),

we have to determine the values for α and β for which the loop is stable. In reference [16],

the author outlines a procedure for designing analog phase locked loops. Deriving from

39

that, we convert the classical analog second-order loop transfer function Href (s) (3.6.3)

into an equivalent z-domain representation such that it has a similar form as H(z) from

(3.6.2).

Href (s) =
2ζωns+ ωn

2

s2 + 2ζωns+ ωn
2
. (3.6.3)

When bilinear transformation is applied to Href (s), we get

Href (z) = H(s)
���
s= 2

Ts

z−1
z+1

(3.6.4)

where Ts is the time between successive samples. Upon substitution and rearranging,

Href (z) becomes

Href (z) =

4θn(ζ+θn)

1+2ζθn+θn
2

�
z − ζ

ζ+θn

�

z2 − 2
�

1+θ2n
1+2ζθn+θ2n

�
z +

�
1−2ζθn+θ2n
1−2ζθn+θ2n

� , (3.6.5)

where

θn =
ωnTs

2
=

ωn

ωs

π (3.6.6)

θn is known as the normalized natural frequency. Comparing equations (3.6.2) and (3.6.5)

and solving for α and β gives us, the loop gains in terms of the parameters of the analog

transfer function, and

α =
4ζθn

1 + 2ζθn + θ2n
, (3.6.7)

β =
4θ2n

1 + 2ζθn + θ2n
. (3.6.8)

3.7 DS-BPSK Signal Acquisition

Signal acquisition refers to the coarse synchronization of the code sequence present on

the received signal and the locally generated sequence to within some fraction of the

chip duration (Tc) of the code sequence. Once code acquistion has been accomplished,

a code tracking loop is employed to achieve fine alignment. In addition to coarse code

40

synchronization, acquisition also coarsely determines the carrier frequency offset between

the receiver and the transmitter [3].

As mentioned earlier, the received signal r(t) suffers from delay (Td) and carrier fre-

quency offset (Δf). The tracking loops have a low bandwidth which requires them to be

initialized such that the initial code phase of the locally generated code signal is within a

fraction of the chip width and the frequency of the local carrier is within a few tens of hertz

from the true carrier offset [2]. The goal of the acquisition is to perform cross-correlation

of the received DS-BPSK signal and the code sequence used for spreading.

(s�c) [n] =
N−1�

m=0

s∗ [m] c [n+m] . (3.7.1)

If s[n] and c[n] are two sequences of length N, their cross-correlation is defined in

(3.7.1) where s∗[n] is the conjugate of s[n]. When s(n) and c(n) is the same, the above

equation yields a maximum at n = 0 and this is the property we use for successful

acquisition. During acquisition, if the code phase of the received signal matches the phase

of the locally generated code sequence, the cross-correlation yeilds a maximum. We use

the parallel search acquisition algorithm described in [2] to perform acquisition. This

algorithm uses fast Fourier transform (FFT) to efficiently compute cross-correlation of

the input signal and the locally generated code sequence.

The parallel acquisition algorithm involves performing circular cross-correlation be-

tween the sampled received signal and the sampled spreading sequence where the number

of samples (n) chosen is a multiple of the product of the samples per chip (samples per chip)

and the length (pn len) of the spreading sequence. This ensures that we at least have one

complete spreading sequence present in the received signal samples. The variables s and

c in the pseudocode represent arrays of samples of signal and the spreading sequence.

The received signal is first multiplied with a locally generated exponential carrier

such that the result of the multiplication yeilds a signal that removes the carrier from the

received signal (line 24). Once the carrier is stripped, FFT based circular cross-correlation

41

is performed on s and c to yield the result of correlation xcorr (lines 26-30).

As the frequency of the carrier present on the received signal is unknown, the cross-

correlation is repeated for various values of f in the range {min freq, max freq} incre-

mented in steps of delta f. Ultimately, the frequency f for which the cross-correlation

is maximum and is greater than THRESHOLD is the estimated carrier frequency offset

(freq offset) and the index of the maximum is code phase offset (code offset) in

units of number of samples (lines 33-39).

1 # get ’n’ signal and spreading sequence samples
2 n = k * samples_per_chip * pn_len
3 s = fetch_signal_samples(n) # SIGNAL SAMPLES
4 c = fetch_code_samples(n) # CODE SAMPLES
5

6 # signal sample rate
7 fs = chip_rate * samples_per_chip
8 ts = 1.0/fs
9

10 # set frequency search range and resolution
11 min_freq = MIN
12 max_freq = MAX
13 delta_f = fs / n
14

15 # function to generate exponential carrier of frequency ’x’
16 exp_carrier = lambda x: array ([2*pi*x*ts*n for n
17 in range(0,n-1)])
18 curr_max = 0
19

20 fft_c = conjugate(fft(c))
21 # find circular cross -correlation of signal_samples and code_samples
22 for f in range(min_freq , max_freq , delta_f):
23

24 # remove the carrier from the signal
25 s = s * exp_carrier(f)
26 fft_s = fft(s)
27

28 # find cross -correlation
29 xcorr = ifft(fft_s * fft_c)
30

31 # find cross -correlation maximum
32 _max , max_index = find_xcorr_max (xcorr)
33

34 if _max > THRESHOLD:
35 if _max > curr_max:
36 curr_max = _max
37 freq_offset = f
38 code_offset = max_index

Listing 3.1. Parallel search algorithm for DSSS signal acquisition

This algorithm can be further improved for efficiency if we utilize the frequency shift

42

property of Fourier Transform [21]. This property states that if

f (t) ⇔ F (ω) (3.7.2)

then,

f (t) ejωot ⇔ F (ω − ωo) . (3.7.3)

Using this, we calculate the FFT of the signal only once and rotate it in steps of one or

more, around f(0) component, to the same effect as multiplying a time domain signal

with a complex carrier with a frequency that is a multiple of the frequency resolution of

the FFT. Listing 3.2 shows the code that can replace lines 20-38 in Listing 3.1.

1 fft_c = conjugate(fft(c))
2 fft_s = fft(s)
3

4 shift_l = ceil(min_freq)/delta_f;
5 shift_r = ceil(max_freq)/delta_f;
6

7 # find circular cross -correlation of signal_samples and code_samples
8 for i in range(shift_l , shift_r , 1):
9

10 # find cross -correlation
11 xcorr = ifft(rotate(fft_s , i) * fft_c)
12

13 # find cross -correlation maximum
14 _max , max_index = find_xcorr_max (xcorr)
15

16 if _max > THRESHOLD:
17 if _max > curr_max:
18 curr_max = _max
19 freq_offset = i*delta_f;
20 code_offset = max_index

Listing 3.2. Improved parallel search algorithm for DSSS signal acquisition

43

Chapter 4

System Implementation

In this chapter, we discuss the implementation of the design we discussed in the Chap-

ter 3. We begin by introducing to channel model block that we used for simualting a

propagation medium. Later, we discuss the algorithms and software we developed to im-

plement the various flowgraphs and signal processing blocks we discussed in Chapter 3.

The results from testing and validation of the developed algorithms is presented at the end.

1 gr_channel_model(double noise_voltage ,
2 double frequency_offset ,
3 double epsilon ,
4 const std::vector <gr_complex > &taps ,
5 double noise_seed);

Listing 4.1. Channel model API

4.1 Channel Model

GNU Radio has a channel model block that can be used to simulate the effect of an

additive white Gaussian noise (AWGN) channel on a propogating signal and the effect of

frequency and timing offset caused due to Doppler effect and the unsynchronized clocks

of the transmitter and the receiver. The channel model gr channel model exposes an

API with which we can independently control the channel noise, frequency offset and the

timing offset to simulate a received signal. gr channel model is implemented as a C++

44

class with the API shown in Listing 4.1. The arguments passed to this block are,

• noise voltage (An) - This parameter is equivalent to the root mean square ampli-

tude of noise in the signal and is calculated from the desired signal-to-noise ratio

(S) of the simulated signal. (4.1.1) shows the relationship between S, the average

signal power (Ps) and the average noise power (Pn).

S = 10 log
Ps

Pn

. (4.1.1)

As the average power of the signal is a function of the square of the root mean

square amplitude of the signal, (4.1.1) can be rewritten as

S = 20 log
As

An

, (4.1.2)

where As is the root mean square amplitude of the simulated signal. Thus the

noise voltage parameter is evaluated as

An =
As

10
S
20

. (4.1.3)

• frequency offset (Δfn) - This parameter is used to simulate the effect of a fre-

quency offset (Δf) between the transmitted and received signals. Δfn is Δf nor-

malized to the sampling frequency (fs) of the simulated signal.

Δfn =
Δf

fs
. (4.1.4)

• epsilon (�) - This parameter is used to simulate the effect of timing difference

between the clocks of the transmitter and the receiver and signal delay. If tt and tr

represent the pulse widths of the transmitter and receiver’s clock, then

� =
tt
tr
. (4.1.5)

45

4.2 Gold Codes

An important aspect of a spread-spectrum system design is to find a set of spreading

codes or waveforms such that, multiple users can use the same frequency band without

mutual interference. One important class of periodic sequences which provides a large set

of sequences with good periodic cross-correlation property is the class of Gold sequences.

A Gold code set is generated through exclusive-or of two preferred pair maximum

length sequences (m-sequences) [27] shifted by k bits, as shown in the following equation,

Gk[n] = m1[n]⊕m2[n+ k] for k ∈ {0, 1, . . . , 2N − 1}, (4.2.1)

where m1, and m2 represent the preferred pair m-sequences of degree N , and Gk is the

Gold code. Figure 4.1 represents a Gold code generator that uses two LFSR sequence

generators and an ex-OR gate to generate Gold codes of length 63 . The two LFSR

sequence generators shown in Figure 4.1 generate preferred pair m-sequences m1, and m2

that are represented by the following primitive polynomials of degree 6.

m1 = 1 + x2 + x3 + x5 + x6,

m2 = 1 + x+ x4 + x5 + x6. (4.2.2)

3 2 1456

3 2 1456

{m1}

{m2}

{G}

Figure 4.1. Gold code generator

One of the most important properties of Gold codes is their correlation results. In

order to detect a weak signal in presence of other strong spread-spectrum signals, the

46

0 50 100
−1

−0.5

0

0.5

1

n

R
x
x

Figure 4.2. Autocorrelation of G1

0 50 100
−1

−0.5

0

0.5

1

n

R
x
y

Figure 4.3. Cross correlation of G1 with G2

autocorrelation peak of the weak signal must be stronger than the cross correlation peaks

from the strong signals. If the codes are orthogonal, the cross correlations will be zero.

However, as Gold codes are not orthogonal but near orthogonal, their cross correlations

are not zero but have small values and can be calculated using equations found in Table

5.4 of [27]. Figure 4.2 and 4.3 represent the correlation properites of Gold sequence G1

with itself and another Gold code G2. G1 and G2 were obtained using m-sequences from

4.2.2 with offsets k equal to 1 and 2 respectively.

In the discussions mentioned later, we will use two Gold codes of lengths 63 and 1023

to discuss the performance of the signal acquisition algorithm. The following table lists

the primitive polynomials used to generate these two Gold codes.

Length m1 m2

63 1 + x2 + x3 + x5 + x6 1 + x+ x4 + x5 + x6

Table 4.1. Primitive polynomials used

47

4.3 Testing the Acquistion and Carrier Synchroniza-

tion blocks

To test and validate the algorithms developed for signal acquisition and tracking we gen-

erated test signals using the script dsss benchmark loopback.py that use the channel

model block to simulate signal degradation during transmission. Figure 4.4 shows the

position of the channel model block within the test flowgraph and Listing 4.2 shows an

excerpt from the script. dsss benchmark loopback.py in Listing 4.2 instantiates an ob-

ject each, of the trasmit path flowgraph (line 21), channel model block (line 22) and

the receive path flowgraph (line 23) and connects them together (line 25) to complete

the flowgraph of Figure 4.4.

Modulator
Flowgraph

Channel Model
gr channel model

Demodulator
Flowgraph

Figure 4.4. Test flowgraph with a channel model block

1 class my_top_block(gr.top_block):
2

3 def __init__(self , mod_class , demod_class , rx_callback , options):
4

5 gr.top_block.__init__(self)
6

7 # calculate noise_voltage
8 snr = snr_dB **(options.snr /10.0)
9 power_in_signal = abs(options.tx_amplitude)**2

10 noise_power = power_in_signal/snr
11 noise_voltage = math.sqrt(noise_power)
12

13 # frequency_offset
14 frequency_offset = options.frequency_offset
15

16 # samples_per_chip
17 if(options.samples_per_chip == None):
18 options.samples_per_chip = 4
19

20 # signal processing blocks
21 self.txpath = dsss_transmit_path.transmit_path(mod_class ,

options)

48

22 self.channel = gr.channel_model(noise_voltage , frequency_offset ,
1.0)

23 self.rxpath = dsss_receive_path.receive_path(demod_class ,
rx_callback , options)

24

25 self.connect(self.txpath , self.channel , self.rxpath)
26

27 def main():
28

29 global n_rcvd , n_right
30

31 n_rcvd = 0
32 n_right = 0
33

34 tb = my_top_block(dsss_modem.mod , dsss_modem.demod , rx_callback ,
options)

35 tb.start ()
36

37 # generate and send packets
38 nbytes = int(1e6 * options.megabytes)
39 n = 0
40 pktno = 0
41 pkt_size = int(options.size)
42

43 while n < nbytes:
44 send_pkt(chr(0xFF))
45 n += pkt_size
46 pktno += 1
47 sys.stderr.write(’.’)
48

49 send_pkt(eof=True)
50 sys.stderr.write("\n");
51

52 tb.wait()
53

54 if __name__ == ’__main__ ’:
55 try:
56 main()
57 except KeyboardInterrupt:
58 pass

Listing 4.2. Excerpt from dsss benchmark loopback.py

4.3.1 Acquisition Tests

For the tests, we collected data by transmitting a sequence of the same character 0xFF

(Listing 4.2, lines 43-50) through the transmit path flowgraph. As shown in Figure 3.4

the transmit path flowgraph uses various blocks described in Section 3.3.1 to implement

the DS-BPSK modulator. class mod shown in Listing 4.3 implements the DS-BPSK

49

modulator class in Python by importing the C++ classes we described in Section 3.3.1.

In lines 14-24, class mod instantiates these classes and connects them together (lines

26-29) to create the modulator flowgraph. class mod also sets the Gold code sequence

used, it’s length in chips and the number of samples per chip.

1 class mod(gr.hier_block2):
2

3 def __init__(self ,samples_per_chip=_def_samples_per_chip ,pn_id=
_def_pn_id ,verbose=_def_verbose ,log=_def_log):

4 gr.hier_block2.__init__(self ,"mod",gr.io_signature (1, 1, gr.
sizeof_char),gr.io_signature (1, 1, gr.sizeof_gr_complex))

5

6 self._samples_per_chip = samples_per_chip
7 self._pn_id = pn_id
8 self._spreading = _def_spreading_factor
9 self._pn_len = _def_pn_len

10

11 self.excess_bw = _def_excess_bw
12 arity = 2
13

14 self.bytes2chunks = gr.packed_to_unpacked_bb (1,gr.GR_MSB_FIRST)
15 self.repeater = dsss.repeat_bb(self._pn_len , 1)
16 self.pn_generator = gr.file_source(gr.sizeof_char , self._pn_file

,True)
17 self.xor = gr.xor_bb ()
18

19 bpsk_constellation = [(1+0j), (-1+1.2246467991473532e-16j)]
20 self.chunks2symbols = gr.chunks_to_symbols_bc(

bpsk_constellation)
21

22 ntaps = 11 * self._samples_per_chip
23 self.rrc_taps = gr.firdes.root_raised_cosine(self.

_samples_per_chip , self._samples_per_chip , 1.0, self.
excess_bw ,ntaps)

24 self.rrc_interp_filter = gr.interp_fir_filter_ccf(self.
_samples_per_chip ,self.rrc_taps)

25

26 self.connect(self , self.bytes2chunks , self.repeater)
27 self.connect(self.repeater , (self.xor ,0))
28 self.connect(self.pn_generator , (self.xor ,1))
29 self.connect(self.xor , self.chunks2symbols , self.

rrc_interp_filter , self)

Listing 4.3. Excerpt from dsss modem.py showing class mod

50

0 50 100 150 200 250 300
−2

−1

0

1

2

n

A

xi[n]

xq [n]

Figure 4.5. Modulator output from test 1

0 50 100 150 200 250 300
−2

−1

0

1

2

n

A

xi[n]

xq [n]

Figure 4.6. Channel output from test 1

1 class demod(gr.hier_block2):
2 def __init__(self ,
3 samples_per_chip=_def_samples_per_chip ,
4 chip_rate=_def_chip_rate ,
5 pn_id=_def_pn_id ,
6 excess_bw=_def_excess_bw ,
7 verbose=False ,
8 log=False):
9

10 gr.hier_block2.__init__(self , "demod",
11 gr.io_signature (1, 1, gr.sizeof_gr_complex),
12 gr.io_signature (1, 1, gr.sizeof_gr_complex))
13

14 self._samples_per_chip = samples_per_chip
15 self._chip_rate = chip_rate
16 self._pn_id = pn_id
17 self._excess_bw = excess_bw
18 arity = 2
19

20 self.agc = gr.agc2_cc (0.6e-1, 1e-3, 1, 1, 100)
21 ntaps = 11 * samples_per_chip
22 self.rrc_taps = gr.firdes.root_raised_cosine(
23 1.0, # gain
24 self._samples_per_chip , # sampling rate
25 1.0, # symbol rate
26 self._excess_bw , # excess bandwidth (roll -off

factor)
27 ntaps)
28

29 self.rrc_filter=gr.interp_fir_filter_ccf (1, self.rrc_taps)
30 # demodulator block performs acquisition and tracking
31 self.demodulator = dsss.demodulator_cc(self._samples_per_chip ,

self._chip_rate , self._pn_id)
32

33 # connect the blocks together to complete the flowgraph
34 self.connect(self.agc , self.rrc_taps , self.demodulator , self)

Listing 4.4. Excerpt from dsss modem.py showing class demod

51

Figure 4.5 shows the in-phase and the quadrature components of the signal output

from end of the transmit path flowgraph. The quadrature component of the signal is

zero as we are performing BPSK modulation on the data bits. Figure 4.6 shows the signal

output at the channel model block. The effect of the channel is seen as a slight signal

deterioration in both the in-phase and quadrature component.

The channel output is then fed into the receive path flowgraph that consists of the

demodulator class. Listing 4.4 shows the Python class that implements the demodulator

flowgraph. class demod instantiates objects of the C++ classes we discussed in Section

3.3.2 and connects them together to complete the demodulator flowgraph.

We developed dsss demodulator cc as the C++ class that implements acquisition

and tracking. It instantiates the class dsss acquisition and uses its method to perform

signal acquistion as discussed in Section 3.7. It also instantiates classes code nco and

carr nco that generate the local code sequence and local carrier signal. Listing 4.6 shows

the prototype of these classes and their methods.

1 class dsss_acquisition {
2

3 public:
4 dsss_acquisition(int samples_per_chip , double chip_rate ,
5 int pn_id , unsigned int nsamples);
6 ~dsss_acquisition ();
7

8 bool perform_acquisition(gr_complex *signal , int start ,
9 double fft_resolution);

10 double get_acq_freq ();
11 unsigned int get_acq_code ();
12 private:
13 void sample_pn_seq(gr_complex *, gr_complex *);
14 void fft_pn_seq(gr_complex *, gr_complex *);
15 void find_max(gr_complex *,cross_corr *);
16 bool compare_corr_bins(cross_corr *, int , double , acq_res *);
17 void init();
18 };

Listing 4.5. Definition of class dsss acquisition

With these settings, a complete Gold code sequence of length 63 is represented with

252 samples and thus we require at least 252 samples of the received signal to perform

52

acquisition. As the signal in our first test does not have a frequency offset, the acquisition

algorithm performs cross-correlation on the signal sample set such that it searches only

between {-delta f, delta f}, where delta f is the frequency resolution of the FFT

and is equal to

delta f =
100000 ∗ 4

252
= 1587.3 Hz (4.3.1)

1 class dsss_demodulator_cc : public gr_block
2 {
3 private:
4 dsss_demodulator_cc(int samples_per_chip ,
5 double chip_rate , int pn_id);
6 friend dsss_demodulator_cc_sptr
7 dsss_make_demodulator_cc(int samples_per_chip ,
8 double chip_rate , int pn_id);
9

10 class code_nco *d_code_nco;
11 class carr_nco *d_carr_nco;
12

13 public:
14 int general_work(int noutput_items ,
15 gr_vector_int &ninput_items ,
16 gr_vector_const_void_star &input_items ,
17 gr_vector_void_star &output_items);
18 void forecast(int noutput_items ,
19 gr_vector_int &ninput_items_required);
20 ~dsss_demodulator_cc ();
21 };

Listing 4.6. Definition of class dsss modulator cc

noise voltage 0.1

frequency offset 0

epsilon 1.0

Table 4.2. Settings for channel model

SNR 30 dB

Δf 0

Td 0

Table 4.3. Equivalent effect in signal

53

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

n

A

Figure 4.7. Acquisition results with fL=-1587.3 Hz

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

n

A

Figure 4.8. Acquisition results with fL=0 Hz

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

n

A

Figure 4.9. Acquisition results with fL=1587.3 Hz

Figures 4.7 to 4.9 show the acquisition results from this test when local carrier signal

frequencies of -1587.3 Hz, 0 Hz and 1587.3 Hz were used. As the signal didn’t have any

frequency offset, a distinct correlation peak is observed only in the 0 Hz set.

In our second test, we changed the frequency offset value in the channel model to 1000

Hz. Figure 4.10 to 4.13 shows the acquisition results when 252 samples were used and

the frequency search was performed between {-3174.6 Hz, 1587.3 Hz} in steps of 1587.3

Hz. The highest peak is observed in the results from using fL equal to -1587.3 Hz.

54

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

n

A

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

n

A

Figure 4.10. Acquisition results with fL=-

3174.6 Hz

Figure 4.11. Acquisition results with fL=-

1587.3 Hz

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

n

A

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

n

A

Figure 4.12. Acquisition results with fL=0 Hz Figure 4.13. Acquisition results with fL=1587.3

Hz

Next, we changed the noise voltage to 3.162 to introduce more noise into the signal

such that the effective SNR was -10 dB. Figure 4.14 shows the acquisition result when

252 samples were used at fc equal to -1587.3 Hz. Clearly, as there is no distinct peak in

the signal we cannot determine the code and frequency offsets from this result.

From 3.7.1 ,we see that by increasing the number of samples (N) used for cross-

correlation we increase the magnitude of cross-correlation. Thus, in order to determine

the offsets we increased the number of samples to include at least 4 consecutive Gold

55

code sequences so that the noise can be averaged over a longer period of time resulting in

higher correlation values. Figure 4.15 shows the result of acquisition when 1008 samples

were used.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

n

A

Figure 4.14. Acquisition result with 252 samples

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

n

A

Figure 4.15. Acquisition result with 1008 samples

4.3.2 Carrier Tracking Tests

Once the code offset (Tacq) and carrier offset (Δfacq) are determined, the information is

passed on to the tracking algorithm of dsss demodulator cc. As described in Section 3.4

and in Figure 3.7, the tracking demodulator implements a carrier tracking loop and a code

tracking loop. The carrier tracking loop algorithm shown in Listing 4.7 is based on the

discussion of Section 3.5 and [14]. Tacq is used to adjust the code numerically controlled

oscillator (NCO) such that the next code sequence it produces is aligned in phase with

the code present on the received signal. Δfacq is used to select an operating bandwidth

for the carrier tracking loop. The frequency range {d min freq, d max freq} is chosen

such that Δfacq lies within.

Inside the for-loop, the state of the tracking algorithm changes with every input sam-

ple. Input sample in[i] is first multiplied with the prompt code sample (3.2.10) to obtain

the despread sample dptr (line 18). Next, we find the carrier NCO output nco out us-

ing the current phase output value phi o and multiply it with dptr to obtain the code

56

tracking loop’s output pll out (3.2.11).

1 const gr_complex *in = (gr_complex *) input_items [0];
2 gr_complex *prompt_code_ptr;
3 float frequency_offset;
4 float carrier_frequency;
5

6 /* use the result from acquisition */
7 code_nco ->adjust_code_nco(d_code_offset);
8 phi_o = get_freq_offset ();
9 phi_f = (d_max_freq + d_min_freq) / 2.0;

10

11 phi_e = 0;
12

13

14 for(int i=0; i<noutput_items; i++) {
15

16 if(d_state ==TRACK) {
17

18 gr_complex dptr = in[i] * get_prompt_code_sample ();
19 nco_out = gr_expj(-phi_o);
20 pll_out = dptr * nco_out;
21 dll_out = in[i] *nco_out;
22

23 phi_e = pll.imag() * pll.real();
24

25 /* Limit phi_e between {-1, 1} */
26

27 if (phi_e > 1)
28 phi_e = 1;
29 else if (phi_e < -1)
30 phi_e = -1;
31

32 phi_f = phi_f + beta * phi_e;
33 phi_o = phi_o + (alpha * phi_e) + phi_f;
34

35 /* limit phi_f_b between {min_freq , max_freq} */
36

37 if(phi_f > d_max_freq)
38 phi_f = d_max_freq;
39 if(phi_f < d_min_freq)
40 phi_f = d_min_freq;
41

42 /* Limit phi_o between {-2*PI , 2*PI} */
43

44 while(phi_o > M_TWOPI)
45 phi_o -= M_TWOPI;
46

47 while(phi_o < -M_TWOPI)
48 phi_o += M_TWOPI;
49

50

51 }
52

53 }

Listing 4.7. Carrier tracking algorithm

57

α 0.1

max freq 0.0187

min freq -0.0187

Table 4.4. Settings for test 3

In line 20, we multiply nco out with input sample in[i] to obtain dll out which

becomes the input to the code tracking loop. From pll out we evaluate the carrier phase

error phi e in line 23. Using phi e, we estimate the input (phi f) and the output (phi o)

of the loop filter, where phi f forms φf [n] of (3.5.3) and phi o is φo[n] of (3.5.4).

In our first test, we generated a signal using the channel model the same way as

in Section 4.3.1. Figure 4.16 and 4.17 show a sample of the inphase and quadrature

components of this signal with a simulated SNR of 20 dB and a frequency offset of 1000

Hz. From acquisition results, this signal had a code offset value of 114 and frequency

offset value of 1190.48 Hz.

0 50 100 150 200 250 300
−2

−1

0

1

2

n

A

xi[n]

0 50 100 150 200 250 300
−2

−1

0

1

2

n

A

yi[n]

Figure 4.16. Inphase component of received sig-

nal for Test 3 with Δf=1000 Hz and SNR=20

dB

Figure 4.17. Quadrature component of received

signal for Test 3 with Δf=1000 Hz and SNR=20

dB

Figure 4.18 and 4.19 show the carrier tracking loop’s output when settings from Table

4.4 were used. Figure 4.20 plots the phase error values for the first 300 samples processed

58

by the tracking loop. From these figures we see that, as the phase error stabilizes around

zero, the quadrature component of the carrier tracking loop output settles down around

zero in accordance with (3.2.12).

0 50 100 150 200 250 300
−2

−1

0

1

2

n

A

xi[n]

0 50 100 150 200 250 300
−2

−1

0

1

2

n

A

yi[n]

Figure 4.18. Inphase component of the output

signal from tracking loop

Figure 4.19. Quadrature component of the out-

put signal from tracking loop

0 50 100 150 200 250
−2

−1

0

1

2

n

φ
e

α = 0.1

Figure 4.20. Phase error plot for test 3

59

Chapter 5

Conclusions and Future Research

In this thesis, we evaluated an SDR design to prototype a DS-BPSK transceiver. In

this chapter, we summarize the major results obtained through tests and simulations and

propse further research directions.

First, the achitecture of GNU Radio and USRP was discussed. We thoroughly under-

stood the design procedure and proposed the design for a GNU Radio compliant transmit-

ter flowgraph and a receiver flowgraph along with discussing the blocks that are needed to

implement these flowgraphs. We also presented a detailed analysis of DSSS and discussed

the algorithms required to detect and demodulate a DSSS signal.

We then discussed in detail the algorithms and code we developed and performed

tests to validate our software. We showed that our developed software radio blocks for

acquisition and carrier tracking function well for high signal to noise ratio (SNR) signals.

The software we developed is highly configurable, extendable and maintains compatibility

with GNU Radio design.

From this study, we believe that software radio and GNU Radio in particular is suitable

for developing prototypes for validating protocol design for ad hoc networks. Although

the framework we developed requires development of a code tracking loop, we believe in

its current state it provides a good base to develop DSSS based transceivers for ad hoc

networking.

60

BIBLIOGRAPHY

61

Bibliography

[1] Unknown Author. Direct Sequence Spread Spectrum (DSSS) Modem Reference De-

sign [Online]. Technical report, Altera Corporation, San Jose, CA, Sep 2001. Avail-

able: http://www.altera.com/literature/fs/fs14_dsss.pdf.

[2] Kai Borre, Dennis M. Akos, Nicolaj Bertelsen, and Peter Rinderand Soren Holdt

Jensen. A Software-Defined GPS and Galileo Receiver - A Single-Freqeuncy Ap-

proach, chapter 6-7, pages 75–125. Birkhäuser, Boston, MA, 1st edition, Mar 2007.

[3] K.K. Chawla and D.V. Sarwate. Parallel acquisition of PN sequences in DS/SS

systems. IEEE Transactions on Communications, 42(5):2155 –2164, May 1994.

[4] John N. Daigle. private communication, Apr 2008.

[5] Mark Ettus. Transceiver Daughterboards for the USRP Software Radio System [On-

line]. Available: www.ettus.com/downloads/ettus_ds_transceiver_dbrds_v6c.

pdf.

[6] Free Software Foundation. gr file source [Online]. Available: http://gnuradio.

org/doc/doxygen/classgr__file__source.html.

[7] Free Software Foundation. gr packed to unpacked bb [Online]. Available: http:

//gnuradio.org/doc/doxygen/classgr__packed__to__unpacked__bb.html.

[8] Free Software Foundation. gr xor to bb [Online]. Available: http://gnuradio.org/

doc/doxygen/classgr__xor__bb.html.

[9] Free Software Foundation. OSSIE - SCA-Based Open Source Software Defined Radio

[Online]. Available: http://ossie.wireless.vt.edu/.

62

[10] Free Software Foundation. tunnel.py [Online]. Available: http://www.kernel.org/

doc/Documentation/networking/tuntap.txt.

[11] Free Software Foundation. Welcome to GNU Radio [Online]. Available: http:

//gnuradio.org/redmine/projects/gnuradio/wiki.

[12] Free Software Foundation. Welcome to SWIG [Online]. Available: http://www.

swig.org/.

[13] Python Software Foundation. Callback Functions [Online]. Available: http://docs.

python.org/release/2.5.2/lib/ctypes-callback-functions.html.

[14] Eric Hagemann. The Costas Loop [Online]. Technical report, Com-

pany Unknown. Available: [www.dsp-book.narod.ru/costas/DSP010419F1.pdf],

[www.dsp-book.narod.ru/costas/DSP010419F1.pdf], [www.dsp-book.narod.ru/

costas/DSP010628F1.pdf], [www.dsp-book.narod.ru/costas/DSP010315F1.pdf].

[15] Firas Abbas Hamza. The USRP Under 1.5X Magnifying Lens! [Online]. Tech-

nical report, Available: http://microembedded.googlecode.com/files/USRP_

Documentation.pdf, Jun 2008.

[16] F. Harris and B. Farhang-Boroujeny. On the stability of DSP based P-I phase-

locked loops containing matched filter delays. In Signals, Systems and Computers

(ASILOMAR), 2011 Conference Record of the Forty Fifth Asilomar Conference on,

pages 958 –962, Nov 2011.

[17] Fredric J. Harris. Multirate Signal Processing for Communication Systems, chapter 4,

pages 89–90. Prentice Hall, Upper Saddle River, NJ, 1st edition, May 2004.

[18] Rodger H. Hosking. Software Defined Radio Handbook, pages 7–10. Pentek, Inc,

Upper Saddle River, NJ, 8th edition, Jan 2010.

[19] Peter B. Kenington. RF and Baseband Techniques for Software Defined Radio, chap-

ter 2, pages 25–33. Artech House, Norwood, MA, 1st edition, Jun 2005.

63

[20] Wen Li and Jason Meiners. Introduction to Phase-Locked Loop System Modeling

[Online]. Analog Applications Journal, pages 5–10, May 2000. Available: www.ti.

com/lit/an/slyt169/slyt169.pdf.

[21] Richard G. Lyons. Understanding Digital Signal Processing, chapter 8, pages 335–

358. Prentice Hall, Upper Saddle River, NJ, 2nd edition, Mar 2004.

[22] J. Mitola. The Software Radio Architecture. Communications Magazine, IEEE,

33(5):26–38, May 1995.

[23] Roger L. Peterson, Rodger E. Ziemer, and David E. Borth. Introduction to Spread

Spectrum Communications, chapter 2, pages 47–48. Prentice Hall, Upper Saddle

River, NJ, Apr 1995.

[24] Roger L. Peterson, Rodger E. Ziemer, and David E. Borth. Introduction to Spread

Spectrum Communications, chapter 2, pages 64–75. Prentice Hall, Upper Saddle

River, NJ, Apr 1995.

[25] Don Torrieri. Principles of Spread-Spectrum Communication Systems, chapter 2,3,

pages 55,129. Springer Inc, New York, NY, 1st edition, Jul 2005.

[26] James Bao-Yen Tsui. Fundamentals of Global Positioning System Receivers - A

Software Approach, chapter 7-8, pages 129–171. Wiley Interscience, Hoboken, NJ,

2nd edition, Mar 2005.

[27] James Bao-Yen Tsui. Fundamentals of Global Positioning System Receivers - A

Software Approach, chapter 5, pages 68–79. Wiley Interscience, Hoboken, NJ, 2nd

edition, Mar 2005.

[28] Unknown Author. Software Defined Radio Measurement Solutions [Online].

Technical report, Agilent Technologies, Santa Clara, CA, Jul 2007. Avail-

able: http://www.home.agilent.com/agilent/application.jspx?nid=-34052.

0.00&lc=eng&cc=US.

64

VITA

Mir Murtuza Ali received his B.E in Electrical and Electronics Engineering at Osmania

University, India in 2004. He joined the Masters in Engineernig Science program in

Electrical Engineering at University of Mississippi in 2006. During his Masters program

he worked as a research assistant at National Center for Physical Acoustics and Center for

Wireless Communications. Currently, he is working as a software engineer at Barracuda

Networks in Campbell, CA. Mir’s technical interests include digital signal processing,

computer networking and web development. When not pursuing these interests, Mir can

often be found reading and has a particular fascination for US history and politics.

65

	Implementation of a Software Defined Spread Spectrum Communication System
	Recommended Citation

	tmp.1552080286.pdf.aP9X9

