2,048 research outputs found

    Validação de heterogeneidade estrutural em dados de Crio-ME por comitês de agrupadores

    Get PDF
    Orientadores: Fernando José Von Zuben, Rodrigo Villares PortugalDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Análise de Partículas Isoladas é uma técnica que permite o estudo da estrutura tridimensional de proteínas e outros complexos macromoleculares de interesse biológico. Seus dados primários consistem em imagens de microscopia eletrônica de transmissão de múltiplas cópias da molécula em orientações aleatórias. Tais imagens são bastante ruidosas devido à baixa dose de elétrons utilizada. Reconstruções 3D podem ser obtidas combinando-se muitas imagens de partículas em orientações similares e estimando seus ângulos relativos. Entretanto, estados conformacionais heterogêneos frequentemente coexistem na amostra, porque os complexos moleculares podem ser flexíveis e também interagir com outras partículas. Heterogeneidade representa um desafio na reconstrução de modelos 3D confiáveis e degrada a resolução dos mesmos. Entre os algoritmos mais populares usados para classificação estrutural estão o agrupamento por k-médias, agrupamento hierárquico, mapas autoorganizáveis e estimadores de máxima verossimilhança. Tais abordagens estão geralmente entrelaçadas à reconstrução dos modelos 3D. No entanto, trabalhos recentes indicam ser possível inferir informações a respeito da estrutura das moléculas diretamente do conjunto de projeções 2D. Dentre estas descobertas, está a relação entre a variabilidade estrutural e manifolds em um espaço de atributos multidimensional. Esta dissertação investiga se um comitê de algoritmos de não-supervisionados é capaz de separar tais "manifolds conformacionais". Métodos de "consenso" tendem a fornecer classificação mais precisa e podem alcançar performance satisfatória em uma ampla gama de conjuntos de dados, se comparados a algoritmos individuais. Nós investigamos o comportamento de seis algoritmos de agrupamento, tanto individualmente quanto combinados em comitês, para a tarefa de classificação de heterogeneidade conformacional. A abordagem proposta foi testada em conjuntos sintéticos e reais contendo misturas de imagens de projeção da proteína Mm-cpn nos estados "aberto" e "fechado". Demonstra-se que comitês de agrupadores podem fornecer informações úteis na validação de particionamentos estruturais independetemente de algoritmos de reconstrução 3DAbstract: Single Particle Analysis is a technique that allows the study of the three-dimensional structure of proteins and other macromolecular assemblies of biological interest. Its primary data consists of transmission electron microscopy images from multiple copies of the molecule in random orientations. Such images are very noisy due to the low electron dose employed. Reconstruction of the macromolecule can be obtained by averaging many images of particles in similar orientations and estimating their relative angles. However, heterogeneous conformational states often co-exist in the sample, because the molecular complexes can be flexible and may also interact with other particles. Heterogeneity poses a challenge to the reconstruction of reliable 3D models and degrades their resolution. Among the most popular algorithms used for structural classification are k-means clustering, hierarchical clustering, self-organizing maps and maximum-likelihood estimators. Such approaches are usually interlaced with the reconstructions of the 3D models. Nevertheless, recent works indicate that it is possible to infer information about the structure of the molecules directly from the dataset of 2D projections. Among these findings is the relationship between structural variability and manifolds in a multidimensional feature space. This dissertation investigates whether an ensemble of unsupervised classification algorithms is able to separate these "conformational manifolds". Ensemble or "consensus" methods tend to provide more accurate classification and may achieve satisfactory performance across a wide range of datasets, when compared with individual algorithms. We investigate the behavior of six clustering algorithms both individually and combined in ensembles for the task of structural heterogeneity classification. The approach was tested on synthetic and real datasets containing a mixture of images from the Mm-cpn chaperonin in the "open" and "closed" states. It is shown that cluster ensembles can provide useful information in validating the structural partitionings independently of 3D reconstruction methodsMestradoEngenharia de ComputaçãoMestre em Engenharia Elétric

    Preparation and characterization of self assembled polymer nanocomposites

    Get PDF
    Polymerní nanokompozity na bázi polyhedrálních oligomerních silsesquioxanů (POSS) představují slibnou oblast výzkumu, která potenciálně může využít samouspořádávní při navrhování nových materiálů. Tato diplomová práce popisuje postup přípravy oktafenyl-POSS/PS, oktafenyl-POSS/PMMA a oktamethyl-POSS/PS systémů a charakterizaci jejich termomechanických vlastností v pevné fázi a reologických vlastností v roztoku. Získané výsledky jsou diskutovány s přihlédnutím k teoriím zabývajících se stavem disperze nanočástic.Polymer nanocomposites based on polyhedral oligomeric silsesquioxanes (POSS) are promising field which could potentially utilize self-assembly approach in designing new materials. In this thesis, a preparation protocol of octaphenyl-POSS/PS, octamethyl-POSS/PMMA and octamethyl-POSS/PS systems was described and thermomechanic properties in solid state and rheological properties in solution were investigated. The obtained results are discussed with focus on nanoparticles dispersion state theories.

    Postgenomics: Proteomics and Bioinformatics in Cancer Research

    Get PDF
    Now that the human genome is completed, the characterization of the proteins encoded by the sequence remains a challenging task. The study of the complete protein complement of the genome, the “proteome,” referred to as proteomics, will be essential if new therapeutic drugs and new disease biomarkers for early diagnosis are to be developed. Research efforts are already underway to develop the technology necessary to compare the specific protein profiles of diseased versus nondiseased states. These technologies provide a wealth of information and rapidly generate large quantities of data. Processing the large amounts of data will lead to useful predictive mathematical descriptions of biological systems which will permit rapid identification of novel therapeutic targets and identification of metabolic disorders. Here, we present an overview of the current status and future research approaches in defining the cancer cell's proteome in combination with different bioinformatics and computational biology tools toward a better understanding of health and disease

    BIOMOLECULAR FUNCTION FROM STRUCTURAL SNAPSHOTS

    Get PDF
    Biological molecules can assume a continuous range of conformations during function. Near equilibrium, the Boltzmann relation connects a particular conformation\u27s free energy to the conformation\u27s occupation probability, thus giving rise to one or more energy landscapes. Biomolecular function proceeds along minimum-energy pathways on such landscapes. Consequently, a comprehensive understanding of biomolecular function often involves the determination of the free-energy landscapes and the identification of functionally relevant minimum-energy conformational paths on these landscapes. Specific techniques are necessary to determine continuous conformational spectra and identify functionally relevant conformational trajectories from a collection of raw single-particle snapshots from, e.g. cryogenic electron microscopy (cryo-EM) or X-ray diffraction. To assess the capability of different algorithms to recover conformational landscapes, we:• Measure, compare, and benchmark the performance of four leading data-analytical approaches to determine the accuracy with which energy landscapes are recovered from simulated cryo-EM data. Our simulated data are derived from projection directions along the great circle, emanating from a known energy landscape. • Demonstrate the ability to recover a biomolecule\u27s energy landscapes and functional pathways of biomolecules extracted from collections of cryo-EM snapshots. Structural biology applications in drug discovery and molecular medicine highlight the importance of the free-energy landscapes of the biomolecules more crucial than ever. Recently several data-driven machine learning algorithms have emerged to extract energy landscapes and functionally relevant continuous conformational pathways from single-particle data (Dashti et al., 2014; Dashti et al., 2020; Mashayekhi,et al., 2022). In a benchmarking study, the performance of several advanced data-analytical algorithms was critically assessed (Dsouza et al., 2023). In this dissertation, we have benchmarked the performance of four leading algorithms in extracting energy landscapes and functional pathways from single-particle cryo-EM snapshots. In addition, we have significantly improved the performance of the ManifoldEM algorithm, which has demonstrated the highest performance. Our contributions can be summarized as follows.: • Expert user supervision is required in one of the main steps of the ManifoldEM framework wherein the algorithm needs to propagate the conformational information through all angular space. We have succeeded in introducing an automated approach, which eliminates the need for user involvement. • The quality of the energy landscapes extracted by ManifoldEM from cryo-EM data has been improved, as the accuracy scores demonstrate this improvement. These measures have substantially enhanced ManifoldEM’s ability to recover the conformational motions of biomolecules by extracting the energy landscape from cryo-EM data.In line with the primary goal of our research, we aimed to extend the automated method across the entire angular sphere rather than a great circle. During this endeavor, we encountered challenges, particularly with some projection directions not following the proposed model. Through methodological adjustments and sampling optimization, we improved the projection direction\u27s conformity to the model. However, a small subset of Projection directions (5 %) remained challenging. We also recommended the use of specific methodologies, namely feature extraction and edge detection algorithms, to enhance the precision in quantifying image differentiation, a crucial component of our automated model. we also suggested that integrating different techniques might potentially resolve challenges associated with certain projection directions. We also applied ManifoldEM to experimental cryo-EM images of the SARS-CoV-2 spike protein in complex with the ACE2 receptor. By introducing several improvements, such as the incorporation of an adaptive mask and cosine curve fitting, we enhanced the framework\u27s output quality. This enhancement can be quantified by observing the removal of the artifact from the energy landscape, especially if the post-enhancement landscape differs from the artifact-affected one. These modifications, specifically aimed at addressing challenges from Nonlinear Laplacian Spectral Analysis (NLSA) (Giannakis et al., 2012), are intended for application in upcoming cryo-EM studies utilizing ManifoldEM. In the closing sections of this dissertation, a summary and a projection of future research directions are provided. While initial automated methods have been explored, there remains room for refinement. We have offered numerous methodological suggestions oriented toward addressing solutions to the challenge of conformational information propagation. Key methodologies discussed include Manifold Alignment, Canonical Correlation Analysis, and Multi-View Diffusion Maps. These recommendations are aimed to inform and guide subsequent developments in the ManifoldEM suite

    Artificial Intelligence-Based Drug Design and Discovery

    Get PDF
    The drug discovery process from hit-to-lead has been a challenging task that requires simultaneously optimizing numerous factors from maximizing compound activity, efficacy to minimizing toxicity and adverse reactions. Recently, the advance of artificial intelligence technique enables drugs to be efficiently purposed in silico prior to chemical synthesis and experimental evaluation. In this chapter, we present fundamental concepts of artificial intelligence and their application in drug design and discovery. The emphasis will be on machine learning and deep learning, which demonstrated extensive utility in many branches of computer-aided drug discovery including de novo drug design, QSAR (Quantitative Structure–Activity Relationship) analysis, drug repurposing and chemical space visualization. We will demonstrate how artificial intelligence techniques can be leveraged for developing chemoinformatics pipelines and presented with real-world case studies and practical applications in drug design and discovery. Finally, we will discuss limitations and future direction to guide this rapidly evolving field

    Redes neuronales auto-organizativas basadas en optimización funcional. Aplicación en bioinformática y biología computacional

    Full text link
    Tesis doctoral inédita de la Universidad Autónoma de Madrid. Escuela Politécnica Superior, Departamento de Ingeniería informática. Fecha de lectura: 25-11-200

    The role of non-specific interactions in nuclear organization

    Get PDF
    The most important organelle in eukaryotic cells is the nucleus. Many processes occurring within the nucleus depend on spatial organization of the nucleus. The spatial organization of the eukaryotic nucleus derives from interactions between its constituents. Both specific interactions, for instance the interactions between a DNA binding protein and its target DNA sequence, and non-specific interactions occur. Non-specific interactions stem from physical encounters between molecules or particles, which can favour particular organizations, i.e. the ones that have the lowest entropy. The role of non-specific interactions in nuclear organization is so far not extensively studied. Here, we investigate the effects of non-specific interactions on nuclear organization, using molecular dynamics simulation techniques. Chromatin folding models can be implemented in these simulations as chains of monomers, which can form loops, branches or networks. Through a comparison of simulation results with experimental data, these models can be verified or falsified. We used MD simulations of models for Arabidopsis chromatin organisation to show that non-specific interactions can explain the in vivo localisation of nucleoli and chromocenters. Also, we quantitatively demonstrate that chromatin looping contributes to the formation of chromosome territories. Focussing on the forces driving nuclear organization in the rosette model, we derive effective interaction potentials for rosette-loop interactions. These potentials are weak, but nevertheless drive chromocenters and nucleoli to the nuclear periphery and away from each other. We also study the folding of a single human chromosome within its territory. The results of our simulations are analysed using a virtual confocal microscope algorithm which has the same limitations as a real confocal microscope. Thus we show that chromatin looping increases the volume occupied by a 10Mbp chromosomal sub-domain, but decreases the overlap between two neighbouring sub-domains. Our results furthermore show that the measured amount of overlap is highly dependent on both spatial resolution and signal detection threshold of the confocal microscope, and that in typical fluorescence in situ hybridisation experiments these two factors contribute to a gross underestimation of the real overlap. Zooming out to whole nucleus organization, we show that an interplay between interactions between heterochromatin and nuclear lamina generates a wide variety of nuclear organizations, with those occurring in nature requiring a fine balance between both interactions. The differences between chromosome folding in human and Arabidopsis can be explained through differences in genomic structure and chromosome loop formation, but the underlying mechanisms and forces that organize the nucleus are very similar. The insight how specific and non-specific forces cooperate to shape nuclear organization, is therefore the most important contribution of this thesis to scientific progress. <br/

    Quantitative Imaging in Electron and Confocal Microscopies for Applications in Biology

    Get PDF
    Among the large number of topics related to the quantification of images in electron and confocal microscopies for applications in biology, we selected four subjects that we consider to be representative of some recent tendencies. The first is the quantification of three-dimensional data sets recorded routinely in scanning confocal microscopy. The second is the quantification of the textural and fractal appearance of images. The two other topics are related to image series, which are more and more often provided by imaging instruments. The first kind of series concerns electron energy-filtered images. We show that the parametric (modelling) approach can be complemented by non-parametric approaches (e.g., different variants of multivariate statistical techniques). The other kind of series consists of multiple mappings of a specimen. We describe several new tools for the study and quantification of the co-location, with potential application to multiple mappings in microanalysis or in fluorescence microscopy
    corecore