6,297 research outputs found

    Knowledge-based gene expression classification via matrix factorization

    Get PDF
    Motivation: Modern machine learning methods based on matrix decomposition techniques, like independent component analysis (ICA) or non-negative matrix factorization (NMF), provide new and efficient analysis tools which are currently explored to analyze gene expression profiles. These exploratory feature extraction techniques yield expression modes (ICA) or metagenes (NMF). These extracted features are considered indicative of underlying regulatory processes. They can as well be applied to the classification of gene expression datasets by grouping samples into different categories for diagnostic purposes or group genes into functional categories for further investigation of related metabolic pathways and regulatory networks. Results: In this study we focus on unsupervised matrix factorization techniques and apply ICA and sparse NMF to microarray datasets. The latter monitor the gene expression levels of human peripheral blood cells during differentiation from monocytes to macrophages. We show that these tools are able to identify relevant signatures in the deduced component matrices and extract informative sets of marker genes from these gene expression profiles. The methods rely on the joint discriminative power of a set of marker genes rather than on single marker genes. With these sets of marker genes, corroborated by leave-one-out or random forest cross-validation, the datasets could easily be classified into related diagnostic categories. The latter correspond to either monocytes versus macrophages or healthy vs Niemann Pick C disease patients.Siemens AG, MunichDFG (Graduate College 638)DAAD (PPP Luso - Alem˜a and PPP Hispano - Alemanas

    Efficient network-guided multi-locus association mapping with graph cuts

    Get PDF
    As an increasing number of genome-wide association studies reveal the limitations of attempting to explain phenotypic heritability by single genetic loci, there is growing interest for associating complex phenotypes with sets of genetic loci. While several methods for multi-locus mapping have been proposed, it is often unclear how to relate the detected loci to the growing knowledge about gene pathways and networks. The few methods that take biological pathways or networks into account are either restricted to investigating a limited number of predetermined sets of loci, or do not scale to genome-wide settings. We present SConES, a new efficient method to discover sets of genetic loci that are maximally associated with a phenotype, while being connected in an underlying network. Our approach is based on a minimum cut reformulation of the problem of selecting features under sparsity and connectivity constraints that can be solved exactly and rapidly. SConES outperforms state-of-the-art competitors in terms of runtime, scales to hundreds of thousands of genetic loci, and exhibits higher power in detecting causal SNPs in simulation studies than existing methods. On flowering time phenotypes and genotypes from Arabidopsis thaliana, SConES detects loci that enable accurate phenotype prediction and that are supported by the literature. Matlab code for SConES is available at http://webdav.tuebingen.mpg.de/u/karsten/Forschung/scones/Comment: 20 pages, 6 figures, accepted at ISMB (International Conference on Intelligent Systems for Molecular Biology) 201

    Unraveling the rapid radiation of crested newts, Triturus cristatus superspecies, using complete mitogenomic sequences

    Get PDF
    Background - The rapid radiation of crested newts (Triturus cristatus superspecies) comprises four morphotypes: 1) the T. karelinii group, 2) T. carnifex - T. macedonicus, 3) T. cristatus and 4) T. dobrogicus. These vary in body build and the number of rib-bearing pre-sacral vertebrae (NRBV). The phylogenetic relationships of the morphotypes have not yet been settled, despite several previous attempts, employing a variety of molecular markers. We here resolve the crested newt phylogeny by using complete mitochondrial genome sequences. Results - Bayesian inference based on the mitogenomic data yields a fully bifurcating, significantly supported tree, though Maximum Likelihood inference yields low support values. The internal branches connecting the morphotypes are short relative to the terminal branches. Seen from the root of Triturus (NRBV = 13), a basal dichotomy separates the T. karelinii group (NRBV = 13) from the remaining crested newts. The next split divides the latter assortment into T. carnifex - T. macedonicus (NRBV = 14) versus T. cristatus (NRBV = 15) and T. dobrogicus (NRBV = 16 or 17). Conclusions - We argue that the Bayesian full mitochondrial DNA phylogeny is superior to previous attempts aiming to recover the crested newt species tree. Furthermore, our new phylogeny involves a maximally parsimonious interpretation of NRBV evolution. Calibrating the phylogeny allows us to evaluate potential drivers for crested newt cladogenesis. The split between the T. karelinii group and the three other morphotypes, at ca. 10.4 Ma, is associated with the separation of the Balkan and Anatolian landmasses (12-9 Ma). No currently known vicariant events can be ascribed to the other two splits, first at ca. 9.3 Ma, separating T. carnifex - T. macedonicus, and second at ca. 8.8 Ma, splitting T. cristatus and T. dobrogicus. The crested newt morphotypes differ in the duration of their annual aquatic period. We speculate on the role that this ecological differentiation could have played during speciatio

    Association between TAS2R38 gene polymorphisms and colorectal cancer risk

    Get PDF
    Molecular sensing in the lingual mucosa and in the gastro-intestinal tract play a role in the detection of ingested harmful drugs and toxins. Therefore, genetic polymorphisms affecting the capability of initiating these responses may be critical for the subsequent efficiency of avoiding and/or eliminating possible threats to the organism. By using a tagging approach in the region of Taste Receptor 2R38 (TAS2R38) gene, we investigated all the common genetic variation of this gene region in relation to colorectal cancer risk with a case-control study in a German population (709 controls and 602 cases) and in a Czech population (623 controls and 601 cases). We found that there were no significant associations between individual SNPs of the TAS2R38 gene and colorectal cancer in the Czech or in the German population, nor in the joint analysis. However, when we analyzed the diplotypes and the phenotypes we found that the non-taster group had an increased risk of colorectal cancer in comparison to the taster group. This association was borderline significant in the Czech population, (OR = 1.28, 95% CI 0.99-1.67; P(value) = 0.058) and statistically significant in the German population (OR = 1.36, 95% CI 1.06-1.75; P(value) = 0.016) and in the joint analysis (OR = 1.34, 95% CI 1.12-1.61; P(value) = 0.001). In conclusion, we found a suggestive association between the human bitter tasting phenotype and the risk of CRC in two different populations of Caucasian origin
    corecore