319 research outputs found

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Visible Light Communications towards 5G

    Get PDF
    5G networks have to offer extremely high capacity for novel streaming applications. One of the most promising approaches is to embed large numbers of co-operating small cells into the macro-cell coverage area. Alternatively, optical wireless based technologies can be adopted as an alternative physical layer offering higher data rates. Visible light communications (VLC) is an emerging technology for future high capacity communication links (it has been accepted to 5GPP) in the visible range of the electromagnetic spectrum (~370–780 nm) utilizing light-emitting diodes (LEDs) simultaneously provide data transmission and room illumination. A major challenge in VLC is the LED modulation bandwidths, which are limited to a few MHz. However, myriad gigabit speed transmission links have already been demonstrated. Non line-of-sight (NLOS) optical wireless is resistant to blocking by people and obstacles and is capable of adapting its’ throughput according to the current channel state information. Concurrently, organic polymer LEDs (PLEDs) have become the focus of enormous attention for solid-state lighting applications due to their advantages over conventional white LEDs such as ultra-low costs, low heating temperature, mechanical flexibility and large photoactive areas when produced with wet processing methods. This paper discusses development of such VLC links with a view to implementing ubiquitous broadcasting networks featuring advanced modulation formats such as orthogonal frequency division multiplexing (OFDM) or carrier-less amplitude and phase modulation (CAP) in conjunction with equalization techniques. Finally, this paper will also summarize the results of the European project ICT COST IC1101 OPTICWISE (Optical Wireless Communications - An Emerging Technology) dealing VLC and OLEDs towards 5G networks

    Real time DDoS detection using fuzzy estimators

    Get PDF
    We propose a method for DDoS detection by constructing a fuzzy estimator on the mean packet inter arrival times. We divided the problem into two challenges, the first being the actual detection of the DDoS event taking place and the second being the identification of the offending IP addresses. We have imposed strict real time constraints for the first challenge and more relaxed constraints for the identification of addresses. Through empirical evaluation we confirmed that the detection can be completed within improved real time limits and that by using fuzzy estimators instead of crisp statistical descriptors we can avoid the shortcomings posed by assumptions on the model distribution of the traffic. In addition we managed to obtain results under a 3 sec detection window. © 2012 Elsevier Ltd. All rights reserved

    Evaluation of Windows Servers Security Under ICMP and TCP Denial of Service Attacks

    Get PDF
    Securing server from Distributed denial of service (DDoS) attacks is a challenging task for network operators. DDOS attacks are known to reduce the performance of web based applications and reduce the number of legitimate client connections. In this thesis, we evaluate performance of a Windows server 2003 under these attacks. In this thesis, we also evaluate and compare effectiveness of three different protection mechanisms, namely SYN Cache, SYN Cookie and SYN proxy protection methods, to protect against TCP SYN DDoS attacks. It is found that the SYN attack protection at the server is more effective at lower loads of SYN attack traffic, whereas the SYN cookies protection is more effective at higher loads compared to other methods

    Performance comparison of power saving strategies for mobile Web access

    Get PDF
    One of the critical issues in mobile Web access is the usage of limited energy resources of mobile computers. Unfortunately, the legacy TCP/IP architecture is very inefficient. This work proposes and analyzes power-saving strategies for mobile Web access. Specifically, in this paper we develop an energy-consumption model for Web transactions and, based on it, we propose and compare four different energy saving strategies: ideal, Indirect-TCP (I-TCP), local and global. The ideal strategy is unfeasible but it is used as a reference bound as it guarantees the lowest energy consumption. The other strategies have been implemented and compared in a real test-bed. The performance comparison is carried out by measuring two main performance figures: the energy spent for downloading a Web page, and the associated transfer-time. Experimental results show that relevant energy saving is achievable and that, among the feasible strategies, the global one gives the best performance: with this strategy we can save (on average) up to 88% of the energy. Furthermore, our results indicate that this power saving is obtained without a significant increase in the transfer-time perceived by the users (on average, 0.2s). Finally, by comparing the feasible strategies, we observe that the global one is much closer to the ideal case than the other strategies. In detail, the global strategy is about twice more efficient than the local one, and eight times more efficient than the I-TCP strategy

    Collaborative Indoor Positioning Systems: A Systematic Review

    Get PDF
    Research and development in Collaborative Indoor Positioning Systems (CIPSs) is growing steadily due to their potential to improve on the performance of their non-collaborative counterparts. In contrast to the outdoors scenario, where Global Navigation Satellite System is widely adopted, in (collaborative) indoor positioning systems a large variety of technologies, techniques, and methods is being used. Moreover, the diversity of evaluation procedures and scenarios hinders a direct comparison. This paper presents a systematic review that gives a general view of the current CIPSs. A total of 84 works, published between 2006 and 2020, have been identified. These articles were analyzed and classified according to the described system’s architecture, infrastructure, technologies, techniques, methods, and evaluation. The results indicate a growing interest in collaborative positioning, and the trend tend to be towards the use of distributed architectures and infrastructure-less systems. Moreover, the most used technologies to determine the collaborative positioning between users are wireless communication technologies (Wi-Fi, Ultra-WideBand, and Bluetooth). The predominant collaborative positioning techniques are Received Signal Strength Indication, Fingerprinting, and Time of Arrival/Flight, and the collaborative methods are particle filters, Belief Propagation, Extended Kalman Filter, and Least Squares. Simulations are used as the main evaluation procedure. On the basis of the analysis and results, several promising future research avenues and gaps in research were identified

    A survey of defense mechanisms against distributed denial of service (DDOS) flooding attacks

    Get PDF
    Distributed Denial of Service (DDoS) flooding attacks are one of the biggest concerns for security professionals. DDoS flooding attacks are typically explicit attempts to disrupt legitimate users' access to services. Attackers usually gain access to a large number of computers by exploiting their vulnerabilities to set up attack armies (i.e., Botnets). Once an attack army has been set up, an attacker can invoke a coordinated, large-scale attack against one or more targets. Developing a comprehensive defense mechanism against identified and anticipated DDoS flooding attacks is a desired goal of the intrusion detection and prevention research community. However, the development of such a mechanism requires a comprehensive understanding of the problem and the techniques that have been used thus far in preventing, detecting, and responding to various DDoS flooding attacks. In this paper, we explore the scope of the DDoS flooding attack problem and attempts to combat it. We categorize the DDoS flooding attacks and classify existing countermeasures based on where and when they prevent, detect, and respond to the DDoS flooding attacks. Moreover, we highlight the need for a comprehensive distributed and collaborative defense approach. Our primary intention for this work is to stimulate the research community into developing creative, effective, efficient, and comprehensive prevention, detection, and response mechanisms that address the DDoS flooding problem before, during and after an actual attack. © 1998-2012 IEEE

    Design and Performance of Scalable High-Performance Programmable Routers - Doctoral Dissertation, August 2002

    Get PDF
    The flexibility to adapt to new services and protocols without changes in the underlying hardware is and will increasingly be a key requirement for advanced networks. Introducing a processing component into the data path of routers and implementing packet processing in software provides this ability. In such a programmable router, a powerful processing infrastructure is necessary to achieve to level of performance that is comparable to custom silicon-based routers and to demonstrate the feasibility of this approach. This work aims at the general design of such programmable routers and, specifically, at the design and performance analysis of the processing subsystem. The necessity of programmable routers is motivated, and a router design is proposed. Based on the design, a general performance model is developed and quantitatively evaluated using a new network processor benchmark. Operational challenges, like scheduling of packets to processing engines, are addressed, and novel algorithms are presented. The results of this work give qualitative and quantitative insights into this new domain that combines issues from networking, computer architecture, and system design
    • …
    corecore