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Abstract

One of the critical issues in mobile Web access is the usage of limited energy resources of mobile computers. Unfortunately,
the legacy TCP/IP architecture is very inefficient. This work proposes and analyzes power-saving strategies for mobile Web
access. Specifically, in this paper we develop an energy-consumption model for Web transactions and, based on it, we propose
and compare four different energy saving strategies: ideal, Indirect-TCP (I-TCP), local and global. The ideal strategy is
unfeasible but it is used as a reference bound as it guarantees the lowest energy consumption. The other strategies have been
implemented and compared in a real test-bed. The performance comparison is carried out by measuring two main performance
figures: the energy spent for downloading a Web page, and the associated transfer-time. Experimental results show that relevant
energy saving is achievable and that, among the feasible strategies, the global one gives the best performance: with this strategy
we can save (on average) up to 88% of the energy. Furthermore, our results indicate that this power saving is obtained without a
significant increase in the transfer-time perceived by the users (on average, 0.2 s). Finally, by comparing the feasible strategies,
we observe that the global one is much closer to the ideal case than the other strategies. In detail, the global strategy is about
twice more efficient than the local one, and eight times more efficient than the I-TCP strategy.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the field of mobile computing, the mobile Internet is one of the most interesting areas. Users are
no longer forced to access information at their desktop, since data are available where they are, atany
timeandany place. However, several problems must be solved when integrating a mobile device in the
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Internet. As is well known, one of the most critical problems is theenergy consumption[1–3]. In this
work we consider how to introduce power saving in mobile Web access.

Efficient energy management has been approached at different levels of a mobile system architecture:
physical transmission[4–6], MAC protocols[7–11], disk and CPU management[12–16], and applications
[2,17–22]. Experimental results show that a relevant part of the energy available on a mobile computer is
drained by the wireless interface. More precisely, the networking impact on energy consumption varies
from about 10% in laptops[23] up to 50% in small-size hand-held devices, such as PDAs[24]. Therefore
it is vital to design energy-efficient networking subsystems.

The key point in energy-aware networking is the consumption model of a wireless interface. Specif-
ically, the wireless interface consumes nearly the same amount of energy in the receive, transmit and
idle states (see, for example, the 802.11 “Wi-Fi” environment[25]). Therefore, the energy consumption
is approximately proportional to the time during which the wireless interface remains switched on. The
maximum power saving can therefore be achieved by transmitting data as quick as possible and, imme-
diately after, turning the wireless interface into a power-saving mode. Many researchers have proposed
power-saving policies based on this idea[23,24,26–28]. The innovative contribution of the approach
presented in this paper is the exploitation of the application semantic to determine the best time instants
for switching the wireless interface on and off.

In this paper we refine, and extensively evaluate, the power-saving architecture defined in[29]. Specifi-
cally, we compare the performance of four different power-saving strategies aimed at reducing the energy
consumed during a Web-page download. The first strategy is a pure Indirect-TCP (I-TCP) architecture
[30,31]. With respect to the legacy TCP architecture, this solution improves the throughput achieved by
the mobile host, thus reducing the transfer-time. Hence, it indirectly contributes to power saving even
though no energy-management mechanism is explicitly introduced in the system. Explicit energy man-
agement is included in the other policies we consider, all obtained by enhancing the I-TCP architecture.
Thelocalstrategy switches the wireless interface off when the user is reading the Web page, i.e., it exploits
information that are locally available at the client browser. The third approach, referred to as theglobal
strategy, in addition to local information, exploits statistical information about Web traffic. Finally, an
ideal(unfeasible) strategy that guarantees the minimum power consumption is also considered. Through-
out this paper, the ideal and I-TCP strategies provide the lower and upper bound for energy consumption,
respectively.

We implemented the feasible power-saving strategies and tested them extensively in a real Internet
scenario. Our performance study is based on two main performance figures:Ips andIpd. Ips is used as a
power-saving index. It measures the energy consumption of a specific strategy expressed as a percentage
of the energy consumption related to I-TCP strategy.Ipd measures the impact of the power-saving strategy
on the user response time (URT), i.e., the time interval elapsed from a user request for a Web page to its
rendering on the mobile device.

The experimental results show that the global strategy exhibits the best achievable performance. It
saves, on average, 88% of the energy consumed by the I-TCP approach and has a negligible impact on
the URT (the URT increase is of 0.2 s on average, and is below 1.8 s with probability 0.9).

The paper is organized as follows.Section 2models the statistical properties of a Web transaction
and its energy consumption.Section 3defines the power-saving strategies and their energy consump-
tion. Section 4presents the experimental test-bed, and introduces the performance indexes used in our
measurement study.Sections 5 and 6analyze the performances of the different power-saving strategies.
Section 7concludes the paper.



G. Anastasi et al. / Performance Evaluation 53 (2003) 273–294 275

Fig. 1. The Web-page download as an active and an inactive phase.

2. System model

The power-saving strategies evaluated in our system are application-dependent, i.e., they exploit the
application semantic to optimize the energy consumption. Hence, as a preliminary step, it is necessary to
characterize the traffic profile generated by Web browsing.

Many papers in literature provide mathematical Web traffic characterizations[32–37], and show that,
with an appropriate analysis of the Web servers logs, it is possible to model the Web user behavior[34,35].

2.1. Single user’s traffic model

The activity of an individual user can be represented as a series of successive requests for Web pages.
As shown inFig. 1, each request causes a two-phase process. During the first phase, the Web page is
downloaded from the server to the client while, in the second phase, the user reads the contents. The first
phase is typically named active phase because during this time interval data flow on the network. The
second phase is referred to as inactive phase because there is no network activity.

The inactive phase is composed by a unique time interval (tUTT in Fig. 1). This time interval is known
as theInactive OFF Timeor User Think Time(UTT), and is typically longer than 30 s (i.e., it is practically
much longer than the active phase length). User Think Times are distributed according to a Pareto law
[34,35]:

p(tUTT) = αkαt−(α+1)
UTT , tUTT ≥ k, α = 1.5, k = 30, (1)

wherek is thescale parameterandα theshape parameter.
Fig. 2 provides a graphical representation of a typical active phase. A Web page usually consists of

a set of files: an HTMLmain fileand a number ofembedded files. Specifically, the main file contains

Fig. 2. The active phase as a sequence of ON and OFF Times.
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the page textual information, the names of the embedded files and a description of the page layout. The
browser transfers the whole set of files and arranges them in the page.

The active phase can be seen as a sequence ofN ON Times (ti in Fig. 2) andN Active OFF Times (ki
in Fig. 2), whereN is a random variable. The main file is transferred during the first ON Time. Then,
the transfer of each embedded file occurs in subsequent ON times. ON times are usually separated by
OFF times. Among the others, an OFF Time includes the time required by the client to prepare HTTP
request(s). These OFF Times are typically referred to asActive OFF Times, to distinguish them from the
User Think Times.

The length of a single ON Time can be described as follows:

ti = Bi

γi
+ δi = Di + hi

γi
+ δi, (2)

whereBi is the size (in bytes) of an overall HTTP transaction needed to fetch a file. Specifically, it includes
the file size (Di), and the headers of all packets containing the HTTP request(s) and HTTP response (hi).
γi is the throughput experienced during this transaction.δi depends on the specific HTTP version, and
may include the sum of the network Round Trip Time (RTT), and the time needed by the Web server to
process an HTTP request.

It must be pointed out thatγi andδi depend on the network traffic conditions, whilehi can be closely
approximated with a constant value.Di depends on the distribution of the Web file sizes. In the literature,
the file size is modeled according to a hybrid distribution[33,35,37]: the tail and the body are modeled
according to Pareto (seeEq. (1)) and log-normal distributions (seeEq. (3)), respectively:

p(x) = 1

αx
√

2π
e−(ln x−µ)2/2σ2

. (3)

The parameters of log-normal (i.e.,µ andσ) and Pareto (i.e.,α andk) distributions, as well as the cutoff
value between the two distributions, depend on the set of files available at the Web server.

Active OFF Times (ki in Fig. 2), are typically modeled according to a Weibull distribution:

p(t) = btb−1

ab
e−(t/a)b . (4)

The Weibull parameters do not depend on the particular Web site. Typical values area = 1.46,b = 0.382
[35].

Finally,N denotes the number of Active OFF and ON Times (seeFig. 2). Obviously,N = 1+ e, where
e is the number of embedded files, and 1 corresponds to the main file. The number of embedded files,e,
is typically modeled according to a Pareto distribution, whereα andk parameters depend on the specific
Web server[35].

As a final remark, it has been shown in[34] that the Web-page download statistical models are strictly
related to the self-similarity property of Web traffic. Since this is astructuralproperty of the Web traffic,
the characterization provided in this section do not depend either on the Web contents or on the user
access patterns.

2.2. Energy-consumption model

In this section we introduce a model for the energy consumption in a mobile Web access scenario. As
explained inSection 1, the energy consumption is approximately proportional to the time during which the
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Table 1
Summary of the symbols used throughout the paper

N Number of files in a Web page
ki Length of theith Active OFF Time inside the active phase
ti Length of theith ON Time inside the active phase
tUTT Length of the User Think Time after the download of a Web page
Bi Dimension of the HTTP transaction needed to fetch theith file of a Web page
Di Dimension of theith file of a Web page
hi Dimension of the HTTP request and response headers used in theith HTTP transaction
γi Average throughput experienced by the mobile host during theith HTTP transaction
γ Maximum throughput available on the wireless link
δi Sum of the network Round Trip Time and the time needed by the Web server to process theith HTTP request
βi Overhead in bytes introduced in theith file download
τi Overhead in time introduced in theith file download
A Active OFF Times contribution to the energy spent to download a Web page
U User Think Time contribution to the energy spent to download a Web page
m Number of times the mobile host wireless interface switches from off to on during the active phase
tso Time interval needed by the mobile host wireless interface to switch from off to on
g Number of residual transfer-time estimates provided by the access point during the active phase of a Web-page

download
s Number of residual transfer-time estimates greater thantso (s ≤ g)

wireless interface remains in the ON state. Therefore, hereafter we will measure the energy consumption
as the wireless interface ON time.Eq. (5)provides the energy,C, consumed for downloading a Web page:

C =
N∑
i=1

(
Di + βi
γi

+ τi
)

+ A+ U +m · tso, (5)

whereβi measures the overhead in bytes introduced in theith file download. In addition to the size of the
HTTP request and response headers (hi in Eq. (2)), βi also includes specific overheads associated with
the implemented power-saving strategy (if any).γi is the throughput experienced in the file transfer (see
Eq. (2)). τi is the overhead in time related to the download of theith file. Specifically, in addition toδi (see
Eq. (2)), it also includes specific time overheads associated with the implemented power-saving strategy
(if any).A is the contribution to the energy consumption due to the Active OFF Times. This contribution is
the sum of the Active OFF Times (A = ∑N

i=1ki) if no power-saving strategy is implemented. Power-saving
strategies typically reduce this quantity.U is the contribution to the energy consumption due to a User
Think Time. This exactly corresponds to the User Think Time if no power-saving strategy is implemented.
The aim of power-saving strategies is to reduce it.m·tso is the total contribution to the energy consumption
due to the transients caused by the off–on switching of the wireless interface. When the wireless interface
is turned on, there is a transient period during which it consumes energy but it cannot be used for data
transfer. InEq. (5) tso denotes the length of the transient period (typically, and throughout this work,
100 ms), whilem is the number of off–on transitions during the Web-page transfer.1 Di andN define the
traffic characteristics (seeTable 1) and do not depend on the particular power-saving strategy.

1 The m value depends on the specific power-saving strategy. Obviously, when no power-saving strategy is implemented,
m = 0.
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For reader convenience, inTable 1we summarize the symbols that are used throughout the paper.

3. Power-saving strategies for mobile Web access

A typical mobile Internet scenario is depicted inFig. 3. The communication between a mobile host
and a host connected to the Internet (fixed host) is made possible by a third entity (access point) which
provides Internet connectivity to the mobile host through a wireless link.

This scenario is becoming more and more relevant with the emerging of the Wi-Fi hotspot business. A
hotspot is a critical business area (e.g., airports, stations, hotels) characterized by a set of access points
where users can have a broadband access to the Internet by subscribing a contract with a hotspot operator,
or a wireless Internet service provider.

In this scenario the legacy TCP/IP protocol stack is typically implemented in the mobile device, and
no power-saving strategy is used. Therefore,Eq. (5)instantiates as follows:

CTCP =
N∑
i=1

(
Di + hi
γi(TCP)

+ δi(TCP)

)
+

N∑
i=1

ki + tUTT, (6)

whereβi = hi, A = ∑N
i=1ki, U = tUTT andm = 0, since no power-saving strategy is used.δi(TCP)

represents theδi term ofEq. (2)when the legacy TCP/IP architecture is used, andγi(TCP) is the throughput
experienced during this transaction.

Several factors contribute to make the legacy TCP/IP approach inefficient from the power-saving stand-
point:γi(TCP) is typically very low due to the interaction between the wired and wireless environments
[23,29,38], U corresponds to the whole User Think Time (U = tUTT), andA is the sum of the Active
OFF Times (A = ∑N

i=1ki). Therefore,CTCP represents the upper bound for the energy consumption. On
the contrary, the ideal strategy introduced in the next section represents the lower bound for the energy
consumption.

3.1. Ideal strategy

The minimum possible energy spent for a Web-page download is obtained by assuming that the transfer
from the access point to the mobile host is performed in a single phase. Specifically, the wireless interface
is turned on, all data are transferred at the maximum throughput allowed by the wireless link,γ, and
then the wireless interface remains off until the next Web-page download. Hence, the wireless interface
remains on for the minimum amount of time. Accordingly, the ideal energy consumption is given by

Fig. 3. A typical mobile environment.
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Eq. (7):

Cideal =
N∑
i=1

(
Di + hi
γ

)
+ tso. (7)

Eq. (7)is immediately obtained fromEq. (5)by considering that

• βi is equal tohi;
• γi is constantly equal toγ;
• there is no temporal overhead related to the HTTP transaction (τi = 0);
• the Active OFF Times and User Think Time contributions are 0 (A = U = 0);
• the wireless interface is turned on only once for each Web-page download (m = 1).

It is worthwhile to point out that, even though the ideal strategy is unfeasible,Cideal represents a lower
bound for any other feasible power-saving strategy. In the next few sections we introduce three feasible
power-saving strategies, and compare their performance with the ideal case.

3.2. I-TCP strategy

The I-TCP approach[30] splits the TCP connection (between the mobile client and the remote Web
server) in two TCP connections. The former one operates between the mobile client and the access point,
while the latter one connects the access point to the Web server. This allows to decouple the wireless
and the wired environments. Hence, the I-TCP approach increases the end-to-end throughput[30], and
indirectly contributes to reduce the power consumption. This effect is pointed out byEq. (8)that defines
the energy consumption related to the I-TCP strategy:

CI-TCP =
N∑
i=1

(
Di + hi
γi(I-TCP)

+ δi(I-TCP)

)
+

N∑
i=1

ki + tUTT. (8)

The only difference betweenEqs. (8) and (6)is γi(I-TCP) instead ofγi(TCP), andδi(I-TCP) instead of
δi(TCP). By considering thatδi(I-TCP) ≈ δi(TCP)2 and that the I-TCP approach generally results in an
increased throughput (i.e.,γi(I-TCP) > γi(TCP)), Eq. (8)indicates thatCI-TCP< CTCP.

A bare I-TCP strategy only provides energy saving as a side effect, since it is not essentially aimed at
minimizing energy consumption. In particular, this strategy does not provide any contribution to reduce
the second and third terms of (6), i.e.,A andU. These terms (mainlyU) heavily contribute to the energy
consumption, since they represent the contributions of idle phases to the energy consumption. To reduce
their impact, the wireless interface should remain off as long as possible during idle phases, and hence we
expect that a pure I-TCP approach performs poorly. Nevertheless, it constitutes a reference architecture
for more efficient strategies. Specifically, in the following we present two strategies that enhance the
I-TCP approach. The former one minimizes the contribution of the User Think Time (U) to the energy
consumption while the latter one attempts to minimize bothA andU. The first strategy only requires
information that are local to the mobile host, and hence will be referred throughout aslocal strategy. On
the other hand, the second strategy needs a global overview of the system, and will thus be referred to as
global strategy.

2 The only difference is the additional processing time at the access point in the I-TCP approach.
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3.3. Local strategy

This strategy islocal in the sense that the wireless interface switching-off decision is taken utilizing
only local information. Specifically, the mobile host turns off the wireless interface during the User Think
Time. This strategy is very simple to implement. It only requires that the wireless interface is switched
off when the active phase is finished, and turned on again upon receiving a new request from the mobile
user. As this strategy does not modify the I-TCP behavior during the active phase, the first and second
terms of (8) remain unchanged. Furthermore, it eliminates the inactive phase contribution (i.e.,U = 0),
and the wireless interface is switched on just once for each Web-page download (i.e.,m = 1). Hence, the
energy consumption using the local strategy is

Clocal =
N∑
i=1

(
Di + hi
γi(I-TCP)

+ δi(I-TCP)

)
+

N∑
i=1

ki + tso. (9)

Eq. (9)is obtained from (5) by settingβi = hi, τi = δi(I-TCP), A = ∑N
i=1ki, U = 0 andm = 1.

Since the User Think Time contribution is typically heavy, the energy saving provided by this strategy
is expected to be significant. In the next section we will investigate how to further increase the energy
saving by switching off the wireless interface even during the active phase.

3.4. Global strategy

The global strategy attempts to approach the ideal energy consumption by exploiting the knowledge of
Web traffic statistics (seeSection 2.1). The global strategy borrows from the local one the idea of switching
off the wireless interface during the inactive phase (i.e.,U = 0). Moreover, it uses some mechanisms to
reduce the energy consumption during the active phase, as well.

In the environment depicted inFig. 3, the bottleneck between the mobile host and the fixed host
is usually represented by thewired part of the path and the Web server speed[23,29]. As a conse-
quence, with the previous strategies (seeSections 3.2 and 3.3), the wireless link cannot ever be used
at its full available throughput while downloading the files. This problem is tackled in the global strat-
egy bypre-fetchingthe Web page at the access point. Specifically, a software agent at the access point,
throughout referred to as thePS-Daemon, acts similarly as a Web proxy (a Web proxy with power-saving
functionalities), by acting on behalf of the client browser. While the HTML main file is flowing on the
wired network, the mobile host maintains the wireless interface switched off. This switch-off time is
based on an estimate (provided by the PS-Daemon) of the main file transfer-time.3 The PS-Daemon
stores the main file, and automatically pre-fetches the embedded files,if any, from the Web server. When
the mobile host reconnects, the PS-Daemon delivers all the available data (i.e., the main file and the
embedded files, if available). If more data still need to be downloaded, the PS-Daemon also provides
an estimate of the residual transfer-time. If this estimate is greater thantso, the mobile host switches
off the wireless interface and reconnects later according to the estimate. More details can be found
in [29].

We are now in the position to prove the following proposition.

3 The mobile host switches the wireless interface off only if the estimated transfer-time is greater thantso.
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Proposition 1. In a system that adopts the global strategy, the energy consumption is

Cglobal =
N∑
i=1

(
Di + βi
γ

)
+ A+ (s+ 1) · tso, (10)

whereA ≤ (g− s) · tso andβi = hi + pi.

Proof. For ease of reading, we move the proof toAppendix A. �

As shown in the proof of the above proposition (seeAppendix A), the global strategy relies upon
the algorithm used for estimating the residual transfer-time. Specifically, it requires the estimate of the
residual transfer-time for both the HTML main file and the embedded files. The following propositions
provide closed formulas for these quantities.

Proposition 2. By denoting withestm the residual transfer-time for the HTML main file, the following
equation holds:

estm =
{

RTT, if a connection is available,

2RTT, otherwise.
(11)

Proof. estm can be evaluated by assuming the knowledge of the RTT between the PS-Daemon and the
Web server. When the PS-Daemon receives a request from the mobile host, it establishes a TCP connection
with the server, or it uses an already opened persistent connection. In the first case, the retrieval of the
main file requires, at least, two RTTs (three-way handshake plus HTTP request-response). In the second
case (persistent TCP connection), a single RTT may be enough (if the main file fits into a single TCP’s
window size). �

Proposition 3. By denoting witheste the estimate of the residual transfer-time for the embedded files,
the following equation holds:

este = RTTu, (12)

where u is the minimum number ofRTTsnecessary to transfer all the embedded files on a TCP connec-
tion.

Proof. The residual transfer-time estimate for the embedded files exploits some information contained in
the main file, that are already downloaded when the embedded files are requested. Hence, the PS-Daemon
knows the number,e, of embedded files that compose the Web page.4 The total number of bytes to be
transferred (throughout referred to asB), can be estimated as follows:

B̂ =
e∑
i=1

(D̃i + hi), (13)

4 Throughout the analysis, we assume that all the embedded files reside on the same server of the main file. Very similar
mechanisms (although slightly more complex) can be used when the embedded files reside on different servers.
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whereB̂ is the estimate ofB, D̃i the estimate for theith embedded file size (i.e., it is a sample from the
distribution defined in[35]), andhi the dimension of the HTTP headers used for downloading theith
embedded file.

The distribution parameters of embedded file sizes may vary with the Web servers’ content. For this
reason they should be communicated by the Web server to the PS-Daemon. This is complex and unrealistic.
This complexity can be avoided by using average values only. Accordingly,B̂ becomes

B̂ = e(D̄+ h̄), (14)

whereh̄ is the average ofhi, andD̄ the average of̃Di.
Finally, the residual transfer-time estimate can be evaluated by usingB̂ and an estimate of RTT.

Specifically:

este = RTTu, (15)

whereu is the minimum number of RTTs necessary to transfer theB̂ bytes on a TCP connection, given
the connection state.

The complete algorithm to evaluateu is presented in[40], and is omitted here due to space reasons.
The estimators of the residual transfer-time require the RTT knowledge. If the PS-Daemon has no

information about the RTT, it uses some initial value (as TCP does[39]). �

4. Experimental test-bed

The main objective of our experimental study is to evaluate the power-saving performance of the
strategies presented in this paper through an extensive set of measurements on a real Internet test-bed.
To this end, we implemented the local and global strategies on top of an I-TCP architecture[30,31]. In
this section we present the performance figures that we intend to investigate, and the characteristics of
our test-bed.

4.1. Performance indexes

We evaluate the local and the global strategies in terms ofenergy consumptionwith respect to areference
I-TCP architecture. Specifically, in the reference I-TCP architecture we assume on the wireless link a
transport protocol optimized for the wireless link characteristics, instead of the legacy TCP protocol. This
is a light protocol that only implements mechanisms for error detection and recovery and does not include
any congestion control mechanism (see the STP protocol in[29]).

Hence, an important performance measure is thepower-saving index, defined as

Ips = Cpower-saving architecture

CI-TCP
, (16)

whereCI-TCP comes from (8) andCpower-saving architectureis one amongCideal, Clocal andCglobal from (7) to
(10).

Ips is the energy consumption of a specific power-saving strategy expressed as a percentage of the
energy consumption of the reference architecture. As it will be explained later, our experimental test-bed
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guarantees that values used to computeIps are measured under the same system conditions (Web server
and network traffic conditions).

In addition, we compare the performance of the local and global strategies with those of the ideal one
to understand how well feasible strategies approximate the ideal case.

Although power saving is the key factor to evaluate the proposed strategies, we are also interested to
analyze the impact of these strategies on the QoS perceived by the user. Hereafter, we use the URT (i.e.,
the time interval elapsed from the user request till the rendering of the related Web page) as the main QoS
index for a Web service. It is worth noting that the global strategy may introduce an additional delay in
the Web-page transfer-time. Additional delays occur whenever a residual transfer-time estimate is longer
than the real value. To take into consideration this aspect, we introduce thepage delay indexdefined as

Ipd = page transfer-time with global strategy− page transfer-time with I-TCP strategy. (17)

Ipd measures the additional URT delay introduced by the global strategy.

4.2. The test-bed

In our test-bed we use a real Web server located at the University of Texas at Arlington, while the
mobile host (and the access point) is located at the CNR in Pisa (Italy). This allows us to evaluate the
power-saving strategies over a real, congested, intercontinental path. As far as the wireless link, we adopt
the Wi-Fi technology with transmission speed ranging from 2 to 11 Mbps.

At the mobile host we use SURGE to simulate a Web client[32,34,35]. SURGE reproduces the statistical
user model presented inSection 2.1. Specifically, SURGE operates in two steps. During the first step, it
defines the set of files to be stored in the Web server, guaranteeing that file sizes are distributed as shown
in Section 2.1. Moreover, SURGE defines the structure of the Web pages by building groups from the
above files.

In the second step, SURGE defines the sequence of client requests to the Web server. To this end it
creates

• a trace of Web-page requests to be issued to the server (Active Time trace);
• a trace of Inactive OFF Times.

The traffic generated by using the Active Time and Inactive OFF Time traces meets the statistical
characterization given inSection 2.1.

During the experiments, the client requests and User Think Times are extracted from the above traces.
Specifically, a client picks up a Web-page request from the Active Time trace and downloads the corre-
sponding page, then picks up a value from the Inactive OFF Time trace, waits for this time interval, and
extracts the next Web-page request.

4.3. Experiment methodology

To test our power-saving strategies we ran an extensive set of experiments. In each experiment we
have two instances of the same “SURGE client”. The two instances download, in parallel, the same
set of Web pages by using the pure I-TCP architecture and the selected power-saving strategy, respec-
tively. This guarantees that the two sets of parallel downloads are performed under the same system
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conditions.5 For each page download we log the URT value, the total length (in bytes) of the Web trans-
action (i.e., the sum of the page dimension and the HTTP headers dimension), and the network energy
consumption (i.e., the total amount of time during which the wireless interface is turned on). From each
experiment, we compute theIps index for the selected strategy (global, local and ideal). Moreover, for
each Web-page download performed with the global strategy we evaluate theIpd index.

A final remark is necessary about the length of each experiment. The Web characterization given in
Section 2.1shows that the file size can be modeled according to an hybrid distribution: log-normal in the
body and Pareto in the tail. We choose the experiments’ length to have—in average—for each experiment
at least 10 files’ requests coming from the tail of the distribution.6 From the SURGE documentation, 93%
of the requested files comes from the body, while 7% comes from the tail. Therefore, to have (in average)
10 “long” files (i.e., with size belonging to the tail of the distribution), the minimum number of files to
be transferred in each experiment is 143. Hence, we decide to stop each experiment after downloading
150 files.7

We replicated the experiments sequentially throughout an entire working day. To achieve independent
experiments, we modified SURGE in such a way that it can start from a specific point in the page requests
trace. Exploiting this feature, each experiment starts requesting the trace item next to the last one used in
the previous experiment, and henceIps andIpd samples from different experiments are independent.

It must be noted that an entire working day of experiments is not sufficient to exhaust the whole
trace of Web-page requests. Finally, we replicated an entire day of experiments for 10 working
days.8

5. Tuning of the experiments

In this section we present some preliminary results collected in the experiments of a single day. These
results are used to tune our measurement methodology.

5.1. Comparison between the embedded file size estimators

In Section 3.4we described two estimators of the total embedded file size (seeEqs. (13) and (14)).
The first one uses the file size distribution, while the second one relies upon the average value only. To
compare these estimators, we ran two sets of 10 consecutive experiments. The two sets of experiments
were performed by downloading the same set of Web pages. Furthermore, we verified that all experiments
were performed under the same network conditions. For each experiment, we measure theIps index for the
global strategy. Moreover, for each page, we evaluate theIpd index, and we average theIpd values on the
whole 150-file experiment. Hereafter,Īpd denotes the averaged value. As the experiments are independent

5 One of the two users may experience some advantages due to the Web server caching. Specifically, if a user requests the pages
immediately before the other one, the latter can find the pages in the server’s file-system cache, and hence it can experience a
lower URT. To overcome this asymmetric behavior, the second user starts 30 s after the first one; moreover, the user that starts
first in an experiment will start as the second in the next one.

6 This constraint ensures that results are not biased by a particular choice in the file size dimensions.
7 The experiment is stopped when the Web page “on-the-fly” is completely transferred.
8 The first experiment of a new day begins with the Web-page request successive (in the trace) to the last one used in the

previous day. After the trace is exhausted, SURGE wraps-around and requests the first item.
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Fig. 4. Embedded files size estimators comparison.

and under the same network conditions, theIps andĪpd samples are i.i.d. The data obtained with the two
estimators are presented inFig. 4andTable 2.

FromFig. 4 it appears that the two estimators provide almost identical results in terms ofIps (see part
(a)). In terms ofĪpd, the estimator based on the average value appears to be more stable (see part (b)).

These results are confirmed byTable 2where we report the confidence intervals forIpsandĪpd (hereafter,
the confidence level is 95%). Hence, we can conclude that it is convenient to use the estimator based on
the average values.

5.2. Performance over a single day

To give an idea of the power-saving performance of each strategy, we show some snapshots taken from
the experiments of 1 day.

Fig. 5(a) shows the plots ofC for all strategies under investigation. As expected, the pure I-TCP
approach provides the highest power consumption. The gap betweenCI-TCP andClocal is significant, and
this confirms that the User Think Time provides a big contribution to the total energy consumption. In
Fig. 5(b) we report the same plots on a different time scale to emphasize the differences among the
three strategies. These differences are due to the strategies’ behavior during the active phase. AsClocal

is significantly higher thanCglobal, it follows that a wise energy management during the active phase can
produce relevant energy savings. Obviously, the ideal strategy is the best one, but the global strategy well
approximates the ideal behavior. This observation is confirmed and quantified inTable 3.

Table 2
Ips andĪpd average values and confidence intervals

Avg(Ips) Avg(Īpd) (s)

Distribution 0.084± 0.012 0.303± 0.154
Average value 0.081± 0.012 0.332± 0.075



286 G. Anastasi et al. / Performance Evaluation 53 (2003) 273–294

Fig. 5. An experiment day: the energy consumption of the different strategies.

This table shows the values ofIps andĪpd averaged over the whole experiment day. As it clearly appears
from Table 3, the global strategy can save 89% of the energy with respect to the I-TCP approach, and it
outperforms the local strategy of more than 50%. Furthermore, the global strategy does not introduce a
significant QoS degradation. In detail, this strategy increases (in average) the Web-page download time
of 0.24 s that is almost negligible for a Web user.

5.3. Data aggregation

From the plots inFig. 5 it appears that the energy consumption values (except for the ideal case) are
extremely variable during the day. This is mainly due to the variable conditions of the Internet path from
Pisa to Arlington. This is confirmed byFig. 6, that reports the throughput, measured at the application
level, averaged on 1 h intervals.

As expected, the throughput varies during the day. Specifically, we can observe that, from the throughput
standpoint, a working day can be subdivided into several classes that depend on the status of the Internet in
Europe and USA. For instance, in the period 2–7 P.M., we have the minimum throughput due to the over-
lapping between Europe and USA business hours. On the other hand, in the period 5–9 A.M., we observe
the highest throughput due to the overlap of non-business hours in Europe and USA. Furthermore, by re-
peating the same analysis for several working days we observed the same behavior. Thus, hereafter we can
assume that experiments performed within the same hour, even in different days, are identically distributed.

Table 3
Ips andĪpd average values for the plots inFig. 5

Strategy Avg(Ips) Avg(Īpd) (s)

Local 0.23 –
Global 0.11 0.24
Ideal 0.03 –
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Fig. 6. The average throughput measured at the application level as a function of the day-time.

Based on the above observations we define our data aggregation method as follows. From each 150-file
experiment we derive an observation forIps and one for̄Ipd. Our experiments are continuously performed
for a whole day and repeated for 10 working days. Samples obtained at the same hour (also in different
working days) are i.i.d., and hence from these samples we can compute the hourly confidence intervals
of Ips andĪpd, according to the classical statistical method[41].

6. Performance evaluation

In this section we deepen the previous analysis by providing, for all strategies, accurate estimates of
the confidence intervals ofIps andĪpd indexes.

6.1. Ips analysis

Fig. 7shows theIps index for the local, global and ideal strategies.
The results confirm our preliminary observations. Specifically, by eliminating the power consumption

during User Think Times it is possible to achieve a significant energy saving. The local strategy saves
about 76% of the I-TCP energy consumption. Moreover, these results also confirm the relevance of the
energy management during the active phase. The global strategy saves approximately 88% of the I-TCP
energy consumption, and therefore significantly improves the local strategy performance.

Fig. 8compares the local, global and ideal strategies in more detail. Specifically, plot (a) indicates that,
with respect to the local strategy, the global strategy saves 26% more energy in the worst case, 45% on the
average, and up to 53% in the best case. Plot (b) shows the performance of the global strategy with respect
to the ideal case. On average, the saving of the global strategy is approximately 25% of that achievable
in the ideal strategy. It is worth noting that, even if not reported here for space reasons, the local and the
I-TCP strategies are very far from the ideal case. Specifically,Clocal = 7 · Cideal andCI-TCP = 32 · Cideal.
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Fig. 7. Power-saving performance of the local, global and ideal strategies.

To summarize, the global strategy is the best approximation of the ideal,unfeasible, solution. Therefore,
in the following we will focus on the global strategy only. First of all, we analyze the behavior of theIps

index with respect to the throughput on the Internet (γi in (8)). To this end we aggregate the samples in
three classes of throughput, and we average the samples belonging to the same class, taking the throughput
central value as representative of the entire class. More precisely, classes are made up of samples that
experienced a throughput below 150 Kbps, between 150 and 300 Kbps, and between 300 and 600 Kbps,
respectively.

Fig. 9(a) shows thatIps is not very sensitive to the throughput variation. However, it is slightly higher
when the Internet throughput is low. This can be easily explained by recalling the residual transfer-time

Fig. 8. Comparison between the local, global and ideal strategies.
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Fig. 9. Analysis of the global strategyIps as a function of the Internet throughput.

estimator algorithm. The time interval evaluated by (15) is theminimumtime to transfer the estimated
number of bytes[40]. The choice of the minimum time interval reduces the QoS degradation, but slightly
increases the energy consumption when the Internet throughput is low. In this case, the mobile host will
need more time to complete the data transfer and, hence, it will switch on the wireless interface several
times. This behavior is highlighted byFig. 9(b). By moving from the first class to the second one—due
to theγi increase (see (8))—Cglobal decreases of more than 30%, whileCI-TCP reduces of 17%. The same
trend also occurs in the transition from the second to the third class but the difference is less marked.

Finally, in Fig. 10we show the dependence ofIps on thewirelesslink throughput. We ran 2 sets of
10 experiments by varying the speed of the wireless link from 11 to 2 Mbps. With the current Internet

Fig. 10.Ips behavior with varying wireless link throughput.
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Fig. 11.Īpd andIpd 90th percentile average values (a);Īpd values for different wireless throughputs (b).

technologies, we expect that the wired Internet remains the bottleneck also when we use a 2 Mbps WLAN.
As it is clear from (10) and (8), when the wireless link throughput decreases,Cglobal increases, whileCI-TCP

does not change significantly because it is mainly affected by the wired Internet. However, the results
presented inFig. 10 show that the global strategy exhibits a small sensitiveness to the throughput of
wireless link. By decreasing the wireless speed from 11 to 2 Mbps,Ips experience (on average) a 13%
increase only.

6.2. Ipd analysis

To complete our analysis, we investigate the QoS degradation introduced by the global strategy by
studying theIpd index. Specifically, from each experiment we compute the average value ofIpd (i.e., Īpd),
and its 90th percentile. Then, we average the samples taken within the same hour. Finally, we compute
the confidence intervals of the two figures according to the method ofSection 5.3. The results obtained
are shown inFig. 11.

From Fig. 11(a), it can be noted that the additional URT introduced by the global strategy does not
degrade significantly the QoS perceived by the Web user: the global strategy increases the URT of about
0.2 s on average, and no more than 1.8 s in the 90% of cases.

The analysis of thēIpd sensitiveness to the wireless link speed confirms the observation done in theIps

analysis (seeFig. 10). As shown inFig. 11(b), by decreasing the wireless link speed from 11 to 2 Mbps
the Īpd index experiences (on average) a 28% increase.

7. Summary and conclusions

In this work we evaluate the effectiveness of new strategies for reducing the power consumption in
mobile Web access. We focus on a Wi-Fi hotspot scenario. This is emerging as the most relevant wireless
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Internet scenario and it is interesting from a power-saving point of view, because the bottleneck between
the mobile host and the Web server is located on the wired part of the Internet.

Our study starts from the analysis of the impact, on the power consumption, of the different phases
of a Web transaction. To this end we characterize the Web transaction phases through statistical distri-
butions (taken from real Web traffic traces), and construct an energy-consumption model. This model
highlights possible directions for reducing the energy consumption. In this paper we identify four different
power-saving strategies.

We start with a strategy namedideal strategy. This strategy guarantees the minimum energy con-
sumption to download a Web page. It is unfeasible but provides a reference for the other strategies we
develop. The first feasible strategy we envision is based on a pure I-TCP architecture. The advantage of
this strategy is related to the throughput increase (with respect to the legacy TCP/IP architecture) that, in-
directly, produces power saving. The second strategy, namedlocal strategy, explicitly addresses the power
saving. Specifically, by exploiting the semantic of the Web application, it eliminates the waste of power due
to User Think Times. The local strategy is further refined by theglobal strategythat performs energy man-
agement also during the active phases of a Web transaction. For all these strategies we derive an analytical
model of their energy consumption, and we compare their performance through extensive measurements.

The comparison shows that the local strategy saves, on average, 76% of the energy drained by a pure
I-TCP solution. The global strategy outperforms the local one by reducing the I-TCP energy consumption
of about 88% on average. In addition, with respect to the ideal strategy, the global strategy consumes less
than 4 times, while the local and the I-TCP strategies consume 7 and 32 times, respectively. Therefore,
among the analyzed strategies, the global one is the best approximation of the ideal—but unfeasible—
case. Furthermore, the global strategy introduces a negligible degradation in the QoS perceived by the
users. Specifically, the additional URT introduced by the global strategy is about 0.2 s on average, and is
below 1.8 s in 90% of cases. Finally, a sensitiveness analysis shows that the performance of the global
strategy is almost independent from the throughput of the wireless link, provided that it is greater than
the throughput available in the wired Internet.
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Appendix A. Proof of Proposition 1

Eq. (10)is derived from (5) by settingγi = γ, τi = 0,U = 0 andm = s + 1. Hereafter, we proof the
above claims.

Firstly, by the definition of global strategy,U = 0.
Moreover, in the global strategy, the main file and the embedded files are transferred over the wireless

link when they are already stored at the access point. Therefore, the wireless link is used at its full available
throughput, and henceγi in (5) becomesγ.9

9 As shown inSection 6, the energy savings achieved with the global strategy are not significantly affected by variations ofγ.
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τi is negligible. This result derives from the following considerations: (i) the PS-Daemon includes Web
proxy functionalities; (ii) the RTT between the mobile host and the access point is typically negligible;
(iii) the overhead related to pre-fetching can be included inβi, A ands as shown below.

The pre-fetching mechanism forces the mobile host to request a number of residual transfer-time
estimates from the PS-Daemon during the active phase. Letg be this number (g > 0). When one of
these estimates is greater thantso the mobile host switches the wireless interface off. Ifs is the number
of estimates greater thantso thenm = s + 1. Moreover, the time intervals during which the wireless
interface remains on during idle periods within the active phase correspond to the estimates less than
tso. Therefore,A ≤ (g − s)tso. It must be pointed out thatg is a random variable. Its distribution is very
complex and depends on: (i) the residual transfer-time estimation algorithm; (ii) the throughput between
the PS-Daemon and the server; (iii) the number and size of embedded files. Therefore, a closed formula
for g is almost impossible to derive, and for this reason, to study the effectiveness of the global strategy,
we performed an experimental analysis (seeSections 5 and 6).

Finally,βi is made up of two components, and can be expressed asβi = hi + pi, wherehi is the same
as in (2), whilepi is the overhead introduced by the residual transfer-time estimation process associated
with theith file of a Web page. Specifically, during the active phase, the mobile host exchanges messages
with the PS-Daemon to receive residual transfer-time estimates. The size of these messages is nearly
constant, and can be approximated by the average size,q̄. Therefore,̄q · g is the overhead (in bytes) of a
Web-page download, andpi = q̄ · g/N is the overhead related to theith file transfer.

This concludes the proof. �
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