9,374 research outputs found

    The impact of security and privacy issues on data management in fog Computing

    Get PDF
    With the increased growth of the application domains of IoT and the associated volumes of data generation, IoT systems are complicated and have small storage and recycling capacity. The cloud, a primary IoT storage medium with countless benefits, is not ideal for processing real time IoT data without delays. Capacity of data generated by IoTs keep increasing rampantly with associated security risks and privacy-preserving problems. Therefore, privacy maintenance, confidentiality and integrity of user’s data, improved latency and bandwidth restrictions are some of the major respective challenges of cloud computing. Fog computing is therefore a novel paradigm and an extension of the cloud. Which aims to improve cloud efficiency by enabling IoTs to locally process data before cloud transmission. However, some of the issues present in cloud such as the establishment of connection between edge devices often raise security and privacy concerns are also inherent in fog. The goal of this study, however, is to look at the state of data management security and privacy in a fog computing environment by reviewing existing security frameworks and data privacy procedures. This study lays bare the security vulnerabilities that exist inside the fog environment, creating hazards to user data privacy and security, and in lieu of that, this study incorporates features of data in addition to the acquired facts and statistics. Privacy-preservation is key to the continued use of services within the context of internet usage, as a result respondents indicated that they were experienced internet users who have been using the internet and its associated resources for various purposes, however respondents neither agreed nor disagreed with the possibility of the tracking or monitoring of their usage of the internet. The perception of respondents influenced the usage of the internet and various computing devices

    Protection and efficient management of big health data in cloud environment

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Healthcare data has become a great concern in the academic world and in industry. The deployment of electronic health records (EHRs) and healthcare-related services on cloud platforms will reduce the cost and complexity of handling and integrating medical records while improving efficiency and accuracy. To make effective use of advanced features such as high availability, reliability, and scalability of Cloud services, EHRs have to be stored in the clouds. By exposing EHRs in an outsourced environment, however, a number of serious issues related to data security and privacy, distribution and processing such as the loss of the controllability, different data formats and sizes, the leakage of sensitive information in processing, sensitive-delay requirements has been naturally raised. Many attempts have been made to address the above concerns, but most of the attempts tackled only some aspects of the problem. Encryption mechanisms can resolve the data security and privacy requirements but introduce intensive computing overheads as well as complexity in key distribution. Data is not guaranteed being protected when it is moved from one cloud to another because clouds may not use equivalent protection schemes. Sensitive data is being processed at only private clouds without sufficient resources. Consequently, Cloud computing has not been widely adopted by healthcare providers and users. Protecting and managing health data efficiently in many aspects is still an open question for current research. In this dissertation, we investigate data security and efficient management of big health data in cloud environments. Regarding data security, we establish an active data protection framework to protect data; we investigate a new approach for data mobility; we propose trusted evaluation for cloud resources in processing sensitive data. For efficient management, we investigate novel schemes and models in both Cloud computing and Fog computing for data distribution and data processing to handle the rapid growth of data, higher security on demand, and delay requirements. The novelty of this work lies in the novel data mobility management model for data protection, the efficient distribution scheme for a large-scale of EHRs, and the trust-based scheme in security and processing. The contributions of this thesis can be summarized according to data security and efficient data management. On data security, we propose a data mobility management model to protect data when it is stored and moved in clouds. We suggest a trust-based scheduling scheme for big data processing with MapReduce to fulfil both privacy and performance issues in a cloud environment. • The data mobility management introduces a new location data structure into an active data framework, a Location Registration Database (LRD), protocols for establishing a clone supervisor and a Mobility Service (MS) to handle security and privacy requirements effectively. The model proposes a novel security approach for data mobility and leads to the introduction of a new Data Mobility as a Service (DMaaS) in the Cloud. • The Trust-based scheduling scheme investigates a novel composite trust metric and a real-time trust evaluation for cloud resources to provide the highest trust execution on sensitive data. The proposed scheme introduces a new approach for big data processing to meet with high security requirements. On the efficient data management, we propose a novel Hash-Based File Clustering (HBFC) scheme and data replication management model to distribute, store and retrieve EHRs efficiently. We propose a data protection model and a task scheduling scheme which is Region-based for Fog and Cloud to address security and local performance issues. • The HBFC scheme innovatively utilizes hash functions to cluster files in defined clusters such that data can be stored and retrieved quickly while maintaining the workload balance efficiently. The scheme introduces a new clustering mechanism in managing a large-scale of EHRs to deliver healthcare services effectively in the cloud environment. • The trust-based scheduling model uses the proposed trust metric for task scheduling with MapReduce. It not only provides maximum trust execution but also increases resource utilization significantly. The model suggests a new trust-oriented scheduling mechanism between tasks and resources with MapReduce. • We introduce a novel concept “Region” in Fog computing to handle the data security and local performance issues effectively. The proposed model provides a novel Fog-based Region approach to handle security and local performance requirements. We implement and evaluate our proposed models and schemes intensively based on both real infrastructures and simulators. The outcomes demonstrate the feasibility and the efficiency of our research in this thesis. By proposing innovative concepts, metrics, algorithms, models, and services, the significant contributions of this thesis enable both healthcare providers and users to adopt cloud services widely, and allow significant improvements in providing better healthcare services

    COMITMENT: A Fog Computing Trust Management Approach

    Get PDF
    none8siAs an extension of cloud computing, fog computing is considered to be relatively more secure than cloud computing due to data being transiently maintained and analyzed on local fog nodes closer to data sources. However, there exist several security and privacy concerns when fog nodes collaborate and share data to execute certain tasks. For example, offloading data to a malicious fog node can result into an unauthorized collection or manipulation of users’ private data. Cryptographic-based techniques can prevent external attacks, but are not useful when fog nodes are already authenticated and part of a networks using legitimate identities. We therefore resort to trust to identify and isolate malicious fog nodes and mitigate security, respectively. In this paper, we present a fog COMputIng Trust manageMENT (COMITMENT) approach that uses quality of service and quality of protection history measures from previous direct and indirect fog node interactions for assessing and managing the trust level of the nodes within the fog computing environment. Using COMITMENT approach, we were able to reduce/identify the malicious attacks/interactions among fog nodes by approximately 66%, while reducing the service response time by approximately 15 s.openAl-khafajiy M.; Baker T.; Asim M.; Guo Z.; Ranjan R.; Longo A.; Puthal D.; Taylor M.Al-khafajiy, M.; Baker, T.; Asim, M.; Guo, Z.; Ranjan, R.; Longo, A.; Puthal, D.; Taylor, M

    COMITMENT: A Fog Computing Trust Management Approach

    Get PDF
    As an extension of cloud computing, fog computing is considered to be relatively more secure than cloud computing due to data being transiently maintained and analyzed on local fog nodes closer to data sources. However, there exist several security and privacy concerns when fog nodes collaborate and share data to execute certain tasks. For example, offloading data to a malicious fog node can results into an unauthorized collection or manipulation of users’ private data. Cryptographic-based techniques can prevent external attacks, but are not useful when fog nodes are already authenticated and part of a networks using legitimate identities. We therefore resort to trust to identify and isolate malicious fog nodes and mitigate security, respectively. In this paper, we present a fog COMputIng Trust manageMENT (COMITMENT) approach that uses quality of service and quality of protection history measures from previous direct and indirect fog node interactions for assessing and managing the trust level of the nodes within the fog computing environment. Using COMITMENT approach, we were able to reduce/identify the malicious attacks/interactions among fog nodes by approximately 66%, while reducing the service response time by approximately 15s

    Security and privacy for IoT and fog computing paradigm

    Get PDF
    In the past decade, the revolution in miniaturization (microprocessors, batteries, cameras etc.) and manufacturing of new type of sensors resulted in a new regime of applications based on smart objects called IoT. Majority of such applications or services are to ease human life and/or to setup efficient processes in automated environments. However, this convenience is coming up with new challenges related to data security and human privacy. The objects in IoT are resource constrained devices and cannot implement a fool-proof security framework. These end devices work like eyes and ears to interact with the physical world and collect data for analytics to make expedient decisions. The storage and analysis of the collected data is done remotely using cloud computing. The transfer of data from IoT to the computing clouds can introduce privacy issues and network delays. Some applications need a real-time decision and cannot tolerate the delays and jitters in the network. Here, edge computing or fog computing plays its role to settle down the mentioned issues by providing cloud-like facilities near the end devices. In this paper, we discuss IoT, fog computing, the relationship between IoT and fog computing, their security issues and solutions by different researchers. We summarize attack surface related to each layer of this paradigm which will help to propose new security solutions to escalate it acceptability among end users. We also propose a risk-based trust management model for smart healthcare environment to cope with security and privacy-related issues in this highly un-predictable heterogeneous ecosystem

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017
    corecore