33,660 research outputs found

    Security Evaluation of Support Vector Machines in Adversarial Environments

    Full text link
    Support Vector Machines (SVMs) are among the most popular classification techniques adopted in security applications like malware detection, intrusion detection, and spam filtering. However, if SVMs are to be incorporated in real-world security systems, they must be able to cope with attack patterns that can either mislead the learning algorithm (poisoning), evade detection (evasion), or gain information about their internal parameters (privacy breaches). The main contributions of this chapter are twofold. First, we introduce a formal general framework for the empirical evaluation of the security of machine-learning systems. Second, according to our framework, we demonstrate the feasibility of evasion, poisoning and privacy attacks against SVMs in real-world security problems. For each attack technique, we evaluate its impact and discuss whether (and how) it can be countered through an adversary-aware design of SVMs. Our experiments are easily reproducible thanks to open-source code that we have made available, together with all the employed datasets, on a public repository.Comment: 47 pages, 9 figures; chapter accepted into book 'Support Vector Machine Applications

    A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation.

    Get PDF
    Multivariate kernel regression is an important tool for investigating the relationship between a response and a set of explanatory variables. It is generally accepted that the performance of a kernel regression estimator largely depends on the choice of bandwidth rather than the kernel function. This nonparametric technique has been employed in a number of empirical studies including the state-price density estimation pioneered by Aït-Sahalia and Lo (1998). However, the widespread usefulness of multivariate kernel regression has been limited by the difficulty in computing a data-driven bandwidth. In this paper, we present a Bayesian approach to bandwidth selection for multivariate kernel regression. A Markov chain Monte Carlo algorithm is presented to sample the bandwidth vector and other parameters in a multivariate kernel regression model. A Monte Carlo study shows that the proposed bandwidth selector is more accurate than the rule-of-thumb bandwidth selector known as the normal reference rule according to Scott (1992) and Bowman and Azzalini (1997). The proposed bandwidth selection algorithm is applied to a multivariate kernel regression model that is often used to estimate the state-price density of Arrow-Debreu securities. When applying the proposed method to the S&P 500 index options and the DAX index options, we find that for short-maturity options, the proposed Bayesian bandwidth selector produces an obviously different state-price density from the one produced by using a subjective bandwidth selector discussed in Aït-Sahalia and Lo (1998).Black-Scholes formula, Likelihood, Markov chain Monte Carlo, Posterior density.

    Undermining User Privacy on Mobile Devices Using AI

    Full text link
    Over the past years, literature has shown that attacks exploiting the microarchitecture of modern processors pose a serious threat to the privacy of mobile phone users. This is because applications leave distinct footprints in the processor, which can be used by malware to infer user activities. In this work, we show that these inference attacks are considerably more practical when combined with advanced AI techniques. In particular, we focus on profiling the activity in the last-level cache (LLC) of ARM processors. We employ a simple Prime+Probe based monitoring technique to obtain cache traces, which we classify with Deep Learning methods including Convolutional Neural Networks. We demonstrate our approach on an off-the-shelf Android phone by launching a successful attack from an unprivileged, zeropermission App in well under a minute. The App thereby detects running applications with an accuracy of 98% and reveals opened websites and streaming videos by monitoring the LLC for at most 6 seconds. This is possible, since Deep Learning compensates measurement disturbances stemming from the inherently noisy LLC monitoring and unfavorable cache characteristics such as random line replacement policies. In summary, our results show that thanks to advanced AI techniques, inference attacks are becoming alarmingly easy to implement and execute in practice. This once more calls for countermeasures that confine microarchitectural leakage and protect mobile phone applications, especially those valuing the privacy of their users

    Ratings and rankings: Voodoo or Science?

    Full text link
    Composite indicators aggregate a set of variables using weights which are understood to reflect the variables' importance in the index. In this paper we propose to measure the importance of a given variable within existing composite indicators via Karl Pearson's `correlation ratio'; we call this measure `main effect'. Because socio-economic variables are heteroskedastic and correlated, (relative) nominal weights are hardly ever found to match (relative) main effects; we propose to summarize their discrepancy with a divergence measure. We further discuss to what extent the mapping from nominal weights to main effects can be inverted. This analysis is applied to five composite indicators, including the Human Development Index and two popular league tables of university performance. It is found that in many cases the declared importance of single indicators and their main effect are very different, and that the data correlation structure often prevents developers from obtaining the stated importance, even when modifying the nominal weights in the set of nonnegative numbers with unit sum.Comment: 28 pages, 7 figure
    corecore