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Abstract: Multivariate kernel regression is an important tool for investigating the relationship

between a response and a set of explanatory variables. It is generally accepted that the perfor-

mance of a kernel regression estimator largely depends on the choice of bandwidth rather than

the kernel function. This nonparametric technique has been employed in a number of empiri-

cal studies including the state-price density estimation pioneered by Aı̈t-Sahalia and Lo (1998).

However, the widespread usefulness of multivariate kernel regression has been limited by the dif-

ficulty in computing a data-driven bandwidth. In this paper, we present a Bayesian approach to

bandwidth selection for multivariate kernel regression. A Markov chain Monte Carlo algorithm is

presented to sample the bandwidth vector and other parameters in a multivariate kernel regres-

sion model. A Monte Carlo study shows that the proposed bandwidth selector is more accurate

than the rule-of-thumb bandwidth selector known as the normal reference rule according to Scott

(1992) and Bowman and Azzalini (1997). The proposed bandwidth selection algorithm is applied

to a multivariate kernel regression model that is often used to estimate the state-price density

of Arrow-Debreu securities. When applying the proposed method to the S&P 500 index options

and the DAX index options, we find that for short-maturity options, the proposed Bayesian band-

width selector produces an obviously different state-price density from the one produced by using

a subjective bandwidth selector discussed in Aı̈t-Sahalia and Lo (1998).
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1 Introduction

The multivariate kernel regression technique helps investigate the relationship between a response

and a set of explanatory variables without imposing any parametric assumptions of the form

of such a relationship. Stanton (1997) indicated that one potentially serious problem with any

parametric model, particularly when we have no economic reason to prefer one functional form

over another, is misspecification, which was further addressed by Backus, Foresi and Zin (1995)

by showing that misspecification of interest rate models can lead to serious pricing and hedging

errors2. However, Aı̈t-Sahalia and Lo (1998) indicated that the use of relevant nonparametric

techniques often helps avoid misspecification problems caused by most parametric models.

In empirical studies, the multivariate kernel regression technique can be employed to avoid

having to specify a functional form for the relationship between a response and a set of explanatory

variables, which we denote as y and x = (x1, x2, . . . , xd)
′, respectively. Given observations (yi, xi),

for i = 1, 2, · · · , n, the multivariate kernel regression model is expressed as

yi = m(xi) + εi, (1)

where εi, for i = 1, 2, · · · , n, are assumed to be independent and identically distributed (iid) with

mean zero and variance σ2
m. The Nadaraya-Watson estimator of m(·) is given by

m̂(x, h) =
n−1 ∑n

i=1 Kh(x− xi)yi

n−1
∑n

j=1 Kh(x− xj)
, (2)

where h = (h1, h2, · · · , hd)
′ is a vector of bandwidths with all elements positive, and

Kh(x) =
1

h1h2 · · ·hd

K
(

x1

h1

,
x2

h2

, · · · , xd

hd

)

2Stanton (1997) also indicated that existing parametric models of interest rates do not even fit historical data
well. Aı̈t-Sahalia (1996) presented empirical studies to compare the marginal density implied by each parametric
model with that estimated directly from the same data, and found that every parametric model of the spot rate
previously proposed in the literature was rejected.
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with K(·) denoting a multivariate kernel function. The nonparametric regression technique has

been widely used in the empirical finance literature (see, for example, Aı̈t-Sahalia and Lo, 1998,

2000; Broadie, Detemple, Ghysels and Torres, 2000; Aı̈t-Sahalia, Bickel and Stoker, 2001; Breitung

and Wulff, 2001; Mancuso, Goodwin and Grennes, 2003; Fernandes, 2006).

As the denominator of (2) is the kernel density estimator of f(x), the Nadaraya-Watson

estimator of m(x) can be also expressed as (Härdle, 1990)

m̂(x,h) =
1

n

n∑

i=1

wh,i(x)yi, (3)

where

wh,i(x) = Kh (x− xi) /f̂h(x),

f̂h(x) =
1

n

n∑

j=1

Kh(x− xj).

This indicates that the multivariate kernel regression estimator given by (2) is a weighted average

of the observed values of y. Herrmann (2000) indicated that the region of such a local average and

the amount of smoothness of the regression estimator are dominated by the bandwidth, and that

the performance of kernel regression estimators largely depends on the choice of bandwidth rather

than the kernel function. Multivariate kernel regression is an important technique for investigating

the relationship between a response and covariates and has a number of important applications

(Donald, 1997; Stanton, 1997; Aı̈t-Sahalia and Lo, 1998; Boudoukh, Whitelaw, Richardson and

Stanton, 1997; among others). However, its widespread usefulness has been limited by the difficulty

in deriving data-driven bandwidths. We remedy this deficiency in this paper.

According to Härdle and Müller (2000), methods employed for choosing a bandwidth in

kernel regression are basically the same as those employed in kernel density estimation. A large

body of literature exists on bandwidth selection for univariate kernel density estimation (see
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Marron, 1987; Scott, 1992; Wand and Jones, 1995; Jones, Marron and Sheather, 1996; for surveys).

However, the literature on bandwidth selection for multivariate kernel density estimation is quite

limited. Sain, Baggerly and Scott (1994) employed the biased cross-validation method to estimate

bandwidths for bivariate kernel density estimation. Wand and Jones (1994) and Duong and

Hazelton (2003) presented plug-in algorithms for choosing bandwidths for bivariate data. However,

the above-mentioned biased cross-validation method and plug-in algorithms cannot be directly

extended to kernel density estimation with more than two variables (see, for example, Zhang,

King and Hyndman, 2006). Hence there is little guidance in the literature on how to derive a

data-driven bandwidth vector for multivariate kernel regression with more than two regressors,

which is definitely an important issue in empirical studies.

Fan and Gijbels (2000) presented a survey on bandwidth selection for univariate local polyno-

mial fitting, which includes the Nadaraya-Watson estimator as a special case. They discussed two

bandwidth selectors, namely the rule-of-thumb and the plug-in bandwidth selectors, in which the

former is basically the same as the rule-of-thumb bandwidth selector, also known as the normal

reference rule (NRR) for kernel density estimation documented in Scott (1992) and Bowman and

Azzalini (1997). NRR is often used in practice, in the absence of any other practical bandwidth

selectors, even though lots of interesting data are non-Gaussian and sometimes kernel functions

are not the Gaussian kernel. Herrmann, Wand, Engel and Gasser (1995) provided a detailed

discussion of the bivariate plug-in bandwidth selector. However, the plug-in bandwidth selector

cannot be directly extended to kernel regression with more than two regressors. The rule-of-thumb

bandwidth selector is eligible for multivariate kernel regression in the situation, where the data

are observed from a multivariate normal density and the kernel function is the standard normal

density. This is a rather crude bandwidth selector, even though it is often used in practice, in the

absence of any other practical bandwidth selectors, despite the fact that most interesting data are
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non-Gaussian.

Härdle and Müller (2000) discussed bandwidth selection for multivariate kernel regression and

showed that in practice, the cross-validation method is often employed to choose a data-driven

bandwidth for kernel regression. This bandwidth selection method requires a numerical optimiza-

tion procedure, which becomes increasingly difficult to implement as the number of regressors

increases. Zhang, King and Hyndman (2006) presented a Bayesian approach to bandwidth selec-

tion for multivariate kernel density estimation, where bandwidths are treated as parameters, whose

posterior is derived via the Kullback-Leibler information measure. In the context of choosing a

data-driven bandwidth vector for multivariate kernel regression, we can also treat h as a vector of

parameters, whose posterior density can be obtained through the cross-validation method with a

known distribution of errors given in (1). A posterior estimate of h can be derived via a Markov

chain Monte Carlo (MCMC) algorithm. One important advantage of the MCMC technique for

deriving a data-driven bandwidth vector (or matrix) is that it is applicable to data with any

number of regressors. Moreover, the sampling algorithm involves no increased difficulty when the

number of regressors increases.

The empirical finance literature is characterized by a number of problems that start with the

state-price density (SPD) or pricing kernel implicit in the prices of traded financial assets. Major

applications of this approach have focused on option pricing (Aı̈t-Sahalia and Lo, 1998; Broadie,

Detemple, Ghysels and Torres, 2000; Aı̈t-Sahalia and Duarte, 2003; among others), value-at-risk

estimation (see, for example, Aı̈t-Sahalia and Lo, 2000), modelling financial crashes (Fernandes,

2006; among others), modelling exchange rate dynamics (Brandt and Santa-Clara, 2002; Inci

and Lu, 2004; among others), portfolio performance measurement (see, for example, Ayadi and

Kryzanowski, 2005) and the term structure of interest rates (Hong and Li, 2005). Yatchew and
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Härdle (2006) indicated that in general that economic theory does not propose specific functional

forms for the state price densities. As such, Yatchew and Härdle (2006) proposed a nonparametric

solution based on constrained least squares and a bootstrap procedure.

One important application of multivariate kernel regression is the one pioneered by Aı̈t-Sahalia

and Lo (1998), who employed this nonparametric technique to estimate the SPD of Arrow-Debreu

securities known as the fundamental building block for analyzing economic equilibrium under

uncertainty. Aı̈t-Sahalia and Lo (1998) showed that in a dynamic equilibrium model, the price of

a security is given by

Pt = exp{rt,ττ}E∗
t [Z(ST )] = exp{rt,ττ}

∫ ∞

−∞
Z(ST )f ∗t (ST )dST ,

where T=t + τ , τ is the time to maturity, E∗
t represents the conditional expectation given infor-

mation available at date t, Z(ST ) is the payoff of the security at date T , rt,τ is a constant risk-free

interest rate between t and T , and f ∗t (ST ) is the date-t SPD for the payoff of the security at date

T . Aı̈t-Sahalia and Lo (1998) argued that the SPD summarizes all relevant information for the

purpose of pricing the underlying security. When the underlying security is an option, Aı̈t-Sahalia

and Lo (1998) indicated that the SPD is the second-order derivative of a call option-pricing for-

mula with respect to strike price computed at ST , and the option-pricing formula can be estimated

using the multivariate kernel regression technique.

Aı̈t-Sahalia and Lo (1998) argued that the price of a call option is a nonlinear function of

(St, Xt, τ, rt,τ , δt,τ )
′ with unknown form, in which δt,τ represents the dividend rate at date t. Once

the nonlinear relationship is estimated through the multivariate kernel regression technique, the

second-order derivative of H with respect to X can be derived. This nonparametric approach to

SPD estimation pioneered by Aı̈t-Sahalia and Lo (1998) has been followed in a large number of

empirical studies, including Huynh, Kervella and Zheng (2002) who presented two methods for
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dimension reduction.

Aı̈t-Sahalia and Lo (1998) presented comprehensive simulation and empirical studies to illus-

trate the effectiveness of the multivariate kernel regression technique in estimating SPDs. However,

it appears that their bandwidth vectors were chosen subjectively. As the choice of bandwidth plays

an important role in multivariate kernel regression, we remedy this problem using a modification

of Zhang, King and Hyndman’s (2006) algorithm for choosing data-driven bandwidths.

This paper aims to investigate the problem of choosing a data-driven bandwidth vector for

multivariate kernel regression, where the bandwidth vector is treated as a vector of parame-

ters. An algorithm will be presented to sample parameters from their posterior according to the

Metropolis-Hastings rule, and the estimated bandwidth vector is optimal with respect to the av-

eraged squared error (ASE) criterion, which will be further discussed in the next section. To the

best of our knowledge, this algorithm represents the first data-driven bandwidth selection method

for multivariate kernel regression with more than two regressors.

The rest of the paper is organized as follows. Section 2 provides a Bayesian approach to

bandwidth selection for multivariate kernel regression models. In Section 3, we present a brief

description of the nonparametric state-price density estimation method presented by Aı̈t-Sahalia

and Lo (1998). In addition, we show how the Bayesian bandwidth selection technique can be ap-

plied to the nonparametric estimation of volatility. A Monte Carlo study is presented to illustrate

the accuracy of the proposed Bayesian bandwidth selector. Section 4 provides an application of

the Bayesian bandwidth selection technique to volatility estimation and the state-price density

estimation with S&P500 index options data and DAX index options data. Concluding remarks

are given in the last section.
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2 Bayesian Bandwidth Selector

2.1 Cross-validation

As we discussed in the previous section, the most important issue of multivariate kernel regression

is the selection of the optimal bandwidth under a chosen criterion. One of such criteria is ASE

given by

ASE(h) =
1

n

n∑

i=1

[m̂(xi,h)−m(xi)]
2 , (4)

and an optimal bandwidth, denoted by ĥo, is the one that minimizes ASE(h). The goodness of

fit of the Nadaraya-Watson estimator m̂(xi,h) can be assessed by the sum of squared residuals

SSE(h) =
1

n

n∑

i=1

[yi − m̂(xi,h)]2 , (5)

which is referred to as the re-substitution estimate of ASE by Härdle and Müller (2000). SSE(h)

can be made arbitrarily small by allowing h −→ 0, because yi is used in m̂(xi,h) to predict

itself. The cross-validation method involves estimating m(x) using data with the ith observation

deleted, and the resultant leave-one-out estimator is

m̂−i(xi,h) =
1

(n− 1)f̂h(xi)

n∑

j=1
j 6=i

Kh(xi − xj)yj, (6)

for i = 1, 2, · · · , n. An optimal bandwidth under the cross-validation rule is the one that minimizes

CV(h) =
n∑

i=1

[yi − m̂−i(xi,h)]2 . (7)

Let ĥcv denote the bandwidth obtained through cross-validation. Härdle, Hall and Marron (1988)

showed that ASE(ĥo)/ASE(ĥcv) −→ 1 and ĥcv −→ ĥo, as n −→ ∞, where the convergence is in

probability. Hence ĥcv is asymptotically optimal with respect to the ASE criterion.

Generally speaking, solving the problem of minimization of CV(h) with respect to h requires

a procedure of numerical optimization, which becomes increasingly difficult as the dimension of x
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increases. However, if we treat h as a vector of parameters, choosing bandwidths for multivariate

kernel regression is equivalent to estimating parameters based on available data. When the errors

in (1) are assumed to follow a known distribution, the likelihood of (y1, y2, · · · , yn)′ given h can

be derived through the cross-validation method. Moreover, assuming prior densities for h, we can

derive the posterior density of h up to a normalizing constant.

2.2 Likelihood

We consider the multivariate kernel regression model given by (1), where we assume that εi, for

i = 1, 2, · · · , n, are iid and follow N(0, σ2
m) with σ2

m an unknown parameter.3 It follows that

yi −m(xi)

σm

iid∼ N(0, 1),

for i = 1, 2, · · · , n. Unfortunately the parametric form of m(xi) is unknown, so we consider using

the Nadaraya-Watson estimator given by (2) to replace m(xi). Thus introducing (h′, σ2
m)′ as a

vector of unknown parameters leads to an approximate likelihood of (y1, y2, · · · , yn)′ as

l∗(y1, y2, · · · , yn|h, σ2
m) = (2πσ2

m)−n/2 exp

{
− 1

2σ2
m

n∑

i=1

(yi − m̂(xi,h))2

}
. (8)

Unfortunately if we use this likelihood to optimize with respect to h, we end up with the trivial

result that m̂(xi,h) is arbitrarily close to yi by allowing h to approach zero. The standard solution

to this problem as noted above is to replace m̂(xi,h) with the leave-one-out estimator m̂−i(xi,h)

given by (6). We therefore propose

l(y1, y2, · · · , yn|h, σ2
m) = (2πσ2

m)−n/2 exp

{
− 1

2σ2
m

n∑

i=1

(yi − m̂−i(xi,h))2

}
, (9)

3It should be noted that the distribution of errors given in (1) is not restricted to the assumption of iid normal.
The errors can be assumed to follow any known distribution or to be correlated, as long as the likelihood can
be derived. However, the focus of this paper is to investigate estimating bandwidth rather than selecting an
appropriate assumption for the errors. We will investigate this issue elsewhere.
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as a likelihood of (y1, y2, · · · , yn)′. As indicated by Härdle, Hall and Marron (1988), most band-

width selectors are based on the minimization of some functions of h which is related to SSE(h),

and the minimizers of such functions are asymptotically optimal. Thus, m̂(xi,h) and m̂−i(xi,h)

are asymptotically equivalent in terms of choosing the optimal bandwidth.

It is important to note that if σ2
m is kept as a constant, the cross-validation criterion for

choosing bandwidths for a multivariate kernel regression model is equivalent to the maximization

of the likelihood function given by (9) with respect to h.

2.3 Posterior Estimate of the Bandwidth Vector

Let π(h) and π(σ2
m) denote the prior densities of h and σ2

m, respectively. According to Bayes

theorem, the posterior of (h′, σ2
m)′ is

π(h, σ2
m|y1, y2, · · · , yn) ∝ π(h)π(σ2

m)l(y1, y2, · · · , yn|h, σ2
m). (10)

Assume that the prior density of σ2
m is an inverted Gamma density denoted as IG(p/2, ν/2) with

its density function given by

π(σ2
m) ∝

(
1

σ2
m

)p/2+1

exp

{
−ν/2

σ2
m

}
, (11)

where p and ν are hyperparameters. The prior density of hj is assumed to be

π(hj) ∝ 1

1 + λh2
j

, (12)

Then the posterior of (h′, σ2
m)′ becomes

π(h, σ2
m|y1, y2, · · · , yn) ∝

d∑

j=1

π(hj)

(
1

σ2
m

)(n+p)/2+1

exp

{
−

∑n
i=1 (yi − m̂−i(xi,h))2 + ν

2σ2
m

}
. (13)

After integrating out σ2
m from (13), we obtain the posterior of h expressed as

π(h|y1, y2, · · · , yn) =
∫

π(h, σ2|y1, y2, · · · , yn)dσ2
m
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∝
d∑

i=1

π(hj)





1

2

n∑

j=1

(yi − m̂−i(xi,h))2 +
ν

2





−(n+p)/2

. (14)

The random-walk Metropolis-Hastings algorithm can be employed to sample h with the acceptance

probability computed through (14), while σ2
m can be sampled directly from

σ2
m ∼ IG

(
n + p

2
,

1

2

n∑

i=1

(yi − m̂−i(xi,h))2 +
ν

2

)
. (15)

The ergodic average or the posterior mean of h acts as an estimate of the bandwidth vector, and

the posterior mean of σ2
m is an estimate of σ2

m.

It is important to note that if we ignore the effect of the prior of h, the cross-validation criterion

for choosing h is equivalent to maximizing the posterior of h given by (14) with respect to h. In

addition, bandwidths are sampled from their posteriors using the Metropolis-Hastings algorithm,

which does not encounter the computational difficulty encountered in the numerical minimization

of CV(h) as the dimension of h increases. The proposed Bayesian bandwidth selection algorithm

is applicable to multivariate kernel regression models of any number of regressors without imposing

any increased complexity of the sampling algorithm.

Note that the likelihood function given by (9) is flat when the components of h are large. If

we use uniform priors for the components of h and employ the random-walk Metropolis-Hastings

algorithm to sample h, the update of h often has a negligible effect on the acceptance probability

when the components of h are already large. The purpose of the priors given by (12) is to assign

a small prior probability on the “problematic” region in the parameter space, where the likelihood

function is flat. See, for example, Zhang, King and Hyndman (2006) for a detailed discussion.
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2.4 A Monte Carlo Study

The purpose of this Monte Carlo investigation is to examine the accuracy of the proposed band-

width selector in comparison with the NRR, which is the rule-of-thumb bandwidth selector in many

empirical studies in the absence of a data-driven bandwidth selector. Consider the relationship

between y and x1 and x2 given by

y = sin(2πx1) + 4(x2 − 0.5)2 + ε, (16)

where x1 and x2 follow the uniform distribution on (0, 1) denoted as U(0, 1), and ε ∼ N(0, σ2
m).

A sample was generated by drawing x1,t and x2,t independently from U(0, 1) and εt from

N(0, 0.5) and calculating yt according to (16), for t = 1, 2, · · · , n, where the sample size n is 1000.

The relationship between yt and (x1,t, x2,t) can be approximated by a multivariate kernel regression

model given by

yt = m(x1,t, x2,t) + εt, (17)

for t = 1, 2, · · · , n, where the bandwidth was estimated through our Bayesian bandwidth selector

and NRR, respectively. When a bandwidth was chosen, we calculated the fitted value of yt

according to (2), for t = 1, 2, · · · , n.

The accuracy of the chosen bandwidth is examined by the fitness measure given by

R2 = 1−
∑n

t=1(yt − ŷt)
2

∑n
t=1(yt − y)2

,

where ŷt is the fitted value of yt calculated through (17) with the chosen bandwidths, and y is

the mean of yt, for t = 1, 2, · · · , n. Note that the larger the value of R2 is, the more accurate the

bandwidth is.
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The Monte Carlo procedure consists of 2000 iterations. The average value of R2 computed

through our Bayesian bandwidth selector is 0.5619, which is higher than its counterpart of 0.5358

computed through NRR. In addition, we found that at each iteration of the Monte Carlo sim-

ulation, the value of R2 derived through the our bandwidth selector is larger than that derived

through NRR. We also calculated the difference between the values of R2 computed, respectively,

through our bandwidth selector and NRR. We found that the average and the standard deviation

of such differences are 0.0262 and 0.007, respectively. Thus, the Monte Carlo study supports our

Bayesian bandwidth selector against NRR according to the goodness-of-fit measure.

3 Nonparametric State-Price Density Estimation

3.1 SPD Estimator Derived via Black-Scholes Formula

Aı̈t-Sahalia and Lo (1998) discussed the relationship between the pricing of derivative securities

and their SPDs. Let St represent the date-t price of an asset, pt the date-t price of a derivative

security written on the asset, and Z(ST ) the date-T payoffs of the security. In a dynamic equilib-

rium model, pt can be expressed as the expected net present value of Z(ST ), where the expectation

is computed in terms of the state-price density ft(ST ). According to Aı̈t-Sahalia and Lo’s (1998)

discussion, SPD is sufficient for the purpose of asset pricing.

When the derivative security is an option, Aı̈t-Sahalia and Lo (1998) indicated that the SPD

is proportional to the second-order derivative of a call option-pricing formula with respect to the

strike price. Under the hypothesis of Black and Scholes (1973) and Merton (1973), the date-t

price of a call option maturing at date T is given by

HBS(St, X, τ, rt,τ , δt,τ ; σ) = St exp(δt,ττ)Φ(d1)−X exp(rt,ττ)Φ(d2),

12



where X is the strike price, σ is the volatility of the underlying asset, τ = T − t, Φ(·) is the

Gaussian cumulative density function, and d1 and d2 are defined as

d1 =
ln(St/X) + (rt,τ − δt,τ + σ2/2)

σ
√

τ
, and d2 = d1 − σ

√
τ .

According to Aı̈t-Sahalia and Lo (1998) and Huynh, Kervella and Zheng (2002), the formula of

the SPD and the risk measures of delta (∆) and gamma (Γ) are given by

fBS,t(ST ) =
1

ST

√
2πσ2τ

exp

{
− [ln(ST /St)− (rt,τ − δt,τ − σ2/2)τ ]2

2σ2τ

}
, (18)

∆BS =
∂HBS(St, X, τ, rt,τ , δt,τ ; σ)

∂St

= Φ(d1), (19)

ΓBS =
∂2HBS(St, X, τ, rt,τ , δt,τ ; σ)

∂S2
t

=
φ(d1)

Stσ
√

τ
, (20)

where φ(·) is the Gaussian density function.

3.2 Nonparametric Estimation of Option-Pricing Formula

Aı̈t-Sahalia and Lo (1998) argued that the SPD estimator given by (18) is associated with the

parametric assumptions underlying the Black-Scholes option-pricing model. If any of these as-

sumptions does not hold, option prices derived though (18) might be incorrect. Aı̈t-Sahalia and Lo

(1998) showed that the date-t price of a call option, denoted by H, can be viewed as an unknown

nonlinear function of z = (St, Xt, τ, rt,τ , δt,τ )
′, which can be estimated through the multivariate

kernel regression technique. The Nadaraya-Watson estimator of the relation between H and z is

given by

Ĥ(z|h) =
n−1 ∑n

i=1 Kh(z − zi)Hi

n−1
∑n

i=1 Kh(z − zi)
, (21)

where (Hi, zi), for i = 1, 2, · · · , n, are paired observations of (H, z).

As we discussed in previous sections, choosing a data-driven bandwidth under a chosen crite-

rion is an important issue for multivariate kernel regression, which was emphasized by Aı̈t-Sahalia
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and Lo (1998) though a graphical demonstration. They suggested choosing bandwidths according

to the formula given by

hj = cjs(zj)n
−1/(d+2p), (22)

for j = 1, 2, · · · , d, where p is the order of the kernel function, s(zj) is the unconditional standard

deviation of zj, and cj is a constant depending on the sample size kernel choices. This bandwidth

selector is similar to the rule-of-thumb bandwidth selector and seems to be somewhat subjective.

However, we can employ our Bayesian approach to bandwidth selection for multivariate kernel

regression discussed in Section 2 to derive a data-driven bandwidth.

Aı̈t-Sahalia and Lo (1998) raised a practical concern about the dimension involved in the

multivariate kernel regression given by (21), because it is increasingly difficult to derive accurate

estimators of the regression function and its derivatives as the number of regressors increases.

They presented three methods to reduce the number of regressors, and one of these methods

assumes that the call-option pricing formula is given by the Black-Scholes formula except that the

date-t implied volatility, denoted by σt, is a nonparametric function of z̃ = (Ft, X, τ), where Ft is

the date-t futures price of the underlying asset. The kernel estimator of the regression function of

σ on z̃ is given by

σ̂(Ft, X, τ |h̃) =
n−1 ∑n

i=1 Kh̃(z̃ − z̃i)σi

n−1
∑n

i=1 Kh̃(z̃ − z̃i)
, (23)

where σi is the volatility implied by the prices Hi, and h̃ is a vector of bandwidths. The call-option

pricing function is given by

Ĥ(St, X, τ, rt,τ , δt,τ ) = HBS

(
St, X, τ, rt,τ , δt,τ ; σ̂(Ft, X, τ |h̃)

)
, (24)

based on which the option’s ∆, γ and SPD estimators can obtained by substituting σ̂(Ft, X, τ |h̃)

into (18) to (20), respectively.
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Aı̈t-Sahalia and Lo (1998) demonstrated that the SPD derived through the above dimension-

reduction method is not significantly different from that obtained through the full nonparametric

regression model (21). In what follows, we will employ the Bayesian bandwidth selector presented

in Section 2 to choose a data-driven bandwidth vector for the kernel estimator given by (23).

4 Applications of the Bayesian Bandwidth Selector

In order to investigate the empirical relevance of the Bayesian bandwidth selector for the kernel

regression employed by Aı̈t-Sahalia and Lo (1998) for the purpose of estimating SPD, ∆ and Γ

through the Black-Scholes formula, we apply the Bayesian bandwidth selector and its counterpart

of NRR to the kernel regression with two data sets, the S&P 500 index options data and the DAX

index options data.

4.1 S&P 500 Index Options Data

The data consist of n=14,431 observations of the implied volatility, futures price and time to

maturity for the sample period from January 4, 1993 to December 31, 1993. Aı̈t-Sahalia and Lo

(1998) demonstrated the empirical relevance of the kernel regression technique in estimating the

SPD of S&P 500 index options price, where bandwidths were chosen using NRR and adjusted by

some constants depending on the particular choices of kernels for the regressors. Aı̈t-Sahalia and

Lo (1998) found obvious differences between the nonparametric SPD and the Black-Scholes SPD

in a number of aspects, in particular, for all four maturities under investigation, the nonparametric

SPDs are more negatively skewed and have thicker tails than the Black-Scholes SPDs, respectively.

In addition, the amount of skewness and kurtosis both increase with maturity.
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Aı̈t-Sahalia and Lo (1998) concluded that the SPD of the options price derived from the kernel

regression of H on z are not significantly different from those computed from the Black-Scholes

formula with volatility estimated by the kernel regression of σ on z̃. The kernel regression model

is given by

σt = m̃(z̃t) + εt, (25)

for t = 1, 2, · · · , n, where εt, for t = 1, 2, · · · , n, are assumed to be iid and distributed as N(0, σ2
m).

The multivariate kernel function used by Aı̈t-Sahalia and Lo (1998) is the product of three uni-

variate kernels, where the kernel function for futures price and time to maturity is

k(4)(x) =
1√
8π

(
1− x2/3

)
exp(−x2/2),

while the kernel for strike price is the Gaussian kernel.

When applying our Bayesian bandwidth selector to the multivariate kernel regression model

given by (25), we chose the kernel function as the product of univariate Gaussian kernels. In

order to obtain the closed form of the posterior density of (h̃′, σ2
m), we set the hyperparameters

as λ = 1, p = 2 and ν = 0.1, where the values of p and ν are quite standard in many algorithms

for sampling the variance parameter (see, for example, Shephard and Pitt, 1997). We used the

random-walk Metropolis-Hastings algorithm to sample h̃ from its posterior, while σ2
m was directly

sampled from an inverted Gamma density given by (15). We employed the batch-mean standard

error and the simulation inefficiency factor (SIF) to check the convergence performance of the

sampling algorithm (see, for example, Roberts, 1996; Kim, Shephard and Chib, 1998; Tse, Zhang

and Yu, 2004). Both the batch-mean standard error and SIF indicate that all the simulated chains

have converged very well. Table 1 presents the estimated σ2
m and bandwidths, as well as their

associated statistics.
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To examine the sensitivity of prior choices for h̃, we also employed a different prior given by

π(hj) ∝
1− exp(−h2

j/2)

exp(h2
j/2)

, (26)

for j = 1, 2, · · · , d. In each iteration of the sampling procedure, such priors are able to prevent the

updates of bandwidths from getting too large and too small. We found that the MCMC outputs

are quite similar to those reported in Table 1. Thus, we found that the sampling algorithm is

insensitive to difference choices of hyperparameters.

Using the bandwidths estimated respectively, through our Bayesian bandwidth selector and

NRR, we computed the fitted values of σt through the nonparametric regression model given by

(23). After replacing σ with the fitted σt in (18) to (20), we calculated the estimates of SPD,

∆ and Γ at the tth observation, for t = 1, 2, · · · , n. The graphs of SPD, ∆ and Γ computed at

different times to maturity are presented in Figures 1 and 2, where times to maturity were chosen

to be 10, 25, 50 and 100 days, respectively. When time to maturity is short such as τ=10 days,

we found that the SPD estimated through our Bayesian bandwidth selector has a thicker left

tail and a thinner right tail than the SPD estimated through NRR, and that the former is more

negatively skewed and has a higher peak than the latter. With time to maturity increasing, the

differences between the SPDs estimated respectively, through the Bayesian bandwidth selector

and NRR become less obvious.

Figures 1 and 2 reveal observable differences between the graphs of ∆ estimated respectively,

through the Bayesian bandwidth selector and NRR, while such differences are almost unchanged

as time to maturity increases. We found that the differences between the graphs of Γ estimated

through the Bayesian bandwidth selector and NRR behave similarly to those between the graphs

of SPD estimated through the two bandwidth selectors.
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At any time to maturity under investigation, the SPDs estimated through the Bayesian band-

width selector are more negatively skewed and have thicker tails than those estimated through

NRR. Moreover, the peak of SPD estimated through the Bayesian bandwidth selector is higher

than that estimated through NRR, even though the differences between the former and the latter

become less obvious as time to maturity increases.

4.2 DAX Index Options Data

The data set contains 2972 daily settlement prices for each call-option contract of January 1997 (28

trading days) with the following variables: option price, spot price, strike price, time to maturity,

risk-free interest rate, dividend, futures price and implied volatility. This data set was provided by

Huynh, Kervella and Zheng (2002), who derived similar results as those reported by Aı̈t-Sahalia

and Lo (1998).

When fitting the multivariate regression model of σt on (Ft, X, τ) given by (25) to the DAX

index options data, we chose the multivariate kernel to be the product of univariate Gaussian

kernels, where the bandwidths were selected through our Bayesian bandwidth selector. The priors

of bandwidths are given by (26) and the prior of σ2
m is given by (11) with p = 2 and ν = 0.1. The

random-walk Metropolis-Hastings algorithm was employed to sample h̃ from its posterior, while

σ2
m was sampled directly from the inverted Gamma density given by (15). The estimated σ2

m and

bandwidths, as well as their associated statistics are given in Table 2, where both the batch-mean

standard error and SIF indicate that all the simulated chains have converged very well.

Using the bandwidths estimated through the Bayesian bandwidth selector, we calculated the

fitted values of σt according to the kernel regression model given by (23). With σ replaced by the

fitted σt in (18) to (20), we computed the estimates of SPD, ∆ and Γ at the tth observation, for
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t = 1, 2, · · · , n. For comparison purposes, we also employed NRR for choosing the bandwidths,

with which we derived the estimates of SPD, ∆ and Γ, respectively.

The graphs of SPD, ∆ and Γ computed at different times to maturity are provided in Figures 3

and 4. When time to maturity is short such as τ=10 days, we found that the SPD estimated

through our Bayesian bandwidth selector has a thicker left tail than the SPD estimated through

the NRR, while their right tails have no obvious differences. However, the graph of SPD estimated

through the Baysian bandwidth selector is not obviously different from that estimated through

NRR as time to maturity increases. Moreover, we found that the peak of SPD estimated through

the Bayesian bandwidth selector is slightly lower than that estimated through NRR when τ=10

days, while the former is slightly higher than the latter when τ=25, 50 and 80 days.

Figures 3 and 4 show that the differences between the graphs of ∆ calculated through the

Bayesian bandwidth selector and NRR is obvious when time to maturity is short such as τ=10

days, while such differences become less obvious as time to maturity increases. It was found from

Figures 3 and 4 that the differences between the graphs of Γ estimated respectively, through the

Bayesian bandwidth selector and NRR, behave similarly to those between the graphs of SPD

estimated through the two bandwidth selectors.

To summarize the findings from both applications, we have found that for short-maturity

options, the graphs of SPD and Γ estimated through our Bayesian bandwidth selector are respec-

tively, different from those estimated through NRR, and that such differences become less obvious

as time to maturity increases. Moreover, differences between the graphs of ∆ estimated through

the two bandwidth selectors are also observed. As the Monte Carlo simulation study presented in

Section 2.4 supports our Bayesian bandwidth selector against NRR, we recommend the use of our

Bayesian bandwidth selector for the multivariate kernel regression involved in the nonparametric
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estimation of SPD pioneered by Aı̈t-Sahalia and Lo (1998). The Bayesian bandwidth selector

provides a data-driven solution to bandwidth selection for multivariate kernel regression models

with any number of regressors.

5 Conclusion

This paper presents a Bayesian approach to bandwidth selection for multivariate kernel regression.

To our knowledge, the proposed sampling algorithm represents the first data-driven method for

choosing bandwidths for kernel regression with more than two regressors. A Monte Carlo study

shows that the proposed bandwidth selector is more accurate than the normal reference rule, where

the latter is often used in empirical studies in the absence of any other data-driven bandwidth

selectors, despite the fact that most interesting data are non-Gaussian, and that sometimes kernel

functions are not the Gaussian kernel. Our sampling algorithm provides a solution for choosing

a data-driven bandwidth for multivariate kernel regression, which is employed for estimating the

state-price density of Arrow-Debreu securities. When applying the proposed Baysian bandwidth

selector to the kernel regression of implied volatility on the futures price, strike price and time

to maturity, we have found that for short-maturity options, the estimated volatility produces an

obviously different SPD from the one produced by using a subject bandwidth selector discussed

in Aı̈t-Sahalia and Lo (1998). Our paper provides a data-driven solution for choosing bandwidths

for the multivariate kernel regression involved in the nonparametric estimation of the state-price

density pioneered by Aı̈t-Sahalia and Lo (1998).

An obvious extension of this study would be to investigate bandwidth selection for nonpara-

metric multivariate local polynomial fitting, which Aı̈t-Sahalia and Duarte (2003) employed to

estimate the state-price density under shape restrictions.
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Table 1: Estimated parameter and bandwidths with some statistics: S&P500 index options data

Parameters Mean Standard Batch-mean SIF Acceptance
deviation standard error rate

σm 0.01076812 0.00006281 0.00000088 0.98 —

h̃1 5.62857314 0.08345297 0.00310895 6.94 0.22

h̃2 5.47642603 0.10345975 0.00409019 7.81 0.20

h̃3 9.75492547 0.14585289 0.00599846 8.46 0.22

Table 2: Estimated parameter and bandwidths with some statistics: DAX index options data

Parameters Mean Standard Batch-mean SIF Acceptance
deviation standard error rate

σm 0.01426562 0.00018372 0.00000140 1.16 —

h̃1 1.53993302 0.99521769 0.02304122 10.72 0.27

h̃2 0.07667259 0.00316975 0.00007640 11.62 0.22

h̃3 0.02632898 0.00103973 0.00003053 17.24 0.22
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Figure 1: The estimated SPD, ∆ and Γ based on S&P 500 index options data. The first column
is for a maturity of 10 days, and the second column is for a maturity of 25 days.
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Figure 2: The estimated SPD, ∆ and Γ based on S&P 500 index options data. The first column
is for a maturity of 50 days, and the second column is for a maturity of 100 days.
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Figure 3: The estimated SPD, ∆ and Γ based on DAX index options data. The first column is
for a maturity of 10 days, and the second column is for a maturity of 25 days.
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Figure 4: The estimated SPD, ∆ and Γ based on DAX index options data. The first column is
for a maturity of 50 days, and the second column is for a maturity of 80 days.
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