507 research outputs found

    Robust and secure resource management for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.Modern vehicles are examples of complex cyber-physical systems with tens to hundreds of interconnected Electronic Control Units (ECUs) that manage various vehicular subsystems. With the shift towards autonomous driving, emerging vehicles are being characterized by an increase in the number of hardware ECUs, greater complexity of applications (software), and more sophisticated in-vehicle networks. These advances have resulted in numerous challenges that impact the reliability, security, and real-time performance of these emerging automotive systems. Some of the challenges include coping with computation and communication uncertainties (e.g., jitter), developing robust control software, detecting cyber-attacks, ensuring data integrity, and enabling confidentiality during communication. However, solutions to overcome these challenges incur additional overhead, which can catastrophically delay the execution of real-time automotive tasks and message transfers. Hence, there is a need for a holistic approach to a system-level solution for resource management in automotive cyber-physical systems that enables robust and secure automotive system design while satisfying a diverse set of system-wide constraints. ECUs in vehicles today run a variety of automotive applications ranging from simple vehicle window control to highly complex Advanced Driver Assistance System (ADAS) applications. The aggressive attempts of automakers to make vehicles fully autonomous have increased the complexity and data rate requirements of applications and further led to the adoption of advanced artificial intelligence (AI) based techniques for improved perception and control. Additionally, modern vehicles are becoming increasingly connected with various external systems to realize more robust vehicle autonomy. These paradigm shifts have resulted in significant overheads in resource constrained ECUs and increased the complexity of the overall automotive system (including heterogeneous ECUs, network architectures, communication protocols, and applications), which has severe performance and safety implications on modern vehicles. The increased complexity of automotive systems introduces several computation and communication uncertainties in automotive subsystems that can cause delays in applications and messages, resulting in missed real-time deadlines. Missing deadlines for safety-critical automotive applications can be catastrophic, and this problem will be further aggravated in the case of future autonomous vehicles. Additionally, due to the harsh operating conditions (such as high temperatures, vibrations, and electromagnetic interference (EMI)) of automotive embedded systems, there is a significant risk to the integrity of the data that is exchanged between ECUs which can lead to faulty vehicle control. These challenges demand a more reliable design of automotive systems that is resilient to uncertainties and supports data integrity goals. Additionally, the increased connectivity of modern vehicles has made them highly vulnerable to various kinds of sophisticated security attacks. Hence, it is also vital to ensure the security of automotive systems, and it will become crucial as connected and autonomous vehicles become more ubiquitous. However, imposing security mechanisms on the resource constrained automotive systems can result in additional computation and communication overhead, potentially leading to further missed deadlines. Therefore, it is crucial to design techniques that incur very minimal overhead (lightweight) when trying to achieve the above-mentioned goals and ensure the real-time performance of the system. We address these issues by designing a holistic resource management framework called ROSETTA that enables robust and secure automotive cyber-physical system design while satisfying a diverse set of constraints related to reliability, security, real-time performance, and energy consumption. To achieve reliability goals, we have developed several techniques for reliability-aware scheduling and multi-level monitoring of signal integrity. To achieve security objectives, we have proposed a lightweight security framework that provides confidentiality and authenticity while meeting both security and real-time constraints. We have also introduced multiple deep learning based intrusion detection systems (IDS) to monitor and detect cyber-attacks in the in-vehicle network. Lastly, we have introduced novel techniques for jitter management and security management and deployed lightweight IDSs on resource constrained automotive ECUs while ensuring the real-time performance of the automotive systems

    Multiprocessor Image-Based Control: Model-Driven Optimisation

    Get PDF
    Over the last years, cameras have become an integral component of modern cyber-physical systems due to their versatility, relatively low cost and multi-functionality. Camera sensors form the backbone of modern applications like advanced driver assistance systems (ADASs), visual servoing, telerobotics, autonomous systems, electron microscopes, surveillance and augmented reality. Image-based control (IBC) systems refer to a class of data-intensive feedback control systems whose feedback is provided by the camera sensor(s). IBC systems have become popular with the advent of efficient image-processing algorithms, low-cost complementary metal–oxide semiconductor (CMOS) cameras with high resolution and embedded multiprocessor computing platforms with high performance. The combination of the camera sensor(s) and image-processing algorithms can detect a rich set of features in an image. These features help to compute the states of the IBC system, such as relative position, distance, or depth, and support tracking of the object-of-interest. Modern industrial compute platforms offer high performance by allowing parallel and pipelined execution of tasks on their multiprocessors.The challenge, however, is that the image-processing algorithms are compute-intensive and result in an inherent relatively long sensing delay. State-of-the-art design methods do not fully exploit the IBC system characteristics and advantages of the multiprocessor platforms for optimising the sensing delay. The sensing delay of an IBC system is moreover variable with a significant degree of variation between the best-case and worst-case delay due to application-specific image-processing workload variations and the impact of platform resources. A long variable sensing delay degrades system performance and stability. A tight predictable sensing delay is required to optimise the IBC system performance and to guarantee the stability of the IBC system. Analytical computation of sensing delay is often pessimistic due to image-dependent workload variations or challenging platform timing analysis. Therefore, this thesis explores techniques to cope with the long variable sensing delay by considering application-specific IBC system characteristics and exploiting the benefits of the multiprocessor platforms. Effectively handling the long variable sensing delay helps to optimise IBC system performance while guaranteeing IBC system stability

    In-Vehicle Data Communication with CAN &Security Monitoring: A Review

    Get PDF
    Automobiles are now being created with more electronic components for efficient functioning such as Anti Lock Braking system, Adaptive Cruise Control, Traction control system, Airbag, Power Steering etc. managed by networked controllers that include hundreds of ECUs (electronic control units) that can coordinate, control, and monitor loads of internal vehicle components. Each component, such as ABS, TCS (Traction control system), tire pressure monitoring system and telematics system, may communicate with nearby components over the CAN (Controller Area Network) bus, establishing an in-vehicle communication network. These modern automobile system networks intended for safety with minimal consideration for security have drawn the attention of researchers for providing security in CAN. The Paper reviews the behavior and vulnerabilities of CAN within an in-vehicle network including various attacks possible in CAN along with the proposed solutions in the literature with extensive survey on a security promising approach named as IDS (Intrusion detection system)

    Multi-core devices for safety-critical systems: a survey

    Get PDF
    Multi-core devices are envisioned to support the development of next-generation safety-critical systems, enabling the on-chip integration of functions of different criticality. This integration provides multiple system-level potential benefits such as cost, size, power, and weight reduction. However, safety certification becomes a challenge and several fundamental safety technical requirements must be addressed, such as temporal and spatial independence, reliability, and diagnostic coverage. This survey provides a categorization and overview at different device abstraction levels (nanoscale, component, and device) of selected key research contributions that support the compliance with these fundamental safety requirements.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under grant TIN2015-65316-P, Basque Government under grant KK-2019-00035 and the HiPEAC Network of Excellence. The Spanish Ministry of Economy and Competitiveness has also partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717).Peer ReviewedPostprint (author's final draft

    Real-Time Performance of Industrial IoT Communication Technologies: A Review

    Full text link
    With the growing need for automation and the ongoing merge of OT and IT, industrial networks have to transport a high amount of heterogeneous data with mixed criticality such as control traffic, sensor data, and configuration messages. Current advances in IT technologies furthermore enable a new set of automation scenarios under the roof of Industry 4.0 and IIoT where industrial networks now have to meet new requirements in flexibility and reliability. The necessary real-time guarantees will place significant demands on the networks. In this paper, we identify IIoT use cases and infer real-time requirements along several axes before bridging the gap between real-time network technologies and the identified scenarios. We review real-time networking technologies and present peer-reviewed works from the past 5 years for industrial environments. We investigate how these can be applied to controllers, systems, and embedded devices. Finally, we discuss open challenges for real-time communication technologies to enable the identified scenarios. The review shows academic interest in the field of real-time communication technologies but also highlights a lack of a fixed set of standards important for trust in safety and reliability, especially where wireless technologies are concerned.Comment: IEEE Internet of Things Journal 2023 | Journal article DOI: 10.1109/JIOT.2023.333250

    Modeling and Analysis of Automotive Cyber-physical Systems: Formal Approaches to Latency Analysis in Practice

    Get PDF
    Based on advances in scheduling analysis in the 1970s, a whole area of research has evolved: formal end-to-end latency analysis in real-time systems. Although multiple approaches from the scientific community have successfully been applied in industrial practice, a gap is emerging between the means provided by formally backed approaches and the need of the automotive industry where cyber-physical systems have taken over from classic embedded systems. They are accompanied by a shift to heterogeneous platforms build upon multicore architectures. Scien- tific techniques are often still based on too simple system models and estimations on important end-to-end latencies have only been tightened recently. To this end, we present an expressive system model and formally describe the problem of end-to-end latency analysis in modern automotive cyber-physical systems. Based on this we examine approaches to formally estimate tight end-to-end latencies in Chapter 4 and Chapter 5. The de- veloped approaches include a wide range of relevant systems. We show that our approach for the estimation of latencies of task chains dominates existing approaches in terms of tightness of the results. In the last chapter we make a brief digression to measurement analysis since measuring and simulation is an important part of verification in current industrial practice

    MARTE for CPS and CPSoS: Present and Future, Methodology and Tools

    Get PDF
    International audienceCyber-Physical Systems (CPS) combine discrete computing elements together with physical devices in uncertain environment conditions. There have been many models to capture different aspects of CPS. However, to deal with the increasing complexity of these ubiquitous systems, which invade all the part of our lives, we need an integrated framework able to capture all the different views of such complex systems in a consistent way. We also need to combine tools to analyze their expected properties and guarantee safety issues. Far from handing out a full-fledge solution, we merely explore a possible path that could bring part of the solution. We advocate for relying on uml models as a unifying framework to build a single-source modeling environment with design, exploration and analysis tools. We comment on some useful extensions of UML, including MARTE and SysML, and show how they can together capture different views of CPS. We also report on some recent results obtained and discuss possible evolutions in a near future

    Extending the Exposure Score of Web Browsers by Incorporating CVSS

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the sender’s device, browser, and operating system. Yet its content differs from one browser to another. Despite the privacy and security risks of User-Agent strings, very few works have tackled this problem. Our previous work proposed giving Internet browsers exposure relative scores to aid users to choose less intrusive ones. Thus, the objective of this work is to extend our previous work through: first, conducting a user study to identify its limitations. Second, extending the exposure score via incorporating data from the NVD. Third, providing a full implementation, instead of a limited prototype. The proposed system: assigns scores to users’ browsers upon visiting our website. It also suggests alternative safe browsers, and finally it allows updating the back-end database with a click of a button. We applied our method to a data set of more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available here [4].</p
    • …
    corecore