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Preface

This volume contains the papers presented at the 16th International Conference on Risks
and Security of Internet and Systems (CRISIS 2021). Due to the COVID-19 pandemic,
CRISIS 2021 was held both virtually and onsite at Iowa State University, Ames, USA. It
continued a tradition of successful conferences: Bourges (2005), Marrakech (2007),
Tozeur (2008), Toulouse (2009), Montréal (2010), Timisoara (2011), Cork (2012),
La Rochelle (2013), Trento (2014), Mytilene (2015), Roscoff (2016), Dinard (2017),
Arcachon (2018), Hammamet (2019), and Online (2020).

In response to the call for papers, 23 paperswere submitted. Each paperwas reviewed
by at least three reviewers. The Program Committee was composed of 54 members from
15 countries, completed by five external reviewers. The Program Committee selected
nine regular papers and three short papers. The accepted papers cover the following
research themes: cyber-physical systems, hardware security, network security, data secu-
rity, attacks, responses, and security management. Ashfaq Khokar, chair of the Electrical
and Computer Department at Iowa State University, USA, opened the conference and
welcomed the participants and Bharat Bhargava from Purdue University, USA, gave the
conference keynote.

We thank the peoplewho contributed to the success of CRISIS 2021. In particular, we
express our appreciation to the authors of the submitted papers, the Program Committee
members, the external reviewers, and the organizing committee for the hard work they
did locally at Iowa State University.

December 2021 Bo Luo
Mohamed Mosbah
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Threat Modeling of Cyber-Physical
Systems in Practice

Ameerah-Muhsinah Jamil1(B), Lotfi Ben Othmane1, and Altaz Valani2

1 Iowa State University, Ames, IA, USA
amjamil@iastate.edu

2 Security Compass, Toronto, Canada

Abstract. Traditional Cyber-physical Systems (CPSs) were not built
with cybersecurity in mind. They operated on separate Operational
Technology (OT) networks. As these systems now become more inte-
grated with Information Technology (IT) networks based on IP, they
expose vulnerabilities that can be exploited by the attackers through
these IT networks. The attackers can control such systems and cause
behavior that jeopardizes the performance and safety measures that
were originally designed into the system. In this paper, we explore the
approaches to identify threats to CPSs and ensure the quality of the
created threat models. The study involves interviews with eleven secu-
rity experts working in several different domains. We found through
these interviews that the practitioners use a combination of various
threat modeling methods, approaches, and standards together when they
perform threat modeling of given CPSs. Key challenges practitioners
face are: they cannot transfer the threat modeling knowledge that they
acquire in a cyber-physical domain to other domains, threat models of
modified systems are often not updated, and the reliance on mostly peer-
evaluation and quality checklists to ensure the quality of threat models.
The study warns about the difficulty to develop secure CPSs and calls
for research on developing practical threat modeling methods for CPSs,
techniques for continuous threat modeling, and techniques to ensure the
quality of threat models.

1 Introduction

In the past, CPSs operated on their own networks, which were separated or
air-gapped from the corporate IT networks. The OT and IT networks started
converging in response to the need to provide data and insights to stakeholders
on IT networks. The challenge with integrating these technologies is the velocity
of change: IT technologies tend to change very frequently, and updates or patches
can be readily done while OT technologies have a considerably longer shelf life.
Legacy security concerns when OT technologies were initially deployed can be
significantly different from the present security concerns. Trying to capture this
disparity is done, in part, through threat modeling.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Luo et al. (Eds.): CRiSIS 2021, LNCS 13204, pp. 3–19, 2022.
https://doi.org/10.1007/978-3-031-02067-4_1
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Until recently, attackers needed physical access to CPSs. The trend of inte-
grating these systems to IP networks and the internet for services, such as remote
car diagnostic and cooperative adaptive cruise control, has extended the attack
surface. The goals of attacks on CPSs, such as Stuxnet and Triton, are often
not to breach the confidentiality, integrity, or availability of the system’s data
but to make the target system perform activities other than the ones planned
and expected by the original designers. Hence changing the actual process and
unleashing damaging consequences.

Threat modeling is a “systematic exploration technique to expose any cir-
cumstance or event having the potential to cause harm to a system in the form
of destruction, disclosure, modification of data, or denial of service” [1]. It is an
approach for identifying threats to a system and suggesting mitigations. In this
paper, we will not discuss mitigations and limit the scope to threats.

There are several methods for threat modeling, including threat tree, attack
tree, STRIDE, and abuse cases [2]. Xiong and Lagerstrom surveyed threat mod-
eling literature. The authors of many of the surveyed papers validated their
proposed approaches (22 out of the 54 selected papers) using, for example, case
studies, and simulation while only two papers used real-word applications [3].
Most of these methods have been designed for information systems where the
assets are data at rest and in-transit. The focus on data within the IT network
is an important one. Threat modeling of OT components can often be physically
dangerous, expensive, or even identifying the data flow before it gets to the OT
but may not be sufficient to identify misuses of CPSs.

Xiong and Lagerstrom’s survey of threat model literature [3] discussed above
shows that there is a gap between the academic research on and the practice
of threat modeling of CPSs. This paper aims to address that by answering the
question: What are the practices of threat modeling of CPSs by cyber-security
experts? To address this question, we interviewed eleven security experts who
perform threat modeling of CPSs in their respective organizations. Then, we
transcribed the interviews, extracted the main information, and grouped them
into themes, and analyzed the findings. We found that:

1. there is a lack of effective systematic threat modeling methods for CPSs; the
practitioners use a combination of threat modeling methods, approaches, and
standards, together, when performing threat modeling of CPSs;

2. organizations often do not update the threat models of their modified CPSs;
3. there is no effective method for ensuring the quality of threat models besides

peer-evaluation and quality checklists;
4. the practitioners face several challenges when performing threat modeling of

CPSs, including the difficulty to transfer the threat modeling knowledge they
acquire in a cyber-physical domain to other domains.

The results of this work could be used by organizations when performing
threat modeling of CPSs and by academia to develop solutions and techniques
that help practitioners perform threat modeling efficiently.
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This paper is organized as follows: Sect. 2 discusses related works, Sect. 3
describes the research approach, Sect. 4 presents the results of the study, Sect. 5
summarizes the study results and discusses the impacts and limitations of the
study, and Sect. 6 concludes the paper.

2 Related Work

This section discusses related work on the security of CPSs and threat modeling
methods and standards.

Security of CPSs. Security issues of CPSs has been studied for several years.
For instance, Alguliyev et al. [4] analyzed the main types of attacks and threats
of CPSs and proposed a tree of attacks that includes the attacks on sensing, actu-
ation, computing, communication, and feedback loops; Lu et al. [5] proposed a
framework of CPSs security, which includes the security objectives, approaches,
and applications of CPSs; and Pakizeh [6] proposed a framework that aims to
understand the cyber attacks and related risk of different elements of CPSs [6].
In addition, using the expert knowledge on security aspects, such as the forms of
attacks, attacker positions, operating systems, and routing permissions Klaudel
and Rataj [7] proposed an attack graph that describes the software and hard-
ware of a CPS and their mutual mapping with security artifacts and a workflow
that automates the construction of a vulnerability model of a CPS that is used
to quantitatively analyze the threat models of the CPSs, and estimate their
exploitation costs.

The concern in security in IT is the reduction of monetary losses and is
the safety of people and controllability of the systems, besides the reduction of
monetary losses, in the case of CPSs [8]. Sabaliauskaite and Mathur [9] proposed
the integration of safety and security life-cycle processes and a model that unifies
the attack tree and the fault tree and their countermeasures. Dong et al. [10]
proposed security and safety framework, and security framework that focuses on
the security of information and controllability of the CPSs.

The National Institute of Standards and Technology (NIST) developed a
CPS framework to assist in developing secure and safe CPSs [11]. The security
concern of the framework is to protect CPSs from unauthorized accesses, change
damages, and destruction in addition to the CIA triad, and the safety concern is
preventing negative consequences of cyber attacks on the stakeholders, including
life, health, property, data, and damage to the physical environment.

Threat Modeling Methods and Standards. There exist several works on
threat modeling for CPSs [3]. For instance, Martins et al. [12] proposed a tool
for systematic analysis of threat models that includes sketching metamodel of
the system using GME, defining the data-flow and its attribute, and identifying
the vulnerabilities that may exist in the data-flow connections. Also, Khan et
al. [13] adapted the STRIDE method for CPSs by focusing on the data-flow
between the components of the system, which demonstrated promising results
when applied to a case study as it identifies the vulnerabilities at cyber sub-
systems and their potential consequences on the physical components of the
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system. In addition, Casola et al. [14] developed a threat catalog that consists of
known threats affecting different components of IoT and classified them based
on asset types.

Several researchers acknowledged the impact of application domains on the
threat modeling of CPSs. For instance, Meyer et al. [15] proposed an attack
tree to threat model building and home automation systems in order to identify
security faults either in implementation or deployment, and Suleiman et al. [16]
developed a comprehensive threat modeling by integrating the results of smart
grid system security threat analysis with the reference architecture of smart grid
including the components and communication among them.

The International Standards Organization (ISO) and SAE International
released standard ISO/SAE 21434 - Road vehicles cybersecurity engineering to
address the need in cybersecurity engineering of electrical and electronic systems
within road vehicles. The standard provides guidelines to integrate cybersecu-
rity concerns in product development, and perform cybersecurity assessment and
monitoring, and develop policies to handle cybersecurity incidents.

This paper addresses the gap between the development of threat modeling
methods, techniques, and standards and the practice of threat modeling of CPSs.

3 Research Approach

Fig. 1. Phases of the study.

This study aims to explore the practice of threat modeling of CPSs in the indus-
try. The data source of the study comes from interviewing a set of security
experts practicing threat modeling. Figure 1 illustrates the process of the study,
which has three phases: study preparation, data collection, and data analysis.
The descriptions of the phases follow.

3.1 Study Preparation

The description of the study preparation follows.
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Table 1. Business of each participant.

Participant Business

P1 Security consultation

P2 Software engineering

P3 Security consultation

P4 Areal vehicles integrator

P5 Software engineering

P6 Software engineering

P7 Security consultation

P8 Ground vehicles integrator

P9 Ground vehicles integrator

P10 Original Equipment Manufacturer (OEM)

P11 Ground vehicles integrator

Table 2. Threat modeling themes.

Theme Description

Security aspects It concerns confidentiality, integrity, and availability

Threat business impacts The other aspects that the participant is concerned about
when performing threat modeling including users’ safety
and company reputation

Threat modeling
approaches

The approaches and methods that the participants use for
threat modeling, e.g., asset-centric, attacker-centric,
STRIDE etc.

Threat identification
methods

The methods that the participants use to identify the
threats which is part of the threat modeling process

Threat modeling steps The activities or steps performed by the experts to
identify the threat model of a given system

Continuous Threat
modeling

The process used to update threat models to address
system changes

Quality assurance of
threat models

The methods used to assess and evaluate the quality of
the threat models

Tools The tools used in the threat modeling process

Involved people People involved in the threat modeling process

Challenge The challenge that experts face when performing threat
modeling for CPSs

Suggestion Suggestions to improve the threat modeling process for
CPSs

Interview Protocol. We reviewed the literature on threat modeling of a CPS.
We used the knowledge that we acquired to develop a questionnaire protocol.
We specified the research goal with the project sponsor and formulated a set of
open-ended interview questions. The questionnaire was tested by trial runs with
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team members and revised based on the feedback. The set of questions consists of
eleven open-ended questions–Open-ended questions encourage the participants
to provide detailed responses.

Participants Selection. We invited a set of security experts working in cyber-
security companies. Eleven participants accepted our requests and participated in
the study with the goal to contribute to science, not to represent their employers.
Table 1 shows the experience of each participant on threat modeling and the busi-
ness of their employers. Among the participants, three work for major software
development companies and five work for major companies that develop CPSs.

3.2 Data Collection

The data collection consists of two sub-phases: conducting the interviews and
transcribing the interviews. The descriptions of these sub-phases follow.

Conducting the Interview. Wescheduled a one-hourmeetingwith each expert.
The meetings were held through Zoom and Web-ex because the interviewers and
participants are located in different places. The interviews were conducted by one
of the authors. The interviewer explained to each of the interviewees at the begin-
ning of each of the meetings the goal of the project, the interview process and
requested the consent of the participant to record the interview.

Transcription of the Interviews. The interviews were transcribed using
oTranscribe1 and Otter.ai.2.

3.3 Data Analysis

Interview Coding. We used the thematic analysis method for the interview
coding [17]. Thematic analysis is “a method for identifying, analyzing and
reporting patterns within data” [18]. It allows researchers to explore phenomena
through interviews, stories, and observations [19].

Interview coding uses the interview transcripts as the input and outputs codes
that identify the aspects mentioned during the interviews. A code is a word or
short phrase identifying the essence of a portion of text. At the end of this step, we
assigned codes to each of the eleven interview transcripts. For example, we assigned
code security properties/goal to the text “When it comes to the CPSs, the avail-
ability of the system matters a lot”. Codes that were semantically similar across
transcripts were consolidated. We used Atlas.ti3 tool to code the interviews.

Data Extraction and Classification. Similar codes are grouped into themes.
A theme generalizes a set of codes belonging to a given concept. The process of
assigning themes to codes was done for each transcript. For example, the code

1 oTranscribe: https://otranscribe.com/.
2 Otter.ai: https://otter.ai/.
3 ATLAS.ti: https://atlasti.com/.

https://otranscribe.com/
https://otter.ai/
https://atlasti.com/
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other aspect and safety aspect is grouped together as threat business impact
theme. Table 2 lists the themes and associated categories.

Analysis of the Results. From the code groups, we identified information
on security properties, threat business impacts, threat modeling approaches, and
method, threat modeling details activity, continuous threat modeling approach,
threat identification methods, continuous threat modeling approaches, risk assess-
ment approaches, quality assurance approaches, roles involved in threat modeling,
tools, and challenges. We then modeled the relationships among these themes.

4 Data Analysis

This section describes the themes that we extracted from the eleven interviews.
We used Pi to refer to participant i in the interview.

4.1 Security Properties

Security experts focus on protecting the confidentiality, integrity, and availability
(CIA triad) of the data managed by their systems. Table 3 lists the number
of participants that discussed each of the security properties. We observe that
the participants are concerned about data integrity and availability but not
about data confidentiality. They are also concerned about secure modification,
availability, consistency, accuracy, and misuses of the data over their life-cycle
in their system. For instance, P9 said: “so things that are important to us are
maybe not, as you said, the confidentiality of it if you’re talking about a control
system, but you’re looking at the integrity of the messaging [...], the data is the
control message.” The reason is: data is used to process the control commands
of the physical components of CPSs. Modification and misuses of these data
can cause damages or losses, and unavailability of data and system components
could prevent real-time feedback behaviors of certain CPSs and cause losses and
damages.

Table 3. No. of participants con-
cerned with each of the security prop-
erties/goal.

Security properties # Participants

Confidentiality 1

Integrity 6

Availability 6

Table 4. No. of participants who used
known methods for threat modeling.

Method Ref # Participants

Attack tree [20] 1

DREAD [21] 1

EVITA or variant of [22] 2

LINDDUN [23] 1

PASTA [24] 1

STRIDE [13] 6
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4.2 Threat Business Impacts

Many CPSs, including connected cars, involve human as users and are safety-
critical systems. Security and safety are closely related in these systems [9].
The exploitation of systems’ weaknesses and vulnerabilities could have a high
impact on the safety of the users. For example, P3 said: “..the cyber threats can
actually impact the physical safety of workers, [...], cause an explosion within a
plant or any number of potential outcomes”. Besides safety, financial losses, and
reputation damage are also important aspects that participants consider when
performing threat modeling of CPSs. Security weaknesses in the supply chain is
a typical example.

4.3 Threat Modeling Approaches

The participants in the study have either control systems or IT background. The
participants with control systems background focus on the malicious controlla-
bility of the physical components of the studied system as P11 said “All these
methodologies started from this classic [Referring to ISO27005] as an approach
with slight modifications. What was added by Evita is the notion of control-
lability”. P1, for example, uses a field-tested custom engine derived from the
ISA/IEC 62443 standard [25] to identify the physical/cyber threats that apply
to each of the assets, zones (a group of assets), and conduits of the system under
consideration, keeping in mind that a cyber threat can have a physical attack
surface, and P2 uses the STRIDE taxonomy [13] and analyze the failure scenar-
ios that might apply to the components considering the behavior of the physical
components and the safety of the system. In general, these participants combine
the use of the known approaches such as STRIDE or PASTA with the analysis
of failure modes and criticality of the physical systems.

Participants with IT background apply the classic threat modeling
approaches such as STRIDE [13] and DREAD [21]. They identify the assets, the
components, and the data managed by the studied system and focus mostly on
threats to the integrity, availability, and confidentiality of the data. For example,
P5 approach is: understand the system, identify the weaknesses, identify poten-
tial attacks and mitigations, and prioritize the identified threats. They consider
that each CPS operates in a specific environment, is associated with specific
weaknesses and type of attacks, which justifies the use of threats on data rather
than misbehavior of the components of the studied system.

Most of the participants decompose the system being analyzed into compo-
nents and analyze the threats to each of the components. Participant P7 deviates
from this approach and analyze the studied system as a whole.4 They look at
the weaknesses related to the integration of the components of the given system.

4 This approach is similar to the approach used to improve business processes [26].
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4.4 Threat Identification Methods

Threat identification, a key process in threat modeling, allows identifying the
weaknesses of a given system that could cause harm and damage when exploited
by attackers. Table 4 provides the frequency of using the common individual
threat modeling methods by the participants. The participants use (1) Known
methods, such as attack-tree and STRIDE, (2) a combination of known methods,
and (3) a combination of security standards and known approaches.

Known Method. Several participants reported that they use known methods
such STRIDE, PASTA [24], LINDDUN [23], and attack-tree [20]. Most of the
participants (6 out of 11) use STRIDE. One expert mentioned that they use the
attack-tree method because of its ability to cover all entry points of the attacks.
Hence, they can identify all possible threats to the system. Some participants
start with a known method and then elaborate further on their threat model
based on their experience and knowledge. For example, participant P2 identify
the data flow diagram and the physical locations of the components of the studied
system and apply the STRIDE method to identify the initial list of threats.

Combination of Known Methods and Approaches. Some participants
reported the use of multiple approaches, such as asset-centric and attacker-
centric, in the same project because they believe that each of the approaches
and methods gives a different perspective of the system weaknesses and using a
set of methods, although time-consuming, helps to identify the “complete” list
of threats to a given system.

Combination of Threat Modeling Standards and Known Approaches.
One Participant, P1, uses real-world experience jointly with the ISA/IEC 62443
standard [25] to identify the physical/cyber threats that apply to each of the
assets or zones (a group of assets).

4.5 Continuous Threat Modeling Approaches

Developers often modify parts of their CPSs [27] to introduce new features, fix
existing defects, or improve the maintainability and the performance of these
systems. The evolution of a system often involves changes to its components,
which could invalidate the initial threat model since the changes could modify
the attack surface and introduce new threats to the system.

Some participants do not have processes and/or experience with managing
the evolution of the threat models of their systems. For instance, one participant
reported that they do not need to have processes for revising threat models as
they are not involved in the businesses of the systems that they perform threat
modeling of and another participant reported that they do not review the threat
models of their systems even if these systems change. In addition, Participant
P11 reported that the manufacturers of cars cannot do a correct continuous
threat modeling. They said “..you have two updates per year for the cars...the
information flow concerning various threats is not so good today because car
manufacturers are not aware about all the threats related to the parts coming
from their suppliers.”
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The rest of the participants (eight from eleven) have processes or approaches
to manage continuous threat modeling. For example, Participant P1 identi-
fies the changes or triggers to a system under consideration and does a thor-
ough threat and vulnerability assessment update, re-assessing the attack sur-
faces/sources and the related impacts, and adding new threats and vulnerabil-
ities if necessary; Participant P5 performs threat modeling as an activity of
their adapted scrum [28] process; Participant P6 uses version control on source
code of the software to identify changes and periodically assess in collaboration
with the architect the potential impacts of the changes on the threat model of
the given system; Participant P7 performs a full threat modeling of new systems
and partial threat modeling when new components are added to existing systems
(only the new components and impacted components are considered the partial
threat modeling); Participant P8 assesses the exploitability of the threats of
changed systems and updates the priority of addressing the threats accordingly;
and Participant P9 uses a questionnaire to assess the impacts of the software
changes on the previous ranking of the threats to the their system. We note that
some participants report that they perform continuous threat modeling only for
formality: to pass their systems to the next phase of the DevOps [29].

We observe that most of the participants practice continuous threat model-
ing, and there is no common continuous threat modeling approach. This mixed
input shows the importance of continuous threat modeling of CPS for the indus-
try and the lack of rigorous and efficient approaches to do so.

4.6 Risk Assessment Approaches

The participants reported the use of several risk analysis and scoring approaches,
which we discuss in the following.

Using Risk Standard and/or Regulations. P1 uses risk assessment stan-
dards ISA/IEC 62443 [25], which provides guidelines to organize and facilitate
a cyber security risk assessment for industrial automation and control systems
(IACS) while considering the necessary regulations and sector’s security/risk
specifics, and Participant P7 considers the impacts of the threats on the com-
pliance with the regulations that their products must adherent to. For instance,
P7 said Regulations play a major role in telling [..] the stakeholders what’s more
important to sustain the [business], right. I mean, basically, the products [could]
fail [because of] the regulator, and you could be out of the business.”

Known Approach. Many of the participants use common risk assessment
approaches, such as FAIR [30] and Bug Bar [31]. The bug bar method, for exam-
ple, requires assessing the criticality and severity of the threats in collaboration
with the customer (which allows considering their concerns) and prioritize the
threats based on their severity levels. The FAIR method allows using FAIR data
to analyze and highlight the threats of the threat model. For instance, Partic-
ipant P9 said “ So we use the fair [...] threat modeling to highlight the threats
and then run that in fair to actually turn that into a risk.”
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In-House Risk Assessment Methods. Three participants have their own
risk assessment methods. For instance, Participant P2 uses a risk register to
report the risks of a given system and continuously monitor these risks, and
Participants P8 uses a custom formula to compute the risks of a system using
the revenue generated by the system and the criticality of the threats.

4.7 Quality Assurance Approaches

Most of the participants reported that the quality of threat modeling exercises
depends on the experience and skills of the experts who perform the threat
modeling and the thoroughness of the assessment, including the detailed level of
the used architecture and profoundness of the interviews with the stakeholders of
the given system. For instance, P1 said “the ISA/IEC 62443 standard provides
the basic framework but most of the quality of the assessments is based on real-
world experience, which also helps with the quality of the specific deviations for
every different sector” and P11 said “the expert, nothing else.”

Few participants use techniques to ensure the quality of their threat models.
For instance, Participant P2 uses peer-evaluation to assess the quality of the
threat models that they create. They Said “ There were certain folks that we
would do peer reviews [of their] threat models.”. Participant P3 performs review
at each project milestone to ensure the work done at the given milestone is
of sufficient quality. They said “at each of the gates or milestones, you do the
proper review to make sure that the work that was done up until that point is of
sufficient quality.” And, Participant P6 uses a set of requirements to verify the
coverage of the developed threat model of the important security aspects related
to the domain of the given system.

Table 5. Roles in the threat modeling processes.

Role Description

Security team Initiate the threat modeling process and perform
the threat modeling exercise

Architect Provide the documentation and artifacts about
the system. The security team may interview
them to get more details about the system

Developer The security team interviews the developers to
get more details about the system

Stakeholder The security team interviews the other
stakeholders of a system as needed to get more
details
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4.8 Roles Involved in Threat Modeling

Table 5 lists the common roles that the participants work with when perform-
ing threat modeling. Some of the participants involve the CPS operators, the
management staff, the subject matter experts, and the equipment suppliers in
their threat modeling exercise as they need. These roles help to gain depth
understanding of the system, including the different environments of running
the given CPS, the operations of the system, the used equipment, and possibly
other aspects. Interviewing different stockholders helps to develop a “complete”
threat model.

4.9 Tool

Three participants use Microsoft Threat Modeling Tool [32] although the tool
does not cover the physical components of CPSs and three participants use their
own tools, including custom templates, for threat modeling. For instance, P9 said
“Microsoft has a threat modeling tool [...], and there is actually an automotive
template that we look at to plug into our system.”

4.10 Challenges

The participants reported few challenges that they face when performing threat
modeling of CPSs, which we discuss in the following.

Variety of CPSs. Several of the participants had to work on threat models of
CPSs for several applications domains (e.g., mining, transportation, smart grid)
and use a variety of physical components that are often not familiar with at the
beginning of the projects. They find it impossible to have broad knowledge about
threats for CPSs and difficult to generalize expertise across CPSs’s application
domains.5 Participants that have IT background find themselves with limited
knowledge about the physical components: they are not familiar with the threats
to the system that they analyze and to the mechanisms that could be utilized
to mitigate the threats to these systems. Some participants proposed developing
a repository of patterns and mitigation strategies since there are many threat
vectors and attack agents to consider.

Limitation of Current Threat Modeling Approaches and Methods.
The existing threat modeling approaches, such as STRIDE and PASTA, focus
on computer security. The use of these methods to perform threat modeling
for CPSs may produce incomplete threat models because these methods do not
cover the physical aspects of CPSs. Some participants suggest the development
of a framework that allows identifying common practical attack scenarios based
on the application domains of CPSs.

5 This different from IT systems that use known architecture styles and follow standard
components definitions, e.g., web applications.
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Limitation of Tools. Microsoft Threat Modeling Tool is commonly used to
generate an initial list of threats to a given system based on a default template
that uses the STRIDE taxonomy. It is known that STRIDE focuses on computer
security threats; hence it would produce incomplete threat models for CPSs.

Challenge in Current Culture. Current business culture of “publish now
and fix later” has been a challenge for some participants–sometimes only the
threats that are related to publicly known attacks are considered. To address this
problem, Participant P4 proposes to have the security experts develop quality
threat models that use publicly available threat patterns. They said: “I think that
would be very useful for the industry at large is a set of threat model patterns.”

5 Discussion

This section summarizes the results of the study and discusses the impacts of
the study and its limitations.

5.1 Summary

Figure 2 shows the themes extracted from the study and the relationships among
these themes. The figure shows that CPSs have security properties requirements
and other associated requirements such as safety. The goal of the threat modeling
processes and the continuous threat modeling sub-processes is to identify and
rank system weaknesses that violate these requirements. The participants use
several threat modeling methods and approaches and involve several stakeholders
of the CPSs that they perform threat models of using the existing tools such as
Microsoft Threat Modeling Tool.

According to the participants, integrity and availability are the security prop-
erties the most of concern for CPSs. In addition, many participants use threat
modeling method STRIDE, which is unexpected since the method focuses on the
threats to IT systems, not CPSs. Also, most of the participants use a combination
of known approaches, known methods, and known standards when performing
threat modeling of a CPS. We note that the participants associate the qual-
ity of threat models mainly to the skills and experience of the security experts
who perform the threat modeling. The two techniques that some participants
use to ensure the quality of threat models developed by their subordinates are
peer-evaluation and the use of the quality checklist.
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Fig. 2. Entity-relationship model of the threat modeling concepts.

5.2 Impact of the Study

Existing threat taxonomies, such as STRIDE, focus on either the CIA triad or
the controllability of the physical components of a system. This study reveals
that experts focus on the threats to the integrity, availability, controllability, and
safety of the systems threat model a CPSs. The community should develop a
knowledge base of practical threats to CPSs that consider the business impacts
of failure of physical components, including safety besides the CIA triad.

We found that most of the participants use a combination of known threat
modeling approaches, methods, and standards, which makes threat modeling
time consuming–it is done two or more times. This calls for developing practical
new threat modeling approaches that integrate both the IT and OT security
needs of CPSs effectively. The method should be generic and flexible to fit the
needs and requirements of every CPS domain, and consider the industry stan-
dards. Such methods should help security practitioners to produce quality threat
models for CPS that could be trusted by the project managers.

We also observed that the participants use their own template to tie the risk
to the threats of CPSs. Developing risk assessment methods for CPSs acceptable
by the major actors in the industry will help the experts to communicate better
and exchange information about risks of CPSs.

In addition, we found that most of the participants do not use quality assur-
ance methods for the threat models that they produce. The managers sometimes
request threat models for their CPSs from more than one experts, especially
when the system gets hacked. The community should explore techniques and
standards for assessing the quality of threat models.
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5.3 Threats to Validity

Initially, we gave an open-source of a CPS to some of the selected participants
and hoped that they provide us with their threat models, which we could use to
study the practice of threat modeling in depth. The volunteer participants did
not want that given, among others, the required important time commitment to
do so. Therefore, we opted for exploitative interviews for our research.

The limitations of the study are classified into construct validity, internal
validity, conclusion validity, and external validity are discussed as the follow-
ing [33,34].

Construct Validity. To address the validity of the relations between the per-
formed study and the goal of the study, we performed a literature review,
designed an interview protocol, and tested it with some experts. We collected
information from eleven participants who have different roles and are located in
different cities. This gives confidence in the stability of the collected data.

Internal Validity. To address the validity of the relationship between the study
and its results, we tell the participants at the beginning of the interviews the
goals of the interview, which should help in ensuring that the participant and
the interviewer share the same goal.

Conclusion Validity. To address the validity of the ability to make correct
conclusions from the results of the study, the main author provided the second
author their codes and the themes for each of the interview, who reviewed them,
to reduce the subjectivity of the results.

External Validity. To address the validity of the generalization of the study,
the eleven participants in the study are selected to be security experts from nine
organizations in different businesses. We believe the diverse experience of the
participants supports generalizing the results.

6 Conclusion

This paper reports about the practice of threat modeling of CPSs. We conclude
that (1) ensuring the integrity and availability of data and system’s components
in addition to controllability and safety of CPSs is the concern of threat modeling
of CPSs, (2) there are differences between experts with a background in control
system and experts with a background in IT regarding the approaches to per-
form threat modeling, (3) the experts use a combination of known approaches,
methods, and standards to perform threat modeling of a given CPS, (4) most
of the threat modeling participants perform continuous threat modeling, (5) the
experts often use custom risk scoring methods, (6) most of the participants do
not use quality assurance techniques for the threat models that they produce and
rely on the experience and skills of the expert who performs the threat model,
and (7) four roles are commonly involved in threat modeling, namely security
team, architect, developer, and stakeholder.
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The studies highlights several future research directions to improve the prac-
tice of threat modeling of CPS. First, we need to develop a new threat modeling
approach that flexible to fit the different CPSs domains, and supports for easy inte-
gration of industry standards. Second, we need to develop a threat knowledge-base
that accounts for the different CPSs domains and links the threats to the target
surfaces, attack means, countermeasures, and impacts. Lastly, we need to develop
techniques for semi-automated threat modeling of CPSs will help experts to do
incremental and effective threat models.
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Abstract. Security practices become weaker over time as attackers’
capabilities evolve. Security decay within vehicle software systems can
have devastating consequences as it can pose a direct threat to people’s
lives. Thus, it is crucial to monitor the changing threat level on vehicles
during their full lifespan. We present an Autonomous Vehicle Security
Decay Assessment (AVSDA) framework that analyzes and predicts the
system’s security risk over vehicles’ lifespan. The framework analyzes vul-
nerable software components periodically and estimates the security risk
level to identify security decay. AVSDA employs several metrics specifi-
cally designed for autonomous vehicle systems to automatically identify
potentially weak components and quantify security risk. We evaluate
the framework on OpenPilot, an autonomous driving system. The case
study demonstrates the effectiveness of the AVSDA framework in iden-
tifying security decay over time. The results show an accuracy rate of
94% and a recall rate of 78%, outperforming all other known metrics by
at least 50%.

Keywords: Security vulnerability · Autonomous vehicle systems
security · Decay assessment · Risk analysis

1 Introduction

Attackers’ capabilities evolve with time. What was once secure can become an
easy target for skilled attackers to take advantage of systems’ weaknesses to
initiate attacks. Hence, any software system should be carefully monitored to
identify possible security decay that can expose it to malicious behavior. Software
integration and internet connectivity expose vehicles to cybersecurity challenges
that, if not handled, can lead to destructive results. It is essential to identify
security decay in automobile systems.

Automotive manufacturers are striving to diminish the chances of attacks.
Currently, many developed automotive standards provide software guidelines to
enhance vehicle security [1,9,10,16]. Following security standards during Vehicle
Software Engineering (VSE) helps create more resilient Connected Autonomous
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Vehicles (CAVs) that defend against current attacks [28]. Nevertheless, attackers’
techniques are advancing. The average age of cars and trucks is more than ten
years, and future vehicles are expected to operate for even a longer period.
With such a long lifespan, new software vulnerabilities will be discovered, new
attacker tools will be developed, and adopted security practices will become
weaker. Ensuring CAV security requires planning that does not bind security
assurance and risk assessment to the development phase but spans to cover the
vehicles’ operation phase.

Security decay represents a drop in system resilience due to newly discovered
vulnerabilities, more skilled attackers, or changes in the operating environment
of vehicle software. This research aims to identify security decay across vehicle
software systems’ full lifespan. We achieve this by identifying vulnerabilities in
the system and assessing the evolving risks. We propose an Autonomous Vehicle
Security Decay Assessment (AVSDA) framework composed of two phases. The
first phase, vulnerability analysis, automatically and efficiently identifies poten-
tially weak or vulnerable components. The second phase, risk analysis, focuses on
quantifying the risk of weak components by determining an attack’s likelihood
and assessing its impact.

Traditional threat and risk assessment methods (e.g., E-Safety Vehicle Intru-
sion Protected Applications (EVITA) threat and risk model [30]) determine secu-
rity risks by identifying and classifying potential threats. In contrast, we identify
security risks by targeting the source of issues. The AVSDA framework distin-
guishes the vulnerable components that are responsible for the vast majority of
vehicle cyberattacks. Considering the operational environment of vehicles, quan-
tifying various threat scenarios becomes a daunting task. Hence, vulnerability
analysis is used to efficiently measure the weak components that make vehicle
software systems unprotected against attacks (e.g., unauthorized access to data,
acceptance of bogus information, and unauthorized control of vehicles).

Assessing autonomous system security decay at the software level can help
prevent malicious behavior and maintain vehicle safety. The AVSDA frame-
work offers security engineers the opportunity to strengthen vehicles’ resilience
against attacks. It also warns security specialists about severe security decay that
might require immediate update or even vehicle recalls to prevent incidents. This
framework is critical for the United Nations Economic Commission for Europe
(UNECE) WP.29 cybersecurity compliance [8].

The rest of the paper is organized as follows: Sect. 2 reviews related work.
Section 3 outlines the AVSDA framework. Section 4 presents results from apply-
ing the AVSDA framework. Finally, Sect. 5 concludes the paper.

2 Related Work

Evaluating security decay in software systems is a recent topic in the literature
and standards. As we assess security decay based on risk analysis, we review the
existing security risk estimation efforts.

SAE J3601 [16] recommends assessing security threats in the automotive
industry to identify possible threats. However, it does not identify a specific
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Threat Analysis and Risk Assessment (TARA) method that can best identify
the automotive industry’s security risks [22]. The EVITA threat and risk model
[30] is considered one of the potent risk assessment models in the automotive
industry. The model focuses on identifying all possible attacks against a spe-
cific target. However, the sets of attacks and targets within autonomous vehicle
systems are practically large, making risk assessment a time-consuming and chal-
lenging job. ISO/SAE 21434 [4] proposes a generic risk assessment process that
involves vulnerability analysis, which is estimated based on previously identified
vulnerabilities. However, historical data is not sufficient to identify the evolving
vulnerabilities of vehicles.

Burton et al. [14] stress the importance of identifying intentional third party
hazards to enhance vehicle safety. The researchers suggest enhancing safety stan-
dards to include the categorization of malicious hazards that can affect safety.
Similarly, Macher et al. [23] highlight the need for threat and risk assessment
techniques for the automotive domain. The researchers propose an approach
to classify cybersecurity threats and merge it with ISO 26262 safety HARA
framework. However, it is not enough to address vehicle security from a safety
perspective only. Security risks have several impacts other than safety, including
operational and financial impacts.

Islam et al. [20] introduce a risk assessment framework that aims to identify
security requirements for automotive systems. Though the researchers propose a
solid framework, their approach operates based on the system’s data flows that
can be difficult to obtain in the automotive industry. Othmane et al. [13] pro-
pose including attacker’s capabilities in threat likelihood estimation and follow a
manual vulnerability identification approach. However, considering the size and
complexity of automotive systems, manual validation may not always be feasible.

This paper offers a security decay assessment framework that quantitatively
evaluates the system without any additional overhead. The framework is not
bound to the development phase; it assesses security during the operation phase
too.

3 Framework Design

This section introduces the Autonomous Vehicle Security Decay Assessment
(AVSDA) framework and discusses its phases. We begin by providing an overview
of AVSDA and then dive deeper into the framework phases.

3.1 Overview

The AVSDA framework aims to identify security decay of autonomous vehicle
software systems. The proposed framework analyzes the security decay at the
Software Component (SWC) level. We define SWC as a structural element that
provides an interface. It can utilize different automotive communication means
and is connected to other parts to fulfill a function. This includes all types of
SWCs defined by Automotive Open System Architecture (AUTOSAR) [1], cov-
ering all kinds of embedded hardware and firmware in a vehicle system.
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Fig. 1. Autonomous Vehicle Security Decay Assessment (AVSDA) framework.

Unauthorized access, acceptance of falsified information, interruption of ser-
vice, and unauthorized control are all types of threats that an attacker can
initiate to jeopardize vehicle software systems. Such threats violate vehicles’
security and can threaten individuals’ safety. The AVSDA framework utilizes a
vulnerability analysis approach to estimate the vehicle software system’s weak
components that facilitate the existence of security threats.

As depicted in Fig. 1, AVSDA comprises two phases: vulnerability analy-
sis and risk analysis. The first phase identifies potentially vulnerable compo-
nents that can cause security failures. Attackers take advantage of existing soft-
ware defects to initiate malicious behavior. Hence, to detect security decay, we
first quantitatively identify the weak components based on the security metrics
designed to target autonomous systems’ vulnerabilities. The second phase thor-
oughly analyzes the system’s vulnerable components to determine an attack’s
likelihood and impact. It also identifies security risk level for vulnerable com-
ponents. Inspired by our previously proposed metrics [27], we define new and
enhanced security metrics for this framework.

Estimating security risks before a product release is essential to prevent catas-
trophic results. AVSDA should be applied before moving a vehicle model to
production and periodically during the operation phase to help security engi-
neers measure vulnerabilities, estimate changing risk levels, and avoid unwanted
security breaches. Comparing the results of subsequent runs can help security
engineers in identifying system security decay. An increase in the security risk
level can alert security engineers to apply the proper mitigation measures.
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3.2 Vulnerability Analysis Phase

Vulnerabilities in autonomous systems are common. Hence, it is essential to
identify weaknesses before they are exposed and lead to successful attacks. The
first phase of AVSDA, vulnerability analysis, measures the security vulnerability
score of every component. Components with a high security vulnerability score
are further analyzed in the risk analysis phase. Measuring security vulnerability
involves six steps: (1) Compute code complexity, (2) Measure component cou-
pling, (3) Identify input and output data vulnerability, (4) Discover past security
issues, (5) Compute component maturity, and (6) Calculate security vulnerabil-
ity score. Steps 1 through 5 can run simultaneously, and the results of these
steps are utilized in the final assessment (Step 6).

In this phase, we consider the unique architecture of vehicles and the spe-
cific development challenges of vehicle software systems. Since vehicle software
systems have vulnerability factors similar to other software systems, some of the
steps of this phase can be applied to other systems (Steps 1, 4, and 5). Steps 2
and 3 are specific to autonomous vehicles. Step 2 measures how reliant a compo-
nent is on other subsystems by defining the set of reachable Electronic Control
Units (ECUs) from a component ECU. Step 3 identifies input and output data
risks. We consider the different communication means that transmit inputs and
outputs within vehicle software systems and the various threat levels that each
poses on a vehicle.

Compute Code Complexity. Autonomous systems are by far one of the
largest pieces of software in terms of size. A modern vehicle features around 100
million code lines, and this number is expected to grow to 300 million shortly
as we move toward code-driven vehicles [26]. Integrating millions of code lines
in vehicles enabled them to become more aware of their environment. However,
the code complexity of autonomous vehicle systems can increase the number of
defects. Many researchers associated code complexity with the existence of vul-
nerabilities [15,17,32]. Complex code is challenging to understand, test, validate,
and maintain. Attackers look for defects in the system that can be exploited.
Hence, complex code increases attackers’ chances and is a good indicator of a
high number of vulnerabilities. Researchers propose different attributes to cal-
culate code complexity, including Source Line of Code (SLOC), Nesting Count,
Nesting Depth (ND), McCabe’s Cyclomatic, and Number of Children (NOC).

Durisic et al. [17] in collaboration with Volvo Car Corporation show that
code complexity and coupling can efficiently be used in the automotive industry.
In general, developers consider Nesting Count, Nesting Depth (ND), and lack
of structure to be the attributes that most reflect complexity in a system [12].
Moreover, ND and Number of Children (NOC) correlate to vulnerabilities the
most [15,32]. Accordingly, we define Code Complexity (CX) as a combination
of Source Line of Code (SLOC), ND, and NOC. The CX of component C can
be calculated using Eq. (1). We use different weights ω1, ω2, and ω3 to give
security experts a chance to assign different importance to different attributes.
The weight values should be defined at the beginning of the assessment to apply
them consistently to all components.
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CX(C) = ω1SLOC + ω2ND + ω3NOC (1)

Measure Component Coupling. Coupling between objects is the concept
that two or more entities rely on each other to fulfill functionality. In the auto-
motive industry, code coupling can support engineers in finding complex com-
ponents that might require more attention and testing than other parts in the
system [17]. Code coupling is not only used to recognize complexity but is also
extensively used to identify vulnerabilities [15,25]. The dependability of entities
in a system can help a malicious message propagate from one component to
another, making an attack impact more severe.

In autonomous vehicle systems, coupling can be at two levels: components
and functions. We covered function coupling in the code complexity. Component
Coupling (CC) aims to measure how reliant a component is on other subsystems.
Communication between autonomous systems components is needed to offer cus-
tomers various functionalities. For example, the safety system in modern vehicles
can communicate with the central locking system to lock the doors when the vehi-
cle reaches a certain speed and unlock them when it stops. Such communication
between components is essential to ensure the safety of passengers. However,
components coupling permits the propagation of malicious messages [35].

We define CC as the set of ECUs reachable from a component’s ECU, calcu-
lated using transitive closure. The transitive closure determines direct and indi-
rect coupling. For example, consider component A which runs on ECUA and
connects through the gateway ECU to components B and C through ECUB

and ECUC , respectively. Component A does not rely on component D, so no
communication between ECUA and ECUD occurs. However, component B com-
municates with component D. Consequently, a malicious message can propagate
indirectly from ECUA to ECUD through ECUB . The CC of component C is
calculated using Eq. (2), where R is the set of relationships between the ECUs
of Component C.

CC(C) =
∞⋃

i=1

Ri (2)

Identify Input and Output Data Vulnerability. Components of
autonomous systems operate based on the collected data from sensors, radars,
cameras, vehicles, infrastructure, users’ mobile devices, and other sources.
According to the inputs received and the embedded functionality, a component
will transmit signals that control the vehicle’s behavior. Inputs and outputs
(I/O) offer an exceptional opportunity for attackers. Vehicles’ diverse operating
conditions make data validation a challenging job. Vehicles are always moving
and sensing their surrounding environment. Hence, it is impossible to quantify
all possible I/O.

Inputs and outputs are transmitted through different communication means.
For example, autonomous systems depend on data received by the Global Posi-
tioning System (GPS) receiver to identify a vehicle position and navigate drivers
to their destinations. Vehicle to Vehicle (V2V) communication is used to dis-
tribute traffic information. GPS and V2V channels each pose different risks on
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CAVs. GPS is vulnerable to jamming and spoofing [29], while V2V communica-
tion exposes the vehicle to external attacks like eavesdropping, spoofing, Denial
of Service (DoS), and spamming [34]. While both of these communication means
put the vehicle at risk, the level of threat between one communication means
and the other is different. V2V communication exposes the autonomous system
to a broader range of attacks [34].

The Input and Output Data Vulnerability (DV) observes two elements: the
type and the mean of communication used. Fixed I/O data types (e.g., data
types with constant values) are easier to validate and considered less risky com-
pared to fluctuating I/O data types (e.g., an integer value that has an extensive
range) that are challenging to validate. Moreover, different communication tech-
nologies are subject to various security issues. Thus, each communication mean
is assigned a weight according to its criticality. The DV of component C can
be calculated using Eq. (3). K represents the total number of communication
means, FI and FO represent fixed inputs and outputs, respectively, LI and
LO represent fluctuating inputs and outputs respectively, ωk is the weight of a
specific communication mean, and α and β are weights of fluctuating I/O.

DV (C) =
K∑

k=1

ωk|FI(C)| + αωk|LI(C)| + ωk|FO(C)| + βwk|LO(C)| (3)

Discover Past Security Issues. There have been many successful attacks
against CAVs [35]. News of a security breach often gets the attention of malicious
users who take advantage of an exposed vulnerability to conduct similar events.
Hence, any bug, vulnerability, or attack on the vehicle software system must be
carefully examined to prevent future malicious actions. Past Security Issue (PSI)
gives higher importance to components that were subject to attacks.

PSI examines the frequency and age of an incident. A security incident that
occurs regularly indicates a weakness in the system. Thus, attacks that happen
many times are given higher importance. Attacks that arose from a long time ago
and did not recur are more likely resolved. Hence, PSI introduces the forgetting
factor to give more importance to recently discovered vulnerabilities. Equation
(4) illustrates how the PSI of component C can be calculated. Y represents the
total number of years since the first vehicle attack, αy represents the number of
attacks that occurred in year y, and λ is the forgetting factor.

PSI(C) =
Y∑

y=1

αyλ
Y −y | 0 ≤ λ ≤ 1 (4)

Compute Component Maturity. Component Maturity (CM) is essential for
identifying vulnerabilities and security decay during vehicle operation. A com-
ponent can witness many changes due to requirements changes, enhancements,
security updates, and bug fixes. Researchers observe that continuous updates
and code changes can weaken code robustness and make it more prone to vul-
nerabilities [18,32]. Code Churn (CCH) calculates the modifications made to a
component over time and quantifies the changes’ extent. We evaluate CCH by
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identifying the ratio of changes in a component, including deleted, added, and
modified SLOC, as presented in Eq. (5).

As we are interested in evaluating a component’s security decay, it is vital to
exclude the changes that are meant to enhance the security of an element while
calculating CCH. Reviewing the security practices developed within a compo-
nent can enhance the security measures and improve the component’s defense
mechanism. We consider components that witness security improvements as
more resilient against cyberattacks. We calculate the Security and Maintenance
Intensity (SMI) by counting the security enhancement activities since a product
release. The reverse percentage is used to determine a low risk for proper security-
maintained components, as shown in Eq. (6). Therefore, CM covers extensively
changed and low security-maintained code. The CM of component C can be
calculated following Eq. (7).

CCH(C) =
|Changed SLOC|

|SLOC| (5)

SMI(C) = 1 − |Security Maintenance Activity|
Age

(6)

CM(C) = CCH(C) + SMI(C) (7)

Calculate Security Vulnerability Score. The final assessment of a compo-
nent’s Security Vulnerability (SV) is calculated based on the values obtained
from the previous five steps. As presented in Eq. (8), to have proportional val-
ues, the results obtained from each step for a component C are divided by the
maximum (MAX) value that can be acquired by the corresponding step cov-
ering all components of the system. Different weights can be assigned to each
step.

SV (C) = α

(
CX(C)

MAX(CX)

)
+ β

(
CC(C)

MAX(CC)

)
+ γ

(
PSI(C)

MAX(PSI)

)

+ δ

(
DV (C)

MAX(DV )

)
+ θ

(
CM(C)

MAX(CM)

) (8)

3.3 Risk Analysis Phase

The vulnerability analysis phase and risk analysis complement each other in
identifying system security decay. The second phase of the decay model exam-
ines the potentially weak entities closely and quantifies the system’s overall risk
level. The risk analysis phase involves five steps: (1) Measure attack surface,
(2) Estimate attacker threat, (3) Estimate likelihood of an attack, (4) Estimate
impact level, (5) and Identify security risk.

The risk analysis phase is tailored to accommodate the uniqueness of vehicle
software systems. For example, Step 1 of the second phase starts by measuring
vehicle software systems’ attack surfaces. We consider all communication means
used by vehicle software systems. Moreover, we describe the attacker threat and
impact level parameters specifically for vehicle software systems.
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Measure Attack Surface. The attack surface of a component is the subset
of system resources that an attacker can use to initiate malicious behavior [31].
To conduct an attack, malicious users connect to one of the vehicle’s networks
and invoke certain functions to send or/and receive information. For example,
in 2015, a simulated attack was initiated on Jeep Cherokee while operating
on the highway. Using the telematics system’s Wi-Fi connection, the attackers
transmitted messages to disable the brakes and halt the engine functions [2].
Hence, an attacker usually connects to one of the system’s channels, invokes
some methods, and sends data items to establish an attack on the system.

The attack surface examines the sets of entry points, exit points, communi-
cation channels, and untrusted data of a system [24]. The entry point set holds
the means through which data can enter into the autonomous software system
from the vehicle’s environment (e.g., user inputs, sensor inputs, and incoming
signals). The exit point set carries the means that enable data to exit from the
system (e.g., outgoing signals). There exist various communication channels that
an attacker can use to connect to a vehicle. A remote attack in the vehicle soft-
ware system may occur through long-distance communication mechanisms such
as cellular and satellite radio. Access to the vehicle’s on-board diagnostics (OBD)
port permits physical attacks that enable attackers to connect to the internal
vehicle network [33]. In between are close-range wireless communications such as
Near Field Communication (NFC) and Bluetooth, which can be utilized to per-
form remote attacks with nearby relays and proxies. Finally, the untrusted data
set contains persistent data items stored on the nonvolatile memory of ECUs to
send or receive data indirectly.

The DV calculates the risk of I/O considering their type and the used mean
of communication. Nevertheless, not all I/O can be used in an attack. The attack
surface metric includes only the resources contributing to an attack. Hence, in
this step, some manual validation is required. We closely look at the DV metric
result to identify which elements can ease attacks.

The attack surface (AS) of each component is assigned one of the three levels1:
large (value of 8), medium (value of 3), and small (value of 1). Large AS indicates
that the component’s attack surface sets expose the system to multiple attacks.
Medium AS means that the attack surface of the component indicates the pos-
sibility of some attacks. Small AS suggests a very low probability of initiating an
attack on this component. The AS of component C is then estimated using Eq. (9),
where ωa is a weight assigned by security experts to emphasize the importance of
the attack surface, and La is the value assigned based on the level.

AS(C) = ωaLa (9)

1 We define specific level values to rate the risk. These values are identified to reflect
the level of risk and enable quantitative measurement. Different risk values have com-
parable ranges to reflect various risk levels accurately. Consistently, the highest risk
level between different parameters has a value of 8, and the lowest has 1. In between
these two levels, values are assigned depending on the number of medium levels (e.g.,
one medium level assigned value 3, two medium levels assigned values 4 and 2). Secu-
rity engineers can assign other values but have to follow the same approach assuring
proportional ranges in the risk values of different levels.
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Table 1. Attacker threat parameters. (see Footnote 1)

Parameter Definition Level Value

Skill Technical experience an

agent should possess

Non-specialists: No experience is required to

conduct an attack

8

Skilled: Some experience is expected in the

fundamentals of technology to initiate a successful

attack

3

Specialist: Profound knowledge in attacking

techniques is required to break the system

1

Knowledge Background knowledge an

agent should acquire about

the vehicle software system

architecture

Public: Information needed to attack a system is

publicly available (e.g., standards and protocols)

8

Restricted: Data required to initiate an attack is

shared with partners and protected by

non-disclosure agreement

4

Private: Sensitive data shared internally with

specific members is needed to conduct an attack

2

Critical: Information required to conduct an attack

is strictly shared with few members (e.g.,

cryptography keys)

1

Equipment Software tools and hardware

tools needed to attack a

vehicle

Standard: Tools needed are cheap and broadly

available (e.g., RTL-SDR)

8

Sophisticated: Obtaining the equipment is not easy

and expensive

3

Rare: Equipment required is not available and may

entail designing or producing a sophisticated tool

1

Opportunity The time and attack type

(remote, physical) needed to

break the system

Large: Attacking the system takes a short time and

can be conducted remotely

8

Medium: Attacking the system needs some time,

and either physical or remote access is required

3

Small: Attacking the system requires much time

with physical and remote access to achieve the

attack

1

Estimate Attacker Threat. We take a closer look at the agent that initiates a
threat. This step of the framework is vitally important to identify security decay.
As discussed earlier, attackers’ experience and knowledge are always evolving,
which affect the security of the system and make it weaker. To estimate the
attacker threat (AT), we employ four parameters: Skill, Knowledge, Equipment,
and Opportunity. Table 1 describes the parameters and assigns values (see Foot-
note 1) based on the defined levels. Similar parameters are utilized in the lit-
erature with slightly different definitions [3,11,20]. The AT of component C is
estimated using Eq. (10), where P is the set of parameters, ωp is the weight, and
Tp is the value of the parameter.

AT (C) =
P∑

p=1

ωpTp (10)

Estimate Likelihood of an Attack. An attack takes place by an agent that
targets vehicle system vulnerabilities. Hence, to estimate the likelihood of an
attack (LA) Eq. (11) is used, multiplying the attack surface probability with the
attacker threat probability.

LA(C) = AS(C) × AT (C) (11)
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Estimate Impact Level. Attacks’ impact may vary significantly; some may
cause minor issues that do not necessitate a rapid response, while others can
have devastating outcomes that require prompt resolution. We estimate the
impact level (IL) with five parameters: Safety, Operational, Financial, Privacy,
and Reputational. Vehicle attacks can affect different parties in the vehicle indus-
try, including passengers, drivers, pedestrians, vehicle manufacturers, and asso-
ciated companies. The five defined parameters estimate the impact considering
all these parties. For example, the safety parameter evaluates the direct physical
damage caused by an attack on the vehicle users, while the reputational parame-
ter considers the indirect harm to manufacturers. The parameters are presented
in detail in Table 2 with values(see Footnote 1) based on the impact level. We
define the safety impact levels based on ISO 26262 [10], a well-established safety
standard for vehicles. Similar parameters are utilized in the literature, but we
tailor the parameters’ level to fit the vehicle industry [4,19,21,30]. To estimate
the IL of an attack on Component C, Eq. (12) is used. F is the set of attack
impact parameters, ωf is the weight of the parameter assigned by security spe-
cialists, and If is the value of this parameter.

IL(C) =
F∑

f=1

ωfIf (12)

Identify Security Risk. The final security risk (SR) of a component is obtained
using Eq. (13), which links the likelihood of an attack with the impact level. The
security measures applied to protect the vehicle can lessen the threat. Thus,
when estimating the SR, security specialists have to analyze and review the
security controls adopted within a component to assess their ability to protect
the attack surface and diminish attackers’ capabilities. According to the analysis,
a vehicle component’s SR is classified into three levels: low, moderate, and severe.
Low level means that the component is not under risk. This could be due to the
security measures applied or because an attack probability is very low. Moderate
level indicates that an attack risk exists. However, countermeasures can be used
to lessen the risk. Severe level indicates that the component is facing very high
risk, and the result of an attack may be critical. Applying security measures at
this level might not be sufficient.

SR(C) = LA(C) × IL(C) (13)

4 Case Study

This section demonstrates the use of the AVSDA framework. We utilize Open-
Pilot (Version 0.7.9) [5], an open-source driver assistance system in our case
study [6]. OpenPilot is an Autopilot system that can perform various function-
alities, including Adaptive Cruise Control, Automated Lane Centering, Forward
Collision Warning, and Lane Departure Warning (LDW). Hence, the Autopilot
system offers SAE level three [7] driving features that can be integrated with dif-
ferent car models such as Honda and Toyota. OpenPilot has one component only,
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Table 2. Impact level parameters. (see Footnote 1)

Parameter Definition Level Value

Safety Safety of vehicle passengers,

pedestrians, and road users.

High: Life-threatening injuries with the possibility

of casualties.

8

Medium: Critical injuries with the possibility of

survivals.

3

Low: Moderate injuries with the assurance of

survivals.

1

None: No injuries. 0

Operational Interruption of vehicular

services.

High: Loss of significant subsystem in the vehicle

that causes poor driving conditions.

8

Medium: Some functionalities within the vehicle

system may not be operating correctly without

affecting passengers’ safety and driving conditions.

3

Low: Minor operations are interrupted that do not

affect the vehicle performance (e.g., audio services,

calling services).

1

None: No interruption 0

Financial Direct and indirect financial

losses affecting the vehicle

owner and manufacturer.

High: Enormous financial damages that leave the

vehicle manufacturer with bankruptcy risk.

8

Medium: Significant financial losses that slightly

affect the financial situation of the manufacturer.

3

Low: Minor financial losses that do not affect the

manufacturer operation.

1

None: No losses. 0

Privacy Damages caused by data

misusage, including users and

manufacturer information.

High: Data leakage and privacy violations affecting

a high number of users.

8

Medium: Data leakage and privacy violations

affecting a small number of users.

3

Low: Minor privacy violation without any data

leakages.

1

None: No data misusage. 0

Reputational Damages that affect the

reputation of the

manufacturer organization.

High: Loss of a large number of customers and

shareholders with the inability to recover and

restore a good reputation.

8

Medium: Loss of some customers. 3

Low: Some unsatisfied customers that can be

compensated.

1

None: No damages. 0

Autopilot. We apply the AVSDA phases on the Autopilot component, illustrat-
ing the usefulness of this framework. Such an examination can verify the metrics’
effectiveness by comparing the files’ vulnerability scores with the number of dis-
covered vulnerabilities in every file. We finalize this section by demonstrating
the importance of applying AVSDA periodically.

4.1 Vulnerability Analysis

We show that the vulnerability analysis phase of AVSDA can be automated
efficiently to identify potentially weak components. We apply five steps of the
vulnerability analysis phase to OpenPilot, and the results are summarized in
Table 3. We assign the weights of the parameters based on the security criticality
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Table 3. Vulnerability analysis of OpenPilot.

Steps Value Details

Compute Code
Complexity (CX)

CX(OpenPilot) = 52, 608 + 2(6, 298)
+3(6, 148) = 83, 648

The system has a total of 52,608 SLOC,
6,298 ND,
and 6,148 NOC. Since ND and NOC are associ-
ated
with vulnerabilities, we give them weights of
2 and 3, respectively.

Measure Component
Coupling (CC)

CC(OpenPilot) = 9 OpenPilot communicates with the Engine Control
Module, Brake Control Module, Safety System,
Seat Control Unit, Powertrain Control Module,
Transmission Control, Telematics Control Unit,
Active Front Steering, and Battery Junction
Box.

Identify Input and Output
Data Vulnerability (DV)

DV (OpenPilot) = 242 + 2(407)+
3(397) + 5(1) + 5(1) + 15 + 2(73)+
5(211) + 5(1) = 3, 478

OpenPilot’s defined I/O are all fluctuating. The
system receives and sends data using serial
(inputs: 242 and outputs: 15), Controller Area
Network (CAN) (inputs: 407 and outputs: 73),
Global Positioning System (GPS) (inputs: 397
and outputs: 0), Vehicle to Infrastructure (V2I)
(inputs: 1 and outputs: 211), and User to
Vehicle (U2V) (inputs: 1 and outputs: 1)
communications. We assign different weights for
these communication means as they pose
different risks.

Discover Past Security
Issues (PSI)

PSI(OpenPilot) =
(0.5)2 + 18(0.51) + 50(0.50) = 59.25

There are 69 reported bugs in OpenPilot
reported since 2018 (1 in 2018, 18 in 2019,
and 50 in 2020). Higher weight is assigned
to attacks that occurred in 2020.

Compute Component
Maturity (CM)

CM(OpenPilot) = 100(
30, 688

52, 608
) = 58 Within OpenPilot, 30,688 SLOC is modified.

None
of the applied changes are labeled as security
enhancement or maintenance.

with respect to the architecture of OpenPilot.2 For example, since Nesting Depth
(ND) and Number of Children (NOC) of Code Complexity (CX) are associated
with vulnerabilities, we apply weights of 2 and 3, respectively. This assessment
verifies the applicability of the designed steps.

We then quantitatively evaluate the vulnerability analysis phase’s effective-
ness in identifying vulnerabilities in OpenPilot files. Such an examination can
verify AVSDA metrics’ effectiveness by comparing the files’ vulnerability scores
with the number of discovered vulnerabilities in every file. In total, as of October
2020, OpenPilot has 425 files and 60 documented resolved bugs. We reviewed
the reported bugs and linked 24 bugs to the system files. We compare the per-
formance of the used metrics in the AVSDA vulnerability analysis phase with
two other sets of metrics. One set is code complexity and churn metrics [32],
and the other set is code complexity, code coupling, and cohesion metrics [15].
We identify true-negative, true-positive, false-positive, and false-negative cases.
Then, we measure accuracy, precision, and recall rates.

The results are summarized in Table 4. The AVSDA metrics outperform the
other approaches in accuracy, precision, and recall. Our metrics achieve a 78%
recall ratio indicating that they can identify vulnerable files efficiently. AVSDA

2 Security experts can change these values if needed.
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Table 4. Comparison of AVSDA metrics with other metrics.

AVSDA metrics Complexity, and code
churn metrics [32]

Complexity, coupling,
and cohesion metrics [15]

True-negative 390 395 344

True-positive 11 7 10

False-negative 3 7 4

False-positive 21 16 10

Accuracy 94% 94% 83%

Precision 34% 30% 12%

Recall 78% 50% 71%

Fig. 2. Relationship between average metrics ratio and number of vulnerabilities.

had a notably high ratio of 94% for accuracy, indicating that the overall vulner-
ability identification is correct. Though the precision ratio of AVSDA is better
than the other approaches, it is relatively low. This means that the number of
files recognized as vulnerable and do not possess any vulnerability is high. While
this causes extra unneeded work, having more false-positive cases to enhance the
true-positive results is better in vulnerability identification.

We further analyze the performance of AVSDA by examining the relationship
between the average metrics ratio and the number of bugs reported in a file as
shown in Fig. 2. The highest number of reported bugs in a file is 6, which AVSDA
identifies as the most vulnerable with a ratio of 1. As shown in Fig. 2, the Security
Vulnerability (SV) assigned by the AVSDA metrics is proportional to the files’
number of vulnerabilities. The higher the number of vulnerabilities, the higher
is the SV value. In contrast, the other two sets of metrics [15,32] show more
arbitrary behavior where files with three reported bugs are assigned a higher
vulnerability value than files with six bugs.
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4.2 Risk Analysis

To validate the risk analysis phase’s applicability, we apply the steps to Open-
Pilot and show their usefulness. We measure the attack surface (AS) of OpenPilot
by reviewing the system’s inputs, outputs, channels, and methods. All the system
inputs are fluctuating and OpenPilot utilizes multiple communication means,
increasing the attack surface. For example, users can connect their smartphones
to OpenPilot, exposing the vehicle to different remote attacks [33]. OpenPilot
uses nonvolatile memory, allowing untrusted data to be stored. Accordingly, AS’s
level is considered as large (value of 8), and we assign a weight of 3 to emphasize
the criticality of the attack surface. According to Eq. (9), the estimated value of
AS is 24.

Next, we estimate attacker threat (AT) using the parameters of Table 1.
Attacking the Autopilot system requires outstanding experience in different
domains, including networking and security. Hence, specialist skill (value of 1)
is required to pose a risk on the system. Some background knowledge about
the system is required to initiate an attack. Since OpenPilot is open source, we
assign the knowledge parameter a value of 8. Moreover, the equipment needed
to conduct an attack is standard (value of 8), like a computer and ports. Finally,
performing an attack on the Autopilot system requires preplanning, and either
physical or remote access is needed (value of 3). With these level values, AT is
20. The likelihood of an attack (LA) can now be estimated 480 based on Eq. (11).

Next, we determine the impact level of an attack (IL). Establishing an attack
on an autopilot system might not have severe direct consequences but can lead
to drastic indirect results. The vehicle can operate without autopilot function-
ality. However, such functionality communicates with critical components (e.g.,
engine and brake ECUs). If a malicious attack successfully propagates, the vehi-
cle’s safety and operational status are left in critical condition. Hence, the safety
and operational parameters are both at a high level (value of 8). The manu-
facturing company might face significant financial losses (value of 3) when all
the models affected by such an attack are recalled. Moreover, OpenPilot collects
data, including locations, Controller Area Network (CAN) messages, and road
conditions. The leakage of such data can violate the privacy of affected users
only (value of 3). Finally, such attacks have a moderate reputational impact,
with some possible customer loss (value of 3). After estimating all the param-
eters of Table 2, the impact level (IL) can be determined using Eq. (12). We
assign a weight of 4 for the safety and operational parameters to emphasize
their importance, and the final value of IL is 73.

The last step is determining the security risk (SR) based on the likelihood
of an attack, impact level, and practiced security measures. First, we evaluate
SR using Eq. (13), which results in 35,040. Then we review OpenPilot’s security
practices to identify the SR level. OpenPilot follows MISRA c2012 [9] software
development guidelines, preventing common coding errors. However, this is not
enough to mitigate all security issues. Accordingly, we assign a moderate SR
level, which indicates that an attack risk exists.
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4.3 Framework Application Frequency

The AVSDA framework should be applied periodically to identify security decay.
For example, consider a vehicle attack technique becomes publicly available with
a video explaining how to accomplish the attack. The effect of such an incident on
the vehicle system’s security can be detected by the AVSDA framework. Attacker
threat skill parameter is changed from a specialist to a non-specialist with a value
of 8. Accordingly, AT rises to 27, increasing the likelihood of an attack to 648.
The system’s security risk extends from 35,040 to 47,304, indicating a security
decay and the need for applying robust security measures to defend the vehicle.

5 Conclusion

We propose an Autonomous Vehicle Security Decay Assessment (AVSDA) frame-
work that estimates the security decay of vehicle software systems by quanti-
tatively measuring systems’ vulnerabilities and risks. The AVSDA framework
is composed of two phases. The vulnerability analysis phase uses security met-
rics to identify vulnerable components. The risk analysis phase carefully evalu-
ates attack likelihood by identifying the attack surface and estimating attack-
ers’ threats. The framework further analyzes attacks’ severity by assessing their
impact. The final step of the risk analysis phase defines security risk based on
the applied security measures. The AVSDA framework should be applied peri-
odically to recognize changes in the security risk and possible decay.

Though AVSDA is highly effective at identifying likely locations of software
defects that lead to vulnerabilities, a software focus risk analysis cannot address
certain classes of vehicle attacks that do not target vulnerabilities. For example,
sensor spoofing attacks, sybil attacks, and replay attacks are not software defects
related attacks and cannot be estimated by the AVSDA framework.

We evaluated AVSDA vulnerability analysis phase metrics’ performance by
experimenting with their usefulness in identifying vulnerabilities of OpenPilot,
an Autopilot system. The results show that the framework is capable of iden-
tifying vulnerabilities with an accuracy rate of 94%. The case study shows the
efficiency of AVSDA in systematically estimating security risks and discovering
security decay.
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Abstract. In this paper, we introduce a reliable method based on Trans-
actional Synchronization Extensions (TSX) side-channel leakage to break
the KASLR and reveal the address of the Global Descriptor Table (GDT)
and Interrupt Descriptor Table (IDT). We indicate that by detecting
these addresses, one could execute instructions to sidestep Intel’s User-
Mode Instruction Prevention (UMIP) and the Hypervisor-based miti-
gation and, consequently, neutralized them. The introduced method is
successfully performed after the most recent patches for Meltdown and
Spectre. Moreover, we demonstrate that a combination of this method
with a call-gate mechanism (available in modern processors) in a chain
of events will eventually lead to a system compromise despite the restric-
tions of a super-secure sandbox in the presence of Windows’s proprietary
Virtualization Based Security (VBS). Finally, we suggest software-based
mitigation to avoid these issues with an acceptable overhead cost.

Keywords: Cache side-channel · TSX · Meltdown · KASLR

1 Introduction

As signs of progress in computer science, from Artificial Intelligence [15] to High-
Performance Computing [9,26] continues, the role of computer security research
in both hardware and software is drawing more attention to the community.
Recently discovered microarchitectural attacks in modern CPUs, are known to
be devastating. They are easily implemented, practical, and often independent
from the operating system making them an imminent threat to computer privacy.
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Among them, speculative-execution based side-channel attacks are more ubiq-
uitous as new disclosures continue to showcase the increasing failure of secured
design in the computer hardware [2]. These attacks are capable of circumventing
all existing protective measures, such as CPU microcode patches, kernel address
space isolation (Kernel Virtual Address (KVA), shadowing, and Kernel Page-
Table Isolation (KPTI)). While side-channel attacks have been well-known for
a relatively long time, speculative-execution based attacks are contemporary,
known facts indicate that they will persist for some time in the future.

Pioneered by Meltdown [22] and Spectre [18] attacks, numerous variations,
and extension of microarchitecture vulnerabilities have been found, and their
corresponding exploitation has proposed latterly. ForeShadow [35], MDS [24],
and ZombieLoad [29] should be alluded as the most famous ones. Moreover, new
works have shown the extensiveness of these attacks. As an example, NetCAT
[20] presents a practical network-based side-channel attack.

After Meltdown, more strict KASLRs such as KAISER [5] have been
employed in today’s operating systems to prevent similar attacks since short-
term hardware mitigation is not effortlessly attainable. KAISER completely iso-
lates the user-mode and kernel-mode memory layout by creating a Shadow rep-
resentation of the mapped memory. However, there are still some unprotected
addresses and parts by KALSR that required by the architecture. Hence, know-
ing these structure’s addresses could lead to severe problems. In addition, discov-
ered hardware-based vulnerabilities on Memory (DRAM) such as RowHammer
[17] allow attackers to execute more destructive and offensive malicious code, to
trespass or gain access to restricted and private information [32].

Furthermore, it is possible and suitable to take advantage of some hardware-
specific structures that are implemented across operating systems. In the same
way, once can gather masked and hidden internal information of the operating
system which could be used for malicious purposes. To be more precise, the
structures of Global Descriptor Table (GDT) and Interrupt Descriptor Table
(IDT) are one of the essential parts of protected mode, which are not heavily
isolated in the user-mode and kernel-mode address layout. By overwriting these
structures in certain conditions, one can perform a privilege escalation attack.
Also, by the use of the same variations of timing side-channel attacks as in
Meltdown, (e.g., TSX-based attacks), the virtual addresses of these structures
in the kernel memory could be revealed.

In this work, we demonstrate that GDT and IDT addresses could be discov-
ered by TSX side-channel to perform privilege escalation attacks, even after Melt-
down mitigation, bypassing the mitigations in modern Intel processors, partic-
ularly User-Mode Instruction Prevention (UMIP). Furthermore, it is illustrated
that the proposed attacks can be executed in virtualized environments, such as
the latest Microsoft Hypervisor release (Hyper-v) and Virtualization Based Secu-
rity (VBS). In summary, the contributions of this paper are as follow:

– A concrete TSX side-channel attack is performed to discover GDT and IDT
addresses in the kernel mode in a system with KAISER isolated memory
layout bypassing UMIP.
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– We show that a full system compromise could be achieved by revealing GDT
and IDT virtual addresses in the memory, incorporated with call-gate mech-
anism along with a conventional Write What Where.

– The possible mitigation investigated for this vulnerability and low-cost
software-based mitigation for the operating systems to avert these attacks
is suggested.

2 Preliminaries and Background

In this section, required preliminaries and background knowledge for the
software-based side-channel attacks, along with some concepts KAISER, TSX
side channels, UIMP and Descriptor-Table Exiting are reviewed.

2.1 KASLR, Meltdown and KAISER

The security of computers highly relies on memory isolation, meaning that the
kernel address ranges are not meant to be accessible from user prospective. The
most conventional method to address such requirement is the Kernel Address
Space Layout Randomization (KASLR) which include the random assignment of
kernel objects rather than constant addressing. Discovered Meltdown [22] attack
was able to exploit side effects of out-of-order execution on modern processors to
read arbitrary kernel memory locations, including crucial personal information
and passwords. By exploiting the out-of-order execution as an indispensable
performance feature, the attack is independent of the operating system, and it
does not rely on any software vulnerabilities. Meltdown was able to break all
the security considerations provided by address space isolation as well as the
virtualized isolation developed by the same infrastructure. The affected systems
by Meltdown include a wide range of personal computers, smart phones, and
even the enterprise cloud servers. Moreover, available TSX technology in Intel
CPUs enables Meltdown to read the protected kernel memory addresses with
the high-performance speed of 500 Kbps. [22].

Generally, Meltdown mitigation relies on isolating kernel and user memory
pages with different methods. The widely used approach to address this issue is
the employment of KAISER [5], which is implemented as Kernel Virtual Address
Shadow (KVAS) (a term coined by Microsoft) [23] in Microsoft Windows and
KPTI in Linux [4]. In KAISER, placing a small portion of information in the
user-mode is inevitable since operating systems are required to implement func-
tions necessary to handle system calls and interrupts, which are directed to kernel
space.

As will be discussed, leaving the tables which hold the addresses of interrupt
handler (e.g., Interrupt Descriptor Table) or other tables managing the segmen-
tation (e.g., GDT) visible to user mode, and ignoring to protect their addresses,
allow the attacker to endanger the system. However, to adversely take advantage
of the information left unprotected in the user-mode, essential internal mecha-
nisms should be known which will be explored later.
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2.2 TSX Cache Attack

Intel TSX refers to a product name for two x86 instruction set extensions, called
Hardware Lock Elision (HLE) and Restricted Transactional Memory (RTM)
[33]. HLE is a set of prefixes that could be added to specific instructions. These
prefixes are backward-compatible. Hence, the code including them, also works
on older hardware platforms. On the other hand, RTM is an extension adding
several instructions to the instruction set that are used to declare regions of
code that should execute as part of a hardware transaction. A RTM transaction
comprises the region of the code that is encapsulated between a pair of xbegin
and xend instructions. Instruction xbegin also provides a mechanism to define a
fall-back handler that is called if the transaction is aborted. xabort can be used
by the executing code to abort the transaction explicitly. By employment of the
TSX, generating an exception or an interrupt which is handled in the kernel
could be avoided, resulting in side-channel attacks to be more resistant to noise
with a more reliable outcomes [22]. As will be explored later on, We employ TSX
to trigger the initialization of our proposed attack.

2.3 Descriptor-Table Exiting

Descriptor-Table Exiting is a hardware mechanism to restrict guest machines in
VMX Non-Root from executing instructions such as LGDT, LIDT, LLDT, LTR,
SGDT, SIDT, SLDT, and STR [6]. This mechanism has been used in Microsoft
Virtualization Based Security as an exploit mitigation, which avoids memory
address leakage and provides an absurd situation for the attacker to find the base
address of GDT or IDT, among other details such as Control Registers. Microsoft
uses hypervisor as a hardware security mechanism, and in VM Control Structure.
In order to configuring this hardware feature, an special field is presented which
is referred as the Descriptor-Table Exiting. Descriptor-Table Exiting is declared
in Intel Manual [6]. This control field determines whether executions of LGDT,
LIDT, LLDT, LTR, SGDT, SIDT, SLDT, and STR cause VM exits. This decla-
ration would be critical to the attack model we intend to describe.

2.4 User-Mode Instruction Prevention (UMIP)

UMIP is a security feature present in new Intel Processors. If enabled, it prevents
the execution of particular instructions if the Current Privilege Level (CPL) is
greater than 0. If these instructions were executed when CPL > 0, user space
applications could have access to system-wide settings such as the global and
local descriptor tables, the task register and the interrupt descriptor table. These
are the instructions covered by UMIP in accordance to the Intel [6]:

– SGDT: Store Global Descriptor Table, SIDT: Store Interrupt Descriptor
Table

– SLDT: Store Local Descriptor Table, SMSW: Store Machine Status Word
– STR: Store Task Register
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If any of these instructions are executed with CPL > 0, a general protection
exception (GP) is issued when UMIP is enabled. In order to enable this feature,
operating systems can set the 11th bit of the CR4 [6].

3 Attack Primitives: GDT and Call-Gate Mechanism

Our proposed attack is fundamentally based on the existing hardware features
in the processors. As an indispensable part of the suggested attack, GDT and
its properties are described in detail in the this section. Moreover, here we dis-
cuss how the improper configuration might create vulnerabilities caused by the
existing and possibly disabled hardware features.

3.1 Global Descriptor Table

GDT is an important data structure available in Intel x86-family CPUs provid-
ing the characteristics of the memory areas used during program execution. It
includes the base address, the size, and access privileges which is fundamental
in terms of the security prospective. GDT is a main table in x86 and protected-
mode that still exists in AMD64 [1] and Intel IA-32e. The GDT structure in the
x86 system is shown in Fig. 1.

Fig. 1. GDT structure in a 32-bit machine

While the proposed attack here works on both x86 and x64 architectures, we
have used the x64 version of GDT since it is more widespread rather than the
other version.

3.2 GDT in 64-Bit

Although the segmentation is omitted in the modern systems in protected-mode
with paging enabled, the GDT still presents in 64-bit mode. A GDT must be
defined but is generally never changed or used for segmentation. The size of the
register has been extended from 48 to 80 bits, and 64-bit selectors are always
Flat (thus, from 0000000000000000 to FFFFFFFFFFFFFFFF) which should also
be taken into account when the attack chain is designed.
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On the other hand, 64-bit versions of Microsoft Windows forbid hooking of
the GDT. Attempting to do so would cause the machine to bug check. In our
circumstances, it is not a problem for our case as long as some mechanisms for
preventing these hooks called Kernel Patch Protection exists. This mechanism is
known as PatchGuard, which checks the system in random intervals of between
3 to 10 min. So it is possible to patch GDT in a glance then revert everything to
the previous normal state again to avoid such errors. In this context, we use GDT
as a descriptor for call-gate to complete the attack chain instead of a descriptor
for segmentation.

3.3 Call-Gate Mechanism

Call-gates are used to transfer the execution to other rings e.g., ring 0, 1, 2,
3. Instructions like SYSENTER and SYSCALL are used in modern operating
systems for transitioning between every rings to ring 0. But for the transition
between other rings (e.g., ring 3 to 2 or 2 to 1), the call-gates would be used.
The type field located in the GDT structure as indicated in Fig. 1 represents a
4-bit field that could get various values and completely change the GDT entry
behavior and definition [13].

After finding the target entry, the type value should be changed to one Gate
accordingly. For example, we use 0xc (1100 - 32-bit call-gate) in the final payload.
There are specific terms in call-gate used to build the final payload. In order to
exploit the features that call-gate provides, the suitable privilege level should
be set in the data segmentation used in the GDT. Here are the privilege levels
defined in this context:

– Current Privilege Level (CPL). CPL is stored in the selector of currently
executing the CS register. It represents the privilege level (PL) of the cur-
rently executing task and also PL in the descriptor of the code segment and
designated as Task Privilege Level (TPL) [13].

– Descriptor Privilege Level (DPL). It is PL of the object which is being
attempted to be accessed by the current task or put differently, the least
privilege level for the caller to use this gate [13].

– Requester Privilege Level (RPL). It is the lowest two bits of any selector.
It can be used to weaken the CPL if craved [13].

– Effective Privilege Level (EPL). It is maximum of CPL and RPL thus
the task becomes less privileged [13].

Fundamentally, any task in an arbitrary code needs to fetch the data from the
data segment. Therefore, the privilege levels are checked at the time a selector
for the target segment is loaded into the data segment register. Three privilege
levels are invoked into the privilege checking mechanism. Ultimately, the payload
must meet the following conditions in the fields:

– RPL of the selector of the target segment.
– DPL of the descriptor of the target segment
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Note that the access is allowed only if DPL is greater than or equal to the
maximum of CPL and RPL, and a procedure can only access the data that is at
the same or less privilege level.

3.4 From Call-Gate to Code Execution in Ring-0

Call-Gate in x86. In order to use x86, fields of a unique set of call-gate should
be filled as described in Table 1.

Selector field should be 0x8 to point to KGDT R0 CODE entry of GDT,
which describes the kernel-mode in Windows. The type of it should be set to
0xc, and the minimum ring that can invoke this call-gate is 0x3 (DPL = 0x3
(user-mode)), and also, it should be present in memory (pFlag = 0x1 ) [13].

Table 1. Organization of the fields in the GDT

Selector 0x8

Type 0xc

dpl 0x3

pFlag 0x1

Offset 0 15 0x0000ffff & address

Offset 16 31 0x0000ffff & (address >>16)

Call-Gate in Long Mode. Call-gate are unavoidable parts of Intel structure,
and even in 64-bit long mode. In addition to GDT, LDT is also present but
special cases like segmentation using the FS/GS segment are replaced by the new
MSR-based mechanism using IA32 GS BASE and IA32 KERNEL GS BASE
MSRs [7]. The fact that LDT and GDT are still presented in long mode is
used in Windows when the kernel utilizes the UMS (User-Mode Scheduling). So
Windows creates a Local Descriptor Table if a thread tends to use UMS [11].

3.5 Disabled UIMP

As described previously UIMP protection could be employed as an external priv-
ilege check. However, in our observations Linux and Windows do not use UIMP
features for some compatibility issues. Thus, this opens a kernel memory address
leak to user-mode applications, and valid addresses can be used for exploiting
the Operating System Kernel or as a valid address for other side-channel mea-
surements. In the following section, we demonstrate how these addresses could
lead to a full system compromise. Nevertheless, Microsoft decided to remove the
support for GDT, SIDT, SLDT, SMSW, and STR instructions in hypervisor as
explained. Our observation shows that even if operating systems use UMIP or
DESCRIPTOR-TABLE EXITING separately or both of them simultaneously,
it is still vulnerable to side-channel attacks based on TSX.
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3.6 Far Calls and Far JMPs

The far forms of JMP and CALL refer to other segments and require privilege
checking. The far JMP and CALL can be performed in two methods:

– Without call-gate Descriptor: The processor permits a JMP or CALL directly
to another segment only if:
1. DPL of the target segment = CPL of the calling segment
2. Confirming bit of the target code is set and DPL of the target segment

≤ CPL
Note that Confirming Segment may be called from various privilege levels,
but is executed at the privilege level of the calling procedure.

– With call-gate Descriptor: The far pointer of the control transfer instruction
uses the selector part of the pointer and selects a gate. The selector and offset
fields of a gate form a pointer to the entry of a procedure.

4 The Proposed Attack

In this section, we describe how the explored mechanism are used to create the
attack. Then, we show the results obtained from the Intel processor and show how
the valid base address of IDT and GDT could be obtained without using SIDT and
SGDT. Next, we show how to build a valid call-gate entry and use it in combination
with a write-what-where to execute an adversary code. Then attacker crafts the
shellcode in ring 0 in order to elevate privilege or hide the malware in the kernel.
Figure 2 illustrates the high level overview of the proposed attack.
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Fig. 2. A high-level overview of the proposed attack.

According to Fig. 2, in 1 the local unprivileged adversary carries out a con-
ventional TSX timing side channel in order to disclose GDT address, bypassing
UIMP 2 . The details is explained in Sect. 4.3. In 3 , the attacker arms the pro-
cedure with an existing Write Where What vulnerability explained in Sect. 4.7.
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Then in 4 , the adversary configures The GDT descriptions to point out his own
malicious payload via the Call Gate features in accordance to the descriptions
in Sect. 4.5. Finally the malicious data is loaded in the desired address in 5 and
wrongly executed by the processor with the proper permissions in 6 .

4.1 Threat Model

As a basic assumption for the attack model, the attacker can execute code in the
victim’s computer in a limited level of privilege, including a highly limited user-
mode or in a sandboxed application with all the common defenses (e.g., SMEP,
SMAP, DEP) enabled and configured suitably. In order to fully compromise the
system an attacker has a prior write-what-where (CWE-123) [25] vulnerability
in operating system kernel. Furthermore, as an extension to the proposed attack
mechanism, the adversary might also execute code in a vitalized environment as
well in the shared-computing platform (e.g. cloud computing) scenario.

4.2 Experimental Setup

The experiment to showcase the effectiveness of the attack chain has been exe-
cuted on a system equipped with 9th generation of Intel processor (i9-9880H),
running on a Windows 19H1 (also known as 1903) with 16 GB of DDR4 RAM.
Moreover, the same attack procedure is carried out on a system with a 6th gen-
eration CPU (6820HQ), to ensure the generalization of the method. The test
has also been successfully experimented on 19H2 and the latest 20H1 Microsoft
Windows, Ubuntu Debian 7, and Mac OSX Mojave as well.

4.3 Finding GDT Address

In order to locate the GDT address, a timing measurement is required to discover
the elapsed time in accessing a mapped and an unmapped address in the kernel
space memory. Experimentally, a valid address gives the response time about
190–197 clock-cycles (different based on architecture) and an invalid address
access returns after about 220–234 clock-cycles based on our results in 6th Gen
Intel (6820HQ).

To implement such a measurement, a combination of the kernel memory
address and access time (RDTSCP) + TSX (XBEGIN, XEND) is employed.
Then the response time difference in accessing a mapped and unmapped
addresses could lead to the identification of mapped addresses.

Furthermore, if a particular processor does not support the RDTSCP instruc-
tion, then one could get similar results by the serialization process. More pre-
cisely, it is required to serialize instructions to execute all of the instructions
fetched before the targeted instruction. So a combination of CPUID + RDTSC
is adequately employed.
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Fig. 3. The results of timing TSX-based measurements on a uni-core system

Note that the first implementation indeed gives more precise results compared
to executing RDTSC. Our experiments show that it is not suitable to use CPUID
for the second RDTSC as it takes several clocks-cycles. Also, it would be possible
to use the timing thread, if a operating system prohibits the usage of RDTSC
or RDTCSP [8], or intercepts the execution of CPUID using Intel VMX [14]
or Intel FlexMigration [10]. Timing threads could even have a higher resolution
rather than RDTSC/RDTCSP on many processors [30,31]. By deploying these
instructions, an automatic process is triggered to find valid targeted addresses.

1 rdtscp ; get the current time clock of processor

2 ... ; save the rdtscp results somewhere (e.g registers)

3

4 mov rax ,[ Kernel Address] ; Move a kernel address into tax

5 xbegin $+xxx ; Use Intel TSX in order to suppress any error

in user -mode

6 ; The error always happens because we are trying to read

kernel address

7 mov byte ptr [rax], 0 ; Try to write into kernel address

8 ... ; Error occurs here (program never reaches here)

9

10 xend ; End of TSX

11 rdtscp ; Compute the core clock timing again in order to see

how many

12 ; clocks CPU spends when trying too write into our

address

Listing 1.1. The timing measurement code deployed by the use of TSX technology
(RDTSCP)

The result consists of four valid elements. The first one is the addresses that
are valid for IDT. Second is the address of GDT, and third is the address of
SYSCALL MSR LSTAR (0xC0000082) - (The kernel’s RIP SYSCALL entry for



48 M. S. Karvandi et al.

64-bit software) [36]. Finally, the fourth is where the page tables are mapped.
The timing results of the deployed measuring method is depicted in Fig. 3.

Our observation in the latest 20H1 (and other versions of Windows) shows
that GDT and IDT are mapped in a particular order, even though there is no lim-
itation to assign different addresses. By way of example, Windows maps IDT in
a unique address. IDTR is fffff80021eeb000, and GDTR fffff80021eedfb0
(GDTR = GDT Base + GDT size) and this sequence is the same each time
Windows is restarted when the KASLR addresses changed. The difference is
0x2000 bytes or two pages. Thus, the address of IDT could first be determined,
leading to revealing the address of GDT where another page of 0x2000 bytes is
mapped following the first valid page address.

While there are other pages mapped into memory addresses (e.g., shadow
functions for system-calls and interrupts), the addresses are far from the target
addresses (e.g., fffff8001d34e500). Therefore, the address among IDT, GDT,
Interrupt Shadows, and System Call Shadows could be identified. A payload for
call-gate could build later finding the GDT base address. The following com-
mands in Listing 1.2 shows the process of identification of valid addresses on all
the cores by realizing the distance between GDT and IDT addresses.

2 ; Accessing First Core’s IDT and GDT

3 0: kd > r idtr

4 idtr=fffff8077925b000

5 0: kd > r gdtr

6 gdtr=fffff8077925dfb0

7 ; Accessing Second Core’s IDT and GDT

8 0: kd > ∼1

9 1: kd > r idtr

10 idtr=ffff8401bc053000

11 1: kd > r gdtr

12 gdtr=ffff8401bc055fb0

13 ; Accessing Third Core’s IDT and GDT

14 1: kd > ∼2

15 2: kd > r idtr

16 idtr=ffff8401bc0f5000

17 2: kd > r gdtr

18 gdtr=ffff8401bc0f7fb0

19 ; Accessing Forth Core’s IDT and GDT

20 2: kd > ∼3

21 3: kd > r idtr

22 idtr=ffff8401bc1a4000

23 3: kd > r gdtr

24 gdtr=ffff8401bc1a6fb0

Listing 1.2. The procedure of employing IDTR and GDTR

We observed that allocated addresses for IDT and GDT have a special pattern
for each core. For instance, here are several addresses that Windows allocated
for IDT of its first core:
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– fffff8036385b000, fffff8027ca5b000
– fffff80053a5b000, fffff8076525b000

Our experiments indicate that these addresses tend to follow a specific pattern.
As the pseudo-code illustrated in Listing 1.2, the GDT has the same pattern
As IDT as well. Our experiments show that, regardless of the system in hand,
for the first core, the pattern of fffff80XXXX5b000 is spotted, where XXXX can
be changed due to the prevention mechanism of KASLR. The first bytes in the
pattern address is to create a canonical address, and the least significant byte
has a constant value of 5b000 pattern. This brings 0xffff = 65535 possibilities
to find the address of IDT and GDT in the first core of Windows. The same
pattern can be applied to other cores as well. In a uni-core system, one can
test up to 10 addresses per second with excellent precision, using the explained
timing side-channel. Moreover, one could also hasten this measurement up to 20
addresses per second, in compromise to the loss of accuracy. Approximately, it
takes 109 min to find the address of the GDT for the first core. Of course, the
patterns for other cores could be discovered as well. As an example, in the 8-core
system, there are eight possibilities for IDT and GDT addresses, which could
speed up the search 8x faster. Also, it is possible to use other cores simultaneously
for accelerating the search process.

4.4 Build Call-Gate Entry

We have built our payload based on the description discussed in Sect. 3.4.

4.5 Using FAR JMPs, FAR CALLs

As explored in Sect. 3.6, the near forms of JMP and CALL transfer within the
current code segment requires only limited checking. However, the far forms of
JMP and CALL are referred to as other segments and require privilege checking.
Hence, when the CPU fetches a far-call instruction, it will use that instruction’s
‘selector’ value to look up a descriptor in the GDT (or in the current LDT).

If the call-gate descriptor is fetched, and if access is allowed (i.e., if
CPL ≤ DPL), then the CPU will perform a complex sequence of actions which
will accomplish the requested ring-transition. CPL is based on the least signif-
icant 2-bits in register CS (also in SS). The new value for SS:SP comes from
a special system-segment, known as the TSS (Task State Segment). The CPU
locates its TSS by referring to the value in register TR (Task Register).

4.6 Returning Back to the User-Mode

After the call-gate is executed in kernel-mode, and we run shellcode in kernel-
mode, it is time to return to the user-mode in order to avoid a crash in kernel-
mode like BSOD in Windows or Kernel Panic in Linux.

In order to return to user-mode or any other outer ring that is used as the
source of FAR CALL or FAR JMP, one should execute lret instruction in the
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inner ring. It is analogous to the procedure when an interrupt is returned to the
previous state.

1. Use the far-return instruction: ‘lret’
– Restores CS:IP from the current stack, Restores SS:SP from the current

stack
2. Use the far-return instruction: ‘lret $n’

– Restores CS:IP from the current stack
– Discards n parameter-bytes from that stack, Restores SS:SP from that

current stack

4.7 Combining Attack with CWE-123

CWE-123 stands for write-what-where bugs. We have employed CVE-2016-7255
to modify our specific GDT entries. Consequently, the kernel-mode code exe-
cution of the shell-code using a FAR CALL is achieved. Also, another effect of
this attack is to change the supervisor bit of page table so that page tables are
readable and writable in user-mode (or self-ref of death attack).

5 Discussion: The Possible Mitigation

The simple approach of complete isolation of the kernel is not able to fully unmap
GDT from the user-mode since, in all modes of execution, the GDT descriptors
should be available. Every segment register has a visible part and a hidden
part. The hidden part sometimes referred to a descriptor cache or a shadow
register. When a segment selector is loaded into the visible part of a segment
register, the processor also loads the hidden part of the segment register with the
base address, segment limit, and access control information from the segment
descriptor pointed to by the segment selector. The information cached in the
segment register (visible and hidden) allows the processor to translate addresses
without taking extra bus cycles to read the base address and limit from the
segment descriptor. In systems in which multiple processors have access to the
same descriptor tables, it is the responsibility of software to reload the segment
registers when the descriptor tables are modified. Otherwise, an old segment
descriptor cached in a segment register might be used after its memory-resident
version has been modified [6].

In our mitigation setup we used a custom hypervisor to monitor and detect
any SYSCALL, SYSRET, and interrupt execution. We deploy the proposed mit-
igation to switch GDT/IDT entries between user mode and kernel mode. Our
hypervisor simulation shows a 2.7% delay overhead due to the additional exe-
cution introduced by the mitigation. However, the same methodology could be
deployed within the operating system reducing the overhead significantly.

It is worthy of mentioning that, complete mitigation to this attack would
be the employment of separate GDT base in kernel and user layout. The kernel
GDT should not be mapped into the user-mode, and Operating System Kernel
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has to change the address of GDTR each time a ring modification occurs. For
example, it shall use SGDT to change the GDTR after every user-mode to kernel-
mode switch caused by SYSENTER and SYSCALL or every interrupts handler
routines. The mapped GDT in the user-mode should also be modifiable only by
the kernel (not user-mode). Hence, the user-mode application cannot access a
valid address for GDT, and the discovered GDT address by the attacker is only
valid when it is on user-mode. So, if a bug such as Write-What-Where occurs
in the kernel or any system-level driver or kernel module, it cannot modify the
user-mode GDT; thus, if the user-mode application tries to use call-gate in ring
3, the corresponding GDT entry is invalid, and the attack fails.

6 Related Efforts

Micro-architectural software attacks have been widely investigated in the con-
text of revealing or damaging private and sensitive data. Recent works such as
[3,34,37] aim to discover data on the victim system secretly. Recent works have
demonstrated that the state of the art mitigation for such attack are still insuffi-
cient. Authors in [16], present a novel memory-sharing-based attack that breaks
the KASLR on KPTI-enabled Linux virtual machines. Similarly, TagBleed [19],
abuses tagged TLBs and residual translation information to break KASLR. Fur-
thermore, adversary techniques for exploitation on shared Virtual Environments
like [27] have shown to be promising in practice.

With regards to much older timing side-channel attacks, Osvik et al. [28]
introduced the PRIME+PROBE on the L1 cache, to attack the AES implemen-
tations, discovering secret keys. Consequently, more promising and sophisticated
methods like [37] were proposed.

Moreover, other software-based attacks take advantage of on DRAM pio-
neered by [17] have also shown to be very practical, jeopardizing the private data
stored in memory in various circumstances. In terms of exploiting the abandoned,
but existing technologies in modern CPU designs, which is the primary concern
of this paper, the possible vulnerabilities regarding the structure of GDT and
IDT, were previously studied by [12]. Researchers in [12] proposed a technique
to gain a more stable kernel-level exploitation. These techniques were shown to
be applicable in Windows-NT systems. Moreover, interestingly, several utilized
mechanisms in this article, such as call-gate has also been used for securing the
systems. For instance, [21] present an approach to prevent sandbox leakage based
on call-gate.

7 Conclusion

The impact of the hardware vulnerability exploited by software techniques has
been proved to be dreadful. In this paper, we presented a TSX based side-channel
attack, revealing the addresses of GDT and IDT in the kernel space, which
could be exploited by an arbitrary user-mode application. We demonstrated
that a single Write-What-Where vulnerability in the operating system could
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lead to a full system compromise through call-gate feature available in today’s
CPUs, irrespective of the version of the operating system. We have successfully
evaluated our method by implementing an attack on the 9th Generation Intel
processors.

The attack presented here is based on the descriptor structures available
on the modern processors (e.g., Intel as well as AMD [1]) although have hid-
den address by ASLR but are mapped into the user-mode address layout.
The exploitation perfectly works with common Write What Where bugs. For
instance, any bug in a JavaScript application on an isolated web-browser in the
kernel address or graphic functions of the operating system (e.g., Win32k bugs
in Windows) will be enough to be exploited. Moreover, we suggested software
mitigation for this vulnerability since the presented attack bypasses the recent
mitigation to Meltdown Attack (e.g., KAISER).
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Abstract. An enterprise comprises of information processing systems that help
realize its business processes. Automation of these systems is achieved with the
help of IT assets like hardware, software and network devices. Assets and their
interconnections may contain vulnerabilities, which can be exploited by threats,
leading to breach of security of information and business processes. Such probable
security risks aremanaged by implementing an Information SecurityManagement
System (ISMS). An important aspect of ISMS is the measurement of information
security posture of the enterprise; this enables the comparison of information secu-
rity status over time, and provides assurance to stakeholders about the amount of
security that exists within the information processing systems. Different stake-
holders have separate concerns regarding the security of an Enterprise IT System.
This paper attempts to identify all such stakeholders and analyze their security
concerns. A set of metrics has been defined that covers all facets of ISMS and
addresses security concerns of all categories of stakeholders. This would help in
the design of an effective and efficient ISMS.

Keywords: Enterprise information security · Enterprise stakeholders · ISMS ·
Security concern · Security metrics · Security risk

1 Introduction

An enterprise comprises of information processing systems that help realize its busi-
ness processes. Automation of these systems is achieved with the help of assets like
hardware, software and network devices. Assets and their interconnections may contain
weaknesses, or vulnerabilities [1, 2], which can be exploited by threats [1], leading to
breach of security and privacy of information and business processes. Such probable
risks need to be controlled [1] and all stakeholders need to be assured that information
is being processed securely by the enterprise. This is usually achieved by implement-
ing an Information Security Management System (ISMS) [3]. An important aspect of
ISMS is the measurement of information security and privacy posture of the enterprise;
this enables the comparison of information security and privacy status over time, and
provides assurance to stakeholders about the amount of security and privacy that exists
within the information processing systems. Standards like ISO/IEC 27004 [4] and NIST
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SP 800-55 [5] describe the components of an enterprise security metrics programme
to comply with ISMS standards ISO/IEC 27001 [3] and NIST SP 800-53 [6], respec-
tively. However, they do not state specific metrics that may be used to measure assurance
and improvement in enterprise security and privacy posture. Implementers of enterprise
security usually limit themselves to finding gross measures like count of virus outbreaks,
count of security-aware personnel etc. These can, at themost, provide sketchy ideas about
some aspects of security metrics programme implementation; they do not pinpoint the
ground-level effectiveness of ISMS.Moreover, researchers have mostly concentrated on
finding ways of measuring specific characteristics of security devices. Such values can
prove the efficacy of individual devices like firewalls, IDS/IPS etc. [7, 8]; they cannot
provide stakeholders with composite figures that prove the effectiveness of complete
ISMS. Thus, the definition, modelling and implementation of security and privacy met-
rics continue to intrigue researchers and it has remained a hard problem in information
security research [9].

From an enterprise information security perspective, the need is to develop a com-
prehensive set of metrics that can i) address the security and privacy concerns of all
types of stakeholders, and ii) help in the continual improvement of enterprise ISMS [4].
This paper tries to deal with this issue by defining metrics that i) cover all facets of
ISMS, and ii) address security and privacy concerns of all categories of stakeholders of
enterprise information systems. The paper is organized as follows. A survey of related
work is given in Sect. 2. Section 3 categorizes the stakeholders of an enterprise and
describes their concerns. Mapping between these concerns and security/privacy param-
eters is given in Sect. 4. Section 5 presents a set of ISMS metrics, while the relation
between stakeholder concerns and ISMS metrics is detailed in Sect. 6. Finally, Sect. 7
concludes the paper.

2 Related Work

There has been some significant research on specific areas, and techniques, of informa-
tion security measurement. Marcus Pendleton et al. have published a detailed survey on
systems security metrics [10]. The authors have investigated the relationships among
metrics of system vulnerabilities, metrics of defense power, metrics of attack or threat
severity and metrics of situations, using a hierarchical ontology. Tupper and Zincir-
Heywood defined VEA-bility (vulnerability, exploitability, attackability) as a security
metric [11]. Victor-Valeriu Patriciu et al. proposed metrics to evaluate security vulner-
abilities and controls [12]. Besides, several researchers have presented research on risk
assessment and risk metrics [13, 14].

As is evident, most of the published works have drawn inspiration from software
quality metrics. Though this can be a good starting point, and may give some idea about
security aspects of software and hardware, such metrics cannot be used to comprehend
the complete security posture of an enterprise information system. Now let us discuss
some studies that have been performed specifically on ISMSmetrics. ISO/IEC 27004 [4]
and NIST SP 800-55 [5] describe how to implement information security metrics pro-
grammes in compliance with the requirements of ISMS. Gaffri Johnson has suggested
that five core processes, namely IT and business alignment, information security risk
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management process, compliance process, awareness process and audit process, should
bemeasured in order tomaintain an effective ISMS [15]. The paper provides some exam-
ples illustrating the measurement of these processes. A. P. Aldya et al. [16] proposed a
methodology for identifying the objects, measurement parameters and metrics based on
the provisions of ISO/IEC27004.VeselinMonev proposed amethodology [17] for evalu-
ating the maturity level of the security controls and clauses of ISO/IEC 27001 [3]. In his
master’s thesis, Matthias Mödinger has proposed a set of metrics and key performance
indicators for ISMS [18]. The work is based on the principles of ISO/IEC 27004 [4] and
caters specifically to the requirements of universities.

Thus, it is obvious that the published papers and reports do not state specific metrics
that may be used to measure assurance and improvement in enterprise ISMS. They
either suggest some gross methodologies for implementing ISMS metrics programme,
or cater to the needs of specific industries/domains. This paper tries to fill this research
gap by defining ISMS metrics that will help stakeholders to understand the amount of
security/privacy that exists within an enterprise. The metrics are domain-independent,
and have been defined keeping in mind the security and privacy concerns of different
categories of stakeholders.

3 Stakeholders of an Enterprise and Their Concerns

An enterprise comprises of different stakeholders who are directly, or indirectly, associ-
atedwith its business processes and information assets. In fact, the existence and business
of an enterprise are governed by its stakeholders. Analyses of standards like ISO/IEC
27001 [3] and ISO/IEC 27002 [19] reveal that stakeholders can be broadly categorized as
Employees, Clients, Third Parties and Authorities. In this section, specific security and
privacy concerns of different stakeholders are discussed; this is the outcome of interac-
tions of the author with stakeholders during several instances of ISMS implementation.
It may be noted that in case of some stakeholders, only a subset of the listed concerns
(for that stakeholder category) may be applicable.

Employees - Employees are usually under the direct supervision of an enterprise.
They can be further categorized as “management” or “operational” personnel. While,
management establishes the objectives and business strategies of an enterprise, these
are implemented and maintained by operational staff. Since, the nature of their con-
tributions to enterprise functions are different, their concerns also vary. Specifically,
managers own the business processes and critical information assets of an enterprise,
and establish ISMS for protecting the same. This leads to the following security and
privacy concerns: (i) Security of enterprise Business Processes and critical information
assets – these are the primary assets of an enterprise, and are directly owned by senior
management; (ii) Safety of client data – management of an enterprise are accountable
for the protection of data of all its clients (individuals and other enterprises) with whom
business relations exist; (iii) Safety of personal data – it is the concern of managers to
ensure security of personal data of all employees (including their own data); (iv) Reputa-
tion of enterprise – if the reputation of an enterprise is sullied, the senior management is
usually held accountable; and (v) Efficacy of the implemented ISMS – it is important to
ensure that the implemented ISMS complies with the information security requirements
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of the enterprise, and effectively addresses the security concerns of all stakeholders;
moreover, greater the efficacy of ISMS, higher is the Return on Investment (RoI) of
security processes and controls.

As is obvious, management personnel have concerns pertaining to information secu-
rity and privacy requirements of the entire enterprise. However, the concerns of oper-
ational staff would be more of a personal nature; they would be worried about issues
that are directly related to their roles. Specifically, operational personnel are concerned
about: (i) Safety of their personal data; and (ii) Whether they will be accountable for
others’ misdeeds – sometimes, owing to lack of proper audit trails and monitoring, inno-
cent members of staff may be held accountable for misdeeds which have been actually
perpetrated by others; this is a major area of concern for operational personnel.

Clients - Clients of an enterprise are bothered about the safety of their personal data
or assets (e.g. money, devices etc.), and the legal protection of their consumer rights.
They are usually not concerned about the security of the enterprise, unless it affects them
directly, or indirectly.

Third Parties - Third parties refer to all such external organizations or individuals
who help an enterprise to realize its business objectives. Some examples of third parties
are: Internet Service Providers (ISPs), third party data centres, organizations to which
software development is outsourced, materials suppliers, third party employees, and
courier companies and delivery personnel. Third parties are concerned about the security
and privacy of those business processes and information which may have a bearing on
their own business interests. Specifically, they are interested in the following: (i) Security
of third party enterprise data and Business Processes; (ii) Safety of their personal data;
(iii) Protection of their reputation – third parties are usually concerned whether loss of
reputation of an enterprise, withwhich they are doing business, will also tarnish their own
image; (iv) Protection of legal and contractual obligations – this includes all statutory
requirements and service-level agreements between organizations; and (v)Whether they
will be accountable for others’ misdeeds.

Authorities - Authorities refer to all such entities that define and enforce legal and
regulatory frameworks for enterprises. It is mandatory for enterprises to conduct their
businesses within the ambit of these frameworks and to comply with relevant require-
ments. Examples of authorities are Reserve Bank of India (for Indian banks), Office
of the Comptroller of the Currency (for US banks), ARCEP (for France’s Electronic
Communications, Postal and Print media distribution), certifying authorities (ISO/IEC,
ISACA etc.) and judiciary. Security and privacy concerns of authorities usually com-
prise of the following: (i) Safety of data and assets of clients of an enterprise; (ii) Safety
of data and assets of third party enterprises; (iii) Security of nation – this is applicable
for critical-sector enterprises like defense organizations, space research organizations,
banks etc.; (iv) Reputation of nation; and (v) Compliance.
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4 Security/Privacy Concerns and Parameters

The security and privacy concerns of stakeholders are addressed by implementing con-
trols (like policies, procedures, laws, security tools etc.) within the ambit of ISMS. Con-
trols, in essence, help to protect security and privacy parameters of enterprise assets [19].
Hence, in order to select appropriate controls, it is important to identify the parameters
that relate to the existing concerns of stakeholders. Analysis of the concerns described in
the previous section reveal that they can be decomposed into requirements for the protec-
tion of specific security and privacy parameters of Business Processes and information
assets. The analysis is presented in this section.

The relevant parameters that have been considered are as follows [3, 20]: confi-
dentiality (C); integrity (I); availability (A); authenticity; non-repudiation - ability to
prove the occurrence of a claimed event or action and its originating entities; anonymity
- inability to identify the owner of personally identifiable information; unlinkability -
inability to establish a link between two or more pieces of data items; undetectability
- inability to determine the existence of a data item; accountability - responsibility for
actions; legal & contractual requirements; and image/reputation. Let us now identify
the parameters corresponding to stakeholder concerns.

Security of Business Processes and Information Assets – Traditionally, security is
interpreted as the ability to protect C, I, A of assets. Another parameter that is of sig-
nificance is authenticity. It is important to ensure that a business process or information
asset is authentic; that is, it is indeed that asset which it claims to be.

Safety of Client Data – Similar to the case for information assets, safety of client data
items, which is in the possession of an enterprise, would entail the protection of their C,
I and A. Additionally, safety would also require ensuring the privacy of those data items
that comprise of personally identifiable information [19]. Privacy has been defined as
the protection of anonymity, unlinkability and undetectability parameters, in addition to
C, I and A [20]. Thus, this concern can be addressed by ensuring the protection of six
parameters – C, I, A, anonymity, unlinkability and undetectability. It may be noted that
another privacy parameter, unobservability, has not been explicitly considered in this
work as it is a combination of unlinkability and undetectability.

Safety of Personal Data and Assets – This is similar to the above case. It can
be addressed by ensuring the protection of C, I, A, anonymity, unlinkability and
undetectability.

Reputation of enterprise – This concern can be directly mapped to the parameter
image/reputation. This is an intangible parameter and depends on the perception of
customers and users.

Efficacy of Implemented ISMS – This concern is not related to any parameter explic-
itly. However, effective and efficient ISMS would imply that all required security and
privacy parameters have been adequately protected.

Accountability forOthers’Misdeeds – It is important to implement controls (monitor-
ing mechanisms, audit trails etc.) so that innocent operational personnel and third parties
are not held responsible formisdeeds perpetrated by others. These controls help to protect
the image/reputation of innocent personnel as miscreants are not able to repudiate, and
can be held accountable for, their misdeeds. Hence, the parameters that are significant
for this security concern are accountability, non-repudiation and image/reputation.
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Legal Protection of Consumer Rights – The rights of consumers should be pro-
tected as per applicable legal and contractual requirements. This ensures that the
image/reputation of consumers is not sullied due to mishap at the enterprise end.
This also ensures that consumers are not held accountable for misdeeds perpetrated
by others. Hence, the parameters accountability, legal & contractual requirements and
image/reputation of consumers are important here.

Protection of Legal and Contractual Obligations – Third parties are concerned about
the protection of legal and contractual obligations as specified in service level agreements
and statutory requirements. This will ensure that their image/reputation is not sullied and
they are not unnecessarily held accountable for others’ misdeeds. Hence, the parameters
accountability, legal & contractual requirements and image/reputation of third parties
should be addressed here.

Security of Nation – Authorities are concerned about the protection of national secu-
rity. Security and privacy breaches in critical-sector enterprises may jeopardize the
integrity and/or availability of national assets (like power grids, networks etc.). This
may, in turn, cause breaches of legal and contractual obligations with other countries,
organizations etc., thus making the nation accountable for the same. Hence, this security
concern should be addressed to protect integrity and availability of national assets, and
accountability and legal and contractual obligations of the nation.

Reputation of Nation – It is essential to prevent security and privacy breaches in
critical-sector enterprises so that the image/reputation of the nation is not tarnished.

Compliance – An enterprise has to comply with all relevant legal and contractual
obligations. Failure to do so may lead to litigations, loss of business, blacklisting etc.

The above analyses show that each security and privacy concern pertains to the
protection of a set of relevant security and/or privacy parameters. The results have been
summarized in Table 1 (columns 2 and 3).

Table 1. Security and privacy concerns, corresponding parameters and ISMS metrics.

Sl. No Security concern Security/Privacy parameter ISMS metric

1 Security of
business
processes and
information
assets

Confidentiality, integrity,
availability, authenticity

Risk metric

2 Safety of client
data

Confidentiality, integrity,
availability, anonymity,
unlinkability, undetectability

Risk metric, policy compliance
metric

3 Safety of
personal data and
assets

Confidentiality, integrity,
availability, anonymity,
unlinkability, undetectability

Risk metric, policy compliance
metric

4 Reputation of
enterprise

Image/Reputation Risk metric, legal/regulatory
compliance metric, contractual
compliance metric, controlled
incident metric, uncontrolled
incident metric

(continued)
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Table 1. (continued)

Sl. No Security concern Security/Privacy parameter ISMS metric

5 Efficacy of
implemented
ISMS

All parameters Risk mitigation metric,
controlled incident metric,
uncontrolled incident metric,
process effectiveness metric,
efficiency metric

6 Accountability
for others’
misdeeds

Accountability,
non-repudiation,
image/reputation

Risk metric, non-repudiation
metric, policy compliance
metric, legal/regulatory
compliance metric, contractual
compliance metric, composite
compliance metric

7 Legal protection
of consumer
rights

Accountability, legal &
contractual requirements,
image/reputation

Legal/Regulatory compliance
metric, contractual compliance
metric

8 Protection of
legal and
contractual
obligations

Accountability, legal &
contractual requirements,
image/reputation

Legal/Regulatory compliance
metric, contractual compliance
metric

9 Security of
nation

Integrity, availability,
accountability, legal &
contractual requirements

Risk metric, legal/regulatory
compliance metric, contractual
compliance metric, controlled
incident metric, uncontrolled
incident metric

10 Reputation of
nation

Image/Reputation Risk metric, legal/regulatory
compliance metric, contractual
compliance metric, controlled
incident metric, uncontrolled
incident metric

11 Compliance Legal & contractual
requirements

Policy compliance metric,
legal/regulatory compliance
metric, contractual compliance
metric, composite compliance
metric

Security/privacy requirements of an enterprise can be derived as a union of the
security/privacy concerns of all its stakeholders, as described above. An enterprise
implements ISMS, including controls and specific techniques, to address its security
and privacy requirements. The next section proposes a set of metrics that can be used
to comprehensively measure the effectiveness of implemented ISMS, along with the
amount of security and privacy that exists in the enterprise.
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5 ISMS Metrics

Establishment of ISMS requires the implementation of controls that can address stake-
holder concerns. It is important for stakeholders to assess the efficacy of the ISMS in
meeting their security and privacy requirements. This can be achieved by defining and
generating relevant metrics that correctly convey the status of the ISMS. In this section,
a set of ISMS metrics is defined. These metrics cover the ISMS processes and activities
as required by ISO/IEC 27001 standard [3].

RiskMetric - Risk values are measures of insecurity in an enterprise. Risk is defined
as the probability that threats will exploit vulnerabilities to breach security parameters
and cause harm to assets [1]. Lower the risk value corresponding to a parameter, greater
is the assurance that the parameter is difficult to breach. The process of computing risk
values is referred to as risk assessment. There are several well-known risk assessment
methodologies [1]; hence, this paper does not propose any new methodology or risk
metric.

Authenticity Metric - Authenticity metrics provide assurance that the information
assets, along with related processing systems/applications, and users of assets are gen-
uine. These metrics can be derived from data generated by mechanisms that verify the
claimed identities of the source and destination of information. Thus, authenticity metric
for application api, μauth(api), can be computed as:

μauth
(
api

) = (
countauth

(
api

)
/ count

(
api

)) + (
countauth

(
inp

(
api

))
/ count

(
inp

(
api

)))

+ (
countauth

(
usr

(
api

))
/ count

(
usr

(
api

)))

(1)

where, countauth(api) denotes the no. of authentic instances of application api
that were executed in the enterprise during the period of measurement; count(api)
is the total no. of instances (authentic and unauthentic) of application api for the
same period; countauth(inp(api)) denotes the no. of authentic inputs received by api,
while count(inp(api)) gives the total no. of authentic and unauthentic inputs received;
countauth(usr(api)) denotes the no. of authentic users and systems that have accessed
application api during the period of measurement; count(usr(api)) gives the total no. of
users and systems that have accessed api.

Thus, it may be seen that:

i. μauth(api) = 0 when countauth(api) = countauth(inp(api)) = countauth(usr(api)) = 0
for a measurement period;

ii. μauth(api) = 3 when all instances of application api, along with its inputs and users,
have been authentic during a period of measurement.

Hence, 0 ≤ μauth(api) ≤ 3.
Non-repudiation Metric - This metric signifies the denial of actions of users per-

taining to the access and use of an application or system and/or receipt of output from
the application or system. Thus, non-repudiation metric for application api, μnrep(api),
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can be computed as:

μnrep
(
api

) = (
1 − countrep

(
acc

(
api

))
/ count

(
acc

(
api

)))

+ (
1 − countrep

(
out

(
api

))
/ count

(
out

(
api

))) (2)

where, countrep(acc(api)) denotes the no. of instances, during the period of mea-
surement, when users have falsely denied accessing/using application api, while
count(acc(api)) gives the total no. of accesses of application api by users during that
measurement period; countrep(out(api)) denotes the no. of cases, during the period of
measurement, when users have falsely denied receiving output from application api,
while count(out(api)) gives the total no. of instances when users have received output
from application api during that measurement period.

Thus, it may be seen that:

i. μnrep(api) = 0 when countrep(acc(api)) = count(acc(api)) and
countrep(out(api)) = count(out(api)) for a measurement period;

ii. μauth(api) = 2 when countrep(acc(api)) = countrep(out(api)) = 0.

Hence, 0 ≤ μauth(api) ≤ 2.
Compliance Metrics - These metrics depict the level of compliance of imple-

mented security processes with enterprise’s objectives and policies, laws, regulations
and contracts. Compliance objects (policies, laws, contracts etc.) comprise of sets of
to-do activities. These activities can be mapped to implemented security controls, pro-
cesses and techniques. Gap Analysis may be performed to identify compliance gaps.
Weighted averages of gaps (with policies, laws, contracts etc.) generate different types
of compliance metrics, namely Policy-compliance, Legal/Regulatory compliance and
Contractual-compliance metrics.

Policy Compliance Metric - Information security policies state the objectives of an
enterprisewith respect to establishment of security practices and techniques. Examples of
policies are Acceptable Use Policy, Access Control Policy, Anti-Virus Policy, Backup
Policy, E-Mail Policy, Incident Management Policy etc. Evidence of implementation
and enforcement of a policy is demonstrated with the help of records, which can be
maintained either as physical documents or soft copies. Successful implementation of a
security policy signifies execution of the statements specified in the policy document.

sAn enterprise should assign relative weights (wi) to policy statements in [0, 1] based
on their priorities (“1” signifies highest priority). Implementation scores (si) of policy
statements can be obtained in [0, 1] by analyzing corresponding records (“1” means
“completely implemented”). The policy compliance metric compμpy(pyi) for policy pyi
can be computed as follows:

compμpy
(
pyi

) = � wisi|0 ≤ wi, si ≤ 1 and � wi = 1 (3)

Table 2 lists some statements of Backup Policy, along with a sample assignment
of relative weights. It also shows the implementation scores of policy statements for a
particular measurement period. Hence, the compliance metric for backup policy is:

compμpy(Backup Policy) = (0.30 ∗ 1) + (0.25 ∗ 0.8) + (0.20 ∗ 0.5) + (0.25 ∗ 0.9)

= 0.825 ≈ 0.8
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Table 2. Sample statements of backup policy, their relative weights, implementation scores.

Policy statement Rel. Wt. (wi) Imp. score (si)

All critical information shall be backed up periodically 0.30 1

The backup media shall be stored with sufficient protection 0.25 0.8

Backup copies of critical information system software shall not
be stored in the same location as the operational software

0.20 0.5

Backup information shall be tested at some specified frequency 0.25 0.9

It may be seen that 0 ≤ compμpy(pyi) ≤ 1; compμpy(pyi) has a value 0 when none of
the statements of policy pi has been implemented, while it has max. value 1 when the
policy has been completely implemented. Compliance metrics for individual policies
can be combined to obtain the overall Policy Compliance Metric for the enterprise:

compμpy = �
(
wi ∗ compμpy

(
pyi

))|0 ≤ wi ≤ 1 and � wi = 1 (4)

Here, wi denote the weights that can be assigned to individual policy compliance
metrics as per their relative importance. The weights may vary depending on the specific
requirements and priorities of the enterprise. compμpy signifies the status of compliance
of the entire enterprise with respect to applicable security policies.

Legal/Regulatory Compliance Metric - Laws and Regulations that are applicable to
an enterprise need to be identified and implemented. Examples include IT Act, Privacy
Laws, Cryptographic Laws, Reserve Bank of India (RBI) regulations for Indian banks
and financial institutions etc. Like policy statements, applicable provisions and sections
of laws and regulations should be listed, and relative weights (wi) should be assigned as
per their priorities. Records of implementation should bemaintained as evidence of legal
and regulatory compliance. There is a difference between implementation of policies and
laws/regulations; the latter are either implemented in totality, or not implemented at all.
Partial implementation of laws and regulations is not acceptable to authorities. Hence, in
case of legal/regulatory compliance metrics, implementation scores (si) assume binary
values. If a section or provision has been implemented completely, the value of si is 1;
else it is 0.

Legal/regulatory compliance metric compμlg(lgi) for law/regulation lri can be
computed as follows:

compμlr(lri) = � wisi|0 ≤ wi ≤ 1, � wi = 1, si ε {0, 1} (5)

Like policy compliance metric, 0 ≤ compμlr(lri) ≤ 1.
Compliance metrics for individual laws and regulations can be combined to derive

the overall Legal/Regulatory Compliance Metric for the enterprise as follows:

lrμcomp = �
(
wi ∗ compμlr(lri)

)|0 ≤ wi ≤ 1, � wi = 1 (6)

Here, wi denote the weights that can be assigned to individual legal/regulatory com-
pliance metrics as per their significance. compμlr gives the status of compliance of the
entire enterprise with respect to applicable laws and regulations.
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Contractual Compliance Metric - An enterprise may enter into contracts with third
parties for supply of goods, software, services, personnel etc. Such contracts define terms
and conditions to be followed by the participating enterprises, including service levels.
It is important to periodically check for compliance with the terms of contracts so that
deviations can be detected and corrected early.

The executable items of a contract need to be identified and prioritized by an enter-
prise. Based on the priorities, relative weights have to be assigned to each item. As in
case of legal and regulatory compliance, partial fulfillment of a feature, or contract item,
does not hold any significance. A feature is either implemented fully, or not implemented
at all. Hence, using notations similar to the ones for legal/regulatory compliance metric,
contractual compliance metric compμct(cti) for contract cti is given by:

compμct(cti) = � wisi|0 ≤ wi ≤ 1, � wi = 1, si ε {0, 1} (7)

As is obvious, 0 ≤ compμct(cti) ≤ 1. The composite Contractual Compliance Metric
for all applicable contracts of an enterprise is obtained as:

compμct = �
(
wi ∗ compμct(cti)

)|0 ≤ wi ≤ 1, � wi = 1 (8)

Here, wi denote the relative weights of individual contractual compliance metrics.
Composite Compliance Metric - It may be important for senior management of an

enterprise to obtain an overall idea about the status of compliance of its business and
management functions with applicable policies, laws, regulations and contracts. The
composite compliance metric would serve this purpose and is computed by combining
the values of individual compliance metrics in a specified proportion. Thus,

compμ = (
w1 ∗ compμpy

) + (
w2 ∗ compμlr

)

+ (
w3 ∗ compμct

)|0 ≤ wi ≤ 1, � wi = 1
(9)

Here, w1, w2 and w3 represent relative weights of individual compliance metrics. It
is obvious from Eqs. (4), (6) and (8) that 0 ≤ compμ ≤ 1. Legal/regulatory compliance
of an enterprise is more critical than others; also, compliance to policies may be, in
general, least significant in the overall compliance wheel. Hence, the following values
of relative weights are suggested for computing compμ: w2 = 0.5, w3 = 0.3, w1 = 0.2.
Thus, following this scheme,

compμ = (
0.2 ∗ compμpy

) + (
0.4 ∗ compμlr

) + (
0.3 ∗ compμrg

) + (
0.1 ∗ compμct

)

(10)

However, an enterprisemay choose the values of relativeweights based on its specific
requirements.

Effectiveness Metrics - These metrics measure the effectiveness of implemented
ISMS processes and controls; this includes all security management activities like busi-
ness continuity management, threat management, incident management, asset man-
agement, awareness, education and training programmes etc. As stated above, ISMS
processes and controls address stakeholder concerns, enterprise objectives, risks, and
legal/regulatory issues. It is important to check the effectiveness and performance of the
processes and controls vis-à-vis the security needs.
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While compliance metrics help measure the conformance of implemented processes
to various compliance objects, effectiveness metrics produce measures that indicate
whether the processes have been actually successful in securing the enterprise. There
are different ways in which such effectiveness can be measured.

Risk Mitigation Metric - The amount of risk that is mitigated by implementation of
a process produces risk mitigation metric. This can be measured at an asset-, business
process-, or enterprise-level, whose criticality is considered while computing the metric.
A process that is able to reduce risk to a critical asset (or business process, or enterprise)
is considered to be more effective than one that reduces risk to a non-critical asset. Also,
this metric can assume different values at different points of time. For example, it may be
the case that a control (say, a firewall) is able to mitigate risk (say, unauthorized access
to a bank’s online portal) at a particular time of day (when network traffic is low), but it
is not able to do so during other times (when network traffic is high).

Considering the above factors, the value of risk mitigation metric, rmitμtc(prj), at
time tc, for a process (or control) prj, can be computed as follows:

rmitμtc

(
prj

)
= (� cr(ai) ∗ rfr(ai)) / n

where, rfr(ai) =
{

(rfo(ai) − rfc(ai)) / rfo(ai), if rfo(ai) ≥ rfc(ai)
(rfo(ai) − rfc(ai)) / rfc(ai), if rfo(ai) < rfc(ai)

(11)

Here, a1, …, an denote the assets whose risks are supposed to be addressed by prj;
cr(ai) ε {1, 2, 3} represents criticality of asset ai (or business process, or enterprise);
rfo(ai) denotes original risk factor (that is, before implementation of process or control)
of asset ai (or business process, or enterprise); and rfc(ai) denotes current risk factor (at
time tc) of asset ai (or business process, or enterprise). Values of criticality are assigned
as follows: cr(ai) = 1 if loss of asset ai has limited adverse impact on the business of
an enterprise; cr(ai) = 2 if loss of ai has serious adverse impact on enterprise business;
and cr(ai) = 3 if loss of ai causes severe or catastrophic adverse impact on the business
of an enterprise. The value of rmitμtc(prj) for a process (or control) prj is computed by
considering all assets (or business processes, or the entire enterprise) whose risks are
supposed to be addressed by prj; this is obvious from the summation (�) used in Eq. (11).

Itmaybeobserved that the value of rfr(ai) canbepositive or negative dependingon the
relative values of rfo(ai) and rfc(ai). rfo(ai) will be greater than rfc(ai) if the implemented
process (or control) is successful in mitigating the risk, leading to rfr(ai) having positive
value. rfr(ai) will be zero if the process has failed to mitigate the corresponding risk.
On the other hand, negative value of rfr(ai) indicates that the implemented process (or
control) has actually increased the risk; this is a cause for serious concern and should
be corrected without delay.

Since, cr(ai) ε {1, 2, 3} and−1≤ rfr(ai)≤ 1, the value of each product cr(ai) * rfr(ai)
belongs to [−3, 3]. Hence, −3 ≤ rmitμtc(prj) ≤ 3.

Incident Metric - This measures the incidents that occur despite implementation of
security processes. The reason could be either, a) improper/incomplete implementation,
or b) non-implementation of relevant processes owing to lack of correct identification of
security needs. Hence, these metrics can be classified as i) Controlled incident metrics,
and ii) Uncontrolled incident metrics. An incident may cause breach of security and/or
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privacy parameters, physical loss of IT assets, financial loss, loss of image or reputation,
or destruction of lives. Examples include buffer overflows, malware attacks, theft of
assets etc. An incident may be classified as low-impact (causing limited adverse effect on
enterprise business), medium-impact (serious adverse effect), or high-impact (severe or
catastrophic adverse effect) [6]. Different enterprises may perceive criticality of impacts
differently, depending on the significance of those impacts on their business processes.
For example, while defense-sector organizations may consider loss of confidentiality to
be of serious concern, the entire business of an e-commerce organization may revolve
around maximizing information dissemination. In case of the latter, loss of availability
of product information may have serious consequences.

Controlled Incident Metric - An enterprise should detect and record all informa-
tion security-related incidents and quantify their impacts to business processes. All such
incidents, which have occurred during a period of measurement, are grouped according
to the corresponding security processes or controls (that had been implemented to pre-
vent these incidents). The value of controlled incident metric, cincμtp(prj), for period of
measurement tp, for a process (or control) prj, can be computed as follows:

cincμtp

(
prj

)
=

{
3− (� Imp(Ini) / n), if n > 0
3, otherwise

where, Imp(Ini) denotes the impact of incident Ini

(12)

Here, In1, …, Inn denote the relevant incidents that have occurred during measure-
ment period tp.

Values of impact of incidents are assigned as follows: Imp(Ini) = 1 for low-impact
incidents; Imp(Ini) = 2 for medium-impact incidents; and Imp(Ini) = 3 if impact is
high. Since, Imp(Ini) ε {1, 2, 3}, 0 ≤ cincμtp(prj) ≤ 3. It may be noted from Eq. (12)
that the value of the metric is obtained after subtracting it from 3. This has been done
in order to maintain uniformity in interpretation of metrics; higher value of a metric
indicates positive result, that is proper ISMS implementation, while lower value means
the security processes and controls have not been implemented correctly.

Uncontrolled Incident Metric - This metric provides the impact value of all infor-
mation security-related incidents for which no relevant processes or controls have
been implemented. The value of uncontrolled incident metric, uincμtp, for period of
measurement tp can be computed as follows:

uincμtp =
{

� Imp(Ini) / n, if n > 0
0, otherwise

where, Imp(Ini) denotes the impact of incident Ini

(13)

Here, In1, …, Inn denote the uncontrolled incidents that have occurred during
measurement period tp. As in the case of controlled incident metric, 0 ≤ uincμtp ≤ 3.

Process Effectiveness Metric - Risk mitigation metric and controlled incident metric
can be combined to derive the effectiveness metric for an ISMS process or security con-
trol. For a measurement period tp, the value of process effectiveness metric, efctμtp(prj),
for a process or control, prj, can be obtained as follows:

efctμtp

(
prj

)
= floor

((
rmitμtc

(
prj

)
+ cincμtp

(
prj

))
/2

)
(14)
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The floor function has been used in order to derive a conservative estimate of process
effectiveness in case of floating point values. An enterprise should always strive to
achieve greater security by continually improving its ISMS implementation. Hence,
a conservative estimate will help to put things in perspective and spur the enterprise
towards better security implementation.

From Eqs. (11), (12), and (14), it may be seen that efctμtp(prj) ε {−2, −1, 0, 1, 2, 3}.
EfficiencyMetrics - Thismeasures the ability of implemented security processes and

controls to address security concerns efficiently. Each security concern can be assigned
a weight based on its priority. Priority of a concern usually considers business objectives
of an enterprise, along with security issues. A process or control is judged for efficiency
based on the amount of security concerns it addresses. Amount means no. of security
needs along with their relative weights. Time and cost are also factored in to consider the
amount of time and resources (money, manpower and infrastructure) needed to address
the corresponding concern, and implement the process or control, respectively. The value
of efficiencymetric, effyμtc(prj), at time tc, for a process (or control) prj, can be computed
as follows:

effyμtc

(
prj

)
= floor

((
� p(ai) /

(
ti
(
prj

)
∗ ci

(
prj

)))
/ n

)
(15)

Here, p(ai) = priority of the security concern of asset ai being addressed by prj;
ti(prj) = time needed by prj to address the security concern of asset ai; ci(prj) = cost
of implementation of prj; and a1, …, an denote the assets whose security concerns are
supposed to be addressed by prj.

Priority of a concern p(ai) can be assigned on a 3-point scale {1, 2, 3} based on
its relative importance, with 3 signifying highest priority. In order to estimate cost of
implementation and time elapsed to address the concern, thresholds can be defined. For
example, an enterprise may define a time threshold and a cost threshold, to and co, for
each security concern. ti(prj) can be determined as follows: ti(prj) = 3 if the time that
was needed to address the concern was greater than the threshold (ti(prj) > to); ti(prj) =
2 if the time needed was equal to or just less than the threshold (ti(prj) ≤ to); and ti(prj)
= 1 if the time needed to address the concern was very less as compared to the threshold
(ti(prj) « to). It may be noted that at any point in time only those cases are considered
in computing effyμtc(prj) where either the security concern has been addressed, or the
threshold to has already been exceeded. The value of ci(prj) can be assigned similarly
on a 3-point scale.

From the above discussion, it can be seen that effyμtc(prj) ε {0, 1, 2, 3}.

6 Mapping ISMS Metrics to Stakeholder Concerns

In this section, the proposed ISMS metrics are mapped to the security and privacy
concerns of stakeholders.

Security of Business Processes and Information Assets – Since risk is the measure
of insecurity with respect to the security and privacy parameters of assets, the value of
risk metric can be used to provide appropriate information regarding this concern.

Safety of Client Data – Since this concern is addressed by ensuring the protection
of C, I, A, anonymity, unlinkability and undetectability, the value of risk metric can
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provide proper idea regarding the safety of client data. Besides, enterprise policies ensure
protection of assets. Hence, policy compliance metric will serve to provide assurance
regarding relevant policies for the protection of client data.

Safety of Personal Data and Assets – This is similar to the previous case. Here, too,
risk metric and policy compliance metric provide appropriate information.

Reputation of Enterprise – Since this is related to the image/reputation of an enter-
prise, the values of compliance metrics can be used to judge the same. Specifically,
legal/regulatory compliancemetric and contractual compliancemetricwill reflect on the
reputation of the enterprise. The enterprise will also be judged on the presence/absence
of incidents. Hence, controlled incident metric and uncontrolled incident metric are also
important for this concern. Finally, the absence of risk within enterprise assets can serve
to enhance its reputation; thus, risk metric is also significant here.

Efficacy of the Implemented ISMS – The efficacy of implemented ISMS can be
understood by computing its efficiency and ascertaining the amount of risk that has been
mitigated, and the reduction in the number of security/privacy incidents. Hence, the
metrics that are important are risk mitigation metric, controlled incident metric, uncon-
trolled incident metric, process effectiveness metric, and efficiency metric. Uncontrolled
incident metric has been considered here as absence of controls, either deliberately or
due to oversight, is an inherent feature of the implemented ISMS.

Accountability for Others’ Misdeeds – This pertains to operational personnel
and third parties and concerns the parameters accountability, non-repudiation and
image/reputation. Hence, the metrics that can provide useful insight are risk metric (to
understand the protection mechanisms implemented), non-repudiation metric, policy
compliance metric (to understand relevant enterprise policies), legal/regulatory com-
pliance metric (to understand the legal protection angle for this concern), contractual
compliance metric (in case of third parties) and composite compliance metric.

Legal Protection of Consumer Rights – Since this concerns legal protection,
legal/regulatory compliancemetric and contractual compliancemetric are relevant here.

Protection of Legal and Contractual Obligations – Since these concern the legal and
contractual obligations pertaining to third parties, legal/regulatory compliance metric
and contractual compliance metric are relevant here.

Security of Nation –As discussed earlier, this addresses the protection of integrity and
availability of national assets, and accountability and legal and contractual obligations
of the nation. Hence, the metrics that can shed light here are risk metric (to know the
status of integrity and availability of national assets); controlled incident metric and
uncontrolled incident metric (to know whether incidents pertaining to national security
have occurred); legal/regulatory compliance metric and contractual compliance metric.

Reputation of Nation – This concern needs metrics like in the previous case, that
is risk metric, controlled incident metric, uncontrolled incident metric, legal/regulatory
compliance metric and contractual compliance metric.

Compliance – All compliance metrics are relevant for this security concern, that is
policy compliance metric, legal/regulatory compliance metric, contractual compliance
metric and composite compliance metric.

Thus, the proposed metrics have been mapped to the identified security and privacy
concerns of stakeholders. This is summarized in Table 1 (columns 2 and 4). This will
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provide assurance to the stakeholders of an enterprise regarding their specific concerns,
and allow them to make informed decisions pertaining to their future course of actions.

7 Conclusion and Future Work

In this paper, the different categories of stakeholders of an enterprise have been identified.
It has been shown that the stakeholders have separate security and privacy concerns
as their job functions, responsibilities and expectations are different. The concerns, in
essence, translate to requirements for the protection of specific security and privacy
parameters of assets. These requirements are addressed by establishing ISMS within the
enterprise. The paper has described how the identified concerns can be translated to such
protection requirements; this will help an enterprise to design and implement an ISMS
that caters to the requirements of all its stakeholders.

In order to assure stakeholders regarding the efficacy of the established ISMS, and
status of protection of the security and privacy of their assets, it is essential to continually
generate and convey relevant metrics. The paper has defined a set of comprehensive
metrics for ISMS that address the requirements of ISO/IEC 27001 standard [3]. The
metrics have been designed so that they correspond to the concerns of stakeholders and
they can obtain assurance regarding their protection needs.

Future work is geared towards the design of algorithms corresponding to the metrics
defined in this paper. A tool can be developed that generates attacks (for example,
using attack graphmethodology) and utilizes these algorithms to generate corresponding
metrics for an enterprise ISMS.
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Abstract. Attack trees and attack graphs are both common graphical
threat models used by organizations to better understand possible cyber-
security threats. These models have been primarily seen as separate enti-
ties, to be used and researched in entirely different contexts, but recently
there has emerged a new interest in combining the strengths of these
models and in transforming models from one notation into the other.
The existing works in this area focus on transforming attack graphs into
attack trees. In this paper, we propose an approach to transform attack
trees into attack graphs based on the fundamental understanding of how
actions are represented in both structures. From this, we hope to enable
more versatility in both structures.

Keywords: Graphical attack models · Attack trees · Attack graphs

1 Introduction

Attack trees are a common and useful tool for threat modeling. They allow us
to present attack components in a graphical structure that is relatively easily
explained and understood. Each node in an attack tree represents a action, and
its children represent actions in service to their parent action. The relationship
between the children of a node describe the relationship between the components,
OR, AND and SAND, describing if all components or only one component need to
be completed, and in which order. The major advantage of this model is its
compactness, allowing for even complex threats to be modeled concisely. Attack
trees are also usually more general: they model attacks applicable not to one
specific system, but to a category of systems. However, attack trees have several
downsides, particularly when understanding how the attacker interacts with the
system. For instance, it is not immediately evident from an attack tree what is
a possible plan of a successful attack.

An alternative modeling structure, which addresses these downsides, are
attack graphs [21]. Attack graphs represent all possible states a system may
hold, and the security-relevant transitions between those states. The major dis-
advantage of attack graphs is their size, with even small system models resulting
in excessively large attack graphs [22].
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Attack graphs are not as common in the security industry as the succinct
nature of attack trees makes them more appealing to human experts. Addition-
ally, attack graphs are arguably less intuitive, inhibiting their adoption and use
by non-technical security experts [6].

However, attack graphs and attack trees represent similar information, and
both are valid approaches for modeling potential attack vectors. Additionally,
for both attack graphs and attack trees, there is a major consideration of how
these models are to be generated, with automated generation at the forefront of
current threat model research [1,10,23].

These two threat models each have their disadvantages, and these disadvan-
tages are seemingly are easier to offset by using the other model. It would be
useful to have a way to transform one model into the other, and thus be able
to combine their perspectives. However, to the best of our knowledge, there is
currently no well-defined transformation between these two models. There have
been works proposing converting an attack graph into an attack tree [5,8,17].
Yet, to date, there has been little work into transforming an attack tree into an
attack graph. This is the problem that we address in the present paper.

2 Related Work

Attack trees (ATs) have been fairly widely studied to date. First introduced by
Schneier in 1999 as an efficient and effective means of conveying attack informa-
tion [20]; several researchers have worked to develop the threat model further.
Mauw and Oostdijk developed propositional and multiset semantics for attack
trees [14]. Jhawar et al. developed a refinement of the sibling relationships,
adding a Sequential AND or “SAND” relation, alongside discussing the util-
ity and semantic implications (the SP graph semantics) of such a refinement [9].
Many works have attempted to generate attack trees automatically, given that
many attack trees in industry are generated manually, and effective automatic
attack tree generation would be a valuable contribution to this space [8,23].

Attack graphs (AGs) similarly have been widely studied. Sheyner et al. laid
out a formal, syntactic structure of a state-based attack graph and proposed a
model checking method to generate attack graphs [21]. Noel and Jajodia focused
on using topological aggregation to manage the complexity of attack graphs [15].
Ou et al. described a more scalable methodology for generating attack graphs
from a logical model [16]. In a broad review of previous works on attack graphs,
Lippmann and Ingols found that scalability was the biggest limiting factor in the
overall use of attack graphs, with attack graphs quickly becoming too large to
be useful [13]. Other problems with attack graphs according to [13] include pre-
scribing meaning to the states within the attack graph structure and the usabil-
ity of attack graphs as a communication tool; given their size and complexity,
attack graphs can be hard to use in industry, as developing recommendations
from attack graphs is often too difficult. The primary recommendation in [13]
was that future work on attack graphs would need to pay special attention to
scalability.
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An important topic in the attack graph literature is the meaning behind
attack graph nodes. They most frequently represent the states of the associated
system after some actions are taken. However, as Lallie et al. points out, attack
graphs in literature suffer from inconsistency, and state definitions and labelling
schema are not above these inconsistencies [12]. In our review of the literature,
we have found much of the literature can be broadly classified into two categories
in the context of the meaning or labeling of attack graph states, those that use
logical conditions roughly based on state as in [16], or those that derive state
meaning from some underlying system as in [17]. We take our cues from the
literature in that final group, our states will be defined based on a set of actions
defined from a system model. We note that other types of attach graphs assign
different meaning to states, e.g., vulnerabilities or system hosts [10].

There have been some works on conversion between AGs and ATs, with the
research largely focused on the conversion from attack graphs to attack trees.

AG Ñ AT. Pinchinat et al., focused on generating attack trees from attack
graphs using the ATSyRA approach [17,18]. We are attempting the reverse
transformation, and a similar designed library based methodology also from
Pinchinat et al. of these transformation give us insight into how such transfor-
mations can function [17].

Dawkins and Hale, focused on an analysis of network models, and in that
analysis described a method of creating attack chains representing complete or
near complete attack vectors [2]. These attack chains could then be used to
construct attack trees. The primary purpose of the work was not to develop a
transformation between attack graphs and attack trees, and thus the transition
is not fully developed [2]. Most recently, Haque and Atkinson have overviewed
existing approaches to generate attack graphs and attack trees, and to convert
attack graphs into attack trees, and have found that those works have suffered
from inefficiency or inaccuracy [6].

Hong et al. report that previous attempts to define a transformation from
attack graphs to attack trees have failed due to the exponential size increases of
attack graphs [8]. The state explosion problem broadly affects any state based
modeling system, of which attack graphs are one; or better put by Valmari,
“the number of states of almost any system of interest is huge”. The biggest
issue with the state explosion problem is the computational complexity, as the
number of states in a system increases exponentially, the difficulty of handling
this information becomes far more complex, as well as time and space inefficient.
A major concern for any attack graph generation scheme will be handling the
exponential number of states [16], and given a transformation from attack trees
to attack graphs is a form of attack graph generation in itself, addressing the
state explosion problem will be a major concern for us as well.

AT Ñ AG. To the best of our knowledge, there have been no works on transform-
ing attack trees into attack graphs. The reason for this gap could be that attack
trees are more succinct threat models, not suffering from the state explosion
problem, and are thus more handy for security analysis with human experts [2].



A Novel Approach for Attack Tree to Attack Graph Transformation 77

However, creating a transformation into attack trees opens up new interest-
ing research directions, for example, new approaches to automatically generate
attack graphs starting from automatically generated attack trees, or using exist-
ing, human-designed attack trees to capture security issues in relevant systems
with application of the attack graph-based security monitoring.

Finally, attack trees and attack graphs have been very popular graphical secu-
rity notations in the last 20 years, being featured in many research papers. We
refer the interested reader to several surveys for more details about these nota-
tions and their applications: on attack trees [23] and on attack graphs [1,3,24], and
on both attack trees and attack graphs, possibly among other graphical security
models [7,11,12].

3 Definitions

While many formal definitions of both attack trees (ATs) and attack graphs
(AGs) exist, we will start from the following definitions. These definitions were
selected because they share common properties with many modifications of both
attack trees and attack graphs, and thus should enable modification of the
algorithms described below to enable further development of this methodology.
Specifically, we use a recursive attack tree definition à la Gadyatskaya et al. [4],
and a basic state-based attack graph definition from Sheyner et al. [21].

Definition 1 (Attack Tree). Let B denote a set of actions, OR and AND be
two unranked associate and commutative operators that are disjunctive and con-
junctive respectively, and SAND be an unranked associate but non-commutative
conjunctive operator. An attack tree t is an expression over B Y {OR, AND, SAND}
generated by the following formal grammar (for b P B):

t ::“ b|b Ÿ OR(t, . . . , t)|b Ÿ AND(t, . . . , t)|b Ÿ SAND(t, . . . , t)

This definition is recursive, as each subtree is a complete attack tree in and
of itself. A single action b by itself is an attack tree, and this fact will later be
used to help develop our mapping schema in Sect. 5.

Definition 2 (Attack Graph). An attack graph or AG is a tuple
(S, f, S0, Ss), where S is a set of states, f : S ˆ B Ñ S is a partial function
that defines the transition relation for S by the set of actions B, S0 Ď S is a set
of initial states and Ss Ď S is a set of success states.

This definition of attack graphs is the same proposed by Pinchinat et al. [17],
who defined an attack graph to attack tree transformation, the inverse of what
we propose. The B is a set of actions based in the system model the attack
graph is built around. Ultimately, the contents of B will be wholly defined by
such a system model. By convention, we define partial function with a set of
mappings, given in the set F . Expanding upon Definition 1, we can define two
further functions that will be useful in the transformation algorithm. Both of
these functions are inspired by the work of Gadyatskaya et al. [4] and focus on
isolating specific elements of attack trees.
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Definition 3 (Top Function). This function obtains the action of the root
node as follows (for Δ P {OR, AND, SAND}):

top(b) “ top(b Ÿ Δ(t1, . . . , tn)) “ b

We call an attack tree of depth one a radical. The auxiliary function rad
defined below obtains a single transition (radical) from one level of an attack
tree to another.
Definition 4 (Rad Function).

The rad function finds the uppermost radical of a provided tree as input as
follows (for Δ P {OR, AND, SAND}):

rad(t) “ rad(b Ÿ Δ(t1, . . . , tn)) “ b Ÿ Δ(top(t1), . . . , top(tn))

The previous definition introduces the idea of radical elements of attack trees.
The intuition behind these radicals is that a radical in an attack tree is the
smallest possible subtree. It is a component consisting solely of a root node, an
operator and a set of children that are singular nodes themselves. Our attack
graph transformation will use radicals as base components. As outlined in the
definition above, a radical is found by using the rad function. The child nodes
in a radical can themselves be root nodes of different radicals, and these radicals
are likewise found by using the rad function on those child nodes.

Definition 5 (Kid Function).
The kid function returns the set of children of a radical:

kid(t) “ kid(b Ÿ Δ(t1, . . . , tn)) “ {top(t1), . . . , top(tn)}
Fundamentally, our transformation approach will take the form of defining

the separate radicals, creating a mapped transformation of those radicals from
an attack tree to attack graph, and then combining the radicals that are in
the attack graph in a manner that retains the attack component information
expressed in attack trees.

Zero and Single Element Radicals. The radicals described thus far are of size n;
they are dynamically defined such that any number of children in the radical can
be directly mapped from attack trees to attack graphs. The implication is that
n � 2, however this is not necessary. There are two edge cases that are worth
mentioning, when n “ 0 and when n “ 1. When n “ 0, we have the case of a
radical without children; this is the case of rad(b) “ b. Additionally, we have a
graphical example of this single action mapping in Fig. 3.

When n “ 1, this would fit our definition of a radical, as there would be a
defined root, operator and set of children with cardinality 1. However, our three
defined radicals all converge when n “ 1. This follows from our understanding
of these operators. The difference between AND and SAND being that SAND is an
ordered AND; when n “ 1, there is only one possible order, thus AND and SAND
are equivalent. For similar reasons, OR is also the same as both AND and SAND.

We introduce these edge cases for the sake of completeness of our approach.
However, single element radicals are rare in real-world attack trees as their chil-
dren nodes are often considered redundant and removed from the tree.
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4 Transformation Example

We begin with a simple example of an attack tree as seen in Fig. 1. The overall
goal is to get root access of a system. Directly below the overall root, we see
two sub goals in an OR relationship; if any sub-goal, either exploiting a buffer
overflow or exploiting an administrator, is accomplished, then the overall goal
of getting root access will be accomplished. With exploiting the buffer overflow,
we can see that there are two attack components, again in an OR relationship.
Once again, if either component is completed, then the sub-goal is accomplished
and by extension the overall goal is accomplished. With exploiting the adminis-
trator, we see two attack components in an AND relationship, meaning that both
components will need to be accomplished to accomplish the sub-goal. One of
these components has subcomponents in a SAND relationship, which need to be
accomplished in a particular order before the parent action can be completed.

In the provided example, the order of subcomponents for exploiting the
administrator is not important. There are AND relationships where the order
of components is important or where the components specifically need to occur
in parallel [9]; however, we are limiting our understanding of AND relationships
to be unordered AND relationships, i.e., the attacker can execute actions in any
order to successfully achieve the goal. The SAND component of the attack tree
is an ordered AND, where a defined order is provided. The elements in the SAND
relationship occur in the same order (first the administrator phone number needs
to be obtained, then the administrator can be invited somewhere).

In Fig. 2, we see an attack graph representation of the same information. First,
we see that the nodes of the AT have now become the state transitions in the AG.
We start from an initial state, with the only description of this state being that
no attack component has been applied yet. The initial attack vectors (transitions
outgoing from the initial state) are the basic components in the AT (the leaf nodes).
We see some basic structures that will enable us to generalize the transformation
procedure. Namely, we see that the components in an OR relationship (“Remote
login” and “Deploy .rhhost file”) create fairly parallel paths through the attack
graph. Additionally, for the AND relationship (“Invent need for root access” and
“Befriend Administrator”), we see a type of a lattice structure, where transitions
between states occur internally within the AND components before returning to an
overall path.The generalization of these rules is introduced in the following section.

Get Root Access

Exploit Buffer Overflow

Deploy .rhhost file Remote login

Exploit Administrator

Invent Need For
Root Access

Befriend
Administrator

Get Phone Number Invite to Social Function

Fig. 1. A simple attack tree
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s0

s2s1 s3 s4

s5 s6

s7 s8 s9 s10

s11

s12

ss1

ss2 ss3

Get Phone Number

Invent Need
for Root Access

Remote Login

Deploy .rhhost file

Invite to
Social Function

Get phone
number

Exploit Buffer
Overflow

Exploit Buffer
Overflow

Befriend
Administrator

Invite to
Social Function

Invent Need
for Root Access

Befriend
Administrator

Exploit Buffer
Overflow

Get Root Access Get Root Access

Get Root Access

Fig. 2. An attack graph representation of the model in Fig. 1

5 Mapping

Fundamentally, nodes in attack trees represent actions, while nodes in attack
graphs represent system states. The edges in an attack tree represent the rela-
tionships between actions, while the edges in attack graphs represent state transi-
tions. Our intuition is that state transitions and actions are equivalent concepts,
and as such, we will base our transformation on this equivalence. We now present
our transformation approach for radicals.

We create a distinction of P and Q states, where P states are already in
the attack graph due to the previous transformation steps, while Q states are
generated by a specific transformation of a single radical.

5.1 Edge Cases

Single Node. To begin, let us consider an AT with a single action or node, and
see what this extreme case would be in the form of an attack graph.

From Fig. 3, we can see that the attack tree of a single action is very simple, it
is merely a single node named after the action. In the attack graph, we represent
this in the form of a state transition, otherwise referred to as an edge. Let us
now define the transformation as a complete attack graph.

In the case of the single node AT in Fig. 3, the defined state transition goes
between two P states. These P are assumed to already exist in the AG. Following
from Definition 2, the complete form of this attack graph is given in Eq. 1:
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Action

(a) Attack Tree

s0

ss

Action

(b) Attack Graph

Fig. 3. Single action attack tree and attack graph

P “ {s0, ss}
Q “ H
F “ {(s0,Action) �Ñ ss}

AG “ (P Y Q, f : F , {s0}, {ss})

(1)

Where the only two states, s0 and ss are the initial and final states respectively,
and the action is the defined state transition between them.

Radical with One Child. From Fig. 4, we see a similar structure in the attack
graph as in Fig. 3. Both actions in the attack tree are directly mapped to state
transitions in the attack graph. However, unlike in Fig. 3, we now have two
edges, and thus we will require a third node in the attack graph. These two
edges necessitate the creation of an intermediate state. The meaning behind this
state is it is the resulting state after the completion of “Action 2” but before the
completion of “Action 1”. This is our first encounter with Q states. As in Eq. 1,
we have the same starting P states, but a Q state is also added as the generated
intermediate state for this mapping. The Q state was not already in the attack
graph. The resulting attack graph would be of the form:

P “ {s0, ss}
Q “ {s1}
F “ {(s0,Action 2) �Ñ s1, (s1,Action 1) �Ñ ss}

AG “ (P Y Q, f : F , {s0}, {ss})

(2)

Action 1

Action 2

(a) Attack Tree

s0

s1

ss

Action 2

Action 1

(b) Attack Graph

Fig. 4. Single child attack tree and attack graph
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Higher Action

Action 1 . . . Action n

(a) Attack Tree

s0

s1 snsk

ss1 ssnssk

Action 1 . . . Action n

Higher ActionHigher ActionHigher Action

(b) Attack Graph

Fig. 5. OR radical

We can begin to develop an intuition regarding how our transformation will
be structured. Namely, nodes in attack trees will be directly mapped to edges
(the state transitions) in attack graphs, and states will be created to enable such
state transitions to exist. The states are given meaning by where they fall in the
transition relation partial function. The only remaining concept that requires
mapping is the operators (AND, SAND, and OR) in attack trees. Once the operator
mapping is defined, we will have the means to create a transformation algorithm
from attack trees to attack graphs.

5.2 OR Radical

Our understanding of the OR radical in attack trees is that only a single com-
ponent (child action) of an OR radical needs to be completed for the goal, or
root, of the OR to also be accomplished. In an attack graph where individual
attack vectors are expressed more explicitly, we would expect that each individ-
ual OR component would contribute to a separate attack vector. These separate
attack vectors will introduce separate states in the attack graph, as each attack
component is a different state transition, and different state transitions result in
different states.

By convention, we organize separate the transition of different levels of the
attack graph into separate F sets and combine them for the final definition of the
partial function transition relation f . Transforming the OR radical as an attack
graph, we will generate the following graph:

P “ {s0, ss1, . . . , ssn}
Q “ {s1, . . . , sn}
F1 “ {(s0,Action 1) �Ñ s1, . . . , (s0,Action n) �Ñ sn}
F2 “ {(s1,Higher Action) �Ñ ss1, . . . , (s0,Higher Action) �Ñ ssn}

AG “ (P Y Q, f : F1 Y F2, {s0}, {ss1, . . . , ssn})

(3)

As we can see in Figs. 5a and 5b, and subsequently in Eq. 3, the OR radical in
an attack graph is a series of disjoint “legs” with a state transition culminating
in a state for each attack component represented in the attack tree. As each
attack component is unique, the system states that are a result of the application
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of those attack components must also be unique. This does not rule out the
possibility of the application of unique attack components resulting in the same
state; that would be a possible expansion of the radical mapping we have laid out
here. Given that the “Higher Action” in this radical could itself be a component
in another radical, we see that the “Higher Action” in the attack tree radical is
again represented as a state transition in the attack graph.

Given that the Actions 1 through n in Fig. 5b are distinct state transitions, we
expect that the resulting states are different. The subgraph below the OR radical
is thus duplicated for each element in the OR radical. If the only remainder of the
graph below the OR radical was a final state then there would be a separate final
state for each element in the OR radical. If we consider the transition relation f
and the example of Fig. 5b, we operate under the expectation f(s1,Action 1) �“
f(sn,Action 1); our expectation is the output of these functions are entirely
different states in AG. This does not preclude the possibility of the output of
different f inputs resulting in the same state, merely that we expect that with
different state inputs, the output states would thus be different. Intuitively, if
the same action is applied to two different states, the resulting state would be
different.

5.3 AND Radical

In contrast to the OR operator, the AND operator represents that all actions in
the AND needing to be performed for the AND to be completed. However, unlike
the SAND operator, there is no defined order to the actions in an AND. Thus, the
attack graph must represent all possible combinations of action orders for the
actions within a single AND operator.

Consider the AND radical in Fig. 6a. Transforming it into an attack graph, we
would obtain the following graph (we continue with the F convention presented
in Eq. 3):

Higher Action

Action 1 Action 2 Action 3

(a) AND Radical

s0

s1 s3s2

s4 s6s5

s7

s8

Action
1

Action 2
Action 3

Action 2

Action 3 Actio
n 1 Action 3 Actio

n 1

Action 2

Action 3 Action 2 Actio
n 1

Higher Action

(b) AND Radical in an Attack Graph

Fig. 6. AND radical
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P “ {s0, sn}
Q “ {s1, . . . , s7}
F1 “ {(s0,Action 1) �Ñ s1, (s0,Action 2) �Ñ s2, (s0,Action 3) �Ñ s3}
F2 “ {(s1,Action 2) �Ñ s4, (s1,Action 3) �Ñ s5, (s2,Action 1) �Ñ s4,

(s2,Action 3) �Ñ s6, (s3,Action 1) �Ñ s5, (s3,Action 2) �Ñ s6}
F3 “ {(s4,Action 3) �Ñ s7, (s5,Action 2) �Ñ s7, (s6,Action 1) �Ñ s7}
F4 “ {(s7,Higher Action) �Ñ ss}

AG “ (P Y Q, f : F1 Y F2 Y F3 Y F4, {s0}, {ss})

(4)

As we can see in Fig. 6b and subsequently in Eq. 4, the AND radical in an
attack graph creates a lattice structure such that intermediate states represent
the application of some combination of different elements in an AND operator.

Generally speaking, on the ith row of the lattice, we see the application of
i distinct state transitions. In the first row, every state is the result of a single
state transition. On the second, every state is the result of two state transitions.
On the nth row, every state is the application of n state transitions. We can find
the number of states in a row k by calculating the number of unique unordered
grouping of k state transitions with n possible state transitions, this is simply(
n
k

)
. In the final row of the lattice, we have

(
n
n

)
states, and thus we only have a

single state. This follows from our understanding of the meaning of these states,
as this state is the application of all the different actions in the AND radical.
There is only one possible, unordered, way to apply all the actions in the AND
radical, and this is the final resulting state. From this state, we apply the “Higher
Action”, but as this is only applied to a single state at the end of the lattice, we
only have a single final state from this radical.

In Fig. 6b, we see an AND radical with n “ 3, a so-called 3´AND. For the
lack of space, generalization of the AND is provided in an extended version of this
paper [19]. It is worthwhile to note that an n´AND will have 2n ´1 unique states.

5.4 SAND Radical

The SAND, or Sequential AND, radical is similar to the AND in that all actions in the
SAND need to be completed for the operator to evaluate as successful. However,
unlike the AND operator, the SAND operator has a specified order. Actions in the
SAND need to occur sequentially for the overall radical to be successful.

As we can see in Fig. 7b, the SAND radical is by far the simplest structure we
have developed thus far. Like the other radicals, the overall starting and ending
states are P states. As the order is defined, the actions are chained together in
order, with the intermediate states representing the state of the system after the
application of some of the actions.

In the SAND radical, actions are applied sequentially. As such, in the attack
graph state transitions are also applied sequentially. This results in n overall
states (one state for each of n actions). For the tree shown in Fig. 7a we thus
define the following AG:
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Higher Action

Action 1 . . . Action n

(a) Attack Tree

s0

S1

Sk

Sn

ss1

Action 1

. . .

Action n

Higher Action

(b) Attack Graph

Fig. 7. SAND radical

P “ {s0, ss}
Q “ {s1, . . . , sn}
F1 “ {(s0,Action 1) �Ñ s1}

...
Fn “ {(sn´1,Action n) �Ñ sn}

Fn`1 “ {(sn,Higher Action) �Ñ ss}
AG “ (P Y Q, f : F1 Y . . . Y Fn`1, {s0}, {ss})

(5)

6 Algorithm

The algorithm is effectively divided in two parts: analysis of the attack tree, and
sequential construction of the attack graph. In the first portion of the algorithm,
we find all the radicals present in the attack tree and store them in a radical
dictionary. This radical dictionary, denoted as RD represents a deconstructed
attack tree, where all elements of the original attack tree are stored separately
as radicals. Once all the radicals in the attack tree are found and stored into
the radical dictionary, the attack graph can be systematically constructed. This
part is presented in Algorithm 1.

The algorithm starts with an attack graph containing two states, s0 and ss,
the single starting and success states respectively. These two states are our initial
P states. There is a single edge between these two states, which is defined as
equivalent to the overall root of the attack tree. Intuitively, the meaning behind
this simple 2-state attack graph is that accomplishing the overall goal represented
by an attack tree (the root), we move from an initial state to a success state. Now,
by expanding the edge between s0 and ss in the initial attack graph, we can add
the detailed information of the subcomponents of the overall goal to the attack
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Algorithm 1. AT Ñ AG Transformation
Require: Attack Tree, AT
Require: Radical Dictionary, RD

for b P B do
r Ð rad(b)
if |kid(r)| � 0 then

Add top(r) : r to RD

Create Attack Graph, AG “ ({s0, ss}, f : {(s0, top(AT )) �Ñ ss)}, {s0}, {ss})
while |RD| > 0 do

for e P AG.F do
if e in Key Set of RD then

r Ð RD(e)
Add Radical to Attack Graph(r, AG)
Remove r from AG

Assign values to states in attack graph
return Attack Graph

Procedure 2. Add Radical to Attack Graph
Require: Attack Tree Radical: t “ b Ÿ Δ(c1, . . . , cn), rad(t) “ t
Require: Attack Graph: AG “ (S, f : F, S0, Ss)

Remove (sj , b) �Ñ sk from F
AGk Ð the subgraph where sk P AGk.S0
if Δ “ OR then

Remove AGk from AG
for ci in kid(t) do

AGk`i Ð AGk

Add sj`i to Q and (sj , ci) �Ñ sj`i to F
Add sj`n`i to Q and (sj , ci) �Ñ sj`n`i to F
Add AGk`i.S to Q and AGk`i.F to F
Add (sj`n`i, ck) �Ñ sk`i, where sk`i P AGk`i.S0 to F

else if Δ “ AND then
Create subgraph AGk “ (Q, f : Fk, H, H)
Q Ð {s1, . . . , sn, sn`1, . . . , s2n´1}
F1 Ð {(s1, c2) �Ñ sn`1, . . . , (sn, cn´1) �Ñ s(

n
2

), (s2, c1) �Ñ sn`1 . . . , (sn, cn) �Ñ s(
n
2

)
´1

}
. . .
Fn´1 Ð {(s2n´(n`2), cn) �Ñ s2n´1, . . . , (s2n´2, c1) �Ñ s2n´1}
Fk Ð F1 Y . . . Y Fn

Add Fk to F
Add {(sj , c1) �Ñ AGk.s1, . . . , (sj , cn) �Ñ AGk.sn} to F
Add (AGk.s2n´1, b) �Ñ sk to F

else if Δ “ SAND then
for ci in kid(t) do

Add sj`i to Q and (sj`i´1, ci) �Ñ sj`i to F

Add (sj`n, b) �Ñ sk) to F

P Ð P Y Q
Q Ð {}

graph. While processing the attack tree components in the radical dictionary, we
add additional states and state transformations to the attack graph, until our
attack graph fully represents the original attack tree.

The sequential construction of the attack tree follows from this intuition. We
check the edges in the attack graph to see if they are a key for a radical in the
radical dictionary. Once we find an edge that is a key to a radical in the radical
dictionary, we remove this edge from the attack graph, and replace it with the
relevant defined mapping from Sect. 5. The procedure of adding a radical to the
attack graph is presented in Procedure 2. This expansion will cause new Q states
to be generated, which will then become P states for other radicals. Additionally,
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these mappings will cause the keys to other elements of the radical dictionary to
be added to the attack graph, which subsequently allow for the addition of every
radical in the radical dictionary to be added to the attack graph. After a radical
is added to the attack graph, it is removed from the radical dictionary. Once the
radical dictionary is empty, all the radicals from the attack tree has been added
to the attack graph, and the attack graph is thus a complete transformation
from the original attack tree, representing similar information.

7 Discussion

Evaluation on the Running Example. If we return to the example found in Sect. 4,
we can see that the application of the algorithm as described in Fig. 1 will exactly
result in the attack graph shown in Fig. 2. For every attack vector represented in
the attack tree, the same attack vector is represented similarly in the attack graph,
only with the introduction of states. These states are not provided with specific
meaning outside of numbering as our specific definition; however, the ability to
assign further meaning to these states is not excluded by our methodology.

The running example shows that the approach can create attack graphs from
attack trees. We now discuss the main benefits of our methodology, how can it
be extended, and what measures have we taken to address the state explosion
problem. For the lack of space, important semantical aspects of the OR decom-
position and how does our approach relate to SP-graph semantics, the main
semantics used for SAND-attack trees [9], are discussed in the appendix of the
extended version [19].

Benefits of Our Approach. One of the immediate benefits of our technique is that
now it is possible to generate attack graphs from all human-designed attack trees
from the literature and attack tree libraries. Indeed, most attack trees are created
by humans, but attack graphs for any interesting system are mostly generated
automatically due to the state explosion problem, as discussed by Valmari [22].
Thus by enabling the transformation from a human-generated attack tree to a
transformed attack graph, we create an attack graph structure for a scenario of
interest that potentially can be enhanced with the methods and tools created
specifically for attack graphs (e.g., transformation into Bayesian networks [5]).
Moreover, typically attack trees use more abstract attack scenarios than attack
graphs. Thus, it would be interesting to compare automatically generated attack
graphs with the transformed attack graphs, to understand which attacks have
been missed in both cases.

Another advantage of enabling a direct transformation between attack trees
and attack graphs is that new, automated generation schemes for attack graphs
could become possible. As we mentioned earlier, significant research has already
been performed into novel generation schemes for attack trees. A major branch
of current attack tree research is into generation schema, particularly focusing
on automated generation [23]. Therefore, one advantage of being able to trans-
form attack trees into attack graphs is the ability to use these novel generation
methods to generate attack graphs.
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Finally, thus far we have only concerned ourselves with SAND attack trees
[9], but further expansion of attack trees are available. For instance, we could
expand this transformation to use an attack-defense tree (AD Tree) as an input,
and then created an expanded attack graph representing the defensive actions
represented in the attack tree.

Addressing State Explosion Problem. A major consideration in any state-based
model is the state explosion problem [22]. We thus want to define a sufficiently
robust transformation that results in an attack graph that contains enough infor-
mation (i.e. states) without containing too many states.

Our primary means of achieving a reduction in the state is to eliminate back-
tracking or partial attack paths. By maintaining the monotonicity in generated
attack graphs, we can prevent a factorial number of states from being generated.
Back to the example in Fig. 2, we have no state such that the same action has been
taken multiple times. There is no state si such that a path from s0 to si has two
state transitions bi and bj where i “ j. If we were to allow partial pathing, the
attack graph couple potentially not terminate, or would have significant cycling.

Another mitigation strategy we take is treating the OR operator functions as
more like an XOR operator. We can see this in action in Fig. 2, where there is no
state si such that a path from s0 to si has the state transitions C and D. If we
were to understand that the OR operator was not an XOR, then we would have
to add states to attack graphs to allow for each vector that includes multiple
components from the OR radical. This directly increases the number of states for
each child, given n children, from n to n!. We further discuss this choice in [19].

8 Conclusions and Future Work

In this work, we have laid out a structure of a transformation that will take an
attack tree as input and return an attack graph. This style of transformation
already exists in literature, albeit in the opposite direction as ours. We have
evaluated our transformation approach on a case study.

In terms of expansion of our work, firstly we would wish to define a transfor-
mation of Attack-Defense Trees (AD Trees). Such a transformation would likely
require an alternative definition of attack graphs; however, it may be possible to
define a transformation such that we only use the definition of attack graphs that
we use here. Furthermore, we would like to attempt to define a more efficient
state creation schema, which would make the transformation algorithm more
space and time efficient.
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Abstract. Critical infrastructures must be able to mitigate, at run-
time, suspected ongoing cyberattacks that have eluded preventive secu-
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runtime actions to mitigate suspected ongoing cyber-attacks. We for-
malize its task as a Constraint Optimization Problem (COP). We then
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COP, to be solved by a generic CLP engine efficiently enough to propose
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1 Introduction

Defending critical network infrastructures in industrial environments has become
a pressing need in recent years. The ongoing transition, from custom-built con-
trol systems to the Industrial Internet of Things (IIoT) [29] based on low-cost,
off-the-shelf, cloud connected devices, has considerably grown the attack surface
exploitable by malicious agents [26]. Traditional approaches to cybersecurity
emphasize attack prevention, laying out as many design-time defense mecha-
nisms as is economically feasible. They sometimes add post-mortem analysis
processes [7] to uncover and recover from attacks after they have occurred. These
approaches are often insufficiently automated and, in a way, come too late. This
leaves a large window of opportunity for attackers to continue causing damage.
Some attacks may remain undetected for up to several months [2]. To tackle
this problem, new approaches are needed to detect an attack and apply counter-
measures swiftly or even before it has been fully completed to best minimize its
impact.

In this paper, we make two original contributions towards solving this prob-
lem. We first propose a concrete architecture for a CSIRT-IDSS shown in Fig. 1
as an Unified Modeling Language (UML) [31] class diagram. This architecture
refines, with a precise set of technologies, each abstract component of the classic
autonomic computing architecture pattern MAPEK [16] shown on the top row
of Fig. 1. It consists of a looping pipeline of Monitor (M), Analyzer (A), Planner
(P) and Executor (E) components, sharing a common Knowledge (K) base, to
autonomically manage a system.

Our second contribution focuses on the P step, leaving the details of the
M, A and E steps for other publications. We show how P can be formalized
as a COP and propose a specific COOLP architectural pattern to solve it with
practical performance. It consists of generating, at runtime, a COP customized
to the input attack to mitigate, for then solving this COP using a generic CLP
solver. Thanks to the taxonomic knowledge representation features of OOLP,
the COP generator reuses knowledge from the task-independent cybersecurity
ontology that refines the K component of the MAPEK loop.

We describe the prototype implementation of this mitigation search engine
architectural pattern as a COOLP. We also present scalability simulations com-
paring how various COP generation heuristics impact the performance of the
combined COP generation and COP solving pipeline for attack action sets of
increasing size and conceptual diversity. It shows that thanks to this approach, a
declarative and generic CLP solver such as the CLP(FD) library of SWI-Prolog
[34] can solve the generated COP efficiently enough to be usable in practice for
cyberattack mitigation search.
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2 Autonomic Architecture for CSIRT-IDSS

Our proposed MAPEK refinement for a CSIRT-IDSS is shown in Fig. 1. It focuses
on a single autonomic self-management capability: self-protection. It is part of
a larger Security Orchestration, Automation and Response (SOAR) [15] frame-
work under development within the H2020 project C4IIoT (Cybersecurity for the
Industrial Internet of Things). This framework includes a variety of preventive
and post-mortem components developed by project partners that are beyond
the scope of the MAPEK architecture shown in Fig. 1, as they do not directly
interact with our CARMAS component.

Fig. 1. MAPEK refinement for autonomic CSIRT-IDSS. (To avoid clutter, this diagram
omits the UML stereotypes �component� and �interface�. It uses the following
color coding: yellow for the abstract MAPEK components, orange for the refinements
of which we are the sole (CARMAS) or main (Ontology) developer, grey for the third-
party Inference Engines (IE) and libraries reused by CARMAS, red for its input, blue
for its output and white for the refinements developed by C4IIoT project partners that
either generate this input or act upon this output.) (Color figure online)

The automation of the K-based M, A, P and E sub-task loop of an
autonomic system self-management capability is very similar to the knowledge-
based sense, reason, decide and act loop of autonomous agents [25]. However,
while the latter aims to perform all decision steps without requiring any human
intervention, the former rather provides a very high-level User-Interface (UI) to
a human-in-the-loop. Through this UI, this human expert can partition decisions
between, on the one hand, those that the autonomic system can take without
supervision, and, on the other hand, those for which the autonomic system pro-
poses alternative, automatically executable, high-level plans for the human to
choose from. Autonomic computing is inspired from the nervous system where
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some functions are carried automatically without requiring conscious interven-
tion (i.e., heartbeat), whereas others are consciously triggered (i.e., hyperventi-
lating). This automation continuum it a particularly good fit for a CSIRT-IDSS.

As shown in the second row of Fig. 1, at its highest level, our MAPEK refine-
ment for a CSIRT-IDSS proposes that (a) M consists of probes that snoop
network packet traffic and host activities data (such as API and OS calls), (b)
A consists of attack detection from the probe generated data, (c) P (CARMAS)
consists of finding the network reconfiguration actions that can best mitigate the
suspected attack, (d) E consists of executing these actions and (e) the shared K
is a cybersecurity ontology. In this ontology, the choice of the bounded integer
values ranging from 1 to 5 shown in Fig. 1 for the attributes of the classes rooting
the attack and mitigation taxonomies were motivated by the requirement that
they be easy to estimate and understand by the CSIRT members.

A outputs a set of suspected ongoing attack actions targeting a set of net-
work assets that it passes to CARMAS. The plausibility attribute of each action
comes from the attack detector while the impact attribute comes from the ontol-
ogy. To mitigate the attack, CARMAS searches and ranks action sets and sends
them to the CSIRT UI. Among these ranked action sets, the CSIRT then chooses
which one to execute by calling sub-components of E (or none if it judges the
attack alert input to CARMAS to be a false positive). These sub-components are
general network management automation tools, already in place for normal oper-
ations, that E reuses for its specific cyberattack runtime mitigation purposes.
They include Software Defined Network (SDN) controllers [13] to reconfigure
network parameters and routes, container orchestrators [24] to reconfigure tech-
nological stacks installed on network hosts with alternative, updated elements
with no known vulnerabilities, and authentication certificate managers to recon-
figure access rights to the hosted applications running on top of these stacks.
Note that only the E component of our proposed MAPEK refinement depends
on the use of these specific network management technologies. The CSIRT UI is
also a sub-component of E since it controls the calls to its other sub-components.

3 IIoT Cybersecurity Ontology

The shared ontology, refining K, provides a reusable, task-independent and
platform-independent reference conceptual model for the cybersecurity chal-
lenges in a given industry. The MAPEK refinement that we propose assumes
that both the managed system and its autonomic self-protection components
uniformly consist of containerized web services communicating through an SDN.
The payload schema of the communication API between these services can be
automatically generated from the ontology to support simultaneously rigorous
and agile API evolution.

While the top-level concepts of a cybersecurity ontology, such as
Attack Action, Network Asset, Vulnerability and Mitigation Action are
industry-independent, their refinements quickly become specific to a particular
industry, a set of technologies and even a specific network, for the main operating
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mode of attackers is to spot the devil in the details. To illustrate such refinements,
we show in Fig. 2 a snippet of the ontology under development for IIoT networks
in the C4IIoT project. We are developing it in cooperation with the partners
developing the refinements of the M, A and E components. It shows concepts
from an Attack Action taxonomy (in red), a Mitigation Action taxonomy
(in blue) and the many-to-many mitigatedBy role relations between them.

The C4IIoT ontology adopted a dual, synchronized representation: a high-
level, graphical one in UML and a fully detailed, textual one as a COOLP. UML
was a natural choice for both the overall architecture model of Fig. 1 and the shared
conceptualmodel refiningKbecause, while the components of the architecture run
on different programming platforms, they all follow the OOP paradigm. Adopting
a standard ontology language such as OWL [11], rather than UML, would have
been a far steeper learning curve for a typical CSIRT. In addition, OWL’s Open-
World Assumption (OWA) is a semantic mismatch with OOP’s Closed-World
Assumption (CWA) [1]. However, while UML can intuitively represent taxonomies
of concepts and local role relations between them, it cannot represent arbitrar-
ily complex and possibly long-distance constraints among them. Nor does it pro-
vide formal semantics to support automated reasoning about them. This is why
a refined, formal, executable, textual version of the ontology as a COOLP was
also developed for components such as CARMAS that perform such reasoning. In
the current implementation, we have so far synchronized the UML and COOLP
versions of the ontology manually. We have however, specified a UML profile for
COOLP as a first step towards automating it. The common OOP paradigm and

Fig. 2. Attack and mitigation action taxonomy snippet
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CWA shared by the two languages make this translation far easier than a transla-
tion from UML to OWL would have been.

The snippet shown in Fig. 2 only aims to provide some illustrative context
for the CARMAS running example presented in Sect. 6. The current attack tax-
onomy is primarily inspired by concepts proposed by MITRE [21] and Hindy et
al. [14]. The current mitigation taxonomy is mostly inspired by the current focus
of the project on (a) SDN controlled traffic rerouting actions and (b) network
administration scripts remotely executable by the CSIRT.

4 Designing CARMAS as a COOLP Web Service

Let us now detail the design of CARMAS. Its main requirements are the fol-
lowing: (R1) solve a COP, formalized in Sect. 5, with practical performance,
(R2) reuse the taxonomic knowledge of K for inheritance reasoning, (R3) be
able to clearly explain its reasoning to the CSIRT and (R4) be deployed as a
containerized web service inter-operating with the A and E components refine-
ments. Each of these requirements suggest a different paradigm as the best fit to
satisfy them: Constraint Programming (CP) [10] for R1, Object-Oriented Pro-
gramming (OOP) for R2, rule-based LP [10] for R3 and Web Service Oriented
Programming (WSOP) for R4. This led us to develop CARMAS as a COOLP
integrating those four paradigms.

As its input is a suspected attack action set of unknown size, CARMAS
cannot just instantiate a predefined parametric COP. We therefore decomposed
CARMAS into a pipeline of two components as shown in Fig. 1. The first gener-
ates a COP problem instance from the output of the attack detector specializing
A. The second solves this COP and passes the solution as input to the runtime
mitigation action executor specializing E. As the P component of the MAPEK
pattern, CARMAS has access to knowledge encapsulated in the K component,
the cybersecurity ontology. Both its COP Generator and COP Solver compo-
nents thus also have access to this knowledge through inheritance and composi-
tion. Both are declaratively implemented as a COOLP interpreted by a COOLP
Inference Engine (COOLPIE) that answers COOLP queries.

This multi-paradigm COOLPIE that interprets both COP generation and
COP solving COOLP queries is assembled by three orthogonal extensions to
the LP engine SWI-Prolog [36]: the CLP library CLP(FD) [34], the WSOLP
library HTTP [37] and the OOLP extension Logtalk [22]. This is seamlessly done
by putting Prolog module import directives use_module(library(clpfd)) and
use_module(library(http)) in a Logtalk source file.

Logtalk is an object-oriented extension of Prolog. It transpiles Logtalk pro-
grams and queries into Prolog programs and queries and reuses the Prolog engine
to answer the queries given the program. Logtalk is itself implemented in Prolog.
As shown in Fig. 1, a Logtalk program is composed of three main top-level code
entities: objects, and what OOP languages usually call interfaces and mixins
(respectively called protocols and categories in Logtalk). Faithful to the spirit of
OOP, a Logtalk object or mixin represents both a concept in a generalization
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taxonomy and a unit of code encapsulation. But rather than encapsulating both
a computation state and a set of state altering operations as in imperative OOP,
Logtalk encapsulates a declarative LP, or a CLP when used with a CLP library.
Both objects and mixins can realize interfaces. Logtalk objects and mixins can
thus both be viewed as extensions of Prolog modules. Mixins can be imported
into objects to support a simple form of reuse by composition. Like JavaScript,
Logtalk supports both class-based and prototype-based inheritance by provid-
ing specializes, instantiates and extends relations between objects. It does not
make class a first-class concept. Instead, it makes it a role that an object plays
in an instantiates relation with another object, which allows Logtalk to easily
support, like Python, both meta-classes and multiple inheritance. Similarly, the
concept of prototype is a role that an object plays in an extends relation with
another object. Logtalk also supports inheritance down extension hierarchies
defined over interfaces and mixins. Logtalks thus allows combining JavaScript
and/or Python style OOP for structural code with the declarative, formal yet
executable rule-based specification of CLP for behavioral code.

Using COOLP rather than CLP alone, allows simultaneously leveraging the
built-in inheritance reasoning services provided by OOLP, down the cyberse-
curity ontology taxonomies, with the built-in heuristic optimization reasoning
services provided by CLP. It also allows following a model-driven, object-oriented
development methodology [11]. This is handy in the software engineering context
of CARMAS, as a component in an heterogeneous, multi-platform framework
such as C4IIoT. The web server built in SWI Prolog’s HTTP library and its
seamless integration with Logtalk ease the deployment of CARMAS as a web
service. Its built-in JSON serialization and deserialization predicates facilitate
programming the data exchange between the inward-facing Logtalk interfaces of
CARMAS and its outward-facing Web API interface to the other C4IIoT compo-
nents. CARMAS is provided as a Docker image stacking two COOLPs, the COP
Generator and the COP Solver, on top of Logtalk, CLP(FD) and SWI-HTTP,
all three stacked on top of SWI-Prolog, itself stacked on top of Linux.

5 Formalizing Attack Mitigation Search

The following definitions formalize the attack mitigation search task.

– Set definitions:
1. A: the possible attack actions;
2. Ap ⊂ A: input attack actions to a given mitigation search problem p;
3. T : possible network assets targeted by members of A;
4. Tp ⊂ T : target assets for a given problem p;
5. M : the possible mitigation actions;
6. M(ai) ⊂ M with ai ∈ Ap, the possible actions to mitigate a given attack

action ai

7. M(ti) ⊂ M with ti ∈ Tp, the possible actions to mitigate the attack
actions targeting a given asset ti.
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8. Ap(ti) ⊂ Ap with ti ∈ Tp, the attack actions targeting a given asset ti.
– Function definitions:

1. at : Ap → Tp, asset target of a given attack action;
2. clA : A → P(A) (respectively clM : M → P(M), clT : T → P(T )) onto-

logical class of a given attack action (respectively mitigation action, target
asset);

3. p : Ap → {1, ..., 5} plausibility of an attack action suspicion;
4. i : P(A)×P(T ) → {1, ..., 5} negative business impact, if left unmitigated,

of an attack of a given action class targeting a given asset class;
5. r : P(M)×P(A)×P(T ) → {1, ..., 5}: negative business impact reduction

of a given mitigation action class to a given attack class targeting a given
asset class;

6. u : P(M) × P(A) → N: utility of mitigation action set M ′ ⊂ M for
attack action set A′ ⊂ A s.t.

u(M ′, A′) =
∑

mi∈M ′,aj∈A′
5 − |p(aj) − r(clM (mi), clA(aj), clT (at(aj)))|.

– Relation definition: mtg ⊂ P(M)×P(A)×P(T ), a given mitigation action
class can mitigate a given attack action class targeting a given network asset
class;

– Definition of integrity constraints for input problem instance and the ontol-
ogy:
1. ∀ai ∈ Ap,∃(x, y) ∈ {1, ..., 5}2 [

x = p(ai) ∧ y = i(clA(ai), clT (at(ai)))
]

(each attack action must have a plausibility and an impact);
2. ∀ai ∈ Ap,∃(mj , x) ∈ M × {1, ..., 5} x = r(clM (mj), clA(ai), clT (at(ai)))

(each attack action must have mitigation actions with an impact reduc-
tion);

3. ∀ai ∈ Ap,∀mj ∈ M,∃(x, y) ∈ {1, ..., 5}2 [
mtg(clM (mj), clA(ai), clT

(at(ai))) ∧x = r(clM (mj), clA(ai), clT (at(ai))) ∧ y = i(clA(ai),
clT (at(ai)))] ⇒ x < y
(a mitigation action cannot reduce the impact of an attack action below
zero)

– Definition of output solution sets:
1. FM (Ap) =

{
Msat ⊂ M | ∀ai ∈ Ap,∃!mj ∈ Msat

[
mtg(clM (mj), clA

(ai), clT (at(ai)))
]}

family of all solution mitigation action sets;
2. Mmax(Ap) = arg max

Msat∈FM (Ap)

u(Msat, Ap) maximum utility solution set.

The formal notation just defined relates to the UML model elements of Fig. 1
as follows. The Attack Action set that the Attack Detector component passes
as input to the COP Generator is formalized by the sets Ap and Tp, and the
functions at and p. The knowledge encapsulated in the ontology that enriches
this input is formalized by the sets A, M and T , the functions clA, clM , clT , i and
r, the relation mtg and the three integrity constraints. The Mitigation Action
set output by the COP Solver is formalized by the Mmax(Ap) function.
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The u function is constructed by the COP Generator and used by the COP
Solver. Its formula favors choosing mitigation actions with higher (respectively
mid-range, lower) reduction impact r for suspected attack actions with higher
(respectively mid-range, lower) plausibility p. The rationale behind this choice
is that mitigations with higher attack impact risk reduction generally tend to
come with a higher negative impact on other factors such as service availability.
Consider for example a DOS attack; the ontology snippet of Fig. 2 shows three
possible mitigations for it: host isolation, rate limiting and packet filtering. While
the first one has a higher attack risk impact reduction that the two others, it
also more severely reduces the availability of the service running on the host
suspected as the attack source. Thus, when the plausibility of this host being
the source of a DOS attack targeting another network host is low, choosing
packet filtering and/or rate limiting over host isolation is better for the overall
availability of the network services. The u formula allows CARMAS to implicitly
carry out such trade-off while still only building and solving a single objective
COP, rather than a more complex multi-objective COP.

COP generation starts by creating the variable set:

V = D ∪ R ∪ P ∪ {up}
where:

D =
{
d(mj , ai) ∈ {0, 1} ∣∣ ai ∈ Ap ∧ mj ∈ M ′}

M ′ =
{
mj ∈ M

∣∣ ai ∈ Ap ∧ mtg(clM (mj), clA(ai), clT (at(ai)))
}
.

P =
{
p(ai) ∈ {1, ..., 5} ∣∣ aj ∈ Ap

}

R =
{
r(clM (mj), clA(ai), clT (at(ai))) ∈ {1, ..., 5}
∣∣ ai ∈ Ap ∧ mj ∈ M ′ ∧ mtg(clM (mj), cl(ai), cl(at(ai)))

}

up =
∑

δ∈D,ρ∈R,π∈P

δ ∗ (5 − |π − ρ|)

In the set definitions above, d(mj , ai) = 1 when the COP solver selects mj to
mitigate ai among the set M ′ of candidates, and d(mj , ai) = 0 otherwise. D is
thus a set of decision Boolean variables that represents the COP solver’s mitiga-
tion action choices. P and R are sets of parameter integer variables with values
in {1, ..., 5}. P contains the plausibility of each input suspected attack action
to mitigate. R contains variables that comes from the ontology and contains
the expected business impact reduction of each mitigation action on the attack
action it is selected to mitigate. up is a positive integer optimization variable
that the COP solver tries to maximize to guide its choices of value for the deci-
sion variables. With the variable defined above, the COP consists in choosing
the allocation of decision variables D that maximizes the optimization variable
up given the values of parameter variables P and R.

The worst-case complexity of a Boolean COP is 2 to the power of the number
of its decision variable (cf. [25] p. 199). The most straightforward COP generation
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strategy yields a COP with
∑

ai∈Ap
|M(ai)| decision variables. Its complexity is

thus: SF = O(2
∑

ai∈Ap
|M(ai)|).

To improve the performance of the COP solver we propose two simple
heuristics to generate equivalent COPs with less variables. The first is asset-based
decomposition. It consists of building one sub-COP per targeted asset in
the input, solving each of them and taking the union of the solutions
as the global COP solution. With this heuristic, the number of vari-
ables for each sub-COP is upper-bounded by maxt∈TP

|M(t)|. The total
complexity of the union of all the sub-COPs is thus upper-bounded by:
ABD = O((2maxt∈TP

|M(t)|).(
∑

ai∈Ap
|M(ai)|)/(maxt∈TP

|M(t)|))) (cf. [25] p.199
again) whose growth rate is less than that of SF since maxt∈TP

|M(t)| ≤∑
ai∈Ap

|M(ai)|. This is because the set of actions attacking a given asset is
a subset of the whole attack action input set. Thus, the size of the search space
of the sub-problems will necessarily be smaller than or equal to that of the
whole problem. This heuristic can be used by CARMAS because, in the COP
that it must generate and solve, the value choice for any given decision variable
is independent from the choices for all other decision variables.

The second heuristic is uniform mitigation where the following constraint is
added to the COP: all actions that mitigate attack actions of a given class must
all belong to the same mitigation class. Or formally:

∀ai ∈ Ap,∀mj ∈ M ′
[[
d(mj , ai) = 1 ∧ clM (mj) = cm ∧ clA(ai) = ca

]

⇒ ∀al ∈ Ap,∀mq ∈ M ′ \ {mj}
[
(d(mq , al) = 1 ∧ clM (mq) = cm) ⇒ clA(al) = ca

]]

It assumes that if a given mitigation action is appropriate for an attack
action of a given attack class, actions of the same mitigation class are likely
to be effective for all other actions of that attack class. When this holds,
this heuristic dramatically reduces the number of decisions to be taken by the
COP solver from

∑
ai∈Ap

|M(ai)| to just d =
∑

kA∈{cl(ai)|ai∈Ap} |{kM |∃t ∈
Tp[mtg(kM , kA, clt(t))]}|, where (kM , kA) ∈ P(M)×P(A); that is, the sum, over
the classes of attacks given as input, of the number of classes that can mitigate
them. The resulting COP complexity is thus UM = O(2d). The price to pay for
this performance gain is to give up the guarantee that the solver always return at
the top of its list of proposed mitigation action sets, the one that maximizes the
reduction of the attack impact.

6 CARMAS Running Example

To illustrate how our CARMAS prototype implementation works, at a very high-
level, we now provide and explain four code listings. Listing 1.1 shows a snippet
of the top-level CARMAS COOLP web service object that generates an HTTP
response from an HTTP request. Listing 1.2 shows a request payload: a JSON
object containing an example input set of two reconnaissance attack actions, one
targeting an Android tablet and the other a Linux server. Listing 1.3 contains
a snippet from a logged trace of the logical variable bindings resulting from the
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COOLPIE evaluating the goals of line 7 in Listing 1.1. Listing 1.4 shows the
JSON payload generated by CARMAS as answer to the request. It contains the
actions to mitigate the attack actions from the client’s request.

Let us now explain each listing a bit further in turn. In Listing 1.1, lines
1 and 11 show that the CARMAS web server is encapsulated in a COOLP
object. Line 2 routes the request URL to the appropriate predicate handler of
that object. Lines 4 to 10 show the COOLP rule defining this predicate. Lines
5 and 6 extract the JSON payload from the request and convert it to a SWI-
Prolog logical term. On line 7, the web server invokes the COP generation and
COP solving predicates of the carmas COOLP object. The arguments DVars
and U of these predicates respectively contain the decision variable set D and
the optimization variable up defined in Sect. 5. Line 8 builds a term containing
the mitigation action set chosen by the decision variables and line 9 converts it
to a JSON object. Line 10 sends the object as payload of the HTTP response.

In Listing 1.3, lines 1–4 show the COP logical variable bound by the COOLPIE
after evaluating the gen_cop goal predicate of the carmas object on line 7 of
Listing 1.1. It contains a set of candidate actions, retrieved from the ontology, to
mitigate the input attack action set shown in Listing 1.2. Each such candidate
action is associated with a pair of logical variables, one, DVarN representing the
choice of this action, and the other, IVarN, representing the contribution of this
choice to the optimization variable. In this example, COP contains two candidate
actions to mitigate each attack action from Listing 1.2: one port closure and
one packet filtering. Continuing with Listing 1.3, lines 5 and 8 of show DVars
before and after the COOLPIE evaluates the solve_cop goal predicate of the
carmas object on line 7 of Listing 1.1. Also in Listing 1.3, lines 6–7 show the mit-
igation action set logical variable Ms bound by the COOLPIE by evaluating the
solve-cop goal predicate of the carmas object on line 7 of Listing 1.1. Ms then
contains the choice of a port closure action to mitigate the reconnaissance
action targeting the Android tablet and of a packet filtering action to miti-
gate the reconnaissance targeting the Linux server.

Listing 1.1. CARMAS COOLP web service code snippet
1 :- object(server).
2 {:- http_handler(root(ap), [Request]>>(server:: handle_attack(Request)),

↪→ [])}.
3 ...
4 handle_attack(Request) :-
5 {http_json:http_read_json(Request , Data , [json_object(dict),

↪→ value_string_as(atom)])},
6 serialization :: deserializeAttackActionSet(Data , AASetTerm),
7 carmas:: gen_cop(AASetTerm , COP , DVars , U), carmas:: solve_cop(DVars ,U)

↪→ ,
8 carmas:: selectMitigationActions(COP , Ms), carmas:: mitigationTerm(Ms,

↪→ MASetTerm),
9 serialization :: serialize(MASetTerm , MADict),

10 {http_json:reply_json(MADict , [status (200), json_object(term)])}.
11 :- end_object.
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Listing 1.2. CARMAS COOLP web service JSON input example
1 {" attack_actions ": [
2 {" plausibility ": 4, "attack_type ": "reconnaissance", "attack_id ": 1,
3 "target": {" target_id ": "tt", "os": "android", "ip ":"1.1.1.1" , "

↪→ target_type ":" tablet"}},
4 {" plausibility ": 5, "attack_type ": "reconnaissance", "attack_id ": 2,
5 "target": {" target_id ": "td", "os": "linux", "ip": "1.1.1.2" , "

↪→ target_type ":" appServer "}}],
6 "attack_id ": "ap1"}

Listing 1.3. CARMAS COOLP internal logical variable binding log snippet for exam-
ple input/output
1 COP = [[ portClosure(tablet(tt, "1.1.1.1" , android), 1, reconnaissance)-(

↪→ DVar1 -IVar1),
2 packetFiltering(tablet(tt, "1.1.1.1" , android), 1, reconnaissance)

↪→ -(DVar2 -IVar2)],
3 [portClosure(appServer(td, "1.1.1.2" , linux), 2, reconnaissance)-(

↪→ DVar3 -IVar3),
4 packetFiltering(appServer(td, "1.1.1.2" , linux), 2, reconnaissance

↪→ )-(DVar4 -IVar4)]],
5 DVars = [DVar1 , DVar2 , DVar3 , DVar4],
6 Ms = [portClosure(tablet(tt, "1.1.1.1" , android), 1, reconnaissance),
7 packetFiltering(appServer(td, "1.1.1.2" , linux), 2, reconnaissance)

↪→ ],
8 DVars = [1, 0, 0, 1], U = 23,

Listing 1.4. CARMAS COOLP web service JSON output example
1 {" mitigationActions": [
2 {" mitigation_action_type": "portClosure", "attack_type ": "

↪→ reconnaissance", "attack_id ": 1,
3 "target": {" target_id ": "tt", "os": "android", "ip ":"1.1.1.1" , "

↪→ target_type ":" tablet"}},
4 {" mitigation_action_type": " packetFiltering", "attack_type ": "

↪→ reconnaissance", "attack_id ": 2,
5 "target": {" target_id ": "td", "os": "linux", "ip": "1.1.1.2" , "

↪→ target_type ":" appServer "}}],
6 "id": "mp1"}

7 Experimental Evaluation

To empirically evaluate the scalability of CARMAS, we carried out a set of execu-
tion time measurements with synthetic input attack sets of growing size in terms of
number of attack actions and/or number of assets targeted by these attacks. Those
two numbers are not always aligned. Although we assume that each input attack
action only targets a single asset, multiple input attacks actions can however tar-
get the same asset. The synthetic attack sets were randomly generated from the
classes of the attack taxonomy while ensuring that they satisfied all the integrity
constraints of the ontology. To draw practical usability conclusions from the mea-
surements presented below, one must note that in the current version of C4IIoT,
CARMAS is used in a reactive manner, searching for a mitigation action set as soon
as an attack is suspected and assuming that some of these actions will be immedi-
ately carried out by the CSIRT. Therefore, it does not reason on a history of attack
actions, but rather only considers newly arriving attack actions. This considerably
limits the current practical size of its input. However, we felt it was interesting to
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assess its scalability to larger inputs, if it becomes required to take as input the
attack history in a future version of C4IIoT.

In the first experiment, we compared the time CARMAS takes to propose to
the CSIRT from one to six alternative action sets to mitigate attack action sets
of growing size. For an IDSS such as CARMAS performing heuristic search on
the basis of an uncertain input, providing a few alternatives to human experts to
choose from is important. However, too many alternatives is counterproductive
to support a swift choice by the CSIRT. For single attack inputs, CARMAS took
0.06 s to propose a one solution and 0.13 s to propose six alternative solutions.
Its response time remains practical up to about 10 attack inputs with 5.26 s for
one solution and 13.32 s for six solution.

In the second experiment we compared execution time without and with
the uniform-mitigation heuristic described in Sect. 5. Unsurprisingly, both these
times grow exponentially with input size but with a different exponent. Using this
heuristic reduces the response time for input of size 1, 5, 10 and 15 from 0.06s,
0.44 s, 5.26 s and 51 s down to 0.07 s, 0.074 s, 0.105 s and 0.134 s respectively.

Table 1. Asset-based decomposition heuristic performance

Actions/Asset Number of assets

1 Asset 2 Assets 5 Assets 10 Assets 15 Assets

1 Action 0.001(s) 0.002(s) 0.004(s) 0.009(s) 0.117(s)

2 Actions 0.002(s) 0.004(s) 0.011(s) 0.019(s) 0.090(s)

5 Actions 0.020(s) 0.041(s) 0.112(s) 0.121(s) 0.222(s)

10 Actions 0.545(s) 1.977(s) 3.260(s) 6.692(s) 7.355(s)

15 Actions 18.746(s) 25.360(s) 181.974(s) 293.632(s) 476.140(s)

In the third experiment, we compared execution time with the asset-based
decomposition heuristic described in Sect. 5 for both a growing number of target
assets and a growing number of attack actions for each target. The results are
shown in Table 1. The main take away from this table is that with this heuris-
tic, CARMAS responds quickly even for inputs much larger than expected in
practice. While encouraging, the general validity of these experimental results
is limited by the fact that it is based on simulated data rather than real-world
attack data.

8 Related Work

To show the originality of our proposal, we now compare it with previous work
closely related to either (a) its application, namely runtime cyberattack mitiga-
tion or (b) its approach, namely leveraging ontological knowledge to dynamically
build a COP so as to solve it efficiently by a generic solver.
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Concerning (a), we only found four previous works that propose and evalu-
ate an approach to search a many-to-many mapping space from attack action
classes to mitigation action classes. Nespoli et al. [23] presents a runtime miti-
gation local search approach based on the artificial immune system metaphor.
In contrast, CARMAS performs global optimization search. Samarji et al. [27]
proposes an approach to respond to complex coordinated attacks based on the
Situation Calculus [32]. A strength of their approach, as compared to CARMAS,
is that it addresses the parallel nature of simultaneous attacks and ensures that
the mitigations separately chosen for each attack are not mutually incompatible.
However, they do not model preferences among multiple possible mitigations. In
contrast, Gonzales-Granadillo et al. [12], propose a multi-criteria cost function
for mitigations taking into account an economic model, the history of past mit-
igations and the network topology. Vieira et al. [35] propose a preference model
for mitigation choices taking into account their probability of success and the
computational cost of their execution. CARMAS currently misses such rich input
model which would be interesting to incorporate in future work. All the other
previous works did not tackle many-to-many mappings from attacks to miti-
gations (Marsa-Maestre et al. [20]), (Sandor et al. [28]), (Lysenko et al. [18],
Huertas-Celdran et al. [5,19]).

Concerning (b) we only found a single previous work by Zhu et al. [38] similar
to our approach. Taking as input an F-Logic [17] ontology that models a database
schema evolution, their approach translates it into a Prolog and Constraint Han-
dling Rules [9] CLP that declaratively models, as a COP, a wrapper allowing
database queries following a new schema to be run on historical data that follow
an old schema. The similarity with our approach is that both their ontology and
ours are specified in an OOLP language under CWA, F-Logic for them and Logtalk
for us. The key design difference between these two languages is that in F-Logic,
objects appear inside rules taking the place of Prolog atomic formulas, whereas in
Logtalk, it is the other way around, as rules appear inside objects which replace
Prolog modules. Another difference between this previous work and ours is that
while we leverage the seamless integration of OOLP with CLP provided by Logtalk
and CLP(FD), they, in contrast, implemented a translation from OOLP to CLP.
Furthermore, they build then solve a COP for a completely different application
than ours. In all other previous works leveraging ontologies and COPs in concert,
the respective roles of the former, the latter and the combination differ notably
from our proposal. Camacho et al. [4] use an ontology to represent the state of a
smart home and specify as a COP the resolution of user preferences conflicts on
such states. Fowler et al. [8] follow a similar approach for a mechanical engineer-
ing design assistant. In both these works, ontological knowledge merely instanti-
ates parameters of a fixed structure COP rather than dynamically generating that
structure as we do. Chesani et al. [6] use an ontology for pre-processing and vali-
dating requests, formulated as COPs, to aid in the management of food items in a
smart warehouse. Torta et al. [33] encode constraints directly into their ontology,
to filter geographic information system queries.



Intelligent Decision Support for Cybersecurity Incident Response Teams 105

9 Conclusion

In this paper, we made four original contributions to advance the state-of-the-art
in CSIRT-IDSS. The first is a detailed architecture pattern for such system with
runtime attack detection and mitigation capabilities. It is a refinement of the
classic MAPEK autonomic architecture in which M is a set of network traffic
and host activity data probes, A is an attack detector, P is a mitigation search
engine, E is a mitigation executor that reuses SDN, container orchestration
and certificate management tools, and K is a cybersecurity ontology. In this
architectural context, we then made three more contributions focused on the
mitigation search engine. The first is a formal definition of its task as a COP.
The second is its decomposition into a COP generator, that heavily relies on
knowledge from the ontology, pipelined into a COP solver. The third is the
proposal of COOLP as a parsimonious unifying paradigm implementing both
the generator and the solver. We showed the practical efficiency of this approach
through a set of scalability experiments for runtime attack mitigation searches.

One limitation of our approach is that it formalizes mitigation search as a
single objective COP: maximizing the business impact reduction of the attack.
In future work, we intend to rethink this task as a multi-objective COP taking
into account other criteria to choose among mitigation actions such as the cost
of their execution and their impact on the availability of the various services
deployed on the network to protect.

Another limitation is that both the attack action input set and the mitiga-
tion action output set are unstructured. In future work, we intend to extend
our cybersecurity ontology to include temporal and causal relations between
these actions, as well as spatial relations in terms of network topology. This will
allow the CSIRT-IDSS to (a) represent and reason about the spatio-temporal
progression of a complex, coordinated multi-stage attack, (b) hypothesize the
plan behind the observed anomalies and (c) in some cases mitigate some attack
plan actions before they are executed. This is a major endeavor since leverag-
ing such richer ontology will require both extending the attack detector with
a probabilistic adversarial plan recognition capability and extending CARMAS
with a probabilistic adversarial planning capability [3]. This will pursue the line
of research pioneered by Samarji et al. [27] who proposed parallel attack mitiga-
tion planning in a purely logic action calculus [32]. We intend to improve such
an approach by using instead a probabilistic action calculus [30] to better model
the inescapable uncertainty concerning the ongoing attacks to mitigate against.
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Abstract. Many domains such as military and agriculture collect data
from sensors and other trusted applications, process them, and distribute
them according to predetermined rules to interested entities. These sys-
tems need to trust the data broker, which could be hosted in a public
environment. This paper assesses the use of garbled circuits technique
to protect the collected time-sensitive data and filtering and distribution
policy from suspicious brokers. It reports about the design of a secure
brokering protocol and preliminary performance evaluation of the imple-
mentation.

1 Introduction

Current information systems collect data from sensors and other trusted appli-
cations, process them, and distribute them according to predetermined rules
within given time-constraints to interested entities. Figure 1 shows an example
of such systems, an area monitoring system. The parties of the scenario are: data
broker B, data producers Pi and data consumers Ci, where index i refers to the
ith participant. Let P1 be a drone that takes photos and sends them along with
its ID P1 and its latitude and longitude position (L1, L2) to a broker B. Let the
consumer C1 sends a request to the broker to get photos collected in the area
(L1

A, L2
B) and (L1

B , L2
B), where (Li, Lj) are the latitude and longitude of area

limit point A.
The broker needs often to be located close to the time-sensitive data producer

entities and may need to operate in a suspicious or malicious environment, e.g.,
to serve a ground monitoring mission. To address this requirement, the broker
needs to operate such that it applies the filtering and distribution policy without
understanding the data and the policy.

The threat model is as follow: The broker could intercept the execution of
the filtering policy and/or apply arbitrary function on the data received from
the producers and send the results to the consumers. The producers are trusted
to send “good” data. The consumers are trusted to send “good” filtering policy
predicate. The broker, however, must know nothing about the application of the
filtering policy.
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Fig. 1. Secure evaluation of access and dissemination policy on untrusted environments.

The issue of secure enforcement of access control policies in cross-domain
system is applicable to wide-range of domains including e-commerce, supply-
chain, and cyber-physical systems. The common approach is to use Attribute-
Based Encryption (ABE) [1,2]. However, this approach requires mechanisms to
distribute and manage the public/private keys for each participant, which makes
it difficult to apply in data dissemination scenarios, where the data senders
and receivers do not know each others at the setup phase. In addition, the
performance of the proposed homomorphic schemes that address the problem
makes them not practical.

An alternative approach is to use the Garbled Circuit (GC) [3] technique to
ensure the secure execution of brokering algorithm. GC is not commonly used
because most of the constructions require its size to grow exponentially to the
size of the input, includes big number of encryption/decryption operations, and
requires extensive exchange between the two parties contributing to evaluate the
circuit. For instance, Carter et al. evaluated the execution time of garbled circuit
for a set of algorithms including Dijkstra with 50 vertices and 100 vertices, which
take about 6 h and 47 h respectively [4]. Recent work focus on developing non-
interactive evaluation of garbled circuit [5,6], which allows to reduce the cost of
communication between the two parties participating on evaluating the garbled
circuit. These work focused on the security of the algorithms and did not provide
empirical performance evaluations.

The contributions of this paper are:

– Design and implementation of a GC-based brokering protocol for protect-
ing input data and filtering policy from suspicious brokers for time-sensitive
information sharing application.

– Preliminary security analysis and performance evaluations of the protocol.

The paper is organized as follows. Section 2 discusses related work. Section 3
describes the protocol of using Garbled Circuit (GC) for brokering data that
we propose. Section 4 describes the prototype of the protocol SFEDataShare.
Section 5 discusses the evaluation of SFEDataShare and Sect. 6 concludes the
paper.
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2 Related Work

We discuss in this section examples of work on attribute-based encryption of
circuits, implementations of GC and non-interactive constructions of GC.
Attribute-based Encryption (ABE) for Circuits. In ABE scheme, a cipher-
text is associated with public indexes of the attributes ind, a message m, a pri-
vate/public key, and Boolean predicate P over the attributes ind [7]. Several
ABE schemes have been proposed. For instance, Gorbunov et al. [1] proposed a
construction that uses the Learning With Errors (LWE) assumption [8], which
allows a receiver to decrypt only data that comply with its predicate and no
more. The scheme uses the public key to encrypt the wires inputs and allows
to compute the ciphertext and the circuit representing the predicates over the
attributes at the same time. In this scheme, the parameters and ciphertext grow
linearly with the depth of the circuit. Garg et al. proposed another construction
of ABE scheme but using multilinear maps [2].

Bonah et al. [9] proposed an attribute based encryption systems that relies
on LWE problems [8] and supports functions representing arithmetic circuits.
This scheme allows to transform an encryption c of message m with attribute
vector x into an encryption under public key < f(x), f >. It can then decrypt
the result only if f(x) = 0, that is, the policy is valid. The performance of the
scheme is expected to be not practical for time critical data sharing in military
applications.
Implementations of Garbled Circuit. Fairplay is the first known implemen-
tation of garbled circuit for two-party computation system [10]. Several imple-
mentations have been published since then, which provide better performance
and security. We report about the main ones in the following.

Kreuter et al. implemented the garbled circuit protocol for the malicious
model [11] in the two-party context using multiple-copies to detect malicious
GC evaluator. They were able to execute secure AES in 1.4 s and 4095-bit edit
distance circuit in about 8.2 h on 256 cores for each of the two parties. We note,
however, that about 40% of the execution time is spent on the communication
between the parties.

Bellare et al. [12] implemented the primitives of GC using AES to generate
the tokens for the wire signals. They also improved their implementation to ben-
efit from the free-xor [13] and garbled row reduction [14] performance improve-
ment techniques. The performance of the implementation [15] was assessed using
AES circuit and showed excellent performance: 637 µs for the circuit garbling
primitive and 264 µs for the evaluation primitive.

Almeida et al. [16] proposed a software stack for Secure Function Evalua-
tion (SFE) that consists of a verified compiler that translates C programs into
Boolean circuits, a verified implementation of Yao’s SFE protocol based on GCs
and oblivious transfer [17], and a transparent application integration and com-
munications. The security of the protocol implementation is formally verified
using EasyCrypt [18], a tool-assisted framework for building high-confidence
cryptographic proofs.
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Non-interactive GC. Bellare et al. [19] proposed a security formulation of GC
as four algorithms: garble the circuit, encrypt input, evaluate GC, and decrypt
the results. In addition, they formulated three security properties for GCs: (1)
privacy – the host shouldn’t learn anything impermissible beyond that which
is revealed by knowing just the final output, (2) obliviousness–leaks nothing
about the original function and input beyond known information such as the
topology of the circuit and (3) authenticity–inability of adversary to create an
output from the GC and input that is different from its output. The authors
provided one garbling scheme that comply with the security property and could
be instantiated using AES.

Goldwasser et al. proposed a construction of an encrypted decryption func-
tion that decrypts an encrypted message without a key [20]–they embed the key
in the GC. The construction uses GC of the decryption algorithm and LWE-
based ABE [1]. The construction uses the encrypted message to identify recur-
sively the labels to be used in evaluating the GC and outputs the plain-text
message.

3 Design of the Secure Brokering Protocol

Garbled Circuit (GC) has been proposed as an approach for secure function
evaluation [3,21]. A short description of garbled circuit follows. Let C be a
circuit that implements function f . A garbled circuit of C is an “encryption” of
C such that the decryption of its output using input x is equivalent to the output
of function f using the same input x. The steps of the algorithm are [3,22,23]:

1. Gb(1λ, f) → (F, e, d) – The garbling algorithm Gb takes in the security param-
eter λ and a circuit f , and returns a garbled circuit F , encoding information
e, and decoding information d.

2. En(e, x) → X – The encoding algorithm En takes in the encoding informa-
tion e and an input x, and returns a garbled input X.

3. Ev(F,X) → Y – The evaluation algorithm Ev takes in the garbled circuit F
and the garbled input X, and returns a garbled output Y .

4. De(d, Y ) → y – The decoding algorithm De takes in the decoding information
d and the garbled output Y , and returns the plain text output y.

Figure 2 shows the GC of a simple circuit. In this construction, we associate
to each of the wires two labels, e.g., wire 2 is associated with label C for signal
value 1 and label D for value 0. We also provide the truth table of each of the
garbled gates and associate the labels for outputs 0 and 1, where the values
0 indicates that the predicate is valid and 1 indicates otherwise. We observe
that in the basic construction, the encoding algorithm generates labels for the
input wires signals and associates them to the wire input and the decoding
algorithm generates labels for output wires signals and associates them to the
output values [19].

We propose the use of GC [3,21] for the secure evaluation of policy functions
in malicious environments. Figure 3 depicts the adapted protocol that we propose
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Fig. 2. An illustration of garbled circuit for a simple circuit

for secure brokering. The protocol uses the four roles: (1) the Owner, (2) the
Produce, (3) the Broker, and (4) the Consumer. The Owner generates the input
labels using the key SKi and the GC using the key SKv and sends the key
SKi to the Producer, and the GC and the key SKv to the broker. In addition,
the Owner constructs a decoding map that matches the possible output of the
circuit to the possible output labels of the GC, which it sends to the Consumer.
The Producer uses the key SKi to generate the input labels associated with its
input, which it sends to the Broker. The Broker evaluates the GC using the input
labels it receives from the Producer and the key SKv and sends the output labels
of the GC to the Consumer. The Consumer uses the output map to decode the
output labels it receives from the Broker and generates the plain-text data of
the circuit.

We adapt the cryptographic primitives of Bellare et al. [19] to generate and
evaluate the GC for our use case as illustrated in the Procedure Gb and Proce-
dure Ev respectively. Procedure Gb generates a GC from function f . The first
loop sets up the GC in line 2 and 3, and the second loop computes the q garbled
tables for each gate g in P [g, b, a] in lines 4 to 5, where the set garbled tables F
is given to the broker. Figure 4 shows the partial content of GC at the Owner,
including the parameters of the circuit, and a part of the garbled table.

For the evaluation of the GC, The procedure Ev evaluates the GC F using
encrypted input X by extracting the labels Xa and Xb of the inputs to each of
the gates and uses them to compute the output labels. Then, the output labels
are given to the consumer to decrypt them.

A short security analysis of our GC weaknesses is as follows: Each of the
producers receives a secret key to encrypt its data then send to the broker. An
attacker who compromises a producer can impersonate the producer by using
the producers’ secret key to send data of their choice to the broker. Another
weakness of the first version of our solution is that the size of a predicate could
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Fig. 3. Secret-key-based protocol for secure data dissemination. Note: f : function, F :
garbled function, e: encoding alg., SKi: secret key for generating input labels, SKv:
secret key for garbling circuit C representing f , input labels x: producer input, X:
encryption of x, y: output, Y : encrypted output, and d: map of possible circuit outputs
to possible GC output labels.

Procedure Gb(1k,f) [19]
1 (n,m, q,A′, B′, G) ← f
2 for i ∈ {1, ..., n + q − m} do

3 t � {0, 1} , X0
i � {0, 1}k−1 t,X1

i � {0, 1}k−1 t̄

4 for (g, i, j) ∈ n + 1, ..., n + q × 0, 1 × 0, 1 do

5 a ← A′(g), b ← B′(g) A ← Xi
a, a ← lsb(A), B ← Xj

b , b ← lsb(B)

6 T ← g ‖a‖ b, P [g, a, b] ← ET
A,B(XG(i,j)

g )

7 F ← (n,m, q,A′, B′, P )
8 e ← (X0

1 , X
1
1 , ..., X

0
n, X

1
n)

9 d ← (X0
n+q−m+1, X

1
n+q−m+1, ..., X

0
n+q, X

1
n+q

10 return (F, e, d)

be small enough for a malicious broker to bypass it by mapping the input and
the output. We consider to address these limitations in our future work.

4 Description of SFEDataShare Framework

We developed a framework for secure brokering, referred to as SFEDataShare.
We use JustGarble [12,15,19,24], an open source code base for garbling and eval-
uating Boolean circuits, as the core component of the framework. JustGarble [15]
uses two AES keys in constructing the GC. The first key is used to generate the
input labels that correspond to possible inputs to the circuit. The second key is
used to generate the GC wires labels and to evaluate the GC using the provided
input labels.
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Procedure Ev(F , X) [19]
1 (n,m, q,A′, B′, P ) ← F, (X1, ..., Xn) ← x
2 for g ← n + 1 to n + q do
3 a ← A′(g), b ← B′(g) A ← Xa, a ← lsb(A), B ← Xb, b ← lsb(B)

T ← g ‖a‖ b,Xg ← D
T
A,B(P [g, a, b])

4 return xn+q−m+1, ..., xn+q

Fig. 4. Data owner GC output

justGarble allocates memory for the GC dynamically. The operating sys-
tem allocates a big memory size for the GC as the memory is fragmented. For
instance, the OS reserves effectively 2 GB memory (considering memory frag-
mentation) for a garbled circuit of 51 input wires while the effective needed
memory is 9544 bytes, excluding the memory for storing the input labels. This
problem prevented us from easily serializing the GC. Thus, we developed serial-
ization and deserialization functions for the GC, input labels, and output labels.
The serialization consists of performing a memory copy of the data in its data
type form to a reserved memory of type void. The deserialization consists of
performing a memory copy of the received data of type array of voids to the
variables addresses and performing type casting of the variables or using func-
tion mmload si128() [25] to store the data into m128i variables. This solves
the problem as we are consuming only the needed memory zones.

Figure 4 shows part of the log of the Owner module. The log shows the
input/output labels of a circuit composed of three input wires and two gates
XOR(.) and AND(.).
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Table 1. Performance of the protocol.

# Of inputs

wires

# Of gates GC size (in

bytes)

Garbling time

(in ticks)

Evaluation time

(in ticks)

3 2 520 80584 569

10 9 1836 81076 1137

15 14 2776 82134 901

22 21 4092 171404 (0.017 s) 1990 ( 0.2 msec)

*10.000 ticks correspond to 1 millisecond

5 Performance Evaluation

We evaluated the framework using a MacBook Air laptop of 1.1 GHz Dual-Core
Intel i3 processor with 16 GB RAM. The framework’s modules run in a virtual
box VM that runs Ubuntu 14.04.6 LTS. Table 1 provides the GC serializing
size, circuit garbling time, and GC evaluation time. We observe that garbling a
circuit of 21 gates and 22 wires takes about 17 milliseconds to garble and 0.2
milliseconds to evaluate. The timing values are considered acceptable, compared
to the timing of e.g., the construction of Carter et al. [4], although the sizes of
the circuits are small.

The time to send GC from the Owner to the Broker depends mainly on the
size of the serialized GC. Equation 1 provides the size of the serialized garbled
circuit, where q is the number of gates, n is the number of input wires, and
m is the number of output wires of the circuit. Column 3 of Table 1 provides
examples of the sizes the serialized GCs. We believe that the time to send GC
will be reasonably low.

s = (84 × q) + ((n + q + 1) × 52) + (4 × m) + 16 + 20.
where:
q: number of gates.
n: number of input wires.
m: number of output wires.

(1)

The framework crashes when we use circuits of large size because of the
enormous effective size of the memory allocated to the GC in justGarble. This
issue requires further debugging of the code to make it more robust and useful.

We note that the implemented protocol uses two AES keys to construct the
labels for the GC. The schema is secure because the broker, who evaluates the
GC, cannot associate the input to the input labels and cannot associate the
output of the circuit to the output labels generated from the GC.

6 Conclusion

We discussed in this paper the results of assessing the use of Garbled Circuit
(GC) to protect time-sensitive input data and filtering and distribution rules
from suspicious brokers. We designed a protocol for secure data dissemination
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that uses GC and implemented a prototype of it, SFEDataShare. Then, we
evaluated the framework using a small randomly generated circuits of up to
about 21 gates.

We found that the size of data exchanged between the parties is small and the
time to garble a circuit and evaluate it are also reasonably small. The results show
that GC could be used for secure data brokering with acceptable performance.

Acknowledgement. This work is supported by the Air Force Research Lab, Rome,
USA.
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Abstract. The Internet consists of tens of thousands of autonomous sys-
tems (ASes), which exchange routing information through policy-based
routing protocols, such as Border Gateway Protocol (BGP). BGP allows
network administrators/operators to configure routing policies indepen-
dently. The routing result is derived from complex interactions controlled
by the configured policies. Thus, the routing policies of all networks are
essential to understand which network a packet uses to reach a desti-
nation or whether there is a path to reach a destination. However, the
routing policies of a network are proprietary information. The majority
of networks in the Internet do not publicly share their routing policies.
In this paper, we anonymize the routing policy with the aim to preserve
the utility to understand the routing system. To this end, we perturb
both the routing policies and the AS-level topology. We propose a series
of anonymization schemes that perturb the AS-level topology to derive
a k-anonymity graph. We further perturb routing policies to preserve
the best path. We evaluate the anonymization schemes against sophis-
ticated de-anonymization attacks exploiting rich structural information
of AS-level topologies, such as neighborhood and reference distance. The
experimental result shows that the de-anonymization attack exploiting
rich structural information can identify less than 1% of nodes.

Keywords: Graph anonymization · K-anonymity · Network
verification

1 Introduction

The Internet consists of tens of thousands of autonomous systems (ASes), each
of which belongs to an organization such as an Internet Service Provider (ISP),
a university, a company, or an Internet Exchange Point (IXP). The intercon-
nections in the Internet have a hierarchical structure, where tier-1 ISPs pro-
vide settlement-free services among each other, and provide transit services to
regional ISPs or stub networks, and regional ISPs provide transit services to even
smaller ISPs or stub networks. BGP is a policy-based protocol used for routing
among ASes.

The route taken by a packet to traverse in the Internet is determined by
the route selection process, and a result of complex interactions controlled by
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Luo et al. (Eds.): CRiSIS 2021, LNCS 13204, pp. 121–136, 2022.
https://doi.org/10.1007/978-3-031-02067-4_8
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the configured routing policies of all networks. Knowing routing policies of all
networks allow us to answer a broad set of what-if questions [11,18]. For example,
if a network wants the inbound traffic from Google to go through a specific
provider, then before changing its routing configuration the operator wants to
verify that the configuration indeed leads to the desired outcome.

Routing policies are considered to be proprietary by their networks. Each net-
work administrator/operator configures its routing policy independently. The
routing policy of a network reveals how the network exchanges routes with
neighbors. Thus, the commercial agreement (e.g., provider-customer relation-
ships) between neighboring ASes can be inferred through their routing policies.
Further, the routing policy of a network reveals that which neighbor is more
preferred than others. Therefore, routing policies should be anonymized before
sharing.

A trivial method of anonymizing routing policies is to anonymize IDs of all
networks, e.g. AS Numbers, in the routing policies. Namely, each original AS
Number is transformed into a unique ID. However, anonymizing IDs alone is
not sufficient. The number of neighbors of a network can be inferred from the
anonymized routing policy of the network, even if all network IDs contained in
the routing policy are anonymized.

In the Internet, tier-1 ISPs have a large number of neighbors (customers
and peers) and the number of neighbors follow power-law distribution [12]. The
ASes with a large number of neighbors are few and their degrees (e.g. the num-
ber of neighbors) are usually unique. The AS-level topology can be derived from
the publicly available routing tables of RouteViews [14] and RIPE RIS [9]. The
degrees in the AS-level topology can be used to identify the AS. Even if the
derived AS-level topology does not exactly reflect the AS-level topology in reality,
the ranking of these large ISPs in terms of degree will be same. Thus, these Tier-1
ISPs can still be identified. Identifying a few tier-1 networks can lead to identify-
ing tier-2 networks by what tier-1 neighbors they have. Progressively, more and
more ASes might be identified when their higher-tier neighbors have been iden-
tified. Therefore, anonymizing the AS-level topology is the key in anonymizing
routing policies.

Anonymizing graphs have been studied at the area of online social net-
works [2,3,6,8,10,17,19–21]. These schemes perturb the graph through adding
and/or removing nodes and/or edges in social networks, so that the adversaries
can not identify users from the social network. These schemes focus on preserv-
ing social network structural properties. However, these schemes do not maintain
the best paths derived from the routing policies. The applications exploiting the
inter-domain routing policy are very sensitive to the best paths derived from
the routing policy. Therefore, these schemes can not be directly applied to the
anonymization of routing policies.

In this paper, we propose a path-preserving anonymization scheme for sharing
inter-domain routing policies. We anonymize the routing policies so that the best
paths can be maintained after anonymization. To do that, we first perturb AS-
level topology by adding fake networks and connection between fake networks
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and between fake and real networks. We then establish routing policies for these
newly-added links.

To perturb the AS-level topology, one anonymization scheme is adding neigh-
borhood relationships between pairs of networks. However, simply adding fake
edges between networks is not sufficient to maintain the best path utility. The
reason is that the local preferences on the fake edge between two networks can
not be properly assigned. When network u is connected to network v through a
fake edge, to avoid the fake edge being included in the best paths, all real edges
should be preferred over the fake edge. Thus, network u and network v should
give each other the lowest local preference. In practice, a network assigns the
lowest local preference to its provider and a pair of neighboring ASes can not
be the provider of each other. Therefore, the fake edges between a pair of ASes,
such as network u and network v, can be identified by using the local preferences
assigned to the fake edge.

We propose to add fake networks into the AS-level topology and then add
the connection between fake networks and real networks to perturb the AS-level
topology. In the topology perturbation, we first consider to avoid being identi-
fied through the number of neighbors. We propose a deterministic anonymiza-
tion scheme which derives a k-anonymity graph. As a result, the probability
of identifying a network by the degree information is at most 1

k . However, the
resulting k-anonymity graph is deterministic. We further propose the proba-
bilistic anonymization scheme to generate the k-anonymity graph with higher
randomness. To anonymize the AS-level topology, the probabilistic anonymiza-
tion scheme might significantly enlarge the graph with fake networks. Adding
too many fake networks might make the scheme infeasible in practice. Finally, we
propose the hybrid anonymization scheme to take advantage of the strengths of
both the deterministic anonymization scheme and the probabilistic anonymiza-
tion scheme.

After fake networks and fake edges are added, we propose to generate the
associated routing policies for those fake networks and edges. To avoid de-
anonymization, in the anonymized routing policies, the local preferences assigned
to real neighboring ASes and fake neighboring ASes have the same distribution.

We evaluate the proposed anonymization schemes against de-anonymization
attacks exploiting rich structural information, such as neighborhood and ref-
erence distance. The experimental result shows that the structure-based de-
anonymization attacks can identify less than 1% networks from the anonymized
AS-level topology. In addition, we use Closeness Centrality as an example met-
rics to illustrate how hard to identify a network through the structural infor-
mation. We also show that the forged routing policies of networks added by the
anonymization schemes will not be used to identify the added networks from the
original networks.

The rest of this paper is organized as follow: In Sect. 2, we illustrate background
and formally define the problem. In Sect. 3, we discuss the preliminaries neces-
sary for preserving utility to construct the anonymization schemes. To perturb the
AS-level topology, in Sect. 4 we propose the deterministic anonymization scheme,
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the probabilistic anonymization scheme and the hybrid anonymization scheme
respectively. In Sect. 5, we propose to perturb the routing policies through a local
preference assignment scheme. We describe the experiment in Sect. 6, related work
in Sect. 7, and make the conclusion of the paper in Sect. 8.

2 Background and Problem Formulation

2.1 Routing Policies and AS-level Topology

BGP is the de-facto standard for inter-domain routing in the Internet. BGP
allows network operators to configure the routing policy of their own networks.
The routing policies of those networks together determine the best routes from
source to destination networks. In BGP, a network assigns a local preference to
each of its neighbors respectively and prefers the routes from a neighbor network
with a larger local preference.

Listing 1.1. A snippet of the routing policy

router bgp 45000

neighbor 192.168.1.2 remote-as 40000

neighbor 192.168.1.2 route-map SET-LOCAL-PREF-CUST in

neighbor 192.168.1.3 remote-as 50000

neighbor 192.168.1.3 route-map SET-LOCAL-PREF-PEER in

!

route-map SET-LOCAL-PREF-CUST

set local-preference 200

route-map SET-LOCAL-PREF-PEER

set local-preference 100

In Listing 1.1, we illustrate a snippet of the routing policy for AS 45000.
The routing policy of AS 45000 indicates the neighborhood relationships of AS
45000. According to the routing policy, AS 45000 has two neighboring ASes, AS
40000 and AS 50000. This snippet also indicates that AS 45000 sets up the local
preference 200 for its customer, AS 40000, and the local preference 100 for its
peer, AS 50000. As a result, AS 45000 prefers routes from AS 40000 over that
from AS 50000.

The routing policy of a network indicates the neighboring ASes of the net-
work. The routing policies of all networks together implies the AS-level topology
of the Internet. Let us denote the AS-level topology by a graph, G = {V,E,R},
where V is the set of nodes, E is the set of edges and R is the set of all rout-
ing policies. Each node represents an AS in the Internet. The edge between two
nodes represents the link between two networks.

2.2 Path-preserving Anonymization

To protect the routing policies, we can obfuscate the key information in the rout-
ing policies. One of the most trivial one is pseudonymization. We can replace
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AS numbers in the routing policies by a pseudo ID, so that the routing poli-
cies can not be identified through the AS numbers directly. Let us denote the
pseudonymization as a network mapping function, π, that maps the original AS
number to the anonymized AS number (the pseudo ID).

Anonymizing IDs only is not enough for the anonymization of routing poli-
cies. The neighboring relationship with the real preference and the real neighbor
ID implied by the routing policies can be used for identification as we state in
the introduction. Beyond pseudonymization, we might also change the neighbor-
ing ASes and local preferences for these neighboring ASes in a routing policy.
As for the routing policy in Listing 1.1, we might switch the local preferences
of AS 40000 and AS 50000. However, the obfuscation might not preserve the
best paths derived by the routing policies. For example, after switching the local
preferences in the routing policy of Listing 1.1, AS 45000 prefers routes from AS
50000 over that from AS 40000.

Answering what-if questions by exploiting the inter-domain routing policy
relies on the best paths derived from the routing policies. If the best paths of
the anonymized routing policy is different from the best paths of the original
routing policy, then the anonymized routing policy might not be useful to answer
what-if questions. In order to preserve the utility of the routing policy, a best
path derived by the original routing policy should be a best path derived by the
anonymized routing policy. We say that the anonymization scheme preserves
the best path utility, if, for an AS-level topology G = {V,E,R}, ∀i, j ∈ V ,
π(Path(i, j)) = Path(π(i), π(j)), where Path(i, j) indicates the best path from
network i to network j and π(Path(i, j)) maps all original AS numbers of ASes
in the best path to their anonymized AS numbers.

In this paper, we propose the anonymization schemes that preserve the
best path utility. To do so, all networks and the neighboring relationships are
maintained after the routing policy anonymization. Namely, the anonymization
schemes should not remove nodes or edges from the AS-level topology. Instead,
the anonymization schemes can add new nodes and new edges into the AS-level
topology. In addition, the local preferences of neighboring ASes can be changed
but the ranking of these local preferences should be maintained. Thus, after the
anonymization, a network ranks the neighboring ASes in the same way as before
the anonymization.

2.3 Threat Model

After the anonymization, the routing policies of all networks are publicly avail-
able. The adversary can access the anonymized routing policies of all networks
and try to figure out the routing policy for each network. Given an AS num-
ber, the adversary needs to identify the routing policy of this AS and discovers
how this AS ranks its neighboring ASes from the routing policy. To preserve the
best path utility, how an AS ranks its neighboring ASes is maintained in the
anonymized routing policy. Therefore, the key of this de-anonymization proce-
dure is to infer the network mapping function, π.
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The AS-level topology implied by the anonymized routing policies can be
used to identify the routing policy of each network. The routing tables of Route-
Views [14] and RIPE RIS [9] are publicly available. The adversary can get the
AS-level topology of the Internet by using the routing tables. To preserve the best
path utility, all networks and their connections are maintained in the anonymized
AS-level topology. We consider that the adversary tries to use the AS-level topol-
ogy of the Internet to identify the networks in the anonymized AS-level topology
and figure out the routing policy of the networks.

3 Anonymization Scheme Overview

To anonymize the routing policies, we first consider how to perturb the AS-level
topology implied by the routing policies, so that the networks are hard to be
identified through the number of neighbors. Then, we modify the routing policies
of these networks accordingly, so that the networks are hard to be identified
through the local preferences in the anonymized routing policies.

3.1 Anonymizing Graph Structure

To perturb the AS-level topology, we consider to generate k-anonymity graphs.
A k-anonymity graph is a graph that, for any node, there are at least k−1 other
nodes sharing the same degree with the node. If only the degree information is
used by the adversary, the probability that the adversary can correctly identify
a real node from the k-anonymity graph is at most 1

k .
An anonymized graph that is not k-anonymity can also guarantee that the

adversary can not correctly identify a real node with the probability higher than
1
k . Following this idea, we extend the definition of k-anonymity graph as follows.
Given an anonymized graph derived from the original graph, the anonymized
graph is a k-anonymity graph, if the probability that the adversary can correctly
identify a real node is no more than 1

k when the original graph size goes to infinity.
Formally, ∀u ∈ V and ∀v ∈ V ′,

lim
|V |→∞

P
(
P (π(u) = v|Y = y) ≤ 1

k

)
= 1, (1)

where V and V ′ are the sets of nodes in the original graph and the anonymized
graph respectively and y is the degree sequence of nodes in the anonymized
graph. In Sect. 4, we propose three graph anonymization schemes to generate
k-anonymity graph.

Although k-anonymity with a small k is vulnerable to de-anonymization
attacks, the schemes proposed in this paper can select a large k, such as k
equals the number of real nodes. The reason is that the schemes in this paper
preserve the best path utility. Selecting a large k does not impact the utility of
the anonymized graph. In the experiment, we will show that selecting a large k
can achieve pretty good anonymization performance.
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To preserve the best path utility, all nodes and edges in the original graph
should be maintained in the anonymized graph. Therefore, the anonymization
schemes should not remove nodes or edges. In this paper, we propose to add fake
nodes into the graph. Then, fake nodes and real nodes are connected by a set of
fake edges to perturb the graph structure.

3.2 Local Preference Assignment for Fake Edges

After the graph anonymization, we need to modify all routing policies for newly-
added nodes and edges. For each fake node added into the topology, we need
to create a new routing policy for the node. For each fake edge added into the
topology, the local preferences should be properly assigned to the edge. In Sect. 5,
we propose a local preference assignment scheme to determine local preferences
for these fake edges, so that the fake nodes can not be identified through their
local preferences.

4 Node Anonymization

In this section, we propose three anonymization schemes to perturb the AS-
level topology. In Sect. 4.1, we first propose the deterministic anonymization
scheme which generates a k-anonymity graph. However, the resulting graph is
determined by the Internet topology and lacks of randomness. To increase the
randomness of the resulting graph, we propose the probabilistic anonymization
scheme in Sect. 4.2. The probabilistic anonymization scheme might significantly
enlarge the graph with fake networks. Finally, in Sect. 4.3, we propose the hybrid
anonymization scheme that takes the advantages of both the deterministic and
probabilistic anonymization schemes.

4.1 Deterministic Anonymization Scheme

In the deterministic anonymization scheme, we partition all nodes of the original
graph into several groups, where each group contains at least k nodes. Then, we
add fake edges between these real nodes and fake nodes to make these real nodes
in the same group have the same degree. Finally, fake edges are added between
fake nodes to make all fake nodes have the same degree.

4.1.1 Node Grouping
Given a graph with n nodes, we partition all real nodes into �n

k � groups, where
each group at least has k nodes. To do so, we sort the nodes of the original graph
in the descending order of their degrees. For the first �n

k � − 1 group, the group i
is composed of the (i ∗ k − k + 1)-th node to the (i ∗ k)-th node. The last group
is composed of the (�n

k � ∗ k − k + 1)-th node to the n-th node.
For each group, we select a target degree. All real nodes in the group are

supposed to reach the target degree of this group after the anonymization. To
increase the degree of real nodes, we add fake nodes and fake edges. We also
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select a target degree for all fake nodes. When every node reaches their target
degrees, we get a k-anonymity graph. Please refer to the technical report1 for
how we select the target degrees and the number of fake nodes added into the
anonymized graph.

4.1.2 Graph Construction
Given the number of fake nodes and the target degrees, we add fake edges to
generate k-anonymity graph. We define degree gap of a node as the target degree
of this node minus its degree. We use gi to denote the degree gap of node i. The
degree of fake nodes in the original graph are zero. Through adding fake edges,
we will make the degree gaps of all nodes be zero. To do so, we select one node
with the largest degree gap and make the node reach its target degree in each
step. We show the details as follows.

Increasing Real Node Degree. To increase the degree of real nodes, we always
select the real node that has the largest degree gap. Suppose that we select node
i with the degree gap gi. Then, we select gi fake nodes that have the largest
degree gap and connect these gi fake nodes with node i with fake nodes.

Increasing FakeNodeDegree. To increase the degree of fake nodes, we always select
the fake node that has the largest degree gap. Suppose that we select node i with
the degree gap gi. Then, besides node i, we select gi fake nodes that have the largest
degree gap and connect these gi fake nodes with node i with fake nodes.

4.1.3 Privacy Guarantee

Theorem 1. The deterministic anonymization scheme can generate a k-
anonymity graph.

Please refer to the technical report for the proof of this Theorem.

4.2 Probabilistic Anonymization Scheme

The deterministic scheme lacks of uncertainty. The regularity of the anonymized
graph generated by the deterministic scheme can be used for de-anonymization.
In order to increase the uncertainty of the anonymization scheme, we propose
probabilistic anonymization scheme. In probabilistic scheme, we add randomness
during the graph anonymization so that the resulting graph is not deterministic.

4.2.1 Graph Anonymization
The basic idea of the graph anonymization is to connect a real node and a fake
node with the probability, p. For each real node, the number of its fake neighbors
is a random variable that follows binomial distribution with the average as m∗p

1 Please access to the technical report through http://rio.ecs.umass.edu/mnilpub/
papers/crisis2021-shao-tr.pdf.

http://rio.ecs.umass.edu/mnilpub/papers/crisis2021-shao-tr.pdf
http://rio.ecs.umass.edu/mnilpub/papers/crisis2021-shao-tr.pdf
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and the variance as m∗p(1−p). When the difference between the degrees of two
real nodes in the original graph is insignificant comparing to m ∗ p(1 − p), these
two real nodes can not be identified through their degrees.

Given a graph G, we refer to a group with k nodes in G as k-node group.
In a graph G, we define k-node degree delta of a k-node group as the difference
between the maximal and the minimal degrees of nodes in the group. Then, for
a specific node, there are a number of k-node groups that contain this node. We
define minimal k-node degree delta of a node as the minimal k-node degree delta
of k-node groups that contain the node. We use δ(i,k) to denote the minimal
k-node degree delta of node i. We refer to that k-node group as minimal k-node
group of this node. We construct the k-anonymity graph as follows.

Adding Fake Nodes. We add m = max(δ2(max,k) lnn, n) fake nodes into the graph,
where δ(max,k) is the maximal δ(i,k) for ∀i ∈ [1, n], n is the number of nodes in G
and dmax is the maximal degree in the graph G. We will show that m is sufficient
in Theorem 2.

Connecting Real Nodes with Fake Nodes. For each real node, we add a fake edge
between this real node and each fake node with a probability p, where 0 < p < 1.
On average, each real node will connect to m ∗ p fake nodes.

Connecting Fake Nodes with Fake Nodes. Then, we connect fake nodes with
fake nodes. The goal is to make the expected degree of fake nodes be the
expected degree of the real node with the highest degree in the original graph.
To do that, each fake node connects to another fake node with the probability
q = (m−n)p+dmax

m−1 .

4.2.2 Probabilistic Privacy Guarantee

Theorem 2. The probabilistic scheme generates a k-anonymity graph.

We provide the proof of this Theorem in the technical report. In the following,
we just illustrate the intuitive idea that the anonymization method can generate
a k-anonymity graph. In the anonymization procedure, a number of fake edges
are added to each real and fake node. With a higher probability (the probability
goes to one when the graph size goes to infinity), the k nodes in the minimal
k-node group of each node will have very similar degrees in the anonymized
graph. Because, the minimal k-node degree delta will be asymptotically smaller
than the variance for the number of the fake edges connected to each real node.
Apparently, it is more likely that the node with higher degree in original graph
has the higher degree in the anonymized graph. However, when the degree of
a node in the anonymized graph is dominated by the fake edges added in the
anonymization procedure, the degree delta of the nodes in the original graph
are insignificant. Then, the k nodes in each group have similar degrees. The
probability of successfully identifying nodes by their degrees is 1/k.
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4.3 Hybrid Anonymization Scheme

In the probabilistic anonymization scheme, the number of fake nodes needed
to perturb the graph rises rapidly with the increasing of the degree difference.
In order to reduce the number of added faked nodes, we propose the hybrid
anonymization scheme. We will first use the deterministic anonymization scheme
to reduce the degree difference in the graph. After that we derive probabilistic
k-anonymity graph by using the probabilistic anonymization scheme.

4.3.1 Graph Construction
Hybrid anonymization scheme guarantees to generate a k-anonymity graph. The
key idea is to reduce the degree difference through the technique of the deter-
ministic anonymization scheme and then apply the probabilistic anonymization
scheme. We describe the two phases as follows.

Reducing Degree Delta through Deterministic Anonymization Scheme. Given a
graph with n nodes, to reduce the degree delta, we first partition the nodes into
�n
k � groups, where each group at least has k nodes. In this phase, our aim is

to make sure that the degree delta of each group is less than a target degree
delta, δtarget. We select δtarget = �√n/ ln n�. When δmax,k is less than δtarget,
in a graph with n nodes, according to Theorem 2 , n fake nodes are enough to
generate a k-anonymity graph in the next phase. The detailed steps of this phase
is similar to the deterministic anonymization scheme.

Perturbing Node Degrees through Probabilistic Anonymization Scheme. In this
phase, we randomly increase the node degrees by using the same technique of
the probabilistic anonymization method. We treat both the real nodes and the
fake nodes added by the last phase as the real nodes. Then, we can use the
probabilistic anonymization scheme to anonymize the graph.

4.3.2 Algorithm Analysis

Theorem 3. The hybrid anonymization scheme generates a k-anonymity graph.

Proof. When the degree delta of each group is reduced into �√n/ ln n�, the
minimal k-node degree delta of each node is equal to or less than �√n/ ln n�.
According to Theorem 2, we can prove this theorem.

5 Routing Policy Anonymization

In this section, we propose a local preference assignment scheme for fake edges.
We aim to guarantee that the real nodes and fake nodes have the similar local
preferences, so that fake nodes can not be identified by the local preferences.
We consider both outgoing preference and incoming preference. The outgoing
preference of a node is the average of local preferences that are assigned to its
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neighbors by this node. The incoming preference of a node is the average of local
preferences that are assigned to this node by its neighbors. The proposed scheme
generates local preferences so that the distribution of the outgoing preferences
and the incoming preferences for real nodes are same with that for fake nodes.

The best paths are determined by the ranking of the local preferences instead
of the exact value of the local preferences. In this paper, we use the ranking number
of these local preferences to represent the original values of these local preferences.
For example, if a node assigns local preferences to its four neighbors as 100, 200,
200 and 400, then the associated ranking numbers are 3, 2, 2 and 1 respectively.

5.1 Accommodating the Distribution of Outgoing Preference

To adjust the outgoing preferences of a node, we need to determine ranking number
for neighbors. Namely, how many neighbors have the ranking number 1, how many
neighbors have the ranking number 2 and so on. We refer to the set of neighbors
with the ranking number i as the i-th ranking set of the node. The union of all
ranking sets of a node should be the neighbor set of the node. Note, in this step, we
determine how many fake edges will be assigned with a ranking number instead of
assigning the ranking number to specific fake edges. In the following, we illustrate
how we determine the size of the ranking sets for each node.

In each step, we randomly select a node and determine the size of the ranking
sets. For each node, we initiate the procedure from determining the size of first
ranking set and finish the procedure until the total size of ranking sets equals
the number of neighbors. To preserve the best path utility, a real node will
not change the local preference for its real neighbors and will not prefer fake
neighbors over real neighbors. Namely, the top ranking sets of a real node are
already determined by the original routing policy. For these real nodes, we select
the size of ranking sets for their fake neighboring relationships only.

To determine the size of i-th ranking set for a node, we investigate the size of i-
th ranking sets of the other nodes. If the size of i-th ranking sets of the other nodes
are all zero, then we just pick the size for i-th ranking set of this node. Therefore,
the total size of ranking sets of this node equals to the node degree. Otherwise,
we select an existing size for i-th ranking set of this node. More specifically, the
probability of selecting the size of i-th ranking set as s is as follows.

p(s, i) =

{
0 ∀k,N(k, i) = 0

1/N(s,i)∑
(k|N(k,i)�=0) 1/N(k,i) N(s, i) �= 0.

(2)

where s is the size of a ranking set and N(s, i) is the number of i-th ranking sets
with the size s.

5.2 Accommodating the Distribution of Incoming Preference

Given the size of all ranking sets, we select specific neighbors for each ranking
set. The goal is to make the incoming preference of real nodes have the same
distribution with that of fake nodes. To preserve the best path utility, real nodes
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always prefer their real neighbors over fake neighbors. To avoid fake nodes having
large incoming preference, we make fake nodes prefer fake neighbors over real
neighbors.

The maximal degree of real nodes, dmax, can be used by the adversary to
remove fake edges. For a node i, only if node j is one of its top dmax neighbors
in the ascending order of local preferences, then the edge (i, j) could be a real
edge. Otherwise, the edge (i, j) has to be a fake edge. To avoid an edge (i, j)
from being identified as a fake edge, node i and node j should treat each other as
top dmax neighbors. To do so, before assigning the local preference value to each
fake edge, for each node, we select a set of neighbors as its top dmax neighbors.
We refer to those neighbors of the node as high-ranking neighbors. Apparently,
for a node, there are at most dmax high-ranking neighbors. The rest neighbors
are low-ranking neighbors. Only the edges between the node and its low-ranking
neighbors are identified as fake edges.

6 Experiment

6.1 Datasets

To evaluate the proposed anonymization schemes, we anonymize a series of
graphs through these schemes. Since Internet topologies are power-law graphs,
we synthesize power-law graphs with various sizes for evaluation. In order to
generate power-law graphs that have the same properties with Internet topolo-
gies, we exploit the graph generation algorithm in [4]. We also use the Internet
AS-level topologies in CAIDA AS Relationship Database [1] to evaluate the
performance of these schemes on Internet topologies.

6.2 Robustness Against De-anonymization Algorithm

There are a number of de-anonymiztion algorithms which exploit structural
information to identify nodes from the anonymized graph. Most of them are
seed-based. Those algorithms rely on a seed graph which already maps a sub-
set of real nodes in the original graph to the nodes in the anonymized graph.
However, in the context of de-anonymizing network graph, it is hard to get
a set of seed nodes. Therefore, in the experiment, we consider the seedless de-
anonymization algorithm to identify the real nodes in the anonymized graph. We
exploit the state-of-the-art seedless de-anonymization algorithm [5] to identify
the nodes from the anonymized graphs.

Table 1 illustrates the number of real nodes identified through de-
anonymization algorithm. In this experiment, we synthesize power-law graphs of
various size and perform the anonymization and de-anonymization algorithms.
For each size, we generate five graphs and illustrate the average number of
real nodes that are correctly identified in Table 1. Although the anonymiza-
tion schemes aim to perturb the degree of each nodes, to some extent, they can
defend the de-anonymization algorithm using structural information. When k is
n,

√
n or lnn, more than 90% real nodes can not be correctly identified.
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Table 1. Percentage of real nodes that are identified by seedless de-anonymization
algorithm [5].

Number of nodes 100 400 700 1, 000

Hybrid n-anonymity 0% 0% 0% 0%

Hybrid
√
n-anonymity 0.2% 0.1% 0.03% 0%

Hybrid lnn-anonymity 1.2% 0.15% 0% 0.1%

Deterministic n-anonymity 0% 0% 0% 0.02%

Deterministic
√
n-anonymity 2.4% 1.05% 0.94% 0.92%

Deterministic lnn-anonymity 7.2% 5.1% 7.31% 7.28%

6.3 Potential De-anonymization Using Local Preference

(a) Outgoing Prefer-
ence (DAS).

(b) Incoming Prefer-
ence (DAS).

(c) Outgoing Prefer-
ence (HAS).

(d) Incoming Prefer-
ence (HAS).

Fig. 1. Distribution of local preferences with deterministic anonymization scheme
(DAS) and hybrid anonymization Scheme (HAS).

The local preference of nodes in the anonymized graph might be used to sepa-
rate real and fake nodes. In this experiment, we investigate the distribution of
outgoing and incoming preferences of real nodes and fake nodes. When the dis-
tribution for real nodes are similar with that for fake nodes, the local preference
is hard to be used to identify real nodes.

We illustrate CDF of outgoing and incoming after deterministic and hybrid
anonymization schemes in Fig. 1 and Fig. 2 respectively. As Fig. 1 shows, the
distributions for real and fake nodes are very similar. The adversary might or
might not use the local preference and the maximal degree to identify fake edges.
Namely, for each AS, only the dmax top-ranking links can be real links while the
other links have to be fake. These fake edges can be removed. Thus, in the
experiments, we consider the scenarios where the adversary uses or does not use
fake edge removal. As Fig. 2 shows, the distributions for real and fake nodes are
still very similar after removing fake edges.

Fake edges in the anonymized graph can be removed through observing the
outgoing local preference of each node. Even after removing fake edges, the seed-
less de-anonymization attack can not identify real nodes from the anonymized
graphs. The result is similar to Table 1. Due to the space limit, we do not list
the result.
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(a) Outgoing Preference. (b) Incoming Preference.

Fig. 2. Distribution of local preferences with hybrid anonymization scheme after fake
node removal.

7 Related Work

7.1 Internet-Wide Network Verification

A number of formal methods have been exploited to verify properties for inter-
domain routing. To study the safety property of BGP systems, Satisfiable Mod-
ule Theories (SMT) [16] and Rewriting Logic [15] are used to verify the con-
vergence conditions. A model checking tool is used to search possible attraction
attacks on the Internet [13]. A policy-aware model [11] is proposed for routing
verification at Internet scale. Those verification schemes need both the Internet
topologies and the routing policies of networks for the verification. To preserve
the confidentiality of routing policies, the anonymization schemes proposed in
this paper can generate anonymized graphs for those verification schemes.

7.2 Graph Anonymization

A series of graph anonymization mechanisms have been proposed at the area of
online social networks [2,3,6,8,10,17,19–21]. One large class of anonymization
mechanisms exploits k-anonymity, where k nodes in the anonymized graph can
not be separated from each other. The first approach in this direction is proposed
in [6], where each node shares the same degrees with at least k − 1 other nodes.
At the same time, Zhou and Pei [20] propose the concept of k-neighborhood
anonymity to defend against neighborhood attacks. To defend against more
sophisticated structural attacks, k-automorphism [21] and k-isomorphism [2] are
proposed. Our schemes follow k-anonymity as well as preserve the best path
utility for routing verification.

Another class of anonymization mechanisms use the Differential Privacy tech-
nique to provide strong privacy guarantee [3,8,10,17,19]. Those mechanisms
generate a synthetic graph which maintains structural similarity to the original
graph. However, the best paths of the synthetic graph will be different from that
of the original graph, since there is not an injective function mapping from nodes
of the original graph to nodes of the synthetic graph.

To preserve edge privacy, Mittal et al. proposed a Random Walk based
anonymization technique [7]. Although the preserving edge privacy can avoid
local preferences from being revealed, the best paths in the anonymized graph
are changed and the graph utility can not be preserved.
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8 Conclusion

In this paper, we anonymize the inter-domain routing policies. We design the
anonymization schemes to guarantee the policy privacy of networks without
jeopardizing the best path utility of the routing policies. To perturb the Inter-
net topology, we propose deterministic, probabilistic and hybrid anonymization
schemes. These three schemes guarantee that degree-based de-anonymization
can not be identified network from the anonymized graph with a probability
higher than 1

k . Even if the de-anonymization attack using structural information
can not identify more than 1% of networks. After topology anonymization, we
anonymize the routing policies accordingly. To do so, we propose a local pref-
erence assignment scheme. The resulting local preferences in the anonymized
graph preserve the best path utility and can not be used to identify networks.
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Abstract. Sensitive data is available online through web and dis-
tributed protocols that highlight the need for access control mechanisms.
System designers write access control policies to represent conditions on
accessing data. Access control policies can contain anomalies (redun-
dancy, inconsistency, irrelevancy, and incompleteness) that can lead to
security vulnerabilities. Detecting anomalies in large and complex poli-
cies is challenging due to the lack of effective analysis mechanisms and
tools. In this paper, we introduce a formal tree-based policy modeling
technique to represent, update, and analyze access control policies. Based
on the proposed formal policy modeling, we propose an anomaly detec-
tion technique. Our approach focuses on Attribute Based Access Control
(ABAC) policies as they are widely adopted. Also, they can provide high
flexibility and enhance security and information sharing. The effective-
ness of our policy modeling and anomaly detection technique has been
demonstrated through experimental evaluation.

Keywords: Access control policies · Security · Attribute based access
control · Policy modeling · Policy anomalies · Anomaly detection and
Resolution

1 Introduction

With the massive growth of online data ranging from web interfaces to web ser-
vices, access control has become a critical part of systems. Access control policies
are used to control which users (e.g., human, process, application) have access
to which protected resources (e.g., databases, files) for performing which actions
(e.g., write, read) under which environment conditions (e.g., time, location). A
vital requirement to assure correct enforcement of access control policies is that
policies have high qualities. Weak policies lead to conflicts at the policy enforce-
ment phase that can result in availability issues (i.e., rejecting a legitimate user
to access a resource) and security problems (i.e., allowing an illegitimate user
to access a resource) [20]. Different methods (including matrix, event calculus,
mathematics, and tree) have been used as policy modeling techniques to repre-
sent, update, and analyze access control policies [16]. However, these methods
were developed in the network, EXtensible Access Control Markup Language
(XACML) [3], and Role Based Access Control (RBAC) [25] domains rather than
the Attribute Based Access Control(ABAC) [15] domain.
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Access control policies can contain different types of anomalies. One of the
critical problems of ABAC policies is redundancy detection and removal. Redun-
dancy can be considered as an anomaly when the response time of access requests
relies on the number of policies to be parsed. It affects the performance of policy
evaluation. Redundancy detection and elimination is an optimized solution to
improve the performance of policies as they are growing fast in size and com-
plexity. In a policy set, multiple policies might overlap which means one access
request matches more than one policy. In addition, policies conflict with each
other which means that the policies not only overlap but also yield different
decisions. This issue is referred to as inconsistency.

Irrelevancy and incompleteness are other problems with ABAC policies. Irrel-
evancy refers to a situation that a given policy is not suitable for any users’
request. Incompleteness refers to a scenario when the current policies cannot
cover an access request. In an access control system, it is important to assure
that the access control policies do not result in permission leakage to unautho-
rized principals. For instance, an incomplete policy might lead to granting access
to an intruder unintentionally. Detecting and removing irrelevant and incomplete
policies can considerably enhance the security, performance, and usability of the
system.

Anomaly detection in large and complicated policies is not easy as there are
not enough effective analysis mechanisms and tools. Policy anomaly detection
has attracted the attention of many researchers [1,6,13,35]. Different policy anal-
ysis tools such as FIREMAN [1], Firewall Policy Advisor [35], FAME [13], and
Capretta et al. [6] have been developed that focused on detecting firewall policy
anomalies. They may not be directly applied to ABAC policies as some policy
anomaly analysis mechanisms still need improvement [2]. Policy fields should be
considered as a whole piece; while most of the existing approaches detect pair-
wise policy anomalies. Furthermore, ABAC policies can be multi-valued while
the firewall policies are specified by fixed fields.

In this paper, we propose an access control policy modeling technique that
includes a formalization of policy anomalies (redundancy, inconsistency, irrele-
vancy, and incompleteness). The technique adopts a tree data structure to repre-
sent ABAC policies. The policy tree maintains different information about users,
resources, actions, environments, effects, and policy ids. Based on this modeling
technique, policy anomalies are detected. We attempt to develop an approach
not only for accurate anomaly detection but also for efficient anomaly resolution
that checks if policies permit legitimate users to reach their goals and whether
policies prevent intruders from reaching malicious goals.

The major contributions of this paper can be summarized as follows:

– The formalization of policy anomalies (redundancy, inconsistency, irrelevancy,
and incompleteness) for the ABAC model.

– The design and implementation of the tree-based policy modeling for repre-
senting, updating, and analyzing access control policies.

– The design and implementation of anomaly detection and resolution tech-
niques according to the anomaly formalization and policy modeling.
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We deal with the lack of a large real dataset of ABAC policies to evaluate
the proposed model. For this purpose, we generate different datasets of ABAC
policies for experimental purposes. The experimental results show that our app-
roach is efficient to detect anomalies in large-size policy sets. In addition, our
approach simplifies policy insertion, modification, and deletion.

The rest of the paper is organized as follows: Sect. 2 overviews the ABAC
model. Section 3 describes the policy anomaly formalization, access control poli-
cies modeling, and policy updating. In Sect. 4, we present anomaly mitigation
techniques (detection and resolution). In Sect. 5, we discuss the experiments and
analyze the results. Section 6 presents the related work. Finally, Sect. 7 outlines
conclusions and future work.

2 Overview of ABAC

In what follows, we provide background information about the Attribute Based
Access Control (ABAC) model and define notations for ABAC attributes. The
ABAC model has been used for over two decades and different ABAC-based
models have been developed. The flexibility features of ABAC make it a powerful
access control model to promote security.

ABAC attributes. Attributes are the basic unit of ABAC policies:

User Attributes. Attributes that describe the characteristics of a user. Let U
be a finite set of users and Attu is a finite set of user attributes. The value of
attribute a ∈ Attu for user u ∈ U is represented by the function du(a, u). Some
user attributes have a single value and some contain multiple values. Single value
attributes (Attu,1) have a unique value for each user (e.g., user id), and multiple
value attributes (Attu,m) are a set of single values (e.g., university courses).

Resource Attributes. Attributes that describe characteristics of resources. Let R
be a finite set of resources and Attr is a finite set of resource attributes. The value
of attribute a ∈ Attr for resource r ∈ R is represented by the function dr(a, r).

Environment Attributes. Attributes that represent the current states of sys-
tem environments (Attenv) such as time, date, and date-time. The environment
attributes help in achieving dynamic access decisions. In addition to providing
more fine-grained access control, the value of attribute a ∈ Attenv for environ-
ment env ∈ Env is represented by the function denv(a, env).

There are users, user attributes, resources, resource attributes, actions (i.e.,
operations on resources), environments, environment attributes, and effects (deci-
sions). The simplest form of a policy instance in ABAC is a tuple: < U,Attu, du,
R,Attr, dr, action,Attenv, denv, effect >. The following grammar can specify a
policy.

policy ::=< expression [; expression], effect > expression ::= u.Attu = val |
r.Attr = val |
action = val |
env.Attenv = val

effect := Permit | Deny
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Attribute Hierarchies. We consider hierarchies in user, resource, and envi-
ronment attributes of ABAC [5,19,26] that can enhance access control flexibil-
ity and attribute management. This hierarchy can be a tree or forest without
cycles. Hierarchy can be written as �att that implies if attribute values of a
child node are assigned to a user (resource or environment), all the attribute
values of its parent nodes are acquired by the user (resource or environment).
The user attribute hierarchy is defined such that a user c is a child of user
p (c.Attu �u p.Attu) if and only if

∀a ∈ p.Attu,∃ ! a′ ∈ c.Attu |Attu(a) = Attu(a′) ∧ du(a) ⊆ du(a′).

For each user attribute of p, there must be a user attribute for c such that
the attributes have the same name, and the attribute value of p is a subset of
the attribute value of c. The resource and environment attribute hierarchies are
similarly defined.

3 Policy Modeling

In this section, policy anomalies are illustrated and formalized for ABAC policies.
Then, the structure of the policy modeling that is necessary for policy analysis
is described along with the complexity of the model in terms of time. Our policy
modeling makes policy updating (insertion, modification, and deletion) more
efficient as described in this section.

Table 1. ABAC sample policies.

Policy Description

P1 <r.type=budget; u.projectLed=r.project; action=write; Permit>

A project leader can write the project budget

P2 <r.type=schedule; u.projectLed=r.project; action=read; Permit>

A project leader can read the project schedule

P3 <u.project=r.project; r.type=schedule; action=read; Permit>

A user working on a project can read the project schedule

P4 <u.adminRole=auditor; r.type=budget; u.project=r.project; action=read; Permit>

An auditor assigned to a project can read the budget

P5 <r.type=budget; u.projectLed=r.project; u.department=dep1; action=request;
Permit>

The project leader of the department of “dep1” can request to know the budget of
a project assigned to her

P6 <u.adminRole=auditor; r.type=budget; u.project=r.project; u.department=
dep security; action=read; Deny>

An auditor assigned to a project of the department “dep security” cannot read the
budget



Policy Modeling and Anomaly Detection in ABAC Policies 141

3.1 Formalization of Policy Anomalies

We formalize policy anomalies (redundancy, inconsistency, irrelevancy, and
incompleteness) that are utilized for policy analysis. For illustration, we use
some sample policies (from [34]) that are shown in Table 1 (with the description
for each policy). These policies focus on project management that controls access
by the project leaders, department managers, employees, contractors, auditors,
accountants, and planners to manage tasks, schedules, and budgets.

1) Redundancy Anomaly (RED). Redundancy indicates similarities among
policies. The policies may not exactly match but every field in one policy is a part
of or equal to the corresponding field in another policy. Detecting and removing
redundancies can help in decreasing the policy set size and enhancing policy eval-
uation performance. An access control policy Pj is redundant if and only if

Pi.Attu �u Pj .Attu ∧ Pi.Attr �r Pj .Attr ∧ Pi.action = Pj .action ∧ Pi.Attenv

�env Pj .Attenv ∧ Pi.effect = Pj .effect.

For example, P2 in Table 1 specifies that a project leader can read the project
schedule and P3 specifies that any user working on the project can read the
project schedule. Therefore, P2 is redundant in the case of the project leader.

2) Inconsistency Anomaly (INCON). Inconsistency refers to a situation
when there are at least two policies that conflict with each other. Reducing the
number of inconsistencies can mitigate the need for conflict resolution activities.
Consider access control policies Pi and Pj . These two policies are inconsistent if
and only if

Pi.Attu �u Pj .Attu ∧ Pi.Attr �r Pj .Attr ∧ Pi.action = Pj .action ∧ Pi.Attenv

�env Pj .Attenv ∧ Pi.effect �= Pj .effect.

As an example, P4 specifies that an auditor assigned to a project can read the
budget, while P6 specifies that an auditor assigned to a project of the department
“dep security” cannot read the budget. P4 and P6 are inconsistent.

3) Irrelevancy Anomaly (IRR). Irrelevancy refers to a scenario where a
policy is never triggered or required for any kind of access request. An access
control policy is irrelevant if and only if

� reqi ∈ Req | reqi.Attu �u P.Attu ∧ reqi.Attr �r P.Attr ∧ reqi.action =
P.action ∧ reqi.Attenv �env Pi.Attenv.

As an example, P5 indicates that a project leader of the department “dep1” can
request the budget of a project assigned to her. However, this policy is irrelevant
as a team leader already has access and can write to the budget of a project
assigned to her based on P1.

4) Incompleteness Anomaly (INCOM). A set of access control policies is
incomplete when an access request cannot be covered by the current policies. A
set of policies is incomplete if and only if
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Fig. 1. The policy tree structure for ABAC policies.

∃ reqi ∈ Req | reqi = attui ∈ Attu, attri ∈ Attr, ai ∈ action, attenvi ∈
Attenv.

�P ∈ ACP | reqi.Attu �u P.Attu ∧ reqi.Attr �r P.Attr ∧ reqi.action =
P.action ∧ reqi.Attenv �env Pi.Attenv.

As an example, assume a contractor working on a project asks for information
about the project budget, but there is no policy to address the request.

3.2 Policy Modeling Structure

In this model, access control policies are represented by a single-rooted tree
named policy tree. The policy tree prepares a simple representation of access
control policies that makes the policy updating and anomaly detection technique
easier (that will be discussed in the next section). This is a scalable representation
for the analysis of access control policies. The tree is a type of decision diagram.

As shown in Fig. 1, the first level of the tree is action nodes that represent all
distinct actions of the system. Each action node points to the second level of the
tree containing resource nodes. Then each resource node points to environment
nodes in the third level of the tree. Each environment node points to the fourth
level of the tree containing user nodes. Each user node can have one or two leaf
nodes depending on effect value. The leaf nodes contain a counter variable (that
shows the frequency of policy references) and policy ids. The policy ids indicate
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a policy that is represented by that path and other policies that might be in
anomaly with it.

To compute the time cost of constructing a policy tree, we consider
the number of policies (n) and the number of node fields (p), where p =
max(numu, numr, numa, numenv). Numu, numr, numa, and numenv are the
number of user nodes, the number of resource nodes, the number of action nodes,
and the number of environment nodes, respectively. The time cost of building
a policy tree is O(nlogp n) and the time complexity of inserting a policy in the
policy tree is O(logp n).

3.3 Policy Updating

Policies are written by system administrators and updated (inserted, modified,
and deleted) occasionally. To insert a new policy into the policy tree, the tree
nodes are searched and compared with the new policy components to find an
appropriate position in the tree for the new policy. If a node is exactly matched
with the policy components (reaches the effect node), the counter value increases,
and the policy id is added to the leaf node. Otherwise, a node is added and the
component is inserted. The ordering of policies is crucial when policy components
are supersets (i.e., general) or subsets (i.e., specific) of corresponding fields of
the policy tree. Otherwise, the ordering is insignificant. In the case of disordered
policies, some policies might not be used at all. When a policy component is
a superset of a node value, the policy component is inserted in a node that is
added right before the subset node. If a policy component is a subset of a node
value, the policy component is inserted in a node that is added right after the
superset node. To modify or delete a policy in a policy tree, a similar process is
applied to the policy tree. In case of deletion, the corresponding node is updated
by decreasing the counter value and removing the policy id. If the counter value
reaches zero, the path is deleted from the tree.

4 Anomaly Mitigation

Policy anomaly formalization and policy modeling are developed for the ABAC
model to achieve the goal of effective anomaly mitigation (detection and resolu-
tion) as described in this section.

4.1 Anomaly Detection

The policy tree construction and update (described in Sect. 3.3) may avoid ini-
tiating anomalies in the system. They check for anomalies in the insertion time
and store information (counter value, policy id) in leaf nodes that can help to
identify anomalies. However, anomalies that may still exist in the policy tree can
be detected by Algorithm 1.

The algorithm detects anomalies of access control policies by traversing the
policy tree from the root to the leaf nodes. One simple approach to detect redun-
dancy, inconsistency, and irrelevancy anomalies in the policy tree is to keep track
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Algorithm 1. Anomaly Detection in the Policy Tree.
Input: policy tree
RED ← {} , INCON ← {} , IRR ← {}
Output: RED, INCON, IRR
node ← {policy tree.root}

1: for each fnode ∈ node.children do
2: if fnode = “Permit” OR fnode = “Deny” then
3: if fnode.counter = 0 then
4: IRR ← fnode
5: else if Number of (fnode.policy id) > 1 then
6: RED ← fnode
7: end if
8: else if fnode.level = 4 then
9: P ′ ← fnode.children

10: if there exists pi ∈ P ′ AND pj ∈ P ′ such that pi.effect �= pj .effect
then

11: INCON ← fnode
12: end if
13: end if
14: end for
15: Return RED, INCON, IRR

of the counter variable (described in Sect. 3.2). If the counter value of a path is
zero, it means that the policy was not referenced at all, and the policy is irrele-
vant (lines 3–4). If the number of store policy ids is more than one (lines 5–7),
it means that the policy was defined several times. If a user node has more than
one child node, the policy is considered inconsistent (lines 8–12). Information
about the corresponding policy ids is stored in the leaf node of the tree that can
help to find anomaly policies in the policy set. Incompleteness anomalies cannot
be detected by the policy tree as they can be detected by analyzing transactions
(i.e., actions executed) in the system.

4.2 Anomaly Resolution

To have an anomaly-free policy tree, the detected anomalies (described in
Sect. 4.1) should be resolved. Redundant policies can be safely removed that
boost the runtime performance of the policy evaluator. Our policy tree can
identify redundant policies at the insertion time simultaneously (described in
Sect. 3.3). To detect a list of redundant policies in the policy tree, all the tree
paths are traversed to reach the leaf nodes. When the leaf node contains more
than one policy id, the policy is identified as redundant.

Eliminating policy conflicts by modifying policies is an intuitive solution by
policy developers. However, it is remarkably difficult because of the following
reasons [14]. The chance of conflicts in ABAC is high as it contains hundreds
or thousands of policies. Conflicts are complicated; one policy may conflict with
more than one policy. Moreover, in the distributed application, policies might
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Algorithm 2. Policy Inconsistency Detection and Removal.
Input: Pi, Pj

1: if Pj .effect �= Pi.effect then
2: if Pj .Attu �u Pi.Attu ∧ Pj .Attr �r Pi.Attr ∧ Pj .action = Pi.action ∧

Pj .Attenv �env Pi.Attenv then
3: uk = (∀uf ∈ Pj .Attu) − (∀ug ∈ Pi.Attu)
4: Update(Pj , uk)
5: rk = (∀rf ∈ Pj .Attr) − (∀rg ∈ Pi.Attr)
6: Update(Pj , rk)
7: envk = (∀envf ∈ Pj .Attenv) − (∀envg ∈ Pi.Attenv)
8: Update(Pj , envk)
9: else if Pi.Attu �u Pj .Attu ∧ Pi.Attr �r Pj .Attr ∧ Pi.action = Pj .action ∧

Pi.Attenv �env Pj .Attenv then
10: Repeat lines 3-8 with swapping indexes j and i.
11: end if
12: end if

aggregate. More than one administrator might maintain policies. Changing a
policy might not resolve conflicts correctly, while it might modify the policy’s
semantics. The inconsistency issue can be addressed by eliminating the corre-
sponding policies or limiting their applicability.

A policy might have an unintentional wide scope and cover policies that
should be defined separately. The algorithm for inconsistency detection and
removal is presented in Algorithm 2. Given two policies, the similarities between
policy components (user attributes, resource attributes, actions, and environ-
ment attributes) are identified. In the case of similarity, redundant attributes
are removed from the policy. In the case of irrelevancy, the service recommends
deleting irrelevant policies. Incompleteness can be satisfied by adding incomplete
policies or extending existing policies to cover incomplete policies.

5 Experimental Evaluation

The primary goal of this experiment is to evaluate the effectiveness and efficiency
of our policy modeling and anomaly detection. As data sets may contain sensi-
tive information, organizations are reluctant to share real-world policy sets. We
perform our experiment on the project management policies adapted from [34]
(described in Sect. 3.1) and extend it to support our work.

We create five synthetic datasets of policies (referenced as DS1, DS2, DS3,
DS4, DS5) for the above-mentioned project management with different numbers
of attributes and policies. Each policy can contain multiple users (maximum m),
resources (maximum n), actions (maximum l), and environments (maximum k)
and each one can have several attributes. Each user is uniformly and randomly
assigned multiple attributes (maximum r). Similar to the user, each resource
is uniformly and randomly assigned multiple attributes (maximum s). Like-
wise, each environment can have (maximum t) random attributes. The effect
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of each policy is uniformly and randomly selected as either Permit or Deny.
Hierarchical relations between user attributes, resource attributes, and environ-
ment attributes are created. To generate user attribute hierarchies, some (about
a quarter) of the user attributes are selected as parent nodes and the rest of
the user attributes are considered child nodes. The child nodes are appended
to the parent nodes. Similarly, resource and environment attribute hierarchies
are generated. The anomaly detection algorithm is implemented in Java 11. The
experiments and analyses were performed on an Intel Core i7 1.99 GHz processor
with 16 GB of RAM and they do not require any specific architecture support.

Based on the above-mentioned parameters, we generate all combinations (ref-
erenced as P) of the users, user attributes, resources, resource attributes, actions,
and environment attributes for each dataset. Other techniques (human experts)
are used to identify true anomaly types (RED, INCON, and IRR) of each pol-
icy. The anomaly type is used in the evaluation part (described in the following
paragraphs). Then, a subset of P refers to Q is uniformly and randomly selected
(referenced as Q ⊂ P ). This subset of policies is used for evaluating the anomaly
detection technique. The policies might not be based on the specific real-world
case study. However, they are intended to be analogous with policies in the
application domain. Our modest size dataset can present the effectiveness of our
algorithm as they contain anomalies that we discussed. In addition, they are
complicated since each rule has lots of structures.

Table 2. Access control policy datasets.

DS1 DS2 DS3 DS4 DS5

| U | 50 100 150 200 250

| Attu | 4 8 7 5 9

| R | 1000 2000 3000 4000 5000

| Attr | 5 6 4 7 8

| Env | 10 20 30 40 50

| Attenv | 7 5 6 4 8

| Q | 50000 250000 500000 750000 1000000

Table 2 summarizes the size of sample datasets in terms of the number of
users (| U |), the number of user attributes (| Attu |), the number of resources
(| R |), the number of resource attributes (| Attr |), the number of environments
(| Env |), the number of environment attributes (| AttEnv |), and the number
of randomly selected policies (| Q |). To assess the efficiency of our anomaly
detection technique, we report accuracy, precision, recall, and False Negative
Rate (FNR) defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)
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Fig. 2. Accuracy, Precision, Recall, and FNR values using the datasets.

Fig. 3. Average building time and analysis time per policy.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

FNR =
FN

TP + FN
(4)

Our techniques must achieve high accuracy, precision, and recall and a very
low FNR to be usable in practice. Policy trees are constructed for the gener-
ated datasets. Then, the anomaly detection technique is executed on each tree
to detect anomalies. To calculate True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN), the detected anomalies are compared
with the true anomaly types of policies. TP is the number of policies that are pre-
dicted as anomalies, and are truly anomalies. Furthermore, the type of detected
anomalies and true anomalies should be identical. FP is the number of policies
that are predicted as anomaly, while they are truly valid. FN is the number of
policies that are predicted as valid, while they are truly anomalous. TN is the
number of policies that are predicted as valid, and they are truly valid. As Fig. 2
shows, the accuracy, recall, and precision of all five datasets are above 87%. Some
datasets like DS3 achieved the maximum accuracy, recall, and precision of 99%.
Moreover, the observation shows that the FNRs are between 0–7%. It indicates
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that the anomaly detection technique can detect almost all anomalies and the
overall performance is high. These promising results indicate the efficiency of our
policy modeling and anomaly detection technique, especially in large datasets.

Furthermore, the building time of policy trees and analysis time of anomaly
detection are shown in Fig. 3. In general, the analysis time takes a longer time
than the building time of the policy tree that is reasonable, especially for the
large datasets. The negligible building time and reasonable analysis time make
the tree-based policy modeling very efficient with respect to memory space and
time.

6 Related Work

In the context of policy analysis, policies can be represented as graphs or trees
to efficiently analyze and verify policies by using the tree or graph operations
or features (e.g., graph traversal, graph union). Graph-based anomaly detection
and resolution have been used for ensuring that policy specification fulfills system
requirements and goals [17,24].

Davy et al. [8] proposed a policy conflict algorithm by using an efficient policy
selection process. The algorithm leveraged the information model to select an
efficient set of deployed policies for analysis. They stored histories of previous
policy comparisons in multiple tree data structures. Their goal was to improve
the performance that relies on the relationships between deployed or newly added
policies. However, their approach was not efficient and smart. It repeated over
all deployed policies to make sure that they did not cause potential conflict.
Mohan et al. [23] determined conflicts and inconsistencies in policies to protect
biomedical data. They viewed biomedical ontology as a resource tree.

The formal method for policy analysis has been investigated [12,30,31]. Cup-
pens et al. [7] proposed a management mechanism for conflicts happening among
permissions and prohibitions. In this approach, rules were grouped based on the
organizations emitting them. This approach can effectively reduce the number
of redundant policies. The model-checking technique that characterizes the sys-
tem’s model and specification into mathematical representation was also used to
verify the correctness of system properties. First-order logic language Alloy [18]
and formulae were used to detect security properties, conflicts, and inconsisten-
cies [4,21]. Another technique to support consistency checking of policies was
Satisfiability Modulo Theories (SMT) solver. The SMT logic solvers separated
the Boolean part of satisfiability checking from algorithms used property check-
ing [32]. In addition, mutation testing [9] has been adopted for policy correct-
ness [22]. Martin et al. [22] proposed a mutation verification to measure qualities
specified for policy properties. After generating mutant policies having issues, it
was verified if properties were held. When the properties did not hold, it meant
the verification process detected faults in the faulty policies.
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Some researchers [10,27–29] applied data mining techniques (data classifica-
tion and clustering) to detect policy conflicts. Shaikh et al. [29] used a modified
C4.5 classification algorithm that has linear computational complexity to detect
inconsistencies in access control policies. Moreover, Shaikh et al. [28] adopted
different data classification techniques to detect incompleteness in access control
policies. This approach consisted of three steps. First, attributes were ordered
and Boolean expressions were normalized. Second, a decision tree (which was
a modification of C4.5) was generated. Third, the proposed anomaly detection
algorithm was executed on the decision tree. In clustering-based anomaly detec-
tion and resolution, policies were decomposed into clusters of rules, then the
proposed approach was applied to each cluster [11].

Different techniques (graph-based, formal method, model-checking, muta-
tion, and data mining) [16] have been explored to solve the problem of conflict
and anomalies in access control policies. However, the computational complexity
of some of these approaches had exponential growth and it could not deal with
numerical and continuous values. In contrast, our policy anomaly detection and
resolution techniques are not expensive in terms of time and space. In addition,
most of the existing approaches were developed in the network management
and RBAC domains rather than the ABAC domain. Although these works are
useful in general, they are not suitable for anomaly detection and resolution in
the ABAC domain. Furthermore, the previous works on policy analysis focused
on some of the anomalies (inconsistency was the most investigated), while the
primary goal of our approach is to detect all types of anomalies (redundancy,
inconsistency, and irrelevancy).

7 Conclusion and Future Work

Enabling internet-based devices with a large number of access control policies
might not provide appropriate security necessarily. One reason for this is the
complexity of managing a large number of policies and potential vulnerabilities.
Policies can contain different anomalies (redundancy, inconsistency, irrelevancy,
and incompleteness). In this work, we have formalized policy anomalies and pro-
posed a tree-based policy modeling that represents, updates, and analyzes ABAC
policies. The policy insertion approach is considerably efficient as it can check
for anomalies in the insertion time and facilitate policy updating. In addition, we
have developed anomaly mitigation techniques based on anomaly formalization
and policy tree modeling to detect and resolve policy anomalies. The experi-
mental results show that the anomaly detection technique can achieve accuracy,
recall, and precision of 87%. These promising results indicate the significant effect
of the tree-based policy modeling. Moreover, short anomaly detection time illus-
trates the efficiency and effectiveness of our anomaly detection technique. As a
part of future work, we will expand our policy modeling and anomaly detection
technique to support other policy models [33].



150 M. Davari and M. Zulkernine

Acknowledgment. This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC) and the Canada Research Chairs
(CRC) Program.

References

1. Al-Shaer, E.S., Hamed, H.H.: Discovery of policy anomalies in distributed firewalls.
In: IEEE Infocom 2004, vol. 4, pp. 2605–2616. IEEE (2004)

2. Alfaro, J.G., Boulahia-Cuppens, N., Cuppens, F.: Complete analysis of configura-
tion rules to guarantee reliable network security policies. Int. J. Inf. Secur. 7(2),
103–122 (2008)

3. Anderson, A., et al.: Extensible access control markup language (XACML) version
1.0. OASIS (2003)

4. Bandara, A., Calo, S., Lobo, J., Lupu, E., Russo, A., Sloman, M.: Toward a formal
characterization of policy specification & analysis. In: Annual Conference of ITA
(ACITA), University of Maryland, USA. Citeseer (2007)

5. Bhatt, S., Patwa, F., Sandhu, R.: ABAC with group attributes and attribute hier-
archies utilizing the policy machine. In: Proceedings of the 2nd ACM Workshop
on Attribute-Based Access Control, pp. 17–28 (2017)

6. Capretta, V., Stepien, B., Felty, A., Matwin, S.: Formal correctness of conflict
detection for firewalls. In: Proceedings of the 2007 ACM Workshop on Formal
Methods in Security Engineering, pp. 22–30 (2007)

7. Cuppens, F., Cuppens-Boulahia, N., Ghorbel, M.B.: High level conflict manage-
ment strategies in advanced access control models. Electron. Notes Theoret. Com-
put. Sci. 186, 3–26 (2007)

8. Davy, S., Jennings, B., Strassner, J.: Efficient policy conflict analysis for autonomic
network management. In: Fifth IEEE Workshop on Engineering of Autonomic and
Autonomous Systems (ease 2008), pp. 16–24. IEEE (2008)

9. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for
the practicing programmer. Computer 11(4), 34–41 (1978)

10. El Hadj, M.A., Ayache, M., Benkaouz, Y., Khoumsi, A., Erradi, M.: Clustering-
based approach for anomaly detection in XACML policies. In: SECRYPT, pp.
548–553 (2017)

11. El Hadj, M.A., Khoumsi, A., Benkaouz, Y., Erradi, M.: Formal approach to detect
and resolve anomalies while clustering ABAC policies. EAI Endorsed Trans. Secur.
Saf. 5(16), e3 (2018)

12. Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N., Preda, S.: MIRAGE: a
management tool for the analysis and deployment of network security poli-
cies. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cavalli, A., Leneutre, J. (eds.)
DPM/SETOP -2010. LNCS, vol. 6514, pp. 203–215. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19348-4 15

13. Hu, H., Ahn, G.J., Kulkarni, K.: Fame: a firewall anomaly management environ-
ment. In: Proceedings of the 3rd ACM Workshop on Assurable and Usable Security
Configuration, pp. 17–26 (2010)

14. Hu, H., Ahn, G.J., Kulkarni, K.: Discovery and resolution of anomalies in web
access control policies. IEEE Trans. Dependable Secure Comput. 10(6), 341–354
(2013)

15. Hu, V.C., et al.: Guide to attribute based access control (ABAC) definition and
considerations (draft). NIST Spec. Publ. 800(162), 1–54 (2013)

https://doi.org/10.1007/978-3-642-19348-4_15


Policy Modeling and Anomaly Detection in ABAC Policies 151

16. Jabal, A.A., Davari, M., Bertino, E., Makaya, C., Calo, S., Verma, D., Russo, A.,
Williams, C.: Methods and tools for policy analysis. ACM Comput. Surv. (CSUR)
51(6), 1–35 (2019)

17. Jabal, A.A., et al.: Profact: a provenance-based analytics framework for access
control policies. IEEE Trans. Serv. Comput. 14(6), 1914–1928 (2019)

18. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 11(2), 256–290 (2002)

19. Kolovski, V., Hendler, J., Parsia, B.: Analyzing web access control policies. In:
Proceedings of the 16th International Conference on World Wide Web, pp. 677–
686 (2007)

20. Li, N., Wang, Q., Qardaji, W., Bertino, E., Rao, P., Lobo, J., Lin, D.: Access
control policy combining: theory meets practice. In: Proceedings of the 14th ACM
Symposium on Access Control Models and Technologies (SACMAT), pp. 135–144
(2009)

21. Mankai, M., Logrippo, L.: Access control policies: modeling and validation. In: 5th
NOTERE Conference (Nouvelles Technologies de la Répartition), pp. 85–91 (2005)
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Abstract. Data-driven research is increasingly becoming fueled by
access to open datasets, often shared publicly on the Internet. However,
many research projects study sensitive data. They cannot easily par-
ticipate in this shift as access to their data is significantly controlled by
ethical and regulatory constraints. This paper discusses the requirements
for building a service that enables sensitive data for sharing between col-
laborators in a controlled manner. We argue that a decentralized service
that maintains metadata, a global view on all data usage, and active pol-
icy combined with local monitoring and security enforcement can pro-
vide automated compliance checking. With such a service, researchers
can share sensitive data with a broader community rather than limiting
access to core project members.

Keywords: Open data · Data-sharing · Compliance · Sensitive data

1 Introduction

The Internet has changed the way researchers work, collaborate, and disseminate.
Open Science is a cultural change [2]. The arguments concerning the benefits of
Open Data are well established; for example allowing researchers to explore
existing datasets in new ways [1,4,10]. Volunteers (hereafter written as subjects)
contribute their data for research. The trustworthiness of the institution con-
ducting the research plays a key role in a subject’s willingness to contribute [17].
Privacy leaks or misuse can damage the reputation and affect future research
studies [1,4]. Fears of misuse of data may also restrict many researchers from
sharing data openly [4,20].

Researchers argue that these concerns can be mitigated by building account-
ability in research data sharing and processing [8]. Recent regulations, such as
General Data Protection Regulation (GDPR) require researchers to abide by
a subject’s consent for data processing. GDPR also provides workarounds for
public-funded research by entrusting a Regional Ethics Committee (REC) or an
Institutional Review Board (IRB) to protect subjects’ privacy. The public’s trust
in researchers is fragile [1]. The growing concerns regarding data breaches, data
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brokers, and indiscriminate profiling of users might change subjects’ willingness
to participate or continue participating in a research project.

The guidelines and complexity of compliance is a tedious job and requires a
complex understanding of legal, ethical, and regulatory issues [5]. Often insti-
tutions employ large teams to assist researchers in making their data openly
available [18]. Researchers’ concern about misuse of their data is the leading
reason given for not sharing data [4,20]. As a result, research data may end up
in silos accessible only to a limited few. A lot of work has been done for sim-
plifying regulatory requirements, easy-to-create toolkits [5,18,21] and metadata
formats for making research openly accessible [7,12,21]. However, additional reg-
ulations like data sovereignty [13] may further restrict Open Data. For example,
medical research data is heavily regulated. Often movement of such sensitive
data is restricted outside a nation’s physical boundaries.

Open science and data-based collaboration require access to the same data
regardless of international borders [2,11]. As argued earlier, there might be reg-
ulatory restrictions limiting the sharing of sensitive data. The cloud provides an
interesting platform for Open Data access to researchers with manageable ser-
vices. Our contribution is a scalable cloud-based service that allows researchers
to analyze sensitive data regardless of their location. We discuss related works in
Sect. 2, and present the requirements for the service in Sect. 3. Later in Sect. 4,
we present our system’s design, key features, and limitations.

2 Related Work and Discussion

Dataverse [7] is a well-known data repository for sharing research data, which
currently hosts tens of thousands of datasets. However, Dataverse does not sup-
port sensitive data. Datatags system [18] translates security and access require-
ments for sensitive data into a model set of six tags. Their approach simplifies
the complex workings and guidelines for sharing datasets responsibly as they
provide a decision tree for picking a correct tag for different requirements. The
Datatags approach simplifies complex information flows for IRBs and RECs
without specifying mechanisms for automated audits or enforcement.

Automatable Discovery and Access Matrix (A-DAM) [21] provides a profile
as regulatory metadata for responsible sharing of biomedical assets. A-DAM pro-
vides a semi-automated approach for analyzing ethical and regulatory require-
ments for sharing and processing research data. Policy changes require a newer
profile and reevaluation. Maguire et al. [9] proposed a metadata-based architec-
ture for accountability. Similar to A-DAM, Maguire et al.’s approach attaches
a static policy to a dataset, which is verified by a gatekeeper service. Their
approach introduces validation against context by the gatekeeper. For sensitive
data, they only briefly discuss adding encryption and keeping the keys under
the control of the gatekeeper. In our earlier work Lohpi [15,16], we argued that
the changes occurring during a project’s life cycle might affect its data secu-
rity policies. Thus, we built support for accountability by keeping data security
policies up to date securely and efficiently. We build upon existing works to
semi-automate regulatory, ethical, and legal requirements. Our contribution is
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a scalable cloud-based service that allows researchers to analyze sensitive data
regardless of their location. The service provides transparency to stakeholders,
such as subjects regarding data sharing and data use.

Axelsson and Schroeder [1] argue that public trust is fragile, and once bro-
ken, might take years to re-build. Compliance and transparency are crucial for
maintaining the fragile public trust in researchers. The complex set of guidelines,
regulatory and legal requirements, and consent management increase complexity
for data curators and researchers. And keeping sensitive data open is a challeng-
ing [1]. Even experts in various fields feel the lack of assurances [6] in exist-
ing practices. We provide compliance with audit-able data sharing of sensitive
datasets. Our approach simplifies access to such datasets by automating com-
pliance while maintaining compliance. The compliance requirements are derived
from applicable regulatory and legal requirements. Many researchers have argued
for building transparency for data-sharing, usage, and privacy protections [8,14].
Along with these themes, our approach addresses the compliant sharing of sensi-
tive data, especially data sovereignty. Thus, allowing sensitive datasets to reach
a broader audience while fulfilling regulatory and legal compliance requirements.
The built-in transparency allows stakeholders, such as subjects, to understand
the usage of their data and answer questions like who, whom, and where, about
their contributed data. Such transparency may improve the public’s trust and
participation in studies that rely heavily on volunteers.

3 Requirements for the Service

As argued earlier, Open Data should be able to reach a broader audience. Our
goal is to build a service that supports sharing of sensitive data and addresses
the compliance requirements. We now discuss the requirements for building
services for researchers to share sensitive research data. The regulations, re-
identification attack methods, and legal and ethical requirements may change
over time. We conjecture that the following requirements are essential for build-
ing a service compliant with the legal, regulatory, and ethical requirements stip-
ulated by concerned authorities/stakeholders. The service can adapt to changes
that may affect data sensitivity and a subject’s preference. Existing works like
Datatags [18] and A-DAM [21] provide methods for computable ethical, legal,
and regulatory requirements. Different security mechanisms can enforce these
requirements [18]. Additionally, we include the data sovereignty requirement for
sensitive data, which restricts the movement of data outside a nation’s physical
boundaries, even if the data are hosted, by a cloud service provider (CSP).

RQ 1 (Timely Dissemination of Data Policies). Data policies define the ethical,
legal, and regulatory requirements attached with a dataset. The service should
disseminate changes to data policies within a predefined time τ . Each dissemi-
nation should be secure, maintain integrity, and be logged, for auditing. Consent
revocations and new approvals from an IRB or a REC can result in such changes.
A change in laws, regulations and institutional guidelines may result in a policy
change as well.
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RQ 2 (Data Sovereignty). The service should ensure data sovereignty by
verifying data residency. Any attempt of data movement which violates data
sovereignty should be prevented and logged.

RQ 3 (Garbage Collection). Once completed with the task, copies of data
should be securely deleted and logged. No residual copies of the data or the
dataset remain on an unsolicited location or machine.

RQ 4 (Auditing). The service should log each operation and action in a dis-
tributed log. These operations and actions must be available for auditing by an
IRB, REC or an independent auditing authority.

RQ 5 (Secure Computation). The continuous access evaluation should be
securely computed at the CSP. The attack surface for tampering with the data
access policy should be limited.

4 System Overview

We now describe our approach and discuss how different components will ful-
fill the requirements discussed earlier (Sect. 3). We assume that each dataset
has a unique identifier. Researchers who are interested in accessing a dataset
can authenticate themselves. The existing data security policy allows authenti-
cated researchers to access the dataset. The dataset in this example has data
sovereignty constraints. A CSP has a data center in the same region as the
dataset.

4.1 Workflow

Figure 1 shows the system architecture with an example workflow. A researcher
or simply a user is interested in analyzing a dataset hosted at an institution
in another country. After authenticating herself using the web portal, the user
configures a machine for her analysis (RQ4). The user can decide from multiple
pre-configured container images which contain different data analysis software
packages. These container images enable communication with a trusted substrate
for exchanging data policy updates and logs (RQ1, RQ4). The daemon software
is pre-installed and configured in these container images. For enhanced security,
the container images are pre-configured to limit data egress and allow only a set
of pre-approved packages. As the last step, the user chooses the dataset that she
is interested in (RQ5).

Once configured, a new container instance with chosen software packages
runs in the cloud which, exists in the same country as the dataset (RQ2). The
user obtains access to the container running in the cloud. Upon initialization,
the user needs to authenticate herself again for obtaining a copy of the dataset
(RQ4). The instance also receives policy changes that might arrive while the
user is working on the dataset after the initialization (RQ1).
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Fig. 1. An example workflow: a researcher from Germany wants to access a sensitive
dataset from an institute in the USA. The movement of the data outside the USA is
restricted. By leveraging a CSP, we facilitate sharing of the dataset for research without
moving the data outside the USA. The accesses are logged for audit and transparency
reports. The data security policies are updated using the communication substrate.

The instance enforces use-based policies using Intel’s software guard exten-
sions (SGX) using approaches like [3] (RQ5). In-line monitoring using SGX can
result in a performance penalty. For performance reasons, we use the delegated
monitoring architecture proposed in Birrel et al. [3]’s work. The instance com-
municates with the metadata communication substrate and keeps the meta-
data/policy up-to-date (RQ1). The changes to a checked-out dataset’s policy
are disseminated through the substrate. Both the original dataset and the copy
in the container receive the changes via the substrate. After receiving metadata
updates, the compliance and access are reevaluated (RQ5). The daemon pro-
cess routinely checks for compliance with the latest data security policies. These
work behind the scenes and notify the user if additional inputs are required.
Thus, making compliance easier for the user. In case of non-compliance, the
user may lose access to the machine while saving the image to save her work-in-
progress. After resolving the non-compliance issue, the user can regain access.
The user can export the analysis’ results in different pre-approved file formats to
the web portal (RQ3). Through the portal, the user can obtain the results later.
The results can be archived at the portal for cross-examination by auditors and
reviewers for scientific peer-review processes.

At the end of the analysis, the user can terminate the instance, and the
analysis scripts and the dataset copy are securely destroyed (RQ3). A user
may also choose to save the current state of the container for reproducibility
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of results [19]. The sharing and accesses generate logs containing sanitized infor-
mation for audits. The stakeholders (subjects, REC or IRB) can also view reports
on data use and sharing and intervene if necessary. Oversight committees (RECs
or IRBs) can review non-compliance incidents and take necessary actions. These
actions can be in the form of policy updates propagated to every copy of the
dataset. Securing a container image while preserving reproducibility is beyond
the scope of this paper.

Limitations. Our approach protects against a benign threat model and assumes
an accountable adversary. The system may not protect against a sophisticated
attacker. The availability of a cloud service provider (CSP)’s container services
in the same administrative region as of a dataset’s location is crucial for the data
sovereignty requirements.

5 Conclusion

Regulatory compliance in research data sharing is a developing problem with
newly introduced regulations and growing concerns about individual privacy.
The relationship between subjects and research institutions relies heavily on
trust for voluntary participation. Data sharing and use, compliant with the sub-
jects’ wishes is crucial for continued participation and sustaining trust. We dis-
cussed the requirements for building a service enabling compliant data use and
sharing sensitive research data. We further presented our approach for building
such a service and how it addresses those requirements. We plan to test the sys-
tem with our partners from sports sciences and medical science, creating policy
templates for legal and regulatory requirements for sensitive research data.
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Abstract. Proving ownership (or possibly non-ownership) of an
attribute associated with an individual or device can be used in many
different use cases. For a user to prove age, credibility, medical records or
other type of attributes, cryptographic accumulators can be used. Also,
in a federated authentication architecture, a user may prove such own-
ership via one or many proxies, e.g. a trusted party such as a bank or
government institution. We propose an authenticated multi-proxy accu-
mulation (AMPA) scheme for solving these types of scenarios without
the need for encryption and still preserve privacy and remove data set
leakage during set membership proving. We illustrate how an AMPA
scheme easily can be constructed and present initial results from a proof
of concept implementation.

Keywords: Proxy accumulator · Proxy signatures · Cryptography

1 Introduction

Cloud computing and distributed data sharing is growing more than ever; out-
sourcing data storage to popular cloud solutions such as Amazon Web Services
(AWS), Microsoft Azure and Google Cloud, which are the current top service
providers [7], is constantly growing. However, government agencies and parts of
the public sector are still reluctant to adopt cloud based solutions to third party
service providers due to legal reasons (CLOUD Act [13]), but also due to secu-
rity related issues [11]. At the same time, many types of information sharing use
cases for individuals and government institutions remain, e.g. medical journal
sharing between patient and hospital, and sharing and verification of criminal
records between police authority, potential employers and other institutions. In
all cases, the information could be considered attributes associated with an indi-
vidual, i.e. the data owner. It is therefore of mutual interest that both the data
owner and the data storage provider, e.g. the hospital or police authority, are
able to verify the authenticity and integrity of the same data. Moreover, in some
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scenarios a (trusted) third party is the requester of verifying attribute data of
a person, e.g. an employer needs to verify an applicant’s (non-existent) criminal
records thus requesting proof from the police authorities. Ideally, these type of
scenarios would benefit from using a cloud infrastructure shared between insti-
tutions and agencies, streamlined for fast data sharing and efficient real-time
validity proof checking. However, due to GDPR it is problematic to share per-
sonal attributes between institutions, thus a mechanism for secure proof checking
without revealing explicit data is required.

1.1 Problem Statement

Many different real-world scenarios rely on manual verification for both users and
institutions. One example is where a prover P is going through a security screen-
ing when applying for a classified role, e.g. within the military or government
sector. A prover P needs to prove a set of attributes such as no criminal record,
no medical history of certain diseases/injuries etc. In a national database these
attributes could be proven to exist or similarly, be proven as a non-membership
in order to prove the lack of attributes. Other government agencies or medical
institutions may have subsets of these attributes, hence are able to act as proxies
when requesting the (non)-membership proofs for P to a verifer V.

Intelligent Transportation Systems (ITS) and connected railway infrastructure
are still on the rise, and with that many security implications as well [8,9]. Personal
devices (vehicle on-board devices, smartphones) and equipment such as cameras
and radar sensory devices in the infrastructure can all be connected. A secure and
privacy-preserving layer of data knowledge sharing is thus needed where a single
device can prove attribute (data) knowledge or association efficient and through
(multiple) proxies, e.g. a vehicle may need to prove eligibility for entering certain
areas, or sensory devices must prove its geographical boundaries.

The given scenarios requires a multi-party setup where possibly a set of
proxies AP is needed for proving that certain attributes y1, ..., yn belong to P, by
proving that y1, ...yn are securely stored in a trusted database at some database
owner S. Furthermore, proof of identity of all parties, including P and S, and
signatures for all proofs are needed to ensure authenticity and integrity. The
assumption is that P either cannot provide such proofs, or prefer to delegate the
proving part to one or many proxies, e.g. trusted parties such as a bank, hospital
or in the IoT case intermediate servers. Therefore, we address the problem of
delegated (non)-membership proving.

1.2 Accumulators and Proxy Signatures

A one-way accumulator is an efficient solution for secure set-membership proof
problems, i.e. determine if a certain element belongs to a given set without
revealing the elements. One important property of an accumulator is that it can
efficiently provide a fixed-size witness for any element in the accumulator, which
is used for verification of an element’s set (non)-membership. The notion of one-
way accumulators was first proposed by Benaloh and de Mare [2]. Another type
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of cryptographic accumulators are constructions based on bilinear pairings and
was first proposed by Nguyen [12]. Proxy signature protocols consists of three
parties: original signer, proxy signer and verifier. A warrant is sent to the proxy,
consisting of a predefined message space, a signature, identity of original signer
etc. The warrant is used in combination with the proxy key to compute a secret
proxy key for further signatures.

1.3 Related Work

For the given use cases, tangent solutions exist addressing the privacy needs.
In [14] it is demonstrated how a private set intersection (PSI) approach can
be used in a cloud environment to calculate the set intersection on outsourced
and encrypted data between client and server. However, the solution relies on
encryption. Another approach is multi-party PSI solutions, first introduced in
[6], where multiple data owners can prove data intersections among each other
without revealing the non-intersecting parts. On the other hand, these and more
recent protocols [1,10] which also have the ability to make use of delegated
private set intersection computations via proxies, still rely on encryption and
does not use the proxies as intermediate verifiers. Hence, to our knowledge,
there are no proposed protocols for using (multi) proxy signature schemes and
accumulators as building blocks with merged key- and signature mechanisms in
current literature.

1.4 Contribution

Our paper introduces the notion of authenticated (multi) proxy accumulation for
solving both current and potentially new use cases. Our contribution consists of:

– Proposing a suitable explicit construction of combining a multi-proxy signa-
ture scheme with a dynamic accumulator scheme,

– proposing a general construction process for authenticated multi-proxy accu-
mulation schemes,

– presents a security and correctness analysis for the proposed scheme,
– a performance analysis from our proof of concept implementation in Java and

jPBC.

2 Preliminaries

A function H : {0, 1}∗ → A is a cryptographically secure hash function taking
any binary string as input and produces an element of some set A. Let xi ←$ X
denote a randomized selection of xi from a set X over a uniform distribution. A
security parameter 1λ determines parameter selection during initialization of a
scheme, i.e. choosing suitable secure groups for a bilinear map, prime numbers
and hash functions; thus λ corresponds to the provided n-bit security.
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Definition 1 (Pairing). Let G1, G2, GT be groups with generators g1, g2, gT

respectively. Let q = |〈g1〉| = |〈g2〉| = |〈gT 〉|. Let ê : G1 × G2 → GT be a bilinear
map with the following properties:

1. Bilinearity: ∀(a, b ∈ Zq, g1 ∈ G1, g2 ∈ G2): ê(ga
1 , gb

2) = ê(g1, g2)ab,
2. Computability: Computing ê is efficient,
3. Non-degeneracy: ∃(g1 ∈ G1, g2 ∈ G2) : ê(g1, g2) 	= 1.

we then say that e is a pairing over groups G1, G2, GT .

If G1 = G2, the pairing function is called symmetric, otherwise asymmetric.
Our construction use the Boneh-Lynn-Shacham (BLS) short signatures

scheme [3]. BLS is provably secure under the Computational Diffie-Hellman
problem and based on pairings. The signature of m is produced as σ = Hg(m)sk

where sk is the signer’s secret key. Verification is against the public key pk and
the pairing ê(σ, g) ?= ê(H(m), pk).

3 General Scheme Construction Methodology

The benefit of using a modular construction as described here, is that each com-
ponent can easily be changed when needed; if a scheme component is enhanced in
the same security model the new component should seamlessly be interchanged.
We propose a general approach, using a construction-by-modules principle, for
constructing an authenticated multi-proxy accumulation scheme as follows:

1. Scheme selection: choose a signature scheme Sig, (multi)-proxy scheme
Proxy and accumulator scheme Acc based on same cryptographic primitives
(and possibly same hardness assumption), e.g. bilinear pairings.

2. Hardness selection: Make sure the hardness assumptions are compatible,
e.g. for pairings, check that the underlying pairing schemes are all symmetric
or asymmetric, to avoid mismatches during the security analysis.

3. Re-usage: Make sure Sig can be re-used for all steps in the Proxy protocol
and does not rely on several different signature schemes.

4. Extension: Extend the Proxy protocol to use one additional round of signa-
ture generation/verifying, as described in Sect. 4.2 for the request and proving
phases, i.e. the proxies first compute an intermediate round of signature check-
ing with the set owner, and then the final signature round to the verifying
party.

5. Security Analysis: Make sure the security of the merged parts of the scheme
can be reduced to the security assumption of the Sig component.

In conclusion, the merge of Sig, Proxy and Acc builds on the efficiency of using
the same cryptographical primitives and the flexibility to easily add a second
round of signature checking with the data owner to perform an intermediate
proof checking step. Naturally, this scales linearly; for n proxies only 2 n addi-
tional signature checks are needed.
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4 Authenticated Multi-Proxy Accumulation Scheme

4.1 System Model

The model consists of four parties: set owner S, accumulation proxy AP, prover
P and verifier V. Set owner S has full control over a finite set Y = {y1, ..., yn} for
which prover P wants to prove membership of some element yi ∈ Y for verifer
V. In this particular setting, P must delegate the proving part to AP which in
turn communicates the proof to verifier V. This implies V to verify three things:
the validity of the membership proof, that P is authenticated and thus implicitly
the delegation of the proof from P to AP also follows.

4.2 Proposed Construction

We propose an authenticated multi-proxy accumulation scheme (AMPA). It
involves a multi-party setup with a prover P, a set of (at least one) accumu-
lation proxies AP = {AP1,AP2, ...,APn}, a set authority S and a verifier V.
An element yj ∈ Y is considered an attribute of P and stored securely. More-
over, yj is committed to the set authority’s database, i.e. yj ∈ S where set S is
securely stored and handled by S. Our scheme consists of 7 algorithms:

Setup(1λ, n) → (par, pkS , skS , acc∅, state∅): generates a tuple of bilin-
ear pairing parameters and necessary secure hash functions par =
(q,G1,G2, g, ê,H1,H2) to publish, where ê : G1 ×G1 → G2 is a bilinear map
and H1,H2 are collision-resistant hash functions such that H1 : {0, 1}∗ → Z

∗
q

and H2 : {0, 1}∗ → G1. Next, signature key-pair (sk, pk) for set authority S, is

generated as sk = x0
$←− Z

∗
q and pk = gx0 . Accumulator key-pair (skS , pkS) for

S is generated as key tuples skS = (γ $←− Z
∗
q , sk) and pkS = (pk, ê(g, g)γn+1

).
Additionally, the accumulator acc∅ = 1 with state table state∅ initiated.
Finally, the prover P generates a keypair as skP = x1

$←− Z
∗
q and pkP = gx1 .

KeyExtract({1, 2, ..., l}) → L: generates set of key-pairs for proxy signers L =
{(pk1, sk1), (pk2, sk2), ..., (pkl, skl)}. Either a suitable key agreement protocol
can be used if there is a single node running this procedure, otherwise each
proxy signer runs this procedure locally and broadcast the public key to all
other parties.
ProxyKeyGen(w,SOw

) → skAP i
: given a warrant w and SOw

issued and gener-
ated by original signer, the proxy APi invokes ProxyKeyGen and verifies that
e(SOw

, g) == e(H2(w), pkP ). If valid then the proxy signing key is computed
as skAP i

= SOw
+ H2(w)ski . Note that SOw

= H2(w)x0 .

ProxyAccSignWitness(m1, w) → σ1: The proxy generates kAP i

$←− Z
∗
p and com-

putes rAP i
= ê(g, g)kAPi . Each rAP i

is broadcast to all other APi’s who com-
putes rAP = Πl

i=1rAP i
, cAP = H1(m1||rAP ) and UAP i

= (skAP i
)cAP +gkAPi .

One designated APi, called the clerk verifies rAP i
= ê(UAP i

, g)(ê(H2(w), pk+
pki))−cAP for i = 1, 2, .., l, and if successful computes UAP = Σl

i=1UAP i and
sends signature σ1 = (m1, cAP , UAP , w) to S. Message m1 = (ω1, accP , g||yj)
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where ω1 is the witness of yj from P, accP the accumulator of P and g||yj

which is used during accumulation verification as in [4].
ProxyAccVerifyWitness(σ1) → σ2: S receives the witness and element for
verification from AP. Next, S verifies that yj ∈ Y using the witness and
check that cAP = H1(m1||rAP ); note that rAP = ê(UAP , g)(ê(H2(w), pk +
Σl

i=1pki))−cAP . If so, S signs m2 = (ωiAP
, accP , ωiS , accS) implying that

yj ∈ S. Signature procedure is same as in ProxyAccSignWitness but with
S as only signer (hence clerk), and returns σ2 = (m2, cS , US , w).
ProxyAccSignProof(σ2) → σ3: All proxies runs ProxyAccSignWitness over σ2

as message. Resulting signature is σ3 = (σ2, cAP , UAP , w).
ProxyAccVerifyProof(σ3) → {⊥, true}: V verifies σ3 by computing cAP =
H1(σ2||rAP). If correct then parse σ2 and if needed checks membership of
yj ∈ S. Note that if the signature verifies correctly, V implicitly knows that
yj ∈ Y, S, that AP is a designated signer and S is a valid set authority.

Note that four more algorithms, AccAdd, AccUpdate, AccWitUpdate and
AccVerify, are used just as they are stated in [4]. The complete protocol exe-
cutes in phases described below: setup, request and proving phases. Note that
we assume S is running a trusted environment.

Setup phase: P securely sends and commit set Y to set authority S who
updates the complete set S such that Y ⊆ S. S then runs Setup and publishes
all public parameters such as groups and pairing function, accumulator value
accS and generates associated signature- and accumulator keys skS , pkS . All
proxies runs KeyExtract to get their own key-pairs (these has to be exchanged
using a secure key exchange protocol). Finally, P sends a warrant w to the col-
lection of proxy signers AP1, ...,AP l who then runs ProxyKeyGen to generate
specific proxy signature keys skAPi

associated to P and S.
Request phase: Verifier V asks P to prove membership of yj ∈ S. This trig-
gers P to send w,ω1, accP , g||yj , i.e. warrant, witness for yi ∈ Y , accumulator
value and the element concatenation needed for the membership proof, to all
relevant proxies AP who in turn create a signature σ1 over the tuple by invok-
ing ProxyAccSignWitness. Next step is that AP sends σ1 to S who responds
with witness ω2 if the signature can be verified using ProxyAccVerifyWitness
and that accumulation membership proof of yj ∈ Y holds.
Proving phase: AP runs ProxyAccSignProof to generate a final proof σ3

which is a signature over σ2 and contains information such as membership
proof (witness), delegation proof and authenticity proof of P,AP and S. Ver-
ifer V runs ProxyAccVerifyProof function that uses AccVerify as subroutine,
to verify membership proof yj ∈ S. V responds either true or error symbol ⊥
to P.

Accumulators accP and accS (P’s and S’s accumulators respectively) and
their associated states stateP , stateS , are variables we do not consider in the
scheme definition.
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5 Security Analysis

5.1 Proof of Correctness

We note that ProxyAccVerifyWitness verifies correctly and computes signature
σ2 if and only if y ∈ Y and cAP = H1(m1||rAP ) holds. Since S verifies y ∈ Y
accordingly to [4], then if successful, ProxyAccVerifyWitness procedure verifies
cAP = H1(m1||rAP ). This is only possible if rAP is correctly generated. More-
over, ProxyAccVerifyProof verifies σ3 correctly if and only if y ∈ Y and cAP holds.
The proof for that follows since we set l = 1 for the number of proxies, thereby
only using one proxy instead of a full collection.

Theorem 1. ProxyAccVerifyWitness verifies correctly and computes signature
σ2 if and only if y ∈ Y and cAP = H1(m1||rAP ) holds.

Proof. We note that σ1 = (m1, cAP , UAP , w), thus cAP is parsed. Also, pk = gx0

and pki = gxi . We denote H2(w) = h2 for readability. Next, since

= ê(UAP , g)

(
ê(h2, pk +

l∑
i=1

pki)

)−cAP

(1)

= ê(
l∑

i=1

(skAPi
)cAP + gkAPi , g)

(
ê(h2, g

x0)
l∏

i=1

ê(h2, g
xi)

)−cAP

(2)

=

(
l∏

i=1

ê(skAPi
, g)cAP ê(g, g)kAPi

) (
ê(h2, g

x0)
l∏

i=1

ê(h2, g
xi)

)−cAP

(3)

=

(
l∏

i=1

ê(hx0
2 , g)cAP ê(hxi

2 , g)cAP ê(g, g)kAPi

) (
ê(h2, g

x0)
l∏

i=1

ê(h2, g
xi)

)−cAP

(4)

=
l∏

i=1

ê(g, g)kAPi = rAP (5)

we can verify that cAP = H1(m1||rAP ). S verifies y ∈ Y accordingly to [4],
thus S can successfully generate σ2 using same procedure as for σ1 but with
m2 = (yi, ωiAP

, accP , g||yi, ωiS , accS). �
Theorem 2. ProxyAccVerifyProof verifies correctly and computes signature σ3

if and only if y ∈ Y and cAP = H1(m2||rAP ) holds.

Proof. Same as in Theorem 1 but for l = 1. �

5.2 Security Model and Analysis

We consider a security experiment where forger F is allowed to query signatures
σ1, σ2 and σ3 given public parameters. Let OSign(α,m, i) → σi be a signing



Authenticated Multi-Proxy Accumulation 169

oracle which returns a valid signature σi, i ∈ {1, 2, 3}, m a message and α =
{par, pk1, pk2, ...} is the set of public parameters and all public keys necessary.
Moreover, let OH1(x) → c be a random oracle which return elements c ∈ Z

∗
q ,

given some binary string x, thus emulating H1, and similarly OH2(x) → d where
d ∈ G.

Definition 2 (Security Experiment). Let π be an AMPA scheme initial-
ized with Setup(1λ, n) and all proxy signature keys generated. Next, let F be a
polynomial-time forgery algorithm with the ability to query OSign, OH1 and OH2

a polynomial number of times (q times). After a maximum of q queries, F is
able to generate a signature tuple (σ∗

1 , σ
∗
2 , σ

∗
3) for messages m∗

1,m
∗
2 that has not

been previously queried. We then say that π is secure if

Pr[FOSign,OH1 ,OH2 (α) → (σ∗
1 , σ

∗
2 , σ

∗
3 ,m

∗
1,m

∗
2) ∧ Verify(σ∗

1 , σ
∗
2 , σ

∗
3) = 1] < ε (6)

where Verify returns 1 if and only if subroutines ProxyAccVerifyWitness(σ∗
1) =

σ∗
2 , ProxyAccSignProof(σ∗

2) = σ∗
3 and ProxyAccVerifyProof(σ∗

3) = 1, and ε is
negligible.

Theorem 3 (Non-forgeability). The proposed AMPA scheme is secure
against forgery as defined in Definition 2.

Proof (Sketch of proof). The security experiment initializes according to Def. 2
and G is a computationally secure Diffie-Hellman group. We consider two cases:
(1) where forger F compute σ∗

3 directly and (2) when F compute σ∗
2 and use

it for further computations to achieve σ∗
3 . We omit a third case where σ∗

1 is
computed since the proof is same as case (1) since σ1 and σ3 only differs over
which message to sign, i.e. either m1 or σ2.

Case 1: Assume forger F manages to compute a forged signature σ∗
3 . We note

that a signature σ∗
3 = (σ∗

2 , c
∗
AP , U∗

AP , w) where σ∗
2 = (m∗

2, c
∗
S , U∗

S , w). In such
forgery we get that OH(m2) → c′ thus

U∗
AP =

l∑
i=1

(
(skAPi

)c′
+ gkAPi

)
=

l∑
i=1

(
(SOw

+ H2(w)ski)c′
+ gkAPi

)
(7)

=
l∑

i=1

(
(H2(w)x0 + H2(w)xi)c′

+ gkAPi

)
(8)

Since σ∗
3 is a forgery and validates correctly by ProxyAccVerifyProof, the signing

oracle needs to be a BLS-oracle OBLS (using OH2 as a subroutine), i.e. returning
valid BLS signatures H2(w)x0 and H2(w)xi after at most q queries. Therefore,
c′ will not help F in breaking the scheme and

Pr[FOSign,OH1 ,OH2 (α)] ≤ Pr[FOBLS(α)] ≤ ε (9)

since BLS is provably secure in the random oracle model with a reduction to
breaking the computational Diffie-Hellman problem [3].
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Case 2: Assuming F manages to compute a forged signature σ∗
2 , then

similar to case (1) the forged signature contains U∗
S = (skS)c′

+ gkS =(
(H2(w)x0 + H2(w)xs)c′

+ gkS

)
where xs is the secret key of S and kS ∈ Z

∗
p cho-

sen randomly by S. Again, the forgery implies a BLS-oracle, hence the scheme
is secure. �

6 Implementation

The Java Pairing-Based Cryptography library (jPBC) is a Java port of the PBC
library written in C which provides the mathematical operations needed for
pairing-based cryptosystems [5]. Computations were over a field of 318-bit mod-
ulo.

In order to better understand the efficiency of our protocol, a set of different
operations and procedures went through a performance analysis, measuring the
approximate time in milliseconds. Each operation and procedure was executed
1000 times on a MacBook Pro, 2017, with 2.3 GHz Dual-Core Intel Core i5, 16
GB 2133 MHz LPDDR3 on macOS Big Sur 11.2. The results are presented in
Table 1. As expected, all procedures containing pairings were the slowest. We
strongly expect our results to be much faster using a more efficient implemen-
tation of the hash-to-group algorithm. The scalability analysis consider running
the ProxyAccSignWitness procedure with different number of proxies. It seems to
scale linearly as expected, and for 1000 participating proxies the proxy signature-
and verification procedure takes roughly 1 min.

Table 1. Performance analysis. Ops is number of operations.

Operation Time(ms) Ops.

G: point addition 0.0003 4

G: point multiplication 0.0006 3

Z: exponentiation 0.0310 10

Hash to G 21.5461 5

Pairing 5.5111 7

Proxies Time (ms)

10 728.72

100 6591.15

1000 63847.88

Procedure Time(ms)

ProxyAccSetup 31.04

ProxyAccKeyExtract 9.76

ProxyAccProxyKeyGen 51.18

ProxyAccSignWitness 59.83

ProxyAccVerifyWitness 55.97

ProxyAccSignProof 59.57

ProxyAccVerifyProof 54.46

Total run 316.14

7 Conclusion

We provided a method for constructing AMPA schemes, illustrating how to com-
bine them into a practical protocol along with a proof-of-concept implementation
and performance analysis. We have also shown the validity of the intact secu-
rity analysis covering the merge of two schemes, showing the correctness and
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non-forgeability. We conclude that important aspects to consider in our merge
methodology is to choose an overlapping underlying hardness assumption for the
combined schemes, utilizing the same key-pairs and reuse signature procedures
as a second layer between proxies and database owner(s).
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Abstract. When browsing the Internet, HTTP headers enable both
clients and servers send extra data in their requests or responses such
as the User-Agent string. This string contains information related to the
sender’s device, browser, and operating system. Yet its content differs
from one browser to another. Despite the privacy and security risks of
User-Agent strings, very few works have tackled this problem. Our pre-
vious work proposed giving Internet browsers exposure relative scores to
aid users to choose less intrusive ones. Thus, the objective of this work
is to extend our previous work through: first, conducting a user study to
identify its limitations. Second, extending the exposure score via incor-
porating data from the NVD. Third, providing a full implementation,
instead of a limited prototype. The proposed system: assigns scores to
users’ browsers upon visiting our website. It also suggests alternative
safe browsers, and finally it allows updating the back-end database with
a click of a button. We applied our method to a data set of more than
52 thousand unique browsers. Our performance and validation analysis
show that our solution is accurate and efficient. The source code and
data set are publicly available here [4].

1 Introduction

Web browsers are programs that allow you to search for and view the content of
the World Wide Web [7]. Though, these browsers do more than just simply ren-
dering HTML (Hypertext Markup Language) pages and displaying the results.
They enable users to use search engines, make online purchases, communicate
with each other using social media sites, and much more [19]. However, there are
issues related to maintaining the privacy of users and the security of their devices
while surfing the web using these programs. These issues can possible result
in compromising user’s devices and access their personal data such as browser
history and auto-fill information [2,14]. For instance, vulnerable browsers could
give attackers the opportunity to exploit their security gaps to steal information,
delete files, and other malicious activities [21]. Though, executing such attacks
is normally proceeded by collecting detailed information about the target. For
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Luo et al. (Eds.): CRiSIS 2021, LNCS 13204, pp. 172–182, 2022.
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example, the version of the operating system, the version of the hardware, and
browsing software type. In fact, each browser has its own distinctive User-Agent
request header [9]. The User-Agent request header exposes information about
the software being used, the operating system and the installation of certain plu-
gins [15]. This information can also be leveraged to track user activities on the
web via a process called fingerprinting [12]. Fingerprinting is the process where
the combination of fields exposed by the browser leads to an (almost) unique
combination [3]. Although most people are aware of the role of cookies in finger-
printing and tracking users across the internet, the use of the User-Agent request
header is relatively unknown. Users are not even asked to share this information.
Our previous work Mohsen et al. [15] pointed out the privacy and security risks
of User-Agent request header because of the amount and the sensitivity of the
information it exposes. We proposed a new technique to quantify the exposure of
Internet browsers. The technique is merely based on the information items that
exist in the User-Agent request header. As a proof of concept, we implemented
a simple prototype to demonstrate how such a technique could be useful in pro-
tecting the privacy of users. Thus, in this work, we are primarily extending that
technique by incorporating the Common Vulnerabilities and Exposures (CVE)
of a browser. CVE is a list of publicly disclosed computer security flaws. We rely
on the Common Vulnerability Scoring System (CVSS) to calculate the severity
score of each CVE record [1]. We then aggregate the severity scores of all CVE
records of a browser. The resulting severity score and the relative score Mohsen
et al. [15] are then merged together. The resulting score is the final exposure
score of the browser. The following are the research contributions:

– Conducting a user study to explore the limitation of an existing method for
quantifying the exposures of web browsers.

– Extending the technique that we previously proposed Mohsen et al. [15] to
calculate new exposure score for Internet browsers.

– Providing a full implementation - online tool that uses the resulting exposure
scores to suggest alternative privacy-preserving Internet browsers. The PHP
source code, the database schema, and the final data set are publicly available
here [4].

– Conducting an evaluation and validation studies on our tool.

The rest of the paper is organized as follows. In Sect. 2 we discuss the design
and the results of the user study. In Sect. 3 we go briefly over the methodology
of the previous technique then we move to talk about our extension. In Sect. 4
we discuss the implementation details. In Sect. 5 we go over the related works.
Finally, we conclude the paper with Sect. 6.

2 User Study

The aim of this user study is to study whether the tool that we previously
proposed [15] is appealing to the end users, and if not, obtain the list of new
features that need to be added to the tool. As such, this study raises three main
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research questions: (i) Are users aware of the data that is being exposed by their
browsers?. (ii) How likely are they willing to use such a score-based system?.
(iii) Are there any vital features missing this system?.

2.1 Survey Design

We created a custom survey that prompts participants to answer a set of ques-
tions before and after showing them the exposure scores of their browsers. The
custom survey collects also the User-agent strings of participants after taking
their consent. The survey’s questions were also split into multiple pages to make
participation less overwhelming. The survey starts with an introduction followed
by the demographic questions. After that comes in a set of questions concern-
ing information privacy and Internet browsers. The exposure score report is
then shown to the user alongside questions pertaining the exiting scoring system
and ideas to improve it. During the survey, participants get to see their parsed
User-agent string and the exposure score of their browsers, a list of alternative
browsers, and a unique token. The unique token is connected to their survey
answers in case they decided to have them removed from the data set.

2.2 Demographics

Nearly, half of the users who visited the study URL managed to complete it. In
total, 115 participants has answered all the questions successfully. The average
time of completing the survey was eight minutes. More than 85% of participants
were aged between 15 and 25: 15–20 (29.6%) and 20–25 (55.8%). About 32.2%
of participants were female and 67.0% were male. The education and technical
experience of the participants can be noted as relatively high. The distribution
of participants over the age groups, education, and technical skills should be
taken in consideration before generalizing the results.

2.3 User Awareness

The majority of participants disagreed with the statement that their browser
did not share any data about them. However, they indicated not to know what
data their browser shared. After showing them their parsed User-agent strings,
participants were asked if they were aware such data was being exposed. Our
analysis showed that the technical skills of a participant plays an important role
in her awareness of the data exposure. Participants with high technical skills
were less surprised by the exposed data in comparison to participants with low
technical skills.

2.4 Likely to Use

The results show that users are not very likely to use the current score-based
system. Yet, there seems to be no overwhelming majority for either side, which
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gives us a window to improve the current system. Moreover, some participants
find that the current score-based system uses technical terms that is hard for
some users to understand. Others have stressed the need to add more information
as to how the score is calculated.

2.5 Key Features

Our analysis shows that the browser UI and page loading speed are the most
important features for users when choosing a browser. The plugin support,
startup speed and privacy comes after that. The Least important feature was if a
browser was pre-installed on the machine. Although people do consider privacy,
it is not the most important feature that people will base their browser choice
on.

2.6 Identifiable

Out of the 115 User-agent strings that we collected from participants, 53% of
the users had a unique User-agent string. The User-agent string that appeared
the most was generated by Chrome browsers running on windows 10. They
appeared 19 times. Closely followed by Safari running on iOS 14.4.2 and Firefox
on windows. They both appeared 11 times. A closer look at the collected User-
agent strings, we could make a number of observations. First, we noticed that
Android devices add the product code of the device to the User-agent string.
Second, IPhone devices generally generate the same User-Agent string regardless
of the phone’s type as long as they are on the same iOS version and use Safari.
Instagram and other mobile apps use an in-app browser with a custom User-
agent header (for both iOS and Android).

3 Methodology

In this section, we will discuss our methodology in generating a final exposure
score for Internet browsers. The final score is a combination of two scores; thus,
we will start by briefly talking about the first one, the relative score. After that,
we will discuss the second score, the CVSS score.

3.1 The Relative Score

In our previous work Mohsen et al. [15], we devised a formula to calculate a
relative score for browsers. The score is based on the amount of information
that are revealed by the browser’s User-agent string in relative to the other
browsers in the data set. The equation shown in Eq. 3 shows the exposure score
of browser i based on all j ’s, the attributes that were contained in the User-agent
string. For each element j, the sensitivity and visibility scores and constants are
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calculated based on other equations, which we do not show here. For further
information about this equation, we refer you to [15].

EXP (i) =
∑

j
EXP (i, j) =

∑
j
(S(j) + Sj) × (V (i, j) + Vj) (1)

CV SS FinalScore(browser) = (
∑

vuln
CV SS BaseScore(vuln))/N (2)

CV SS BaseScore(vuln) = [AV G(CV SS2(vuln), CV SS3(vuln))|(CV SS2(vuln))] (3)

3.2 The CVSS Score

The National Vulnerability Database (NVD) is currently supporting CVSS Ver-
sion 3.x [17] and CVSS Version 2.0 [18]. Thus, a particular vulnerability can have
at most two scores. However, since the CVSS 3.0 is not yet complete, many vul-
nerabilities will only have one score, the CVSS version 2.0. As such, we decided
that the CVSS score of a vulnerability is the average of two scores if both existed,
otherwise, it is the CVSS 2.0 score.

3.3 Final Exposure Score

In Eq. 4 we show our methodology in calculating the final exposure score for a
browsing software. The final exposure score equals the normalized relative score
plus the CVSS score divided by 2. The CVSS score is the average of the two
scores. In case the CVSS version 3.x is missing, the CVSS score becomes the
CVSS 2.0 score. Originally, the relative score has no maximum value. In order
to combine it with the CVSS score, we had first to normalize it.

FIN SCORE(i) = NORM(REL SCORE(i)) + CV SS FinalScore(i) (4)

3.4 Dataset

We used the data set of [15], which contained over a million User-agent string.
Our evaluation of this data set revealed two important points. First, the data set
contained a lot of duplicated records. Second, a good number of these records
were for old browser versions. Thus, we removed all duplicates and then looked
online for newer data sets, that contain more recent versions of the existing
browsers. The result is a new data set, that contains 52,000 unique browsers.
Each record in the final data set is composed of 51 columns. Forty-seven columns
are for the different attributes that we retrieved from the User-agent string. Two
columns are for the CVSS and the relative scores. The last two columns are for
keeping track of when were the two scores last updated.
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3.5 Final Data Set Summary

Nearly, 89% of the User-Agent strings were coming from a browser, the other
11% are divided among other browsing software types such as Application 6%,
Bot/Crawler 3%, Email Client 2%. As per the device types, 45% were mobile
phones, 33% desktop, 19% tablets, and the remaining 3% were unknown devices.
Regarding the distribution of the platform makers, it comes as no surprise that
the top three most used platforms were Google, Microsoft and Apple, since 45%
of the devices were mobile phones. Finally, the distribution of the used rendering
engines shows that Blink was the most used, with 54% share, WebKit 19%, Gecko
13%, Trident 3%, on Presto Opera 3%, and UCWeb 3%.

Fig. 1. A snippet of an NVD Json file. It contains the number of vulnerabilities, and
the CVE id of each vulnerability and its CVSS score.

4 Implementation

As a first step, we calculated the relative scores for all the records in the final
data set according to [15]. We then calculated the CVSS scores, which took a lot
of time because we had to crawl the information from the NVD website. Finally,
the final score, exposure score, is derived from the previous two scores. In this
section, we will give an overview of the score-based system that we developed. It
uses the aforementioned scores to recommend safer browsing options to the users.
The system first extracts then processes the requester’s User-agent string. After
that, it calculates both scores. Then, it displays a report to the user. Finally,
it updates the database accordingly. We will go over these steps in significant
detail below.

Extracting and Processing the User-agent String. In this step, the User-
agent string is extracted from the requests coming into our system. Then, the
User-agent string is parsed to extract the 47 features [15]. Next, the final data
set is searched to find a match based on the 47 features. The result of this search
can be summarized in three cases: Best-case, Average-case, and Worst-case. In
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the former, a match is found and both scores are present and up to date. In the
Average-case, a match is found, but one of the scores is missing. In the latter, a
match is not found.

Calculating a Relative Score. This step is needed in the worst-case scenario.
It is also needed in the average case scenario when the relative score is missing.
For the latter case, the relative score is calculated and the browser’s record in
the database is updated accordingly. However, calculating the relative score for
a new browser is a quite cumbersome process. This is because it depends on all
browsers in the database. It entails updating some of the terms and constants
in the original equation [15] such as n and |Rj |. Moreover, it requires updating
the relative scores of all browsers in the database. For simplicity and efficiency
reasons, the current score-system updates the terms and constants temporarily
to calculate the relative score of the new browser. The relative scores of all
existing browsers are not updated at this stage. After the relative and CVSS
scores are calculated for the new browser, a new record will be inserted into the
database.

Calculating the CVSS Score. This step is needed in the worst-case scenario.
It is also needed in the average case scenario when the CVSS score is missing.
The CVSS score is calculated by first searching the NVD website for associated
vulnerabilities. The search is conducted based on three keys: the browser name,
the browser version, and the platform. The NVD website sends back the results
as a JSON file. The file contains several information, most notably the number
of vulnerabilities, the ID of each vulnerability and the base metric that contains
the CVSS score in its two versions. The file shown in Fig. 1 was returned after
searching for the following keys: Chrome, 90.0, and Win10. It shows that there
are 46 distinct vulnerabilities linked to this particular browser. The CVSS scores
for one of these vulnerabilities are highlighted. The Json file is then parsed into
two-dimensional array. For each vulnerability, the final CVSS score is calculated
by either averaging both scores or considering one of them if the other is missing.
The final CVSS score of a browser would then be the average CVSS score of all
its vulnerabilities.

Calculating the Final Exposure Score. The final exposure score for each
browsing software in our final data set is calculated using Eq. 4 of Sect. 3.3.
The maximum possible value for this score is 20. The relative and CVSS scores
contributes evenly to this score with 10 each. Browsers with lower scores are
better for users because they reveal less information and has less vulnerabilities.
In order to understand the relationship between the CVSS score and the relative
score of a browser, we calculated the correlation coefficient between the two
scores. It meant to measure the degree of linear association between the two
continuous variables. The correlation value was 0.18, which is considered weak.
Thus, merging these two scores is considered advantageous as it gives us a better
representative score. Otherwise, one of these scores would’ve been enough.
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Fig. 2. The current implementation returns a list of alternative browsers with lower
final exposure scores that also fit the user’s device specifications. Due to the space
limit, we could not show the entire GUI.

Displaying Scores and Suggestions. In this step, a report is displayed to the
user pertaining her browsing software. The report contains information such as
the relative and the CVSS scores, the final score, the last update, and alternative
browsers. It also shows all the attributes that the current browser reveals. Addi-
tionally, it provides a description of the scores and their privacy implications. In
Fig. 2, the final exposure score of the user’s browser, which is Chrome 90.0 on
Windows 10 64bit, is 13.97 out of 20, the relative score is 7.37 out of 10, and the
CVSS score is 6.6 out of 10. The browsing software reveals numerous attributes
such as the platform, the device type and the device name.

Update: Admin Portal. The Admin Portal is used to add new User-Agent
strings to the database and update the privacy scores of existing ones.

5 Related Works

Our work is considered an improvement over our earlier work Mohsen et al. [15].
In that work, a new formula was introduced to measure the privacy exposure
of web browsers. The formula considered only the information that are included
in the User-agent string. In addition, the implementation was meant as a proof
of concept rather than a complete tool. Finally, the seed data set that we used
contained numerous duplicate entries. Thus, in this work, we first extended the
exposure formula by considering the browsers’ vulnerabilities, cleaned the data
set and added new records, and provided full implementation. The goal of both
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works though is to counter user identification and tracking through numerous
techniques such as device fingerprinting. Device fingerprinting was first studied
by Peter’s [3]. In his work, modern web browsers were tested in order to deter-
mine whether they can be fingerprinted or not using the information that they
disseminate while browsing the Internet. Takeda proposed a number of tech-
niques to identify the owner of a digital device [20]. One of these techniques is
based on analyzing the browsers’ fingerprints such as: HTTP Accept Header,
Browser Plugins, System Fonts and Screen size and color depth. Yen et al. [22]
carried on a large-scale study on month-long anonymized datasets that were col-
lected by the Hotmail web-mail service and the Bing search engine. Their results
showed that User-Agent strings can effectively be used to identify hosts on the
Internet. The identification accuracy can significantly be improved if combined
with the IP address of the host. Kaur et al. [11] proposed a web browser fin-
gerprinting technique that works despite the security devices and measures that
are normally deployed at the corporate network boundary such as VPNs, proxy
servers and NAT. Laperdrix et al. [13] demonstrated the effect of the recent
innovations in HTML5 on increasing the accuracy of fingerprinting. They also
showed that browser fingerprinting on mobile devices is highly possible and effec-
tive similar to personal computers. On the contrary, Hupperich et al. [10] found
that existing tracking techniques do not perform well on mobile devices; thus,
they proposed several features that tracking systems could leverage to fingerprint
mobile devices. Martin et al. [16] was able to identify web browsers using the
underlying JavaScript engine. As far as the preventive measures, Laperdrix et
al. [13] explained different ways to reduce the possibility of fingerprinting, such
as removing plugins and using regular HTTP headers. Martin et al. [16] lever-
aged their proposed browser fingerprinting technique to prevent session hijacking
attacks. In addition, there were a number of proposals to counter the privacy
threat of browser fingerprinting and tracking users [5,6,8]

6 Conclusion and Future Work

In this paper, we first conducted a user study to identify the limitations of an
existing method for quantifying the privacy exposure of web browsers. We then
extended the method by incorporating the browser’s vulnerability records that
are extracted from the National Vulnerability Database (NVD). We also pro-
vided a full web implementation for our approach, in which the relative exposure
score of the user’s browser is calculated on the fly, then a list of alternative safe
browsers is shown to the user. Our implementation is based on a seed data set of
over 52 thousand unique browsers along with their parsed user-agent strings and
vulnerability records. Furthermore, the data set is constantly changing based on
users’ requests and the updates that happen on the NVD records. Our valida-
tion and performance analysis of our approach showed that it is accurate and
efficient. For instance, the time needed to answer a user request is 0.85 s in case
the request’s browser exists in our database. In case it is a new browser, the
request will be answered in it 6.16, which entails retrieving the vulnerabilities
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and calculating the final score. On the other hand, a complete update to the data
set needs only 1.82 min. As a future work, we plan to improve our method by
incorporating the CVSS temporal and environmental metrics. The PHP source
code, the database schema, and the final data set are publicly available here [4].
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