
DISSERTATION

ROBUST AND SECURE RESOURCE MANAGEMENT FOR

AUTOMOTIVE CYBER-PHYSICAL SYSTEMS

Submitted by

Vipin Kumar Kukkala

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Spring 2022

Doctoral Committee:

 Advisor: Sudeep Pasricha

 Anthony Maciejewski
 Ali Pezeshki
 Thomas Bradley

Copyright by Vipin Kumar Kukkala 2022

All Rights Reserved

ii

ABSTRACT

ROBUST AND SECURE RESOURCE MANAGEMENT FOR

AUTOMOTIVE CYBER-PHYSICAL SYSTEMS

Modern vehicles are examples of complex cyber-physical systems with tens to hundreds of

interconnected Electronic Control Units (ECUs) that manage various vehicular subsystems. With

the shift towards autonomous driving, emerging vehicles are being characterized by an increase in

the number of hardware ECUs, greater complexity of applications (software), and more

sophisticated in-vehicle networks. These advances have resulted in numerous challenges that

impact the reliability, security, and real-time performance of these emerging automotive systems.

Some of the challenges include coping with computation and communication uncertainties (e.g.,

jitter), developing robust control software, detecting cyber-attacks, ensuring data integrity, and

enabling confidentiality during communication. However, solutions to overcome these challenges

incur additional overhead, which can catastrophically delay the execution of real-time automotive

tasks and message transfers. Hence, there is a need for a holistic approach to a system-level

solution for resource management in automotive cyber-physical systems that enables robust and

secure automotive system design while satisfying a diverse set of system-wide constraints.

ECUs in vehicles today run a variety of automotive applications ranging from simple vehicle

window control to highly complex Advanced Driver Assistance System (ADAS) applications. The

aggressive attempts of automakers to make vehicles fully autonomous have increased the

complexity and data rate requirements of applications and further led to the adoption of advanced

artificial intelligence (AI) based techniques for improved perception and control. Additionally,

iii

modern vehicles are becoming increasingly connected with various external systems to realize

more robust vehicle autonomy. These paradigm shifts have resulted in significant overheads in

resource constrained ECUs and increased the complexity of the overall automotive system

(including heterogeneous ECUs, network architectures, communication protocols, and

applications), which has severe performance and safety implications on modern vehicles. The

increased complexity of automotive systems introduces several computation and communication

uncertainties in automotive subsystems that can cause delays in applications and messages,

resulting in missed real-time deadlines. Missing deadlines for safety-critical automotive

applications can be catastrophic, and this problem will be further aggravated in the case of future

autonomous vehicles. Additionally, due to the harsh operating conditions (such as high

temperatures, vibrations, and electromagnetic interference (EMI)) of automotive embedded

systems, there is a significant risk to the integrity of the data that is exchanged between ECUs

which can lead to faulty vehicle control. These challenges demand a more reliable design of

automotive systems that is resilient to uncertainties and supports data integrity goals. Additionally,

the increased connectivity of modern vehicles has made them highly vulnerable to various kinds

of sophisticated security attacks. Hence, it is also vital to ensure the security of automotive systems,

and it will become crucial as connected and autonomous vehicles become more ubiquitous.

However, imposing security mechanisms on the resource constrained automotive systems can

result in additional computation and communication overhead, potentially leading to further

missed deadlines. Therefore, it is crucial to design techniques that incur very minimal overhead

(lightweight) when trying to achieve the above-mentioned goals and ensure the real-time

performance of the system.

iv

We address these issues by designing a holistic resource management framework called

ROSETTA that enables robust and secure automotive cyber-physical system design while

satisfying a diverse set of constraints related to reliability, security, real-time performance, and

energy consumption. To achieve reliability goals, we have developed several techniques for

reliability-aware scheduling and multi-level monitoring of signal integrity. To achieve security

objectives, we have proposed a lightweight security framework that provides confidentiality and

authenticity while meeting both security and real-time constraints. We have also introduced

multiple deep learning based intrusion detection systems (IDS) to monitor and detect cyber-attacks

in the in-vehicle network. Lastly, we have introduced novel techniques for jitter management and

security management and deployed lightweight IDSs on resource constrained automotive ECUs

while ensuring the real-time performance of the automotive systems.

v

ACKNOWLEDGEMENTS

I would like to thank all the individuals whose encouragement and support have made the

completion of this thesis possible.

First and foremost, I would like to express my sincere gratitude to my advisor, Prof. Sudeep

Pasricha, who has guided me through the process of doctoral study with his insightful and valuable

advice. It was only with his encouragement and motivation I was able to explore some of the

complex yet exciting problems in design optimization of automotive systems. He ensured that I

improved my attention to detail while conducting research, which benefited me in both academic

and non-academic activities. His devotion to my research and personal development was

invaluable to me throughout my doctoral studies. He nurtured my analytical mindset and gave me

sufficient time and opportunities to realize my true potential in accomplishing my Ph.D. goals. I

appreciate all the help, guidance, and inspiration I received from Prof. Pasricha, who made it

possible for me to survive the trial of graduate school with unforgettable memories and broadened

horizons.

I would like to take this opportunity to thank the respected members of my Ph.D. committee,

Prof. Thomas Bradley, Prof. Anthony Maciejewski, and Prof. Ali Pezeshki. Their feedback helped

me rediscover my research and refine my work from different perspectives. I also much appreciate

all the help I received from my mentors at National Renewable Energy Labs, Hewlett Packard

Enterprise, MathWorks, and General Motors for their feedback in helping me shape my doctoral

studies and my career.

A big thanks to my dear friends, current and former lab mates in Prof. Pasricha’s EPIC lab:

Sai Vineel Reddy Chittamuru, Yaswanth Raparti, Yi Xiang, Nishit Kapadia, Srinivas Desai, Daniel

vi

Dauwe, Saideep Tiku, Ninad Hogade, Ishan Thakkar, Sooryaa Vignesh Thiruloga, Shoumik Maiti,

Liping Wang, Sai Kiran Koppu, Jordan Tunnell, Varun Bhatt, Dylan Machovec, Joydeep Dey,

Febin Sunny, Asif Anwar Baig Mirza, and Kamil Khan for their support and cooperation through

intellectually stimulating conversations that boosted my morale while solving complex research

problems.

I am blessed to have a wonderful family ‒ my father Venkata Nageswara Rao Kukkala, my

mother Nirmala Devi Kukkala, and my sister Harini Kukkala ‒ for their support that empowered

me to pursue my Ph.D. Their generosity and humility have made me continually strive to be a

better person.

Lastly, I would like to thank the EcoCAR3 and EcoCAR Mobility Challenge programs and

all the organizers and program sponsors, including the U.S. Department of Energy, General

Motors, Argonne National Laboratories (ANL), and National Science Foundation (NSF) (through

grant CNS-2132385) for supporting my research.

vii

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS...v

LIST OF TABLES .. xiii

LIST OF FIGURES ...xiv

LIST OF ALGORITHMS ..xxi

LIST OF RESEARCH PUBLICATIONS ... xxii

1. INTRODUCTION ...1

1.1. OVERVIEW OF MODERN AUTOMOTIVE SYSTEMS1

1.2. MOTIVATION FOR RESOURCE MANAGEMENT IN AUTOMOTIVE

SYSTEMS ..9

1.3. REAL-TIME PERFORMANCE CHALLENGES IN AUTOMOTIVE SYSTEMS12

1.4. RELIABILITY CHALLENGES IN AUTOMOTIVE SYSTEMS 14

1.4.1. JITTER ... 15

1.4.2. DATA INTEGRITY .. 16

1.4.3. FAULTS IN AUTOMOTIVE IP ... 17

1.5. SECURITY CHALLENGES IN AUTOMOTIVE SYSTEMS 19

1.5.1. OVERHEAD OF SECURITY SCHEMES .. 21

1.5.2. INTRUSION DETECTION SYSTEM .. 22

1.6. DISSERTATION OVERVIEW .. 23

2. JAMS-SG: A FRAMEWORK FOR JITTER-AWARE MESSAGE SCHEDULING FOR

TIME-TRIGGERED AUTOMOTIVE NETWORKS .. 28

2.1. FLEXRAY OVERVIEW .. 31

viii

2.2. RELATED WORK ... 34

2.3. PROBLEM DEFINITION .. 37

2.3.1. SYSTEM MODEL .. 37

2.3.2. JITTER MODEL ... 38

2.3.3. HYBRID SA+GRASP HEURISTIC .. 39

2.3.4. INPUTS AND DEFINITIONS .. 42

2.4. JAMS-SG FRAMEWORK OVERVIEW .. 44

2.4.1. JITTER-AWARE DESIGN TIME FRAME PACKING 46

2.4.2. RUNTIME MULTI-LEVEL FEEDBACK QUEUE .. 60

2.4.3. RUNTIME SCHEDULER ... 63

2.5. EXPERIMENTS ... 66

2.5.1. EXPERIMENTAL SETUP .. 66

2.5.2. COMPARISON OF JAMS-SG VARIANTS ... 69

2.5.3. RESPONSE TIME ANALYSIS .. 72

2.5.4. SENSITIVITY ANALYSIS .. 74

2.5.5. SCALABILITY ANALYSIS ... 78

2.6. CONCLUSIONS .. 79

3. PRIORITY-BASED MULTI-LEVEL MONITORING OF SIGNAL INTEGRITY IN A

DISTRIBUTED POWERTRAIN CONTROL SYSTEM ... 81

3.1 RELATED WORK ... 82

3.2 PRIORITY BASED MULTI-LEVEL SIGNAL INTEGRITY TECHNIQUE 83

3.2.1. GROUPING OF TORQUE RELATED SIGNALS .. 84

3.2.2. MESSAGE TRANSMISSION WITH HANDSHAKE SIGNALS 85

3.2.3. PERFORMANCE COUNTERS .. 87

ix

3.2.4. CORRECTIVE ACTION .. 88

3.3 EXPERIMENTAL SETUP ... 90

3.4 RESULTS... 90

3.5 PARAMETER ANALYSIS .. 97

3.5.1. IMPACT OF TIME WINDOW SIZE ON BUS LOAD .. 97

3.5.2. IMPACT OF NUMBER OF MONITORED SIGNALS ON BUS LOAD 99

3.6 CONCLUSION .. 102

4. SEDAN: SECURITY-AWARE DESIGN OF TIME-CRITICAL AUTOMOTIVE

NETWORKS .. 103

4.1 RELATED WORK ... 106

4.2 PROBLEM DEFINITION .. 109

4.2.1. SYSTEM AND APPLICATION MODEL... 109

4.2.2. ATTACK MODEL .. 111

4.2.3. SECURITY MODEL .. 112

4.2.4. DEFINITIONS .. 112

4.3 SEDAN FRAMEWORK: OVERVIEW .. 114

4.3.1. TASK ALLOCATION .. 115

4.3.2. FRAME PACKING... 116

4.3.3. DERIVING SECURITY REQUIREMENTS ... 117

4.3.4. OPTIMIZING MESSAGE KEY SIZES USING GRASP 120

4.3.5. SETTING UP SESSION KEY... 128

4.3.6. AUTHENTICATED ENCRYPTION/ DECRYPTION 131

4.3.7. RUNTIME MESSAGE SCHEDULER .. 134

4.4 EXPERIMENTS ... 134

x

4.4.1. EXPERIMENTAL SETUP .. 134

4.4.2. BENCHMARKING ENCRYPTION ALGORITHMS 135

4.4.3. GRASP PARAMETER SELECTION ... 138

4.4.4. RESPONSE TIME ANALYSIS .. 138

4.4.5. SECURITY ANALYSIS ... 141

4.5 CONCLUSION .. 142

5. INDRA: INTRUSION DETECTION USING RECURRENT AUTOENCODERS IN

AUTOMOTIVE EMBEDDED SYSTEMS ... 144

5.1 RELATED WORK ... 146

5.2 SEQUENCE LEARNING BACKGROUND .. 149

5.2.1. SEQUENCE MODELS ... 149

5.2.2. AUTOENCODERS ... 154

5.3 PROBLEM DEFINITION .. 156

5.3.1 SYSTEM MODEL .. 156

5.3.2 COMMUNICATION MODEL .. 158

5.3.3 ATTACK MODEL .. 160

5.4 INDRA FRAMEWORK OVERVIEW .. 161

5.4.1. RECURRENT AUTOENCODER ... 162

5.4.2. INFERENCE AND DETECTION ... 165

5.5 EXPERIMENTS ... 168

5.5.1. EXPERIMENTAL SETUP .. 168

5.5.2. INTRUSION THRESHOLD SELECTION ... 172

5.5.3. COMPARISION OF INDRA VARIANTS .. 173

5.5.4. COMPARISION WITH PRIOR WORKS ... 175

xi

5.5.5. IDS OVERHEAD ANALYSIS.. 177

5.5.6. SCALABILITY RESULTS ... 179

5.6 CONCLUSION .. 181

6. LATTE: LSTM SELF-ATTENTION BASED ANOMALY DETECTION IN EMBEDDED

AUTOMOTIVE PLATFORMS .. 183

6.1. RELATED WORK ... 187

6.1.1. HEURISTIC BASED ANOMALY DETECTION ... 188

6.1.2. MACHINE LEARNING BASED ANOMALY DETECTION 189

6.2. BACKGROUND .. 191

6.2.1. RECURRENT NEURAL NETWORK (RNN) ... 191

6.2.2. LONG SHORT-TERM MEMORY (LSTM) NETWORK 192

6.2.3. ATTENTION .. 193

6.3. PROBLEM FORMULATION .. 196

6.3.1. SYSTEM OVERVIEW ... 196

6.3.2. COMMUNICATION OVERVIEW ... 198

6.3.3. THREAT MODEL .. 200

6.4. PROPOSED FRAMEWORK .. 202

6.4.1. DATA ACQUISITION ... 202

6.4.2. PREDICTOR MODEL .. 204

6.4.3. DETECTOR MODEL ... 207

6.4.4. MODEL TESTING ... 210

6.4.5. ANOMALY DETECTION SYSTEM DEPLOYMENT..................................... 210

6.5. EXPERIMENTS ... 212

6.5.1. EXPERIMENTAL SETUP .. 212

xii

6.5.2. COMPARISON OF LATTE VARIANTS .. 215

6.5.3. COMPARISON WITH PRIOR WORKS .. 218

6.5.4. OVERHEAD ANALYSIS ... 222

6.6. CONCLUSION .. 225

7. TENET: TEMPORAL CNN WITH ATTENTION FOR ANOMALY DETECTION IN

AUTOMOTIVE CYBER-PHYSICAL SYSTEMS .. 226

7.1. RELATED WORK ... 228

7.2. TENET FRAMEWORK: OVERVIEW... 231

7.2.1. DATA COLLECTION AND PREPROCESSING ... 231

7.2.2. MODEL LEARNING.. 232

7.2.3. MODEL TESTING ... 237

7.3. EXPERIMENTAL SETUP ... 239

7.3.1. RECEPTIVE FIELD LENGTH SENSITIVITY ANALYSIS 242

7.3.2. PRIOR WORK COMPARISON .. 244

7.3.3. MEMORY OVERHEAD AND LATENCY ANALYSIS 245

7.4. CONCLUSION .. 247

8. CONCLUSION AND FUTURE WORK RECOMMENDATIONS 248

8.1. RESEARCH CONCLUSION ... 248

8.2. RECOMMENDATIONS FOR FUTURE WORK ... 252

BIBLIOGRAPHY ... 259

xiii

LIST OF TABLES

Table 1 SAE J3016 Levels of driving automation [3]. ...4

Table 2 Determination of ASIL level in ISO 26262 [14].. 13

Table 3 Time taken to generate the solution (in seconds) for different configurations: OMSC-JM

[21], OMSC-FM [21], PMSC [67], JAMS-Greedy [44], JAMS-GA [59], [44] and our JAMS-SG

framework. .. 79

Table 4 Grouping of signals and their criticality levels. ... 85

Table 5 Time window and threshold for different levels. ... 87

Table 6 AES, RSA and ECC execution times (ms) on ARM Cortex A9. 135

Table 7 AES, RSA and ECC power consumption on ARM Cortex A9. 137

Table 8 Number of security violations for each input load configuration. 141

Table 9 Comparison between our proposed INDRA framework and state-of-the-art works. 149

Table 10 Memory footprint comparison between INDRA framework and the prior works PLSTM

[140], RepNet [141] and CANet [138]... 178

Table 11 Inference time comparisons between INDRA framework and the prior works PLSTM

[140], RepNet [141] and CANet [138] using single core, and dual core configurations. 178

Table 12 Comparison between our proposed LATTE framework and state-of-the-art works. ... 190

Table 13 Overhead of LATTE, BWMP [140], HAbAD [159], S-HAbAD [159], RepNet [141] 224

Table 14 TCNA variants with different receptive field lengths. ... 242

Table 15 Relative percentage improvement of TENET vs. other ADS...................................... 245

Table 16 Memory, model size, and inference latency analysis. .. 246

xiv

LIST OF FIGURES

Figure 1 Illustration of (a) distributed ECUs with example functionalities, and (b) BMW-7 series

in-vehicle network architecture [1]. ...2

Figure 2 Illustration of (a) collision avoidance and lane line detection, (b) pedestrian detection,

and (c) traffic sign detection [2]..4

Figure 3 The state-of-the-art ADAS applications and the sensors used to enable them [2].5

Figure 4 Illustration of an in-vehicle network connecting different ECUs using isolated networks

that are connected to a gateway (GW), and external connectivity of modern vehicles with various

systems in the environment [4]. ...6

Figure 5 The Tesla’s autopilot perceived view of surroundings using different cameras [9].8

Figure 6 Trend of (a) number of ECUs in different vehicle segments [11], (b) embedded software

in vehicles [11], and (c) data rate requirement for various applications [12]............................... 10

Figure 7 Example time-triggered messages in a vehicle powertrain system with the highlighted

column denoting the message period in milliseconds [19]. .. 15

Figure 8 Detailed fault reference chart based on the ISO 26262 [22]. .. 18

Figure 9 Timeline of major automotive cyber-attacks [4]. ... 19

Figure 10 Overview of ROSETTA: robust and secure resource management framework for time-

critical automotive systems. .. 24

Figure 11 Structure of FlexRay protocol. ... 32

Figure 12 Message generation and transmission in ECUs. ... 34

Figure 13 Various steps involved in SA. .. 40

xv

Figure 14 Various steps involved in GRASP. .. 41

Figure 15 Illustration of an example FlexRay 3.0.1 schedule (on the left) with slot IDs and cycle

numbers; and the table (on the right) showing the message-to-slot and node-to-slot allocation. . 44

Figure 16 Overview of JAMS-SG framework.. 45

Figure 17 Motivation for objective function selection. ... 48

Figure 18 Overview of MLFQ operation. .. 62

Figure 19 Packing of jitter-affected messages during runtime. ... 63

Figure 20 Updated frame format of the FlexRay frame using the proposed segmentation and

addressing scheme (sizes of individual segments are shown in bits). The parts of the frame

highlighted in gray represent our modifications. .. 65

Figure 21 Average response time of all signals for different objective function weights (with

number of missed deadlines shown on top of the bars) under (a) zero, (b) low, (c) medium, and,

(d) high jitter conditions; for JAMS-SA, JAMS-SG and JAMS-ACC-SG. 71

Figure 22 Message deadlines vs average response time (with number of missed deadlines shown

on top of the bars) under (a) low, (b) medium and (c) high jitter conditions; for the comparison

frameworks (OMSC-JM [21], OMSC-FM [21], PMSC [67], JAMS-GREEDY [44], JAMS-GA

[59], [44]), and our proposed JAMS-SG framework. The number of instances of missed deadlines

typically increases as jitter goes from low to high for the comparison frameworks, and the

messages with smaller (more stringent) deadlines are generally more susceptible to missing

deadlines. .. 73

Figure 23 Message deadlines vs average response time with jitter affecting high priority messages

only; (with number of missed deadlines on top of bars) under (a) low, (b) medium and (c) high

jitter conditions; for the comparison frameworks (OMSC-JM [21], OMSC-FM[21], PMSC [67],

JAMS-GREEDY[44], JAMS-GA [59], [44]), and JAMS-SG. The number of instances of missed

deadlines typically increases as jitter goes from low to high for the comparison frameworks, and

xvi

the messages with smaller (more stringent) deadlines are generally more susceptible to missing

deadlines. .. 76

Figure 24 Message deadlines vs average response time with jitter affecting low priority messages

only; (with number of missed deadlines on top of bars) under (a) low, (b) medium and (c) high

jitter conditions; for the comparison frameworks (OMSC-JM [21], OMSC-FM[21], PMSC [67],

JAMS-GREEDY[44], JAMS-GA [59], [44]), and JAMS-SG. The number of instances of missed

deadlines typically increases as jitter goes from low to high for the comparison frameworks, and

the messages with smaller (more stringent) deadlines are generally more susceptible to missing

deadlines. .. 77

Figure 25 Average response time for different system configurations (with number of missed

deadlines on top of bars) under high jitter; OMSC-JM [21], OMSC-FM[21], PMSC [67], JAMS-

GREEDY [44], JAMS-GA [59], [44], and our JAMS-SG framework. 78

Figure 26 Typical communication system in an HEV. ... 82

Figure 27 Flow chart of proposed technique. (NACK = Negative Acknowledgement, THR =

Threshold). .. 84

Figure 28 CAN network setup for our proposed technique. ... 86

Figure 29 Stateflow logic of a level-2 signal (motor torque request) performance counter and

corrective action. ... 89

Figure 30 Signal integrity of a level-1 signal (Driver brake request) with (a) no faults in

transmission; (b) noise during transmission. .. 92

Figure 31 Signal integrity of a level-1 signal (Motor regen request) with (a) no faults in

transmission; (b) noise during transmission. .. 93

Figure 32 Signal integrity of a level-2 signal (Motor torque request) with (a) no faults in

transmission; (b) noise during transmission. .. 94

xvii

Figure 33 Signal integrity of a level-2 signal (Engine torque request) with (a) no faults in

transmission; (b) noise during transmission. .. 95

Figure 34 Signal integrity of a level-3 signal (PRNDL position) with (a) no faults in transmission;

(b) noise during transmission... 96

Figure 35 Bus load of control bus for varying time windows of (a) level-1 signals; (b) level-2

signals; (c) level-3 signals. .. 98

Figure 36 Bus load of control bus for different number of (a) level-1 signals; (b) level-2 signals;

(c) level-3 signals. ... 101

Figure 37 Motivation for an in-vehicle security framework with low overhead; numbers on top of

bars indicate missed application real-time deadlines. ... 104

Figure 38 Overview of our assumed automotive system model. ... 111

Figure 39 Overview of the proposed SEDAN framework. .. 114

Figure 40 Overview of optimal message key size allocation step using GRASP. 122

Figure 41 Steps involved in setting up a session key using the STS protocol using ECC operations

over an unsecure FlexRay bus. .. 129

Figure 42 (a) Authenticated encryption at the sender ECU; (b) Authenticated decryption at the

receiver ECU. ... 132

Figure 43 Average response time of all messages (with number of missed deadlines shown on top

of bars) for (a) low; (b) medium and (c) high input application load conditions, for Lin et al. AES-

128, AES-192, AES-256 [37]; and SEDAN. .. 140

Figure 44 Aggregate Security Value (ASV) for each input load configuration (with number of

missed deadlines on top of bars). ... 142

xviii

Figure 45 (a) A single RNN cell and (b) unrolled RNN unit; where, f is the RNN cell, x is the

input, and h represents hidden states. ... 150

Figure 46 (a) A single LSTM cell with different gates and (b) unrolled LSTM unit; where, f is an

LSTM cell, x is input, c is cell state and h is the hidden state. .. 152

Figure 47 (a) A single GRU cell with different gates and (b) unrolled GRU unit; where, f is a GRU

cell, x is input, and h represents hidden states. ... 153

Figure 48 Autoencoders. ... 155

Figure 49 Overview of the system model. ... 156

Figure 50 Standard CAN frame format. ... 158

Figure 51 Real-world CAN message with signal information. ... 159

Figure 52 Overview of proposed INDRA framework. .. 162

Figure 53 Proposed recurrent autoencoder network (f is number of features i.e., number of signals

in the input CAN message, MCV is message context vector). .. 163

Figure 54 Rolling window based approach. ... 164

Figure 55 Snapshot of our proposed IDS checking a message with three signals under a plateau

attack, where (a) shows the signal comparisons and (b) shows IS for signals and IS for the message

and Intrusion flag. ... 167

Figure 56 Comparison of (a) detection accuracy, and (b) false positive rate for various candidate

options of intrusion threshold (IT) as a function of validation loss under different attack scenarios.

(% refers to percentile not percentage). ... 173

Figure 57 Comparison of (a) detection accuracy, and (b) false positive rate for INDRA and its

variants INDRA-LED and INDRA-LD under different attack scenarios. 174

xix

Figure 58 Comparison of (a) detection accuracy, and (b) false positive rate of INDRA and the prior

works PLSTM [140], RepNet [141] and CANet [138]. .. 176

Figure 59 Scalability results of our proposed IDS for different system sizes and the prior works

PLSTM [140], RepNet [141] and CANet [138]. .. 180

Figure 60 An example of an anomaly detection framework that monitors the network traffic and

detects deviations from expected normal behavior during the attack intervals (shown in red). . 186

Figure 61 Comparison of input to the decoder in case of (a) no attention, (b) with attention in

sequence models using LSTMs. .. 195

Figure 62 Overview of the system model with our proposed modifications to the communication

controller... 197

Figure 63 Controller Area Network (CAN) 2.0B communication frame. 199

Figure 64 Overview of proposed LATTE framework. .. 202

Figure 65 Our proposed predictor model for the LATTE anomaly detection framework showing

the stacked LSTM encoder –decoder rolled out in time for t time steps along with the self-attention

mechanism generating context vector for time step t. The output at time step t (x̂t) is the prediction

of the input at time step t+1 (xt+1). ... 204

Figure 66 OCSVM decision boundary shown in the blue sphere with the green dots showing the

normal samples from training data, and yellow and red dots showing the normal and anomalous

samples respectively from test data. .. 208

Figure 67 Comparison of (a) detection accuracy, (b) false-positive rates, (c) F1 score of LATTE

variants under different attack scenarios, and (d) ROC curve with AUC for continuous attack. 218

Figure 68 Comparison of (a) accuracy, (b) false-positive rates, (c) F1 score of LATTE and the

comparison works under different attack scenarios, and (d) ROC curve with AUC for continuous

attack. ... 221

xx

Figure 69 Comparison of F1 score for SMA-BB [167], EWMA-BB [167], LOF [168], and LATTE

under different attack scenarios. .. 222

Figure 70 Nvidia Jetson TX2 development board .. 224

Figure 71 Overview of the different phases of the TENET framework. 230

Figure 72 (a) TCNA network architecture with the internal structure of the TCNA block, (b) TCN

residual block showing the various layers of transformation and, (c) the attention mechanism. 235

Figure 73 Comparison of (a) detection accuracy, (b) ROC-AUC for playback attack, (c) MCC, and

(d) FNR for TENET and ADS from prior work. ... 244

xxi

LIST OF ALGORITHMS

Algorithm 1: SA + GRASP based frame packing .. 50

Algorithm 2: greedy_randomized_construction (α, λ, cur_sol) .. 52

Algorithm 3: local_search (β, Ɲ, gr_sol) .. 54

Algorithm 4: design_time_schedule (solution) .. 57

Algorithm 5: sc_allocation (, slot, cyc, SCslot) ... 59

Algorithm 6: GRASP based optimal message key size assignment .. 123

Algorithm 7: greedy_randomized_construction (α, N, M) .. 124

Algorithm 8 : local_search(β, N, M, current_solution) ... 127

xxii

LIST OF RESEARCH PUBLICATIONS

JOURNAL PUBLICATIONS:

 V. K. Kukkala, S. Pasricha, T. Bradley, “Advanced Driver-Assistance Systems: A path toward

autonomous vehicles,” in IEEE Consumer Electronics Magazine (CEM), Vol. 7, Iss. 5,

September 2018.

 V. K. Kukkala, S. Pasricha, T. Bradley, “JAMS-SG: A Framework for Jitter-Aware Message

Scheduling for Time-Triggered Automotive Networks,” in ACM Transactions on Design

Automation of Electronic Systems (TODAES), Vol. 24, Iss. 6, September 2019.

 V. Kukkala, S. Pasricha, T. Bradley, “SEDAN: Security-Aware Design of Time-Critical

Automotive Networks,” in IEEE Transaction on Vehicular Technology (TVT), Vol. 69, Iss.

8, August 2020.

 V. K. Kukkala, S. V. Thiruloga, S. Pasricha, “INDRA: Intrusion Detection using Recurrent

Autoencoders in Automotive Embedded Systems,” in IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems (TCAD), Vol. 39, Iss. 11, November

2020.

 V. K. Kukkala, S. V. Thiruloga, S. Pasricha, “LATTE: LSTM Self-Attention based Anomaly

Detection in Embedded Automotive Platforms,” in ACM Transactions on Embedded

Computing Systems (TECS), Vol. 20, No. 5s, Article 67, August 2021.

 V. K. Kukkala, S. V. Thiruloga, S. Pasricha, “Roadmap for Cybersecurity in Autonomous

Vehicles,” in IEEE Consumer Electronics Magazine (CEM), 2022.

xxiii

CONFERENCE PUBLICATIONS:

 V. K. Kukkala, T. Bradley, S. Pasricha, "Priority-based Multi-level Monitoring of Signal

Integrity in a Distributed Powertrain Control System,” in Proc. of 4th IFAC Workshop on

Engine and Powertrain Control, Simulation and Modeling, July 2015.

 V. K. Kukkala, T. Bradley, S. Pasricha, "Uncertainty Analysis and Propagation for an

Auxiliary Power Module,” in Proc. of IEEE Transportation Electrification Conference

(TEC), June 2017.

 V. K. Kukkala, S. Pasricha, T. Bradley, "JAMS: Jitter-Aware Message Scheduling for FlexRay

Automotive Networks,” in Proc. of IEEE/ACM International Symposium on Network-on-

Chip (NOCS), October 2017.

 G. C. DiDomenico, J. Bair, V. K. Kukkala, et al., “Colorado State University EcoCAR 3 Final

Technical Report,” in SAE World Congress Experience (WCX), April 2019.

 S. V. Thiruloga, V. K. Kukkala, S. Pasricha, “TENET: Temporal CNN with Attention for

Anomaly Detection in Automotive Cyber-Physical Systems,” in Proc. of IEEE/ACM Asia &

South Pacific Design Automation Conference (ASPDAC), January 2022. (Best paper

award candidate)

BOOK CHAPTERS:

 V. K. Kukkala, S. V. Thiruloga, S. Pasricha, “AI for Cybersecurity in Distributed Automotive

IoT Systems,” in Electronic Design for AI, IoT and Hardware Security (to appear),

Springer, 2022.

xxiv

 V. K. Kukkala, S. V. Thiruloga, S. Pasricha, “Machine Learning for Anomaly Detection in

Automotive Cyber-Physical Systems,” in Embedded Machine Learning for Cyber-

Physical, IoT, and Edge Computing (to appear), Springer, 2022.

1

1. INTRODUCTION

Autonomous vehicles are on the horizon and will be revolutionizing the future of

transportation safety and comfort. These vehicles will be connected to various external systems

and utilize advanced embedded systems to perceive their environment and make intelligent

decisions. However, several challenges must be addressed in today’s automotive systems to

achieve the goal of future vehicle autonomy. In this chapter, we present an overview of the current

state-of-the-art automotive systems and trends, and motivate the need for resource management

techniques to solve the various design challenges of automotive cyber-physical systems that

impact the reliability, security, and real-time performance goals. Moreover, in this chapter, we

present an overview of our resource management framework called ROSETTA that addresses

various design challenges in automotive cyber-physical systems and enables robust (from a real-

time performance and reliability perspective), and secure future autonomous vehicles.

1.1. OVERVIEW OF MODERN AUTOMOTIVE SYSTEMS

Modern vehicles consist of tens to hundreds of processing elements called Electronic Control

Units (ECUs) that manage various vehicular subsystems. Examples of ECUs include the engine

control unit, transmission control unit, and body control module. To meet the requirements of

various vehicular subsystems, a diverse set of ECUs consisting of different compute and memory

capacities are used in today’s vehicles. These ECUs run various time-critical automotive

applications and communicate using different in-vehicle networks, exchanging information in the

form of messages which consist of one or more signals. A signal can be a raw data value or control

information. Various in-vehicle network protocols such as controller area network (CAN), local

2

interconnect network (LIN), FlexRay, and Ethernet are employed in today’s vehicles to meet the

data rate, timing, and reliability requirements of automotive applications. An illustration of a

modern vehicle with distributed ECUs and example functionalities, and an in-vehicle network

architecture of a real-world vehicle with different in-vehicle network protocols is shown in Figure

1(a) and Figure 1(b), respectively.

(a)

(b)

Figure 1 Illustration of (a) distributed ECUs with example functionalities, and (b) BMW-7

series in-vehicle network architecture [1].

3

Modern ECUs run various automotive applications ranging from simple vehicle window

control to complex safety-critical functions such as airbag deployment and powertrain control. In

recent years, intelligent applications such as collision avoidance, lane keep assist, pedestrian

detection, and traffic sign detection, which are shown in Figure 2, are becoming increasingly

common. These safety-critical applications have strict timing and deadline constraints that need to

be met. Failing to meet the deadlines can have catastrophic consequences for the performance and

safety of the vehicle (such as delay in deployment of airbags and delay in automatic collision

avoidance). Thus, modern vehicles are highly complex distributed hard-real time cyber-physical

systems.

(a)

(b)

4

(c)

Figure 2 Illustration of (a) collision avoidance and lane line detection, (b) pedestrian

detection, and (c) traffic sign detection [2].

Table 1 SAE J3016 Levels of driving automation [3].

SAE autonomy

level
Definition Example feature

Level-0 No automation Blind spot warning, lane departure warning

Level-1 Driver assistance Lane centering or adaptive cruise control

Level-2 Partial automation Lane centering and adaptive cruise control

Level-3 Conditional automation Traffic jam chauffeur

Level-4 High automation Local driverless taxi

Level-5 Full automation
Same as level 4, but can drive everywhere in
all conditions

To standardize vehicle autonomy, the society of automotive engineers (SAE) has defined six

levels of automation in the SAE J3016 standard [3] (shown in Table 1), with level-0 having no

automation and level-5 being fully autonomous that can drive anywhere in all conditions. Most of

today’s vehicles are level-2, with a few being level-3. However, there has been an increasing push

towards level-3 and level-4 autonomous vehicles by various automakers. With level-3 and level-4

autonomous vehicles expected to hit the roads soon, automotive hardware and software

components are experiencing a paradigm shift. Increasing autonomy has led to the integration of

5

a diverse set of heterogeneous sensors, including cameras, RADAR (radio detection and ranging),

LIDAR (light detection and ranging), and ultrasonic sensors to better perceive the environment

and make intelligent decisions. These advances have facilitated the development of a new class of

intelligent systems called advanced driver assistance systems (ADAS) that improve the vehicle’s

safety, comfort, and fuel economy while playing a crucial role in enabling future autonomy. Some

of the prominent ADAS applications and the sensors used to enable them in today’s vehicles are

shown in Figure 3.

Figure 3 The state-of-the-art ADAS applications and the sensors used to enable them [2].

Many state-of-the-art ADAS applications use various perception tasks such as distance

estimation, objection detection, and object tracking to perceive the environment. It is crucial that

these applications rely on multiple sensors and different sensor types, as there are inherent

limitations with each sensor type. For instance, cameras are highly versatile and can be used for

different ADAS tasks but suffer during low light and bright light conditions, and when obstructed

by obstacles. Similarly, RADARs are good at detecting objects at long distances but have low

6

resolution, while LIDARs offer high resolution but suffer during heavy rain or foggy conditions.

Thus, it is essential to combine the information from various sensors to achieve different

perception goals. This is known as sensor fusion and helps sensors complement each other’s

limitations and provides high precision, reliability, robustness to uncertainty, extended spatial and

temporal coverage, and improved resolution, which are crucial in safety-critical automotive cyber-

physical systems. Thus, sensing in modern vehicles is extremely complex and requires handling

of large volumes and high rates of data.

Figure 4 Illustration of an in-vehicle network connecting different ECUs using isolated

networks that are connected to a gateway (GW), and external connectivity of modern

vehicles with various systems in the environment [4].

In addition to different sensors that are being integrated into today’s vehicles, many ADAS

solutions and other intelligent applications are becoming increasingly dependent on information

from various external systems to function accurately. This has led to the development of intelligent

transportation systems (ITS) that provide the vehicle with a variety of information that can be used

7

to make intelligent decisions. Some of the example ITS applications include traffic monitoring,

real-time parking management, and emergency vehicle notification. This communication between

vehicle and external systems is facilitated by the onboard units (OBUs) and roadside units (RSUs).

The common internal (in blue) and external (in green) communications in modern vehicles are

shown in Figure 4. The integration of diverse communication systems has resulted in a complex

communication network where vehicles interact with other moving and stationary vehicles, and

road infrastructure wirelessly, forming a vehicular ad hoc network (VANET). Modern VANETs

are the building blocks of future autonomous vehicles’ communication fabric.

Today’s VANETs mainly consist of five communication modes: (i) vehicle-to-vehicle

(V2V), which involves communication between OBUs on vehicles, (ii) vehicle-to-infrastructure

(V2I), which involves communication between OBUs and RSUs, (iii) vehicle-to-pedestrian (V2P),

which involves communication between OBUs and personal mobile devices of pedestrians, (iv)

vehicle-to-cloud (V2C) , which involves communication between OBUs and cloud-based backend

systems and, (v) vehicle-to-everything (V2X) , which involves communication between OBUs and

other objects such as traffic lights and traffic signs. More recently, cellular vehicle-to-everything

(C-V2X) communication that enables low latency V2V, V2I, V2P, and V2C using 5G and other

cellular standards is gaining popularity. This has resulted in the development of various advanced

communication standards such as wireless access in vehicular environment (WAVE) [5] and

dedicated short-range communications (DSRC) [6] to realize different communication modes.

As the modern ECUs are becoming increasingly powerful due to the integration of multi-

core processors and dedicated hardware accelerators, today’s vehicles are increasingly adopting

various machine learning (ML) based techniques to better perceive the vehicle environment. Due

to the large availability of data and increased computation power, advanced deep learning and

8

artificial intelligence (AI) based techniques are heavily employed in present-day ADAS and semi-

autonomous functionalities to make intelligent decisions. For instance, deep learning models that

use convolutional neural networks (CNNs) are widely used for object detection using deep learning

models such as You Only Look Once (YOLO) [7] and Region-based CNNs (R-CNN) [8]. Tesla’s

autopilot is one such system that uses deep learning based techniques to process information from

multiple cameras to perceive the environment. An example of Tesla’s autopilot machine-perceived

view is shown Figure 5 on the right-hand side. These deep learning techniques are transforming

the landscape of modern automotive systems and have led to the introduction of Waymo’s

driverless ride-sharing vehicles and Tesla’s full self-driving (FSD) capabilities. Many such

systems require advanced control design to precisely control different vehicular subsystems. Thus,

AI-based autonomy will be the basis for autonomous vehicles.

Figure 5 The Tesla’s autopilot perceived view of surroundings using different cameras [9].

In summary, the integration of powerful ECUs, heterogeneous vehicular networks, greater

connectivity with various external systems, the ability to perceive the environment using different

9

sensors, and advanced deep learning algorithms has revolutionized the capabilities of modern

vehicles. These technological advances are paramount for future autonomous vehicles in enabling

safe, secure, and reliable transportation.

1.2. MOTIVATION FOR RESOURCE MANAGEMENT IN AUTOMOTIVE SYSTEMS

The aggressive attempts of automakers to make vehicles fully autonomous have significantly

transformed vehicular subsystems. In recent years, there has been an increased integration of

powerful ECUs across various vehicle segments to handle different functionalities to satisfy

emerging autonomy needs. For instance, some modern luxury vehicles have more than a hundred

different ECUs. Additionally, the advent of state-of-the-art ADAS solutions and other complex

control applications has resulted in an increase in the complexity of automotive software. On

average, today’s high-end vehicles have over 100 million lines of code [10]. Moreover, to meet

these advanced applications' increasing data rate requirements, various heterogeneous in-vehicle

network protocols are employed in today’s vehicles. The trends of increasing ECU count, software

complexity, and data rate requirements are illustrated in Figure 6(a), Figure 6(b), and Figure 6(c),

respectively.

(a)

10

(b)

(c)

Figure 6 Trend of (a) number of ECUs in different vehicle segments [11], (b) embedded

software in vehicles [11], and (c) data rate requirement for various applications [12].

The increased computation and communication demands and the adoption of various

machine learning and AI-based solutions has resulted in increased power and energy consumption,

which have significant performance implications particularly for emerging battery-based electric

vehicles (EVs). As automotive embedded systems are highly resource-constrained, running these

power-hungry applications will further exacerbate the problem. They could lead to various thermal

11

challenges that severely degrade the application performance and possibly missed deadlines. Thus,

the above-mentioned advances have resulted in increasing the overall complexity of the

automotive system, which has resulted in three new challenges in designing efficient automotive

cyber-physical systems.

Firstly, automotive systems are designed to be deterministic to ensure the timeliness of

safety-critical applications. As the complexity of modern automotive systems keeps increasing,

the potential for computation and communication uncertainties (such as jitter) is also increasing.

This presents a great threat to the reliability of automotive systems. These uncertainties are the

major cause of delays in applications and messages, resulting in poor application latencies and

potentially missed real-time deadlines. Additionally, the integrity of data exchanged between

ECUs to run various applications plays a crucial role in the control performance and safety of the

vehicle. With autonomous vehicles expected to hit the roads soon, it is crucial to enable reliable

communication in automotive systems that is resilient to uncertainties and also maintains data

integrity.

Secondly, the increased connectivity of modern vehicles has resulted in vehicles becoming

highly vulnerable to cyber-attacks. Many attacks have been demonstrated on vehicles using

different attack vectors, including WiFi, telematics, Bluetooth, keyless entry systems, and mobile

applications [25]-[34]. In the past decade, nearly 79.6% of all automotive attacks have been remote

attacks, which do not require the attacker to be within the proximity of the vehicle [13]. Hence, it

is vital to enable secure communication, and this will become crucial as smart and self-driving

vehicles become more ubiquitous. Moreover, the overall increase in the complexity of the

automotive systems has resulted in very limited visibility within the in-vehicle network, which

poses a significant challenge in detecting cyber-attacks in the in-vehicle network. It is essential to

12

detect cyber-attacks by efficiently monitoring and analyzing data on the in-vehicle network as this

often acts as the last line of defense when the attacker breaks through conventional defense

mechanisms.

Lastly, modern automotive systems have limited computation and memory capabilities,

making them highly resource-constrained embedded systems. Thus, implementing any techniques

to improve robustness and security will result in incurring additional overhead on the ECUs. This

can adversely affect the safety-critical applications running on the ECUs and potentially lead to

missing real-time deadlines. Therefore, it is crucial to design techniques that incur very minimal

overhead on ECUs and ensure that the real-time performance of the system is not compromised.

Conventional automotive resource management techniques have not been designed to handle

such complex system sizes and high application demands. Thus, there is an urgent need for an

efficient resource management framework that can handle complex state-of-the-art automotive

systems and address the above-mentioned challenges. This is imperative for achieving robust and

secure future autonomous vehicles.

1.3. REAL-TIME PERFORMANCE CHALLENGES IN AUTOMOTIVE SYSTEMS

Modern automotive systems consist of various subsystems that perform a diverse set of

functions with varying criticalities and priority levels. For instance, a safety-critical application

such as collision avoidance needs to be executed in a timely manner and must meet the timing and

deadline constraints (hard real-time deadline), while a few deadline misses can be tolerated (soft

real-time deadline) for infotainment applications. This mixed-criticality nature of automotive

systems presents a unique opportunity to efficiently prioritize and schedule the computation and

13

communication of automotive tasks and messages while meeting all the hard real-time and most

of the soft real-time deadlines.

Table 2 Determination of ASIL level in ISO 26262 [14].

S
ev

er
it

y
 c

la
ss

Probability class
Controllability class

C1 C2 C3

S1

E1 QM QM QM

E2 QM QM QM

E3 QM QM A

E4 QM A B

S2

E1 QM QM QM

E2 QM QM A

E3 QM A B

E4 A B C

S3

E1 QM QM A

E2 QM A B

E3 A B C

E4 B C D

Several methodologies, such as the automotive safety integrity level (ASIL) risk

classification scheme that is presented in the ISO 26262 [14], can be used to derive the priorities

for various functions across different vehicular subsystems. The ISO 26262 standard introduces

four ASIL levels, with ASIL-D being the highest criticality level and ASIL-A being the lowest. In

addition, another level called quality management (QM) is defined for hazards that do not have

safety implications. The ASIL levels are determined based on the severity, controllability, and

exposure factors shown in Table 2. The severity level S3 defines life-threatening consequences

while S1 defines light and medium injuries. The controllability level is defined as the degree to

which the driver can control the vehicle in the event of a failure, with C3 being hard to control and

C1 being easy to handle. Lastly, the exposure level defines the probability of the vehicle being

involved in that hazard and has four levels, with E4 being highly probable and E1 indicating very

14

low probability. The priority levels derived from this approach can be used to develop safety

requirements for various automotive functions that can be used to efficiently manage the real-time

performance of various vehicular subsystems.

Additionally, implementing any mitigation techniques on resource-constrained automotive

ECUs incurs additional overhead as they are collocated with the real-time automotive applications.

This presents a unique challenge of ensuring real-time performance goals by preventing any

mitigation techniques from having a negative impact on the performance of real-time automotive

applications. Most of these mitigation techniques are designed offline and deployed at runtime to

achieve various goals. However, they seldom work faultlessly due to various systematic and

random runtime perturbations that arise from the harsh operating conditions of automotive

systems. Hence, there is a need for runtime management frameworks that can handle real-time

perturbations and assist the design time generated techniques while meeting real-time

performance goals and deadline requirements.

1.4. RELIABILITY CHALLENGES IN AUTOMOTIVE SYSTEMS

Modern automotive systems operate under extreme conditions, including high temperatures

and vibrations from moving mechanical components, electromagnetic interference (EMI) from

high voltage components (such as battery and DC-DC converters in electric vehicles), and radio

frequency interference (RFI) from vehicle-to-everything (V2X) communications. These extreme

conditions introduce various computation and communication uncertainties in resource-

constrained automotive embedded systems that can hurt the performance and safety of the vehicle.

Moreover, the growing complexity of automotive systems (due to the reasons discussed in Section

1.2) introduces additional risks that directly impact the system's overall reliability. In this

15

subsection, we discuss the key aspects of reliability in automotive electronics, primarily related to

computation and communication uncertainty (jitter), data integrity, and various types of faults.

1.4.1. JITTER

The deterministic nature of automotive safety-critical applications requires the ECUs to

execute them as periodic tasks. This results in messages being exchanged between ECUs to possess

periodic or time-triggered characteristics. An example of various time-triggered messages in a

vehicle powertrain system is shown in Figure 7, where the highlighted cycle time column denotes

the message period in milliseconds. Moreover, the de facto vehicle communication protocols such

as Controller Area Network (CAN) [15] are increasingly unable to meet the high-speed and time-

determinism requirements of modern applications. This has led to the introduction of advanced

time-triggered communication protocols such as FlexRay [16], time-triggered Ethernet

(TTEthernet) [17], and time sensitive networking (TSN) standards [18].

Figure 7 Example time-triggered messages in a vehicle powertrain system with the

highlighted column denoting the message period in milliseconds [19].

One of the major challenges with time-triggered communication is jitter, which is the

unpredictable delay-induced deviation from the actual periodicity of a message. Failure to account

16

for jitter can lead to missing deadlines and have catastrophic consequences in time-sensitive

automotive platforms. The deterministic or bounded jitter that is caused by the systematic

occurrences of certain events in the system (such as queuing of messages and clock jitter) has been

widely studied and can be easily predicted based on observations. However, the random or

unbounded jitter, which is the unpredictable timing noise caused due to factors such as thermal

noise in an electrical circuit and external disturbances, is hard to predict. The random jitter causes

delayed task executions and message transmissions, resulting in poor application performance and

missed real-time deadlines. Only a few works such as [20] and [21] have explored the jitter

mitigation techniques for state-of-the-art time-triggered in-vehicle network protocols. However,

these techniques consider highly pessimistic scenarios, leading to over designed systems, poor

overall application performance, and low scalability. Thus, designing a robust jitter-aware

scheduler that can operate on newer time-triggered protocols and can mitigate the effects of

random jitter to ensure reliable communication in automotive systems, remains an open problem.

1.4.2. DATA INTEGRITY

The ECUs that run different automotive applications are distributed across the vehicle and

exchange information using messages. Every message consists of one or more signals that carry

raw data values or control information that originates from a sensor, an actuator, or is generated as

a result of task execution on the ECU. The extreme operating conditions of automotive systems

(described in Section 1.4) can potentially corrupt signal data, resulting in loss of critical

information, which can have severe performance and safety implications. For instance, scenarios

such as corruption of brake signal data in the event of emergency braking and unintentional

acceleration due to faulty acceleration signal can be highly fatal. In addition to the communication

17

between ECUs, data integrity issues can also arise within the ECUs due to aging hardware

components, power supply noise, electromagnetic crosstalk within the SoC, soft and hard errors.

The mixed-criticality nature of automotive applications has resulted in messages and signals

having different levels of criticalities both within and across the applications. This leads to

different signals having varying levels of impact on vehicle safety and control performance in the

event of signal integrity failure. Thus, it is essential to handle signal integrity failures based on the

signal criticality and its impact on the safety and performance of the vehicle. Moreover, having

one remedial action for all signal integrity failures does not scale well as different messages and

signals have different transmission rates and error tolerances. Additionally, the mitigation

techniques for handling signal integrity failures need to consider the vehicle's state and the severity

of failure when initiating appropriate remedial action. Therefore, it is vital to preserve signal

integrity and ensure that proper remedial action is undertaken in the event of signal integrity

failure to ensure control stability and safety of the vehicle.

1.4.3. FAULTS IN AUTOMOTIVE IP

The increased complexity of automotive systems has led to various types of faults in

automotive IP (intellectual property; which includes both software and hardware). These faults

pose a significant threat to the control performance and safety of the vehicle. At a high level, these

faults can be classified into two categories: (i) systematic and (ii) random faults. The former is a

deterministic fault that occurs as a result of failing to follow the best design practices and can be

identified by carefully inspecting the design process and experimentation. In contrast, the latter

type of fault occurs erratically and typically follow a probability distribution. The mitigation of

systematic faults requires changes in the design of the system, while the random faults cannot be

avoided and need to be detected and handled appropriately. A detailed fault reference chart based

18

on the ISO 26262 [14] standard with the methodologies to handle systematic and random faults in

automotive IP is shown in Figure 8. The systematic faults related to the development process and

the software bugs can be addressed using approaches highlighted in green boxes. On the other

hand, the effects of random hardware faults can be mitigated by implementing various safety

mechanisms and using qualitative and quantitative analysis, as shown in Figure 8.

Figure 8 Detailed fault reference chart based on the ISO 26262 [22].

Additionally, soft errors [23] and errors induced due to device aging [24] also pose a

significant risk to the reliability of automotive embedded systems. The soft errors are transient

faults in semiconductor devices caused by high-energy (e.g., alpha) particle strikes resulting in

random bit flips. On the other hand, device aging causes different random faults, including

unwanted delays, data corruption, and non-functional devices. It is crucial to handle all of these

faults as they can have catastrophic consequences when managed poorly. Thus, there is a crucial

19

need to design effective mitigation techniques that help in minimizing the impact of these faults

and avoid adverse effects of faulty vehicular control.

1.5. SECURITY CHALLENGES IN AUTOMOTIVE SYSTEMS

The increased connectivity with various external systems has made modern vehicles highly

vulnerable to various security attacks. A variety of attack vectors have been used to gain

unauthorized access to the vehicle. A timeline showing some of the prominent cyber-attacks on

automotive systems in the past decade (2010 onwards) is presented in Figure 9.

Figure 9 Timeline of major automotive cyber-attacks [4].

The researchers at the University of California at San Diego and the University of

Washington demonstrated one of the first vehicle hacks in 2010 [25] by exploiting the onboard

telematics system and were able to gain full control of the vehicle. Several other works followed

this approach for the next several years, but all of these attacks required the attacker to be

physically present inside the target vehicle, which resulted in dismissing as an unlikely situation.

This changed in 2015 when the first major remote attack was demonstrated on an unaltered 2014

Jeep Cherokee [26] by two security researchers. The researchers identified a software bug in the

vehicle’s infotainment system that would allow them to connect to the vehicle remotely over the

4G LTE and send CAN messages to the ECUs in the vehicle. They demonstrated a wide range of

20

attacks ranging from remotely controlling simple functionality such as the vehicle radio, A/C, and

windshield wipers to more critical functionalities such as controlling brakes, transmission, and

even killing the engine while the vehicle was on a freeway. This attack completely changed the

landscape of automotive cyber-attacks and highlighted the urgency to address cybersecurity in

vehicles. Starting around 2016, a new type of attack emerged that focused on hacking the keyless

entry system in vehicles. The goal of these attacks was to steal the vehicle rather than remotely

control it. The researchers at the University of Birmingham showed how they were able to recover

the cryptographic algorithms and keys from the ECUs and clone the VW group remote control by

eavesdropping on a single signal sent by the original remote [27]. Similar attacks were conducted

on by cloning the Tesla Model S key fob in 2018 [28] and the Tesla Model X key fob in 2019 [29]

by capturing the Bluetooth communication between the key fob and the body control module.

A different class of attacks has gained popularity since 2018, that mainly targeted the ADAS

systems, and the onboard sensors used for perception. In [30], researchers generated various robust

visual adversarial perturbations to a stop sign that resulted in it being misidentified as a 45 mph

speed limit sign. More recent attacks include tricking lane change system of a Tesla Model S with

bright stickers on the road by Tencent Keen security lab in 2019 [31] and object removal attacks

on LiDAR sensors in 2021 [32]. Another recent attack that made the headlines was the T-BONE

attack [33] where researchers were able to gain remote code execution (RCE) over Wi-Fi on the

infotainment system in a Tesla Model 3 using a drone. They were able to remotely open doors and

trunk, change seat positions, steering, and acceleration modes. The researchers also highlighted

that adding a privilege escalation exploit such as CVE-2021-3347 to T-BONE would weaponize

this exploit and turn it into a worm. This would allow them to load new Wi-Fi firmware and exploit

other Tesla cars in the victim car’s proximity. More recently, in the beginning of 2021, an online

21

hacking group by the name DoppelPaymer claimed to conduct a ransomware attack on KIA motors

America and have stolen unencrypted confidential data [34].

A common feature among all of the attacks that happened on the vehicles involves gaining

unauthorized access to the in-vehicle network. Once the attacks gain access to the vehicular

network, malicious payloads are deployed to ECUs to hijack the vehicle or achieve the malicious

goals of the attackers. Therefore, in-vehicle network security is a crucial element in achieving

secure automotive systems.

1.5.1. OVERHEAD OF SECURITY SCHEMES

Traditional in-vehicle network protocols such as CAN, LIN, and FlexRay, do not have any

inherent security features that would prevent unauthorized access to the vehicular networks. To

improve vehicular security, three crucial security objectives must be achieved: confidentiality,

authentication, and authorization. Confidentiality refers to the practice of protecting information

from unauthorized ECUs, and authentication refers to the process of correctly identifying an ECU.

In contrast, authorization refers to the process of verifying an ECU’s access to a particular

resource. Achieving the above-mentioned security objectives require implementing additional

security mechanisms in the ECUs. The symmetric key [35] and asymmetric key [36] encryptions

are the two most widely used techniques. The former uses the same key (secret key) for both

encryption and decryption operations, while the latter uses a public-private key pair that has a

strong mathematical relationship. The public key is distributed to all the parties that want to

communicate to encrypt the data, and the private key is kept secret and is used to decrypt the data.

However, both mechanisms incur additional computational overhead on the ECUs, which may

catastrophically delay the execution of real-time automotive tasks and message transfers. For

22

instance, a delay in the messages from impact sensors to the airbag deployment systems could lead

to serious injuries for vehicle occupants. Thus, security schemes deployed in automotive systems

must be carefully designed for minimal overhead.

When implemented in automotive ECUs, security schemes need to account for the utilization

overhead of ECUs and latency overhead on the messages. Failure to do so will result in an over-

optimistic design that can suffer in performance or even fail due to missed real-time deadlines.

Additionally, considering diverse security requirements such as different key sizes and encryption

techniques, heterogeneous ECU architectures, and precedence constraints (ordering requirements)

for messages enables further optimization of the security schemes. Moreover, with the increasing

adaptation of heterogeneous multi-core ECUs in the automotive domain, dedicated co-processors

or hardware accelerators for security schemes need to be considered when designing security

schemes. Some of the prior works such as, [37]-[41], tried to address this problem but failed to

address a subset or even most of the crucial characteristics, including ECU utilization, latency

overhead, precedence constraints for messages and tasks, heterogeneous ECU architectures and

diverse set of security requirements. Thus, there is a need for a lightweight security scheme that

would prevent unauthorized access to information traversing over the in-vehicle networks while

incurring minimal overhead on the ECUs.

1.5.2. INTRUSION DETECTION SYSTEM

A well-designed pragmatic security scheme is crucial to prevent cyber-attacks but does not

always guarantee 100% protection. Hence, it is essential to deploy active monitoring systems in

tandem to detect cyber-attacks in in-vehicle networks. Such systems are knowns as Intrusion

Detection Systems (IDSs). Traditionally, such IDSs in computing systems have relied on using

23

firewalls or rule-based systems to detect cyber-attacks. However, due to the increased complexity

of modern automotive attacks, these simple systems fail to detect them. Moreover, the increased

complexity of the automotive systems (heterogeneous ECUs, network architectures/protocols, and

applications) have resulted in poor attack visibility in the in-vehicle networks, which makes it

further challenging for traditional IDSs to detect cyber-attacks. Thus, there is an urgent need for

an intelligent IDS that monitors the in-vehicle network to detect cyber-attacks in vehicles.

Moreover, modern vehicles have been increasingly adopting various AI-based techniques

for different ADAS applications, where environmental perception is required. Such AI techniques

can also be deployed in powerful modern-day automotive ECUs to monitor and detect cyber-

attacks. As AI-based solutions are well known to be highly efficient in learning complex patterns,

they can be used to capture the relationships that exist in high-dimensional time-series vehicular

network data. These learned patterns can be used to monitor the vehicular networks and observe

for anomalies to detect cyber-attacks. With fully autonomous vehicles supporting increased

connectivity to external subsystems on the horizon, having an efficient IDS that can detect a variety

of cyber-attacks using AI-based techniques presents a promising solution to this problem.

1.6. DISSERTATION OVERVIEW

To address the challenges presented in the previous subsections, in this dissertation, we

propose a holistic resource management framework for automotive systems called ROSETTA that

enables robust and secure automotive cyber-physical system design while satisfying a diverse set

of constraints related to reliability, security, real-time performance, energy, and power

consumption. An overview of the ROSETTA framework is illustrated in Figure 10, which

24

comprises of contributions published in [2], [4], [19], [42]-[49]. The rest of this dissertation is

organized as follows:

Figure 10 Overview of ROSETTA: robust and secure resource management framework for

time-critical automotive systems.

In chapter 2, we discuss the stochastic models that were used to model random jitter and

propose a hybrid heuristic based jitter-aware message scheduling framework called JAMS-SG [45].

Our proposed JAMS-SG framework uses a combination of simulated annealing (SA) and greedy

adaptive randomized search procedure (GRASP) to achieve jitter-aware frame packing (packing

signals into messages) and a feasible design time schedule. We also introduce a runtime scheduler

that can opportunistically pack jitter-affected time-triggered messages and high-priority event-

triggered messages in the FlexRay static segment slots using a multi-level feedback queue

(MLFQ). Lastly, we present a custom addressing and segmentation scheme within the payload

segment of the FlexRay frame to enable partial message transmission by the runtime scheduler.

25

In chapter 3, we present our proposed priority based multi-level monitoring approach [42]

to ensure signal integrity of distributed powertrain control systems. We discuss how our proposed

approach prioritizes preserving the signal integrity of torque-related signals (as they have a high

impact on vehicle safety and performance) and present the details of handshake mechanisms and

performance counters used to monitor signals. We introduce a state machine model that is used to

track the maturity of faults and deploy remedial actions (limp modes) based on the severity of the

fault. Lastly, we present a hardware-in-the-loop (HIL) testing analysis of the proposed technique

as a part of the Colorado State University EcoCAR3 project [19].

In chapter 4, we present a novel holistic security framework called SEDAN [46] to improve

the security of vehicles with time-triggered network protocols while satisfying security, utilization,

and deadline constraints. We introduce a novel methodology to derive security requirements for

messages in the system based on ISO 26266 [14] and derive a metric called aggregate security

value (ASV) to quantify security. Our proposed SEDAN framework utilizes the derived security

requirements and the messages in the system to perform a joint exploration for the synthesis of

message schedules and security characteristics (e.g., key sizes) using a metaheuristic called greedy

randomized adaptive search procedure (GRASP) and ensures that the ECU utilization does not

exceed 100%. We present a runtime security framework that employs a session key-based

approach using a station-to-station (STS) key agreement protocol and uses an authenticated

encryption and decryption scheme to simultaneously provide confidentiality and authenticity to

the message data. Furthermore, we present a study of several cryptographic algorithms such as

Advanced Encryption Standard (AES), Rivest–Shamir–Adleman (RSA), and elliptic curve

cryptography (ECC) in the context of automotive systems.

26

In chapter 5, we propose a deep learning based lightweight IDS framework called INDRA

[47] that utilizes a gated recurrent unit (GRU) based recurrent autoencoder network to learn the

latent representation of normal operating system behavior at design time. We devise a metric called

intrusion score (IS), which is used to quantify the deviation from the learned normal system

behavior at runtime, and discuss the details related to the threshold based intrusion detection

approach. We also present a comprehensive analysis towards the selection of the threshold for the

IS metric and present the hardware implementation on a real-world automotive ECU. Lastly, the

details related to implementation overhead and scalability of the proposed INDRA framework are

discussed in detail.

In chapter 6, we present a deep learning based anomaly detection framework (used as an

IDS) called LATTE [48] that utilizes a stacked long short-term memory (LSTM) network based

model that integrates a novel self-attention mechanism to predict message values in future time

steps. We discuss the design of a one-class support vector machine (OCSVM) based detector

model that works with the LSTM predictor model to detect cyber-attacks at runtime. We discuss

the proposed modifications to the existing vehicle communication controllers to realize the

proposed IDS on real-world automotive ECU. We present a comprehensive analysis on the

selection of deviation measures that quantify the deviation from normal operating conditions,

which are used by the OCSVM to detect cyber-attacks. Lastly, we present a detailed study on

inference time, number of model parameters, and memory footprint based on the hardware

implementation of the proposed framework on a real-world ECU.

In chapter 7, we present a temporal convolutional neural network (TCN) with a neural

attention mechanism (together called TCNA) based anomaly detection framework called TENET

[49] to actively monitor in-vehicle networks and detect cyber-attacks. We present various details

27

related to the abilities of TCNA to learn very long-term temporal dependencies between messages

to efficiently characterize the normal operating behavior of the system. We introduce a metric

called divergence score (DS) to quantify the deviation from the expected behavior and discuss

details related to the decision tree classifier that was implemented to detect cyber-attacks at

runtime. Lastly, we present a detailed analysis of memory footprint, number of trainable model

parameters, and inference time of the proposed technique by implementing it on a real-world

automotive ECU.

Chapter 8 concludes this dissertation. We present a comprehensive summary of our research

as a part of this dissertation and also make recommendations for future work directions.

28

2. JAMS-SG: A FRAMEWORK FOR JITTER-AWARE MESSAGE SCHEDULING FOR

TIME-TRIGGERED AUTOMOTIVE NETWORKS

Modern automobiles have several processing elements called Electronic Control Units

(ECUs) that control different functionalities in a vehicle. ECUs run various types of automotive

applications such as anti-lock braking control, cruise control, etc. Most of these automotive

applications have strict timing (deadline) and latency constraints and thus they are classified as

hard real-time applications [50]. The ECUs on which these applications execute are distributed

across the vehicle and communicate with each other by exchanging messages. These messages can

be classified as either time-triggered or event-triggered. Time-triggered messages are periodically

generated messages originating from safety-critical software applications. In contrast, event-

triggered messages are generated asynchronously when a specific event occurs, typically by low

priority (e.g., maintenance) applications.

The diverse nature of messages in automotive systems requires unique communication

protocols to support them. The Controller Area Network (CAN) protocol is one of the most popular

and widely used communication protocols in automotive systems. CAN is a serial protocol which

supports a maximum payload of 8 bytes and a typical transmission rate of up to 1 Mbps [15]. Some

of the key features of CAN include low cost, a lightweight protocol, broadcast communication

capabilities, and support for message priorities and error handling [51], [52]. CAN allows

transmission of both time-triggered and event-triggered messages in an event-triggered manner,

which is a function of its arbitration scheme. In a CAN based system, when multiple ECUs are

trying to transmit messages on the bus at the same time, the message with the lowest CAN message

ID gets access to the bus first, while all the other messages (time-triggered or event-triggered) wait

29

till the next arbitration event. Some of the other commonly used in-vehicle network protocols in

today’s vehicles include Local Interconnect Network (LIN), FlexRay, Media Oriented Systems

Transport (MOST), and Ethernet [54].

The onset of state-of-the-art x-by-wire automotive applications (throttle-by-wire, steer-by-

wire, etc.) has led to an increase in the complexity of automotive applications [2]. This has resulted

in a demand for an efficient, reliable, and deterministic in-vehicle communication protocol to

satisfy the timing constraints of all time-critical applications, while still being able to meet the high

bandwidth requirements of these applications [42]. This goal is difficult to achieve using the

industry de facto standard CAN bus, as it suffers from limited bandwidth (with a maximum

transmission rate of only 1 Mbps, which is insufficient for many high bandwidth vehicular

applications such as pedestrian detection, lane tracking, etc.) and lack of time determinism.

Moreover, the event-triggered nature of the CAN bus makes it harder to adapt for high bandwidth

demanding state-of-the-art safety and time-critical applications. As a result, both automakers and

researchers in academia have been actively exploring other automotive communication solutions

to achieve these goals. FlexRay is an alternative communication protocol that overcomes the

above-mentioned limitations of the CAN protocol and offers added flexibility, higher data rates

(at least 10× higher compared to CAN [20]), better time determinism, and support for both time-

triggered and event-triggered transmissions. As a result, it is deployed in many state-of-the-art

vehicles that implement demanding applications such as Audi A4’s electronic stabilization control

[55], Volvo XC 90’s VDDM [56], etc.

One of the more important challenges with time-triggered transmissions is jitter, which is

the stochastic delay-induced deviation from the actual periodicity of a message. At a high level,

jitter can be classified into two types: (i) bounded (deterministic) jitter and (ii) unbounded

30

(random) jitter. The former is a periodic variation that is caused by the systematic occurrences of

certain events in the system (such as queuing of messages, clock jitter, etc.) whose peak-to-peak

value is bounded. Moreover, due to its deterministic nature, this type of jitter can be easily

predicted based on observations. The latter is an unpredictable timing noise whose peak-to-peak

value is not bounded, e.g., due to thermal noise in an electrical circuit (resulting in delayed task

executions or message transmissions), external disturbances, etc. Unlike deterministic jitter, such

random jitter is hard to predict based on system design and simple observations.

In this work, we propose to address the problem of random jitter in automotive systems as it

can have a significant impact on the performance and safety of the system. We focus on one of the

most important sources of random jitter: delay in the execution of tasks in ECUs. Failure to

effectively handle jitter-induced messages from such tasks can severely affect system performance

and also be catastrophic in some cases (e.g., when the airbag deployment signal from the impact

sensor to the inflation module gets delayed due to jitter). We conjecture that jitter handling must

be incorporated from the early design phase, while designing schedules for time-critical

automotive applications. At the same time, unexpected jitter variations at runtime must also be

carefully handled. There is thus a critical need for an effective jitter handling approach that can be

applied when designing and enforcing the schedules for time-critical automotive applications.

In this chapter, we propose a novel message scheduling framework called JAMS-SG to

handle both jitter affected time-triggered messages and high priority event-triggered messages in

an automotive communication system. Our framework is demonstrated for the FlexRay protocol

but it can be extended to other time-triggered protocols relatively easily. JAMS-SG combines

design time schedule optimization with a runtime jitter handling mechanism, to minimize the

impact of jitter in the FlexRay network.

31

Our novel contributions in this chapter can be summarized as follows:

 We develop a hybrid heuristic that performs jitter-aware frame packing (packing of different

signals from an ECU into messages) for the FlexRay protocol;

 We develop a heuristic approach for the synthesis of jitter-aware design time schedules for

the FlexRay-based communication system;

 We introduce a runtime scheduler that opportunistically packs the jitter affected time-

triggered and high priority event-triggered messages in the FlexRay static segment slots;

 We compare our JAMS-SG framework with the best-known prior works in the area, and

demonstrate its effectiveness and scalability.

The rest of this chapter is organized as follows. Section 2.1 presents an overview of the

FlexRay protocol. Related work that addresses message scheduling in FlexRay is discussed in

Section 2.2. In Section 2.3, we define the problem statement by introducing the system and jitter

models, heuristics used in this work, and important definitions and assumptions. In Section 2.4,

we explain our proposed JAMS-SG framework in detail. Section 2.5 discusses the experimental

setup and the results from our simulation-based analysis. We conclude with a summary of our

work in Section 2.6.

2.1. FLEXRAY OVERVIEW

FlexRay is an in-vehicle communication protocol designed for x-by-wire automotive

applications. It supports both time-triggered and event-triggered transmissions. The structure of

the FlexRay protocol is shown in Figure 11. According to the FlexRay specification [16], a

communication cycle is one complete instance of a communication structure that repeats

32

periodically, e.g., every 5 milliseconds. Each communication cycle consists of a mandatory static

segment, an optional dynamic segment, an optional symbol window, and a mandatory network

idle time block.

Figure 11 Structure of FlexRay protocol.

The static segment in FlexRay consists of multiple equal-sized slots called static segment

slots that are used to transmit time-triggered and critical messages. The static segment enforces a

Time Division Multiple Access (TDMA) media access scheme for the transmission of time-

triggered messages, which results in a repetition of the schedule periodically. In this TDMA

scheme, each ECU is assigned one or more static segment slots and cycle numbers during which

its messages can be transmitted on the FlexRay bus, thereby guaranteeing time determinism for

message delivery. Each static segment slot incorporates one FlexRay frame, which has three

segments: header, payload, and trailer. The header segment is 5-bytes long and consists of status

bits, frame ID (FID), payload length, header cyclic redundancy check (CRC), and cycle count. The

payload segment consists of actual data that has to be transmitted and is up to 127 words (254

bytes) long. The trailer segment consists of three 8-bit CRC fields to detect errors.

33

The dynamic segment consists of variable-sized slots called dynamic segment slots that are

used to transmit event-triggered and low priority messages. A dynamic segment slot consists of a

variable number of minislots (Figure 11), where each minislot is one microtick (usually 1 µs) long.

The dynamic segment enforces a Flexible Time Division Multiple Access (FTDMA) media access

scheme where ECUs are assigned minislots according to their priorities. If an ECU is selected to

transmit a message, then it is assigned the required number of minislots depending on the size of

the FlexRay frame, and hence the length of a dynamic segment slot can vary in the dynamic

segment (Figure 11). During a transmission, all the other ECUs have to wait until the one that is

transmitting finishes. If an ECU chooses not to transmit, then that ECU is assigned only one

minislot and the next ECU is assigned the subsequent minislot. The symbol window (SW) is used

for network maintenance and signaling for the starting of the communication cycle, while the net-

work idle time (NIT) is used to maintain synchronization between ECUs (Figure 11).

Every automotive ECU has two major components: a host processor and a communication

controller. The host processor is responsible for running automotive applications. The

communication controller acts as the interface between the host processor and the communication

network. The communication controller specifically in a FlexRay ECU has two sub-components:

a communication host interface (CHI) and a protocol engine (PE). The CHI handles the message

data generated by the host processor and sends the qualified FlexRay frames to the PE, which

transmits the frames on a physical FlexRay bus (Figure 12). Each frame has a unique frame ID

(FID) that is equal to the slot ID in which the frame is transmitted [16]. A FlexRay frame is

considered to be “qualified” when the message data is available at the CHI before the beginning

of the allocated static segment slot. Otherwise, a special frame called NULL frame is sent (by

34

setting a bit in the header segment of the FlexRay frame and setting all the data bytes in the payload

to zero).

Jitter is one of the major reasons for the delay in the availability of message data at the CHI.

Hence in this work, we focus on a novel frame packing and scheduling framework to overcome

the delays and performance losses due to jitter in time-critical automotive systems.

Figure 12 Message generation and transmission in ECUs.

2.2. RELATED WORK

Prior work on message scheduling for the FlexRay protocol can be categorized into two

groups: (i) time-triggered and (ii) event triggered message scheduling. The goal of these works is

to synthesize message schedules by optimizing parameters such as bandwidth, number of allocated

static segment slots, response time, end-to-end latency, etc., under strict timing constraints.

A common and important step prior to message scheduling is frame packing. Frame packing

refers to the process of packing multiple signals into messages, to maximize bandwidth utilization

on the bus [53]. The authors in [20] proposed an Integer Linear Programming (ILP) formulation

to solve the frame packing problem which requires multiple iterations with ILP to find the optimal

solution. A Constraint Logic Programming (CLP) formulation and heuristic were presented for

35

reliability-aware frame packing in [57], which may require multiple re-transmissions of the packed

frames to meet reliability requirements. In [58], the frame packing problem is treated as a one-

dimensional allocation problem and an ILP formulation and a heuristic approach were proposed.

In [59], a genetic algorithm based frame packing approach was proposed for CAN-FD systems. In

[44], the authors proposed a fast greedy heuristic based frame packing approach. The above-

mentioned techniques either focus on optimizing bandwidth utilization or minimizing the time

taken to generate a frame packing solution. However, none of the above-mentioned works focus on

generating a jitter-aware frame packing solution. Our proposed frame packing technique in this

chapter uses a hybrid heuristic approach to generate a near-optimal set of messages that together

make the system more resilient to jitter-induced uncertainties.

In the case of many real-time systems, especially automotive applications, most of the

parameters such as period, worst-case execution time, deadline, etc., are known at design time.

This facilitates the synthesis of highly optimized design-time schedules that are deployed during

runtime to minimize the unpredictability in the system. Many works have addressed the issue of

design-time scheduling of the static segment of FlexRay. One of the main objectives in these works

is to minimize the number of static segment slots allocated to ensure future extensibility of the

system while maximizing bandwidth utilization. In [60], an ILP based approach is proposed to

minimize the number of allocated static segment slots by considering task and message scheduling.

This work was later extended in [62] by including support for multiple real-time operating systems

and using ILP reduction techniques. In [61], the message scheduling problem is transformed into

a two dimensional bin-packing problem and an ILP formulation and a heuristic approach were

proposed for minimizing the number of allocated slots. In [64], [65] the authors proposed a CLP

and ILP formulation respectively for jointly solving the problem of task and message scheduling

36

in FlexRay systems. A set of algorithms was proposed in [67] to enable scheduling of event-

triggered messages in time-triggered communication slots using a virtual communication layer. A

few other works solve the same problem with heuristics and variants of ILP and CLP [57], [63],

[66], [68], [69]. More recent works such as [75] and [76] combine schedulability analysis and

control theory, and were able to achieve fewer FlexRay static segment slots compared to many of

the above-mentioned prior works. Additionally, there are works that focus on scheduling time-

triggered systems using other network protocols [70], [71], [72]. However, the above-mentioned

works focus on developing scheduling algorithms without incorporating the idea of jitter which

makes them unreliable for use in real-time scenarios where jitter can significantly impact

scheduling decisions.

Jitter in FlexRay based systems has largely been ignored and there is limited literature on

the topic. The authors in [20] proposed a jitter minimization technique using an ILP formulation.

In [21], the frequency of message transmission is increased for the messages that are likely to be

affected by jitter, to minimize message response time. However, in both [20] and [21], it is assumed

that the jitter value and number of messages that are affected by jitter are known at design time,

which is unlikely in real-world scenarios. The authors in [44] proposed a jitter-aware message

scheduling technique called JAMS that uses both design time and runtime schedulers to

opportunistically pack jitter-affected messages in the system. However, the non-jitter-aware frame

packing in [44] results in sub-optimal packing of signals into messages leading to increased

message response times in the presence of jitter. Moreover, a simple jitter model is considered in

[44] that makes the evaluation process less efficient. In [73] an iterative design time scheduling

algorithm was proposed to minimize the impact of jitter on mixed-criticality time-triggered

messages. However, [73] does not effectively handle the unpredictabilities due to random jitter at

37

runtime. As random jitter can affect any message in the system, there is a need for a jitter handling

mechanism that can handle jitter more comprehensively at the signal and message level, at both

design time and runtime. In this work, we introduce a realistic jitter model and propose a holistic

framework that achieves a jitter-aware frame packing and combines the design time schedule

optimization with an improvised runtime jitter handling, to minimize the impact of jitter in FlexRay

based systems. We extensively evaluate the proposed JAMS-SG framework to demonstrate its

effectiveness and scalability.

2.3. PROBLEM DEFINITION

2.3.1. SYSTEM MODEL

In this work, we consider a general automotive scenario with multiple ECUs that run

different time-critical automotive applications and are connected using a FlexRay bus architecture.

Executing an application may result in the generation of signal data at an ECU, which may be

required for another application running at a different ECU. A signal can be any raw data value or

control pulse. These signals are packed into messages and transmitted as FlexRay frames on the

bus. As discussed earlier, there are two types of applications in a typical automotive system: (i)

time-triggered, and (ii) event-triggered. Every ECU or node in the system is capable of transmitting

both types of messages (henceforth the terms ECU and node are used interchangeably). Time-

triggered messages are transmitted in the static segment slots of the FlexRay while the dynamic

segment slots are used for transmitting event-triggered messages. However, in this work, we

facilitate the transmission of high priority event-triggered messages in the static segment of the

FlexRay (details in Section 2.4.2). Hence, in this work, we focus on the challenging problem of

scheduling time-triggered messages and high priority event-triggered messages in the static

38

segment of FlexRay. We ignore the scheduling of low-priority (and typically low-frequency)

event-triggered messages in the FlexRay dynamic segment, which is a much simpler problem and

has a negligible impact on vehicle safety.

2.3.2. JITTER MODEL

As discussed earlier, jitter is defined as the delay-induced deviation from the actual

periodicity of the message, and there are two types of jitter: (i) bounded or deterministic jitter and,

(ii) un-bounded or random jitter. In this work, we mainly focus on random jitter, as it is hard to

predict and can have a significant impact on the performance and safety of the system. Our goal is

to mitigate the effect of random jitter on task execution and message transmission delays. We

assume that both time-triggered and event-triggered messages are susceptible to such random jitter.

However, the impact of random jitter on low priority event-triggered messages is not considered,

as such messages have minimal impact on the safety and performance of the system.

Random jitter is also known as Gaussian jitter, because it follows a normal distribution due

to the central limit theorem [77]. In this work, we devise a specific jitter model for each signal in

the system based on the signal priority and signal period. Signals with a period of less than or equal

to 40 ms are treated as high priority signals and other signals are considered as low priority signals.

Additionally, the mean jitter associated with each signal is modeled as (signal_period/5) for high

priority signals and (signal_period/4) for low priority signals. These mean jitter values can be

tuned based on the designer requirements and system specifications. A similar but more simplistic

model is presented in [74] which does not consider the mixed criticality nature of the automotive

applications. In a normal distribution representing jitter values (on x-axis) and number of

occurrences (on y-axis), the jitter values in the tail region far from the mean occur less frequently

39

than the values close to the mean. Hence, in this work, we mainly focus on mitigating the effect of

mean jitter value associated with each signal on the system performance (i.e., ensuring there are

no missed deadlines).

2.3.3. HYBRID SA+GRASP HEURISTIC

A hybrid heuristic is a combination of two or more heuristics. The goal of any hybrid

heuristic is to combine the advantages of individual heuristics while minimizing each other’s

disadvantages. In this work, we propose a hybrid heuristic by combining simulated annealing (SA)

and greedy randomized adaptive search procedure (GRASP). Similar attempts were made in the

past to combine SA and GRASP and build a hybrid heuristic in [78] and [79]. However, these

efforts do not focus on the automotive application problem domain, and they also do not optimize

the search space or perform tuning of hyperparameters. Our proposed SA+GRASP hybrid heuristic

aims to improve the design space search capability, solution optimality, and computation speed.

Moreover, as our proposed framework uses the baseline model from JAMS [44], and the proposed

SA + GRASP hybrid heuristic, we name our framework JAMS-SG where S and G represents SA

and GRASP, respectively.

2.3.3.1.SIMULATED ANNEALING

Simulated Annealing (SA) is a heuristic that is inspired from the annealing technique in

metallurgy. It models the physical process of heating and controlled cooling of a material to

strengthen and reduce defects. SA is a used to approximate the global optimum in a very large

discrete solution space.

40

Figure 13 Various steps involved in SA.

There are five phases in any SA problem formulation (shown in Figure 13): (i) initial

solution, (ii) initial temperature, (iii) random perturbations, (iv) acceptance probability, and (v)

annealing schedule. The SA begins by taking the initial solution and initial temperature as the

inputs and tries to iteratively achieve a better solution at the end of every iteration. The temperature

is progressively decreased from an initial positive value until a stopping condition is met (e.g.,

until temperature > 0). Each iteration begins by constructing a new solution after making random

perturbations to the current solution. If the objective function value of the new solution is better

than the previous solution, then the new solution is accepted. Otherwise, the new solution is

accepted based on the acceptance probability value calculated using an acceptance probability

function. The acceptance probability function takes the difference between the objective function

values of the new and previous solutions and the current temperature of the system as the inputs,

and computes the acceptance probability value. The new solution is accepted when the acceptance

probability value is greater than a randomly generated number between 0 and 1. Otherwise, the

new solution is discarded. SA tries to accept even a relatively poor solution in the initial stages

when the system temperature is high. As the SA progresses, i.e., when the system temperature is

lower, SA will favor accepting only those new solutions that are very close to the new solution.

When the temperature reaches zero, SA behaves like a pure greedy algorithm. Lastly, at the end

of each iteration, the temperature of the system is updated using an annealing schedule. The

annealing schedule is responsible for the controlled cooling of the system.

41

SA is quite versatile and can deal with highly non-linear solution spaces. It is also good at

dealing with arbitrary systems and cost functions while statistically guarantying an approximate

global optimum. However, SA can take a very long time to converge to a good solution and the

optimality of the solution is heavily dependent on the chosen hyperparameters (initial temperature,

annealing schedule, and acceptance function).

2.3.3.2.GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE

The greedy randomized adaptive search procedure (GRASP) is a multi-start metaheuristic.

The main objective of GRASP is to repeatedly sample stochastically greedy solutions, and then

use an adaptive local search to refine them to a local optimum. At the end, the best of the local

optima is chosen as the final solution.

Figure 14 Various steps involved in GRASP.

Figure 14 shows the two phases in GRASP: (i) the greedy randomized construction phase

that tries to build a feasible solution and (ii) the local search phase that tries to explore a defined

neighborhood for a local optimum. The best of the local optima is chosen as the final solution at

the end. The two important aspects of the greedy randomized construction phase are its greedy

aspect and probabilistic aspect. The greedy aspect involves generating a Restricted Candidate List

42

(RCL), which consists of the best elements that will improve the partial solution (solution within

the greedy randomized construction phase). The probabilistic aspect is the random selection of an

element from the RCL, to be incorporated into the partial solution. However, the solutions

generated during the greedy randomized construction phase are not necessarily optimal. Hence,

the local search phase tries to improve the constructed solution by iteratively using destroy and

repair mechanisms, which are used to perturb the current solution and reconstruct a new solution,

respectively. They help in searching for the local optimum within a defined neighborhood. Lastly,

when an improved solution is found, then the best solution is updated.

GRASP is simple to construct and can be used for large optimization problems. However,

as GRASP depends on the greedy algorithm to evaluate the quality of the solution, it can get stuck

at a local optima. Moreover, it might restart at the same solution multiple times leading to

rediscovering of the same local solution.

2.3.3.3.HYBRID HEURISTIC FORMULATION

To overcome the individual limitations of SA and GRASP, we propose a hybrid heuristic

that combines both of them. The proposed hybrid heuristic uses SA to explore the large solution

space and GRASP to find an improved local solution within a smaller neighborhood around the

solution obtained from SA. In particular, the greedy construction phase of GRASP is used to make

perturbations in the SA and the local search phase is used to explore the neighborhood with a goal

of finding a better solution. The details of our hybrid heuristic are discussed in detail in Section

2.4.1.

2.3.4. INPUTS AND DEFINITIONS

We consider an automotive system with the following inputs:

43

 Ɲ represents the set of nodes, where Ɲ = {1, 2, 3, …, N};

 For each node n ∈ Ɲ, = { , , … , } denotes the set of signals transmitted from that

node and Kn represents the maximum number of signals in node n;

 Every signal ∈ , (i = 1, 2 …, Kn) is characterized by the tuple { ̅ , ̅ , , ̅ },

where ̅ , ̅ , and ̅ denote the period, deadline, data size (in bytes), and mean jitter

of the signal respectively;

 After frame packing, every node maintains a set of messages Mn = { , , …, } in

which every message ∈ Mn, (j = 1, 2, …, Rn) (where Rn represents the maximum number

of messages in node n) is characterized by the tuple { , , , , }, where , ,

, and denote the arrival time, period, deadline, data size (in bytes), and mean jitter

of the message respectively.

We assume the following definitions:

 Slot number or Slot identifier (slot ID): A number used to identify a specific slot within a

communication cycle;

 Cycle number: A number used to identify a specific communication cycle in the schedule;

 To transmit a message on the FlexRay bus, it needs to be allocated a slot ID sl ∈ {1, 2,

…, Nss} and a cycle number bc ∈ {0, 1, …, Cfx} where Nss and Cfx are the total number of

static segment slots in a cycle and the total number of cycles, respectively. This is referred

to as message-to-slot assignment;

 If a message is assigned to a particular slot and a cycle then the source node n of that

message is allocated ownership of that slot. This is known as node-to-slot assignment.

44

All of the above-mentioned definitions are illustrated in Figure 15 with an example FlexRay

3.0.1 schedule. In the example, message (m1) is allocated a slot ID = 1 and cycle number = 0

(message-to-slot assignment). This implies that the source node (ECU4) sending the message (m1)

is allocated ownership of the slot (node-to-slot assignment).

Figure 15 Illustration of an example FlexRay 3.0.1 schedule (on the left) with slot IDs and

cycle numbers; and the table (on the right) showing the message-to-slot and node-to-slot

allocation.

Problem Objective: For the above inputs, the goal of our work is to satisfy deadline constraints for

time-triggered and high priority event-triggered messages sent over the FlexRay protocol, by

enabling jitter resilience during communication, which includes: (i) performing jitter-aware frame

packing, and design time scheduling (message-to-slot assignment, node-to-slot assignment) for the

time-triggered messages without violating timing constraints, and (ii) minimizing the effect of

jitter on time-triggered messages and high priority event-triggered messages at runtime.

2.4. JAMS-SG FRAMEWORK OVERVIEW

We propose the JAMS-SG framework to enable jitter-aware scheduling of time-triggered

messages and collocation of high priority event-triggered messages in the static segment of a

FlexRay-based automotive system. An overview of the proposed framework is shown in Figure

45

16. At a high level, the steps in JAMS-SG are categorized into design-time and runtime steps. At

design time, JAMS-SG uses the proposed hybrid heuristic approach that combines Simulated

Annealing (SA) and Greedy Randomized Adaptive Search Procedure (GRASP) to achieve jitter-

aware frame packing of time-triggered messages and a feasible design-time schedule. At runtime,

JAMS-SG facilitates the handling of both jitter affected time-triggered and high-priority event-

triggered messages using a multi-level feedback queue (MLFQ). The output of MLFQ and the

design time schedule are given as the inputs to a runtime scheduler that opportunistically packs

these jitter affected messages into the already allocated FlexRay slots based on the available slack.

Each of these steps is discussed in detail in the following subsections.

Figure 16 Overview of JAMS-SG framework.

46

2.4.1. JITTER-AWARE DESIGN TIME FRAME PACKING

Frame packing refers to packing of multiple periodic signals in a node into messages. This

step is important to maximize bandwidth utilization, which not only improves system performance

but also enhances the extensibility of the system by utilizing fewer slots than without frame

packing. However, frame packing with a goal of just maximizing the bandwidth utilization can

result in sub-optimal results at run-time. For instance, if one of the signals packed in the message

is not available before the start of the message’s allocated static segment slot due to jitter-induced

delays, the entire message has to be delayed and the CHI has to send out a NULL frame because

of the lack of availability of complete message data. Once all of the signals in the message are

available, the message can be transmitted in the next allocated static segment slot. This delayed

transfer will result in increased response time of the messages and can potentially lead to missed

deadlines, which can be catastrophic for safety-critical application. Thus it is important to have a

jitter-aware frame packing technique that co-optimizes bandwidth utilization and mitigation of the

impact of jitter.

In this work, we define the following four necessary conditions that govern how signals can

be packed into the same message. The first is called the source node condition and is expressed as:

= , == , ∈ [1,] & ≠ (1)

This condition states that if two signals , are packed into the same message ()

they should belong to the same source node (src() returns the source node of the signal) (as shown

in equation (1). This is because, according to the FlexRay protocol specification [16], any slot in

a given FlexRay cycle can be assigned to at most one node, which restricts the packing of signals

47

from different nodes into the same message. This makes the frame packing problem solvable

independently for different nodes.

= , == , ∈ [1,] & ≠ (2)

The periodicity condition in equation (2) states that only the signals with the same periods

should be packed into the same message. This is done to minimize the re-transmissions of the

message frames, which in turn minimizes the number of allocated static segment slots. For

example, if two signals with periods 5ms and 15 ms are packed into the same message, the resulting

message with period 5ms retransmits the signal with 15ms period twice and results in inefficient

bandwidth utilization. ∑ ∈ ≤ (3)

The payload condition in equation (3) states that the sum of all signal sizes packed in a

message (sigIDs() returns the set of IDs of the signals packed in the message) should not exceed

the maximum payload (Bslot) of the FlexRay static segment slot.

() ≤ ∀ , = 1,2, … , (4)

Lastly, the deadline condition in equation (4) states that the set of messages generated from

frame packing should result in a feasible schedule, i.e., the response time (end-to-end latency) for

all the messages should not exceed their deadline requirements. In addition, if there are any specific

timing requirements associated with any signal (such as latency, worst-case response time, etc.),

they become additional constraints to the problem. The timing constraints are further discussed in

Section 2.4.1.3.

48

Given the above-mentioned constraints, the goal of jitter-aware frame packing is to

maximize the laxity of each resulting message while minimizing the total number of message

frames. In other words, we prioritize packing of signals with similar jitter profile into the same

messages. This is because of the reason discussed next.

Figure 17 Motivation for objective function selection.

Consider an example scenario consisting of three ways of packing four different signals in a

node as shown in Figure 17. For simplicity, we considered the packing of a maximum of two

signals per message in this example. However, this constraint is not enforced anywhere else in the

framework. In case (i), signals with similar jitter profile (̅) are packed together ((,) and

(,)) resulting in two messages (,) with the effective mean jitter value () close to the

individual signal jitter values. This results in maximizing the laxity of the messages, which is

important as it provides more opportunities to pack and transmit other jitter-affected messages and

also to better cope with unpredictable runtime jitter. In contrast, in cases (ii) and (iii), the signals

with very different jitter profile are packed together resulting in lower laxity values. This makes

49

the messages less resilient to jitter compared to the one in case (i). Note that to avoid the degenerate

case of packing one signal per message (which would maximize laxity but would lead to very

inefficient bus utilization), we formulated a weighted objective function that achieves jitter-aware

frame packing while also effectively minimizing the total number of messages in the system.

The objective function is a weighted harmonic sum of average laxity of the messages in each

node and is used to achieve jitter-aware frame packing, as is shown in equation (5). Laxity of any

message is defined as the difference between the message deadline and sum of mean jitter value

of the message and time required to transmit the message payload, as shown in equation (6). The

mean jitter value of a message (as shown in equation (7)) is the maximum mean jitter value of all

signals packed in that message. Our proposed hybrid heuristic that combines SA and GRASP aims

to minimize the objective function (in equation (5); with equations (6) and (7) further describing

some of the parameters of this function) while satisfying all of the constraints mentioned above.

The parameters Rn, and τ are the number of messages in the node n, data size of signal i in node

n and time taken to transmit 1 byte of data on FlexRay bus, respectively.

 ∑ ∗ ∑ (5)

 = − + . ∑
 ∈ (6)

= max ̅ | ∈ (7)

We use SA for exploring the overall solution space and uses GRASP for creating and

refining new solutions at every iteration. The solution here refers to the signal to message packing

for all the nodes in the system. To the best of our knowledge, this is the first work in this area that

50

attempts to achieve a jitter-aware frame packing. Algorithm 1 shows the pseudo-code of the hybrid

heuristic.

Algorithm 1: SA + GRASP based frame packing

Inputs: Set of nodes (Ɲ), Set of time-triggered signals in each node (Sn),

GRASP parameters (α, β), temperature (T), cooling rate (Cr)

1: Initialize: cur_sol, prev_sol, best_sol ← initial_solution(Sn)
2: for each iteration until max_iterations do
3: δ = random_int(1, Ɲ)
4: λ = random_selection(Ɲ, δ)
5: gr_sol ← greedy_randomized_construction(α, λ, cur_sol)
6: ls_sol ← local_search(β, Ɲ, gr_sol)
7: cur_sol ← choose_solution(gr_sol, ls_sol)
8: if feasiblity(cur_sol) then

9: Pacc = acceptance_probability(cur_sol, prev_sol, T)
10: if Pacc > random(0,1) then

11: prev_sol ← cur_sol
12: if Φ(cur_sol) < Φ(best_sol) then

13: best_sol ← cur_sol
14: end if
15: end if
16: end if
17: T *= Cr
18: end for

19: output_sol ← best_sol
20: output_schedule ← design_time_schedule(output_sol)
Output: Set of messages in each node and a feasible design time schedule

The inputs to the Algorithm 1 are: a set of nodes (Ɲ), set of time-triggered signals for each

node (Sn), GRASP control parameters (α – which is the RCL threshold discussed later in Section

2.4.1.1, β – which is the destroy-repair threshold discussed later in Section 2.4.1.2), and the SA

hyper-parameters: temperature (T) and cooling rate (Cr). The algorithm begins by initializing the

current (cur_sol), previous (prev_sol), and best (best_sol) solutions with a one signal per message

(one-to-one) frame packing (step 1), which also acts as the initial solution for the SA. All solutions

are data structures that have information about the signal to message packing for each node

(solution← [M1, M2,…, MN]). Each element in the list has a frame packing configuration for each

51

node. At the beginning of each iteration, the algorithm selects a random number (δ) of nodes (λ)

to be perturbed as shown in steps 3, 4. A new solution (gr_sol) is constructed from the current

solution (cur_sol) using the greedy randomized construction phase of GRASP (step 5). In step 6,

this new solution (gr_sol) is given as the input to the local search phase of GRASP to look for a

local op-timum solution (ls_sol) within the defined neighborhood. The better of the two solutions

(gr_sol, ls_sol), i.e., the solution that results in a minimal objective function value is chosen as the

current solution (cur_sol) in step 7. The feasibility of the chosen solution is checked using the

feasibility() function (step 8), which returns true when there are no missed deadlines for any

message in the given solution; otherwise, it returns false. When a solution is feasible, the decision

of accepting or discarding it is dependent on the probability of acceptance (Pacc). This value is

computed using the acceptance_probability() function, which takes the current system

temperature (T), and both current and previous solutions as the input (step 9). If the current solution

is accepted, then the previous solution is assigned the current solution and the best solution is also

updated if the current solution has lower objective function value compared to the best solution

(steps 10-16). The function Φ() is used to compute the objective function value of the solution.

Additionally, at the end of each iteration, the annealing schedule performs a controlled cool down

of the system (step 17). At the end of max_iterations, the best solution is chosen as the output

solution (output_sol) and a design-time schedule is synthesized using it (steps 19, 20).

Note: The resulting output messages will have their period be the same as the signal period

and their deadline will be equal to the lowest signal deadline packed in that message. In this work,

we assume that all the messages have deadlines equal to their periods. The output of Algorithm 1

is a jitter-aware frame packing and a feasible design time schedule.

52

2.4.1.1. GREEDY RANDOMIZED CONSTRUCTION

In this subsection, we discuss the greedy randomized construction phase of GRASP that is

used to perturb the solution in SA, in step 5 of Algorithm 1.

Algorithm 2: greedy_randomized_construction (α, λ, cur_sol)

Inputs: RCL threshold (α), perturbed nodes (λ), and cur_sol

1: function greedy_construct(α, Ŝn, partial_sol)

2: while Ŝn ≠ { } do
3: s = random_selection(Ŝn, 1)
4: Ω ← feasible_frame_ids(s, partial_sol)
5: if Ω ≠ { } then
6: Cfids ← cost(s, Ω)
7: Cmin = min(Cfids); Cmax = max(Cfids)

8: RCL ← {fid ∈ Ω | Cfids(fid) ≤ Cmin + α*(Cmax - Cmin)}
9: chosen_fid = random_select(RCL,1)
10: assign_fid(s, chosen_fid, partial_sol);
11: end if

12: Remove s from Ŝn
13: end while

14: return partial_sol

15: end function
16: Initialize: greedy_randomized_sol ← cur_sol
17: for each node n in λ do
18: ρ = random_int(1,length(Sn))
19: Ŝn = random_selection(Sn, ρ)
20: greedy_randomized_sol(n) ← greedy_construct(α, Ŝn, cur_sol(n))
21: end for
22: return greedy_randomized_sol

Output: greedy randomized constructed solution; ∀ nodes n ∈ λ

Algorithm 2 shows the pseudo code of the greedy randomized construction where the inputs

are: RCL threshold (α; discussed in more detail below), set of nodes whose frame packing will be

perturbed (λ), and the solution that needs to be perturbed (cur_sol). The algorithm begins by

initializing the current solution (cur_sol) to a greedy randomized solution

(greedy_randomized_sol) (step 16). For each node n whose current frame packing needs to be

perturbed, the algorithm selects a random number (ρ) of signals (Ŝn) in that node and tries to

53

greedily construct a new solution using the greedy_construct() function, in steps 17-21. The newly

generated solution for the node n is updated in the greedy_randomized_sol(n) function (step 20),

and at the end, the final solution for all nodes is returned (step 22).

The function greedy_construct() in steps 1-15 takes the RCL threshold (α), set of signals

whose frame packing will be changed (Ŝn), and the current frame packing (partial_sol) as the inputs

and tries to assign the signal to a new message. The addition of signals to new messages happens

in a greedy manner that would result in minimizing the value of the objective function. Until the

set Ŝn is empty, in every iteration a signal is randomly chosen from (Ŝn) (step 3), and a list of

feasible frames (Ω) to which the signal (s) can be packed into is generated (step 4). For a frame ID

(fid) to be feasible, it has to satisfy the conditions mentioned in equations (1) – (3). If there exist

no feasible frame IDs for the signal (s), its frame packing configuration is left unchanged.

Otherwise, the individual cost of adding that signal to each frame is computed using the cost() in

step 6. The minimum cost (Cmin) and maximum cost (Cmax) computed in step 7 are used in

generating the restricted candidate list (RCL) (step 8). The RCL consists of the feasible frame IDs

whose associated cost of adding the signal is within the interval [Cmin, Cmin + α*(Cmax - Cmin)]. This

is the greedy aspect of the algorithm. The quality of RCL depends on the RCL threshold (0 ≤ α ≤

1). The threshold (α) controls the amount of randomness and greediness in the algorithm. For

instance, when α = 0, the algorithm exhibits a pure greedy behavior and when α = 1, the algorithm

exhibits a purely random behavior. A random frame ID (chosen_fid) is selected from RCL in step

9, and the signal s is assigned to that frame ID (step 10). Furthermore, after an attempt to change

the frame packing for signal s, it is removed from Ŝn (step 12). When all the signals in Ŝn are

explored, the function terminates and returns the perturbed solution (partial_sol) (step 14).

54

2.4.1.2. LOCAL SEARCH

Local search is the second phase of the GRASP metaheuristic, invoked in step 6 of

Algorithm 1. It iteratively explores the defined neighborhood around the greedy randomized

constructed solution in the search for a local optimum. This is accomplished using destroy and

repair mechanisms that try to randomly remove a part of the solution and reconstruct it. In this

work, we define neighborhood as the set of solutions that are generated by randomly changing the

frame packing of β signals. The parameter β is known as the destroy-repair threshold and it controls

the amount of destroy and repair operations in each iteration. The pseudo-code for the local search

is shown below in Algorithm 3.

Algorithm 3: local_search (β, Ɲ, gr_sol)

Inputs: Destroy-repair threshold (β), set of nodes (Ɲ), and greedy randomized

constructed solution (gr_sol)

1: Initialize: interm_sol, new_sol ← gr_sol
2: for each ls_iteration until max_ls_iterations do
3: η = random_selection(Ɲ, 1)

4: Ŝ = random_selection(Sη , β)

5: new_sol(η) = greedy_construct (α, Ŝ , interm_sol(η))
6: if Φ(new_sol) < Φ(interm_sol) then
7: interm_sol ← new_sol
8: end if

9: end for
10: return interm_sol
Output: Local optimum with in the defined neighborhood- if there exists one;

Otherwise, same solution as greedy_randomized_construction().

The local search in Algorithm 3 begins by taking the destroy-repair threshold (β), set of

nodes (Ɲ) and greedy randomized constructed solution (gr_sol) as the inputs and then initializes

the intermediate solution (interm_sol), and new solution (new_sol) with the greedy randomized

constructed solution (in step 1). The frame packing for β random signals (Ŝ) belonging to a

random node (η) are chosen to be changed (destroy mechanism) in steps 3, 4. A new solution

55

(new_sol) is reconstructed using the greedy_construct() function in step 5 (repair mechanism), and

it is accepted if the new solution (new_sol) resulted in a smaller objective function value compared

to the prior solution (interm_solution) (steps 6-8). At the end of max_ls_iterations, the algorithm

returns the final local search solution (interm_sol) in step 10.

2.4.1.3. DESIGN TIME SCHEDULING

In this subsection, we present the jitter-aware design time scheduling heuristic that is

invoked in step 20 of Algorithm 1. The heuristic takes the frame packing solution (i.e., set of all

the time-triggered messages) in the system as input and generates a design-time schedule. The

design time schedule consists of an assignment of slot ID and cycle numbers to messages

(message-to-slot allocation) and their source nodes (node-to-slot allocation). In designing this

schedule, we aim to allocate the messages as early as possible in the schedule to minimize the

response time. Additionally, we try to minimize the number of allocated static segment slots for

effective bandwidth utilization while meeting all the deadline constraints. Moreover, we take

advantage of cycle multiplexing in FlexRay 3.0.1 where multiple nodes can be assigned slots with

the same slot ID in different communication cycles. This helps to maximize the static segment

utilization while using only a minimal number of slots [61]. Moreover, jitter awareness is added

to the scheduling by considering the previously computed mean jitter of the message (µ) and a

control parameter called coefficient of jitter resilience (σ) that dictates the resiliency of the design

time schedule to jitter. The parameter σ is a non-negative real number that dictates how resilient

the schedule is for jitter. When σ = 0, it reflects a special case called zero-jitter (ZJ) scheduling.

However, in real-time systems ZJ scheduling is not encouraged as it has no resilience to jitter.

Having a higher value for σ results in longer response times and leads to potentially missing

message deadlines. Hence, it is important to choose an appropriate value of σ that provides

56

sufficient jitter resilience while not resulting in longer response times and missed deadlines. In this

work, we empirically set the value of σ as 0.8. In addition, we consider the concept of message

repetition and slot ID utilization in a FlexRay system. For any time-triggered message in FlexRay,

message repetition () is the ratio of message period to the cycle time of the FlexRay as shown

below:

 = (8)

This number is an integer value as the FlexRay cycle time is chosen to be the greatest

common divisor of all the message periods in the system. Moreover, any time-triggered message

that is assigned a particular slot ID will end up using (1/) of the available slots within that

slot ID.

Algorithm 4 shows how the above-mentioned metrics are utilized in the synthesizing of a

jitter-aware design time schedule. The heuristic begins by taking the set of time-triggered messages

in the system (M) and FlexRay parameters as the inputs, and initializes all slot utilizations to zero.

In addition, a slot cycle list (SCL) is defined to keep track of the list of available cycles in a

particular slot ID and each element in it is initialized with a list [0, 1,…,63] as Cfx = 64 (Section

2.3.4). After initializing in step 1, all the time-triggered messages (M) in the system are sorted in

increasing order of message periods (step 2). For each time-triggered message () in the system,

we begin the search for slot ID and cycle number allocation from the computed slot and cyc in

steps 4, 5. The calculations for beginning slot ID and cycle number are based on the message

parameters arrival time (), mean jitter value (), and the design parameters: coefficient of jitter

resilience (σ), static segment slot duration (tds), and cycle time (tdc). The computed slot and cyc are

subjected to checks for three defined constraints in steps 7-9: (i) arrival time constraint

57

(constraint1) – checks if the current slot (slot, cyc) begins after the arrival time plus the effective

jitter (∗) of the message; (ii) allocation constraint (constraint2) – checks if the current slot is

not allocated to any other message; and (iii) utilization constraint (constraint3) – checks if the slot

ID (slot) utilization is below 100% after adding the current message.

Algorithm 4: design_time_schedule (solution)

Inputs: Set of all time-triggered messages in the system (M), FlexRay

parameters (Nss, Cfx, Bslot, tds, tdc), and coefficient of jitter resilience (σ)

1: Initialize: all slot utilizations ← 0; SCL= [SC1,..,SC62]; SCx= [0,..,63]
2: Sort M in the increasing order of message periods
3: for each message in M do

4: = (+ ∗)/

5: = (+ (∗) − (∗))/ + 1

6: while is not allocated do

7: constraint1 = (start(slot, cyc) ≥ + ∗)

8: constraint2 = ((slot, cyc) is not allocated to any message)

9: constraint3 = (slot_util(slot) + 1/ ≤ 1)

10: if constraint1, constraint2, constraint3 are all True then

11: if start(slot, cyc) + > then

12: exit(“No feasible solution”)
13: else
14: feasible, cyc_list = sc_allocation(, slot, cyc, SCslot)

15: if feasible then

16: ←slot; ←cyc; _ ←cyc_list

17: Assign ownership(, _) → src()

18: Remove elements in cyc_list from SCslot
19: allocated ← True; break()

20: end if

21: end if

22: end if
23: slot += 1;
24: if slot > Nss then slot = 1; cyc += 1
25: end while
26: end for
Output: Message-to-slot assignment (,) for each time-

triggered message , and slot ownership of each node n.

58

If all these constraints are satisfied (step 10) and the finish time of the (slot, cyc) exceeds the

message deadline (step 11), the algorithm terminates with no feasible solution for the given input

message set (M). Otherwise, sc_allocation() is used to check for the feasibility of allocation of the

current slot and cyc to the message. The function returns a binary variable indicating feasibility

(feasible) and a list of cycles (cyc_list) that can be allocated to the message (step 14). If the current

slot and cyc are feasible, they are allocated as slot ID and base cycle respectively for the current

message. Additionally, other cycles in the cyc_list are allocated to the message and the ownership

of the allocated slot ID and cycles are assigned to the message and its source node (steps 15-17).

In step 18, the SCL for the allocated slot ID (slot) is updated by removing the allocated cycles

(cyc_list) and the search for allocation of slot ID and cycle number for the next message is initiated.

If the computed slot ID (slot) and cycle number (cyc) fails to meet any of the three constraints

mentioned in steps 7-9, the slot ID and (if needed) the cycle number are incremented accordingly

(steps 23, 24). When all the messages in the system are allocated slot and cycle numbers, the

algorithm terminates successfully.

The pseudo code for sc_allocation() is shown in Algorithm 5. It takes the current message

(), slot ID (slot), base cycle (cyc), and SCL corresponding to the slot ID (SCslot) as the inputs

and checks for the feasibility of allocating the slot ID and base cycle to the current message. In

step 1, the function initializes a feasibility flag (feasible) to zero and cycle list (cyc_list) with an

empty list, and then computes the minimum number of instances (num_instances) of the message

in Cfx cycles. From steps 2-14, the function tries to find a feasible cycle number for each instance

of the message. The search begins by initializing the feasible cycle exists flag (fc_exists) to zero

and computing the first cycle (k = 0) under consideration (step 3). In steps 4-11, the function tries

to find a cycle before the message deadline (i.e., - 1 cycles) by checking three different

59

conditions (steps 5-7): (i) allocation condition – checks if the cycle number in the current slot ID

is unallocated; (ii) arrival time condition – checks if the slot begins after the message arrival time

() and effective jitter (∗) and; (iii) deadline constraint – checks if the finish time of the slot

is before the deadline of the (k+1)th instance. If all the three conditions are satisfied, the cycle

number is added to the cyc_list, fc_exists is changed to 1 (steps 8-10), and the search for next

instance begins. When all the instances of the message are allocated a feasible cycle, the function

returns feasible as 1 and the list of allocated cycles (cyc_list). Otherwise, the current slot ID and

cycle number are infeasible for allocating to the current message.

Algorithm 5: sc_allocation (, slot, cyc, SCslot)

Inputs: current message (), slot ID (slot), base cycle (cyc), and SCL

corresponding to slot ID (SCslot)

1: Initialize: feasible = 0; cyc_list = []; k = 0; num_instances = ;

2: while k < num_instances do
3: fc_exists = 0; test_cyc = cyc + k*

4: for i from 0 to (- 1) do

5: condition1 = ((test_cyc+i) in SCslot)

6: condition2 = (+ ∗) ≤ start(slot, test_cyc + i)

7: condition3 = start(slot, test_cyc + i) + ≤ (k+1)*

8: if conditions 1, 2, 3 and 4 are all True then

9: Append cyc_list ← (test_cyc + i); fc_exists = 1; break()
10: end if
11: end for
12: if fc_exists == 0 then break()
13: k += 1
14: end while
15: feasible = 1 if length(cyc_list) == num_instances; else feasible = 0
16: return feasible, cyc_list
Output: feasibility flag (feasible) and list of communication cycles allocated to

message () for the given slot and cyc.

60

2.4.1.4. ACCEPTANCE AND COOLING FUNCTIONS

The acceptance function is used to probabilistically accept the solution created in every

iteration (step 9 in Algorithm 1). The probability of acceptance of a new solution is computed

using equation (9) below. The term ΔE is the difference between the objective function value of

the current solution (cur_sol) and the previous solution (prev_sol) as shown in equation (10). This

is analogous to the energy difference between the new state and previous state in SA. Lastly, the

cooling function defines the controlled cooling of the system. In this work, a simple cooling

function is employed as shown in equation (11), where Cr is the cooling rate.

=
∆

 (9)

= (_) − (_) (10)

 () = ∗ (11)

2.4.2. RUNTIME MULTI-LEVEL FEEDBACK QUEUE

The schedule generated by the design time scheduler will only guarantee latencies for time-

triggered messages when the runtime jitter experienced by the messages does not exceed their

effective jitter (∗) value. However, at runtime, various internal and external disturbances may

interfere with the normal operation of the FlexRay bus and might result in additional, larger jitter.

Hence, it is important to handle a multitude of jitter values during runtime. We focus on handling

jitter at runtime using a runtime scheduler that re-schedules jitter affected time-triggered messages

using the design-time generated schedule and the output of the Multi-Level Feedback Queue

(MLFQ; discussed next) as the inputs. Moreover, in this work we allow the transmission of high

priority event-triggered messages within the static segment of FlexRay. Let us consider an example

61

scenario where a high priority event-triggered message arrives just after the beginning of dynamic

segment. Suppose that there is already a low priority event-triggered message that is being

transmitted and ends up taking the entire duration of the dynamic segment due to its large message

size. This results the high priority event-triggered message having to wait until the beginning of

the dynamic segment in the next communication cycle to start transmission if there are no other

higher priority messages. This could result in a missed deadline. Hence, we facilitate the

transmission of high priority event-triggered messages in the static segment of FlexRay by treating

them similar to jitter affected time-triggered messages within the MLFQ, but with a priority lower

than time-triggered messages during the runtime scheduling. This facilitates the easy rescheduling

of high priority event-triggered messages in the static segment of the FlexRay. Moreover, as the

dynamic segment is optional in FlexRay, our framework can be used in the situations where there

is no dynamic segment to handle high priority event-triggered messages.

The MLFQ consists of a system of queues (usually two or more) that have different priorities

and are capable of exchanging messages between different levels using feedback connections (as

shown earlier in Figure 16). The number of queues in an MLFQ defines the number of levels; each

level queue can have a different prioritization scheme and scheduling policy compared to other

queues. Moreover, the MLFQ attempts to resolve the issues associated with the traditional

scheduling schemes such as first come first serve (FCFS), shortest job first (SJF), etc., especially

with minimizing inefficient turnaround times for the messages and preventing message starvation.

In this work, we considered an MLFQ consisting of three level queues (Figure 16), with

queue 1 (Q1) having the highest priority followed by queue 2 (Q2) and queue 3 (Q3) with lower

priorities. In addition to prioritization between different level queues, we set priorities between

different types of messages and within the messages of the same type. We prioritize time-triggered

62

messages over event-triggered ones. Moreover, within the time-triggered messages, we assign

static priorities using a Rate Monotonic (RM) policy to prioritize messages with high frequency

of occurrence. In case of a tie, priorities are resolved using a First Come First Serve (FCFS)

strategy. Event-triggered messages inherit the priority of their generating node. In cases of multiple

event-triggered messages from the same node, an Earliest Deadline First (EDF) scheme is

employed to prioritize messages. These static priorities of the messages are used to reorder the

messages in the queues and promote messages to upper level queues. In addition, there are two

separate buffers that are used to handle jitter affected time-triggered messages and high priority

event-triggered messages, which are later fed to the MLFQ.

Figure 18 Overview of MLFQ operation.

The operation of the MLFQ is depicted in the flowchart in Figure 18. It begins by checking

the time-triggered (TT) message buffer for jitter-affected messages. If a TT message is available,

the load TT message function is executed, which checks for a vacancy in the queues in the order

Q1, Q2, and Q3; and stores the TT message in the first available queue. If the TT message buffer

63

is empty and an event-triggered (ET) message is available in the ET message buffer, the load ET

message function is executed which checks for a vacancy in the queues in the order Q2, Q3, and

Q1 and stores the ET message in the first available queue. In either case, when all three queues are

full, the message is held in the corresponding buffer and the same function is executed in the next

clock cycle. Whenever there are no messages available in both the buffers and, the reorder queue

function is not executed in the preceding clock cycle, messages in the queues are reordered in the

order of their priorities, by executing the reorder queues function. Otherwise, the queues are

checked in the order Q1, Q2 and Q3 by executing the POP queue function. The conditions for

popping a queue are discussed in the next subsection.

Figure 19 Packing of jitter-affected messages during runtime.

2.4.3. RUNTIME SCHEDULER

After handling the jitter-affected messages in the MLFQ as discussed in the previous

subsection, the next step is to re-schedule them during runtime to attempt to meet their deadline

constraints. To achieve this, we introduce a runtime scheduler that handles multiple inputs coming

from the output of the MLFQ, and the design-time generated schedule. Additionally, the runtime

scheduler also has information on the available slack in each of the static segment slots from the

design-time generated schedule. Thus, whenever there is a message in the MLFQ, the runtime

64

scheduler checks the ownership of the next incoming slot. If the incoming slot is owned by the

source node of the jitter-affected message in the MLFQ, the runtime scheduler computes the

available slack in the incoming slot using the design time schedule. If there is non-zero slack in

the incoming slot, the jitter-affected message is collocated with the jitter unaffected message as

shown in Figure 19. The entire jitter-affected message is rescheduled in the incoming slot if there

is sufficient slack to accommodate the full jitter-affected message. Otherwise, the jitter-affected

message is partitioned into two parts, with the size of the first part equal to the available slack in

the incoming slot, and the remaining as the size of the second part. The second part of the message

remains in the queue and is transmitted in the next feasible incoming slot by bumping up its

priority.

Similarly, when a high priority event-triggered message is available at the MLFQ, the high

priority event-triggered message is treated similar to the jitter-affected time-triggered message

with a lower priority than the regular time-triggered message and the above-mentioned series of

steps are followed. This results in packing of two different message data into the payload segment

of one FlexRay frame, which unfortunately leads to two major challenges. Firstly, there is a need

for a mechanism at the receiver node to decode the payload segment correctly and distinguish

between the two messages. Secondly, the implicit addressing scheme of FlexRay is lost because

of combining two different messages, as the receiving nodes will not be able to identify to which

specific node the message is meant for.

To overcome the above-mentioned challenges, we propose a segmentation and addressing

scheme to differentiate multiple messages packed into the same frame. This scheme introduces

one additional segment in the payload segment of the FlexRay frame that is common to multiple

jitter-affected messages packed in that frame, and two more segments for each jitter-affected

65

message that is packed into the frame. An illustration of two jitter-affected messages being

collocated with a jitter unaffected message with the proposed segmentation and addressing scheme

is illustrated in Figure 20.

Figure 20 Updated frame format of the FlexRay frame using the proposed segmentation and

addressing scheme (sizes of individual segments are shown in bits). The parts of the frame

highlighted in gray represent our modifications.

The first common segment is called AC or append counter, which is also the first segment

in the payload. It is a 3-bit field indicating the number of different jitter-affected messages that are

packed in the current frame. In this work we support partial message transmission to fully utilize

the available bandwidth in allocated static segment slots. The second segment is called CH or

custom header, which is private for every jitter-affected message in the FlexRay frame. Every CH

segment further consists of two fields: a type field and a length field. The type is a 15-bit field used

to specify different message types (defined in [16]). The type field consists of one bit each for

payload preamble indicator, null frame indicator, sync frame indicator, and startup frame indicator,

and an 11-bit frame ID (FID) field for specifying the FID of the jitter-affected message. The length

field is 8-bit long and specifies the data length of the jitter-affected message in bytes. The length

field in the custom header along with the payload length field in the frame header is used to find

66

the start bit of the jitter affected message in the payload segment. The third segment we introduced

in the payload is called EOM or end of message, which is a 1-bit segment that is private to each

jitter-affected message. The EOM field is 1 when the entire message is transmitted; otherwise the

EOM field is set to 0 indicating a partial message transmission. The remaining message data that

is transmitted in the next feasible slot will have the remaining data size in the length field of its

custom header. If there is more than one jitter-affected message packed in the FlexRay frame, the

headers of all the messages are in the beginning of the payload segment. This gives the receiver

node information about all the jitter-affected messages that are packed in the FlexRay frame.

Moreover, the regular operation of the FlexRay protocol is not altered in any way by implementing

these changes.

2.5. EXPERIMENTS

2.5.1. EXPERIMENTAL SETUP

To evaluate the effectiveness of the proposed JAMS-SG framework, we first contrast it

against two variants of the same framework: JAMS-SA and JAMS-ACC-SG. The first variant

JAMS-SA, uses a simulated annealing (SA) approach with no GRASP based local search. This is

implemented to test the effectiveness of local search. In JAMS-SA the solution is subjected to

random perturbations and a new solution is created every iteration with the randomly chosen

signals having an equal likelihood of grouping or splitting. The second variant is called JAMS-

ACC-SG (accelerated SA+GRASP). JAMS-ACC-SG behaves similar to JAMS-SA in the

beginning but then it switches to a JAMS-SG behavior (i.e., including GRASP based local search)

when the temperature of the system is sufficiently low. This threshold temperature is set to 30%

of the initial temperature based on empirical analysis. The motivation for an accelerated version is

67

to save the computation time spent in looking for the local optimum in the beginning and only

perform the local search after a reasonable solution is achieved. A comparison between these three

techniques is presented in Section 2.5.2. In addition, we also perform a series of experiments with

different weight values to determine the optimal weight parameters for the best variant of our

framework.

Subsequently, we compare the best variant of our framework with several prior works:

Optimal Message Scheduling with Jitter minimization (OMSC-JM [21]), Optimal Message

Scheduling with FID minimization, (OMSC-FM [21]), Policy-based Message Scheduling (PMSC

[67]), and JAMS-greedy [44]. OMSC-JM [21] and OMSC-FM [21] use the ILP based frame

packing technique from [20] and change the message repetition to minimize the effect of jitter.

OMSC-JM and OMSC-FM differ in the weights associated with the objective function in their

optimization problem formulation. OMSC-JM tries to minimize the effect of jitter by allocating

more slots and performing more frequent message transmissions while OMSC-FM aims at

minimizing the number of allocated slots. PMSC [67] uses a priority based runtime scheduler that

supports preemption based on the message arrival time and priority. Messages are scheduled based

on the slot assignment generated using heuristics. JAMS-greedy [44] uses a greedy frame packing

approach to generate the set of messages and uses a heuristic based scheduler to synthesize design

time schedules. In addition, JAMS-greedy also supports a runtime scheduler to reschedule jitter-

affected messages similar to JAMS-SG. However, JAMS-greedy lacks the ability to send multiple

jitter affected messages in one FlexRay frame and also does not support partial message

transmission. Additionally, we also implemented a genetic algorithm (GA) based frame packing

approach for FlexRay-based systems using the frame packing technique proposed for CAN-FD in

[59]. We further adapted the scheduling policy proposed in [44] and combined it with [59] (and

68

hence the name JAMS-GA) to compare it with our framework. All experiments conducted with

these prior works are discussed in detail in the next subsections.

To evaluate our proposed framework with its variants and against prior work, a set of test

cases was derived using different combinations of the number of nodes, number of signals in the

system, and the periods of the signals based on automotive network data extracted from a real-

world 2016 Chevrolet Camaro vehicle that we have access to. For all our experiments we

considered a FlexRay 3.0.1 based system with the following network parameters: cycle duration

of 5ms (tdc) with 62 static segment slots (Nss), with a slot size of 42 bytes (Bslot) and 64

communication cycles (Cfx). Moreover, each experiment was run for 1000 iterations with an initial

temperature = 10000 and the cooling rate (Cr) set to 0.993. The RCL threshold parameter (α) of

GRASP was chosen as 0.4 which resulted in a relatively near greedy solution in the presence of

relatively large variance. The destroy-repair parameter (β) is set to 2 which helped in avoiding an

exploration of a larger neighborhood around the greedy randomized constructed solution. We

randomly sampled jitter values as a function of the message period to modify the arrival times of

randomly selected messages originating from a set of randomly selected jitter-affected nodes.

Moreover, in this work, we set the coefficient of jitter resilience (σ) = 0.8, as discussed earlier. To

model the overhead of MLFQ operations, we assume that each message affected by jitter

experiences additional latency (which we consider in our experiments) that is a function of static

priority of the message (derived using the RM scheme), message data size, and the queue it is in.

All the simulations are run on an Intel Core i7 3.6GHz server with 16 GB RAM.

69

2.5.2. COMPARISON OF JAMS-SG VARIANTS

In this subsection, we present a comparison of the proposed JAMS-SG framework with the

two other proposed variants, JAMS-SA and JAMS-ACC-SG. A series of experiments were

conducted by changing the weight in the objective function (as shown in equation (5)). The results

were analyzed under four different scenarios: (i) zero, (ii) low (iii) medium and, (iv) high jitter.

Under zero jitter, none of the messages in the system are affected by jitter. Hence, their arrival

times remain unchanged. Under the next three different jitter scenarios, the arrival times of

randomly selected time-triggered messages originating from a randomly selected set of jitter-

affected nodes are modified as a function of the message period. In low, medium and high jitter

scenarios, the randomly chosen messages are subjected to jitter values equal to /8, /5 and

/4, respectively (where represents the period of message j belonging to node n). We

considered a real world automotive case study (as discussed in Section 2.5.1) consisting of 19

ECUs and 248 signals.

Figure 21 (a)-(d) show the average response time of all the messages in the system for the

three framework variants with different objective function weights under zero, low, medium and

high jitter conditions, respectively. The confidence interval on top of each bar represents the

minimum and maximum of the average response time, and the number on top of the bar represents

the number of deadline misses. It is evident from Figure 21(a)-(d) that JAMS-SG has superior

performance in response time compared with both JAMS-SA and JAMS-ACC-SG in most of the

cases, across all weight values and jitter scenarios. Most importantly, JAMS-SG never misses any

deadline for any weight value and jitter scenario. This is because JAMS-SG is able to find a better

jitter-aware frame packing solution from the beginning due to its more effective GRASP based

optimization. This results in achieving a solution that efficiently balances between minimizing the

70

number of FlexRay messages and maximizing laxity of the messages. JAMS-SA fails to find a

comparable solution because of the lack of local search mechanisms to improve the quality of the

pure SA based solution. JAMS-ACC-SG suffers similarly as JAMS-SA until the local search

process is initiated. But, when the local search process begins, the system temperature is already

low. This forces the system to only accept the better solutions, as the acceptance probability

function results in a smaller probability value in case of a relatively bad solution. This in turn often

results in the approach getting stuck at a local minima. From Figure 21 it can also be observed that

as the weight value increases, the number of missed deadlines decreases across the frameworks

and under different jitter scenarios. This is due to the increasing emphasis on minimizing the

number of FlexRay frames in all three frameworks, resulting in fewer frames to be scheduled,

which simplifies the problem. Moreover, Figure 21 also shows that choosing a very high or a very

low weight value makes the system heavily biased towards optimizing either the number of

FlexRay frames or towards optimizing laxity. In order to avoid this, we select an intermediate

weight value of 2. Henceforth, all the other comparisons are done against JAMS-SG (the best

variant in our analysis) with weight (w) = 2.

(a)

71

(b)

(c)

(d)

Figure 21 Average response time of all signals for different objective function weights (with

number of missed deadlines shown on top of the bars) under (a) zero, (b) low, (c) medium,

and, (d) high jitter conditions; for JAMS-SA, JAMS-SG and JAMS-ACC-SG.

72

2.5.3. RESPONSE TIME ANALYSIS

Next, we present a comparison study of JAMS-SG with message scheduling frameworks

from prior work. We use the same vehicle test case as used in the previous subsection. The arrival

times of randomly selected messages from the randomly chosen nodes are delayed, to induce jitter

in simulations. Moreover, all the nodes and the messages in them have an equal probability of

being selected to be subjected to jitter.

(a)

(b)

73

(c)

Figure 22 Message deadlines vs average response time (with number of missed deadlines

shown on top of the bars) under (a) low, (b) medium and (c) high jitter conditions; for the

comparison frameworks (OMSC-JM [21], OMSC-FM [21], PMSC [67], JAMS-GREEDY

[44], JAMS-GA [59], [44]), and our proposed JAMS-SG framework. The number of

instances of missed deadlines typically increases as jitter goes from low to high for the

comparison frameworks, and the messages with smaller (more stringent) deadlines are

generally more susceptible to missing deadlines.

Figure 22 (a)-(c) show the average response time of the messages under low, medium and

high jitter scenarios (configured as discussed in the previous subsection). The confidence interval

on each bar represents the minimum and maximum average response time of the messages

achieved using each technique and the number on top of each bar represents the number of deadline

misses. The response time results are clustered into groups based on the message deadlines (on x-

axis) and the dashed horizontal line represents the deadlines. It can be observed that using OMSC-

FM results in high response times in the presence of jitter. This is because of the high emphasis on

minimizing the number of static segment slots, which resulted in the generated solution having

only a few static segment slots, but poor jitter resilience. On the other hand, OMSC-JM performs

relatively better as it allocates extra slots for transmission. However, it still has issues handling

random jitter during runtime, especially for high priority messages. In the PMSC technique, jitter

has a strong impact on the high priority messages, because of the frame packing approach used in

74

it. PMSC aims to use the entire static segment slot by packing the signals that are larger than the

slot size and uses EDF-based preemption at the beginning of each slot. In the presence of jitter,

especially for high priority messages, the arrival of these messages are delayed causing the node

to wait for the next transmitting slot to preempt existing transmissions of low priority messages.

This delay along with jitter can sometimes exceed the message deadline and lead to missed

deadlines. Additionally, JAMS-greedy and JAMS-GA result in suboptimal frame packing that

focuses on minimizing the number of FlexRay frames. The jitter-awareness due to the runtime

scheduler in these works help them to be relatively jitter resilient compared to other prior works.

However, these frameworks start missing deadlines when there is high jitter. It is evident that under

all three jitter scenarios, JAMS-SG outperforms all the other prior works with no deadline misses.

This is accomplished by JAMS-SG’s ability to find a balanced solution that results in optimal

frame packing and jitter resilience. Moreover, the support for partial message transmission helps

JAMS-SG to meet the deadline constraints under different jitter scenarios.

2.5.4. SENSITIVITY ANALYSIS

In this subsection, we analyze the impact of jitter on a specific subset of messages and study

the behavior of the system. The same test case considered in the previous subsection is used and

the results are compared with the prior works described previously.

Figure 23 (a)-(c) illustrates the message deadline vs average response time plots for the

considered test case under low, medium, and high jitter, for the case where only the high priority

messages (messages with deadline ≤ 40ms) are subjected to jitter. The messages affected by jitter

are randomly chosen from the set of high priority messages belonging to the randomly chosen set

of nodes. It can be seen that the impact of jitter results in higher response times and deadline misses

75

for the high priority messages in most of the frameworks from prior work. In particular, for OMSC-

JM and OMSC-FM, some of the low priority messages suffer from very long response times and

deadline misses. JAMS-SG not only results in minimal response times for most of the cases but

also results in no deadline misses.

(a)

(b)

76

(c)

Figure 23 Message deadlines vs average response time with jitter affecting high priority

messages only; (with number of missed deadlines on top of bars) under (a) low, (b) medium

and (c) high jitter conditions; for the comparison frameworks (OMSC-JM [21], OMSC-

FM[21], PMSC [67], JAMS-GREEDY[44], JAMS-GA [59], [44]), and JAMS-SG. The

number of instances of missed deadlines typically increases as jitter goes from low to high

for the comparison frameworks, and the messages with smaller (more stringent) deadlines

are generally more susceptible to missing deadlines.

Figure 24 (a)-(c) shows the message deadline vs average response time plots for three jitter

scenarios where only the low priority messages (messages with deadline > 40ms) are subjected to

jitter. It is clear that almost all of the frameworks except JAMS-SG fail to meet the deadline

constraint for specific scenarios.

(a)

77

(b)

(c)

Figure 24 Message deadlines vs average response time with jitter affecting low priority

messages only; (with number of missed deadlines on top of bars) under (a) low, (b) medium

and (c) high jitter conditions; for the comparison frameworks (OMSC-JM [21], OMSC-

FM[21], PMSC [67], JAMS-GREEDY[44], JAMS-GA [59], [44]), and JAMS-SG. The

number of instances of missed deadlines typically increases as jitter goes from low to high

for the comparison frameworks, and the messages with smaller (more stringent) deadlines

are generally more susceptible to missing deadlines.

From Figure 22,Figure 23 and Figure 24, it is evident that JAMS-SG can handle a wide

variety of jitter patterns and is still able to meet the deadline constraints for all the messages in the

system.

78

2.5.5. SCALABILITY ANALYSIS

To evaluate the effectiveness of JAMS-SG for system configurations with different

complexities, we analyzed our framework against the frameworks from prior works by selecting

test cases with varying combinations of number of nodes and number of signals. Figure 25 presents

the average response times of all the messages for the high jitter scenario, for different system

configurations {p, q} where p denotes the number of nodes and q is the number of signals (x-axis).

Figure 25 Average response time for different system configurations (with number of missed

deadlines on top of bars) under high jitter; OMSC-JM [21], OMSC-FM[21], PMSC [67],

JAMS-GREEDY [44], JAMS-GA [59], [44], and our JAMS-SG framework.

The number on the top of each bar indicates the number of signals that missed the deadline

in that configuration. For larger test cases, some of the prior works (OMSC-JM, OMSC-FM) failed

to result in a feasible solution within the 24 hour time limit. It can be observed that even with

increasing system size, JAMS-SG is able to meet all message deadlines for every configuration.

On the other hand, it can be seen that prior works lacking jitter awareness suffer from multiple

deadline misses. Among them OMSC-FM seems to perform particularly poorly compared to all

other works because of its heavy emphasis on minimizing number of allocated slots, thereby

resulting in minimal number of available slots, but a lack of jitter resilience.

79

Table 3 Time taken to generate the solution (in seconds) for different configurations:

OMSC-JM [21], OMSC-FM [21], PMSC [67], JAMS-Greedy [44], JAMS-GA [59], [44] and

our JAMS-SG framework.

Lastly, Table 3 presents the time taken (at design time) for JAMS-SG and other frameworks

to generate the best solution for the different system configurations. It can be seen that JAMS-SG

is able to achieve a better solution (jitter resilient frame packing and schedule) with no deadline

misses under 20 minutes even for the largest test case configuration. Thus, our proposed JAMS-

SG framework is highly scalable across a variety of system complexities and jitter profiles, and

unlike the frameworks proposed in prior work, results in no message deadline misses for the test

cases considered. This makes the framework a promising approach to cope with random jitter in

emerging automotive systems.

2.6. CONCLUSIONS

In this chapter, we presented a novel message scheduling framework called JAMS-SG that

utilizes both design time and runtime scheduling to mitigate the effect of jitter in time-triggered

automotive systems. At design time, our framework uses a hybrid SA+GRASP heuristic for jitter-

aware frame packing and to synthesize a design time schedule. At runtime, our framework

effectively handles both jitter-affected time-triggered and high priority event-triggered messages

using the proposed MLFQs and runtime scheduler. We also proposed a custom frame format to

solve the addressing and segmentation problem associated with packing multiple jitter-affected

 Configurations

{20,274} {25,304} {35,292} {40,345} {60,360} {80,392}

OMSC-JM 2700.54 2700.89 2700.94 2700.93 - -

OMSC-FM 2700.49 2700.85 1116.09 2700.95 - -

PMSC 0.72 1.89 1.947 2.58 1.31 1.65

JAMS-GREEDY 0.71 1.811 2.52 3.48 3.01 5.93

JAMS-GA 66.05 142.6 152.15 178.75 122.08 157.97

JAMS-SG 94.15 134.96 298.62 449.71 576.02 1149.80

80

messages. We compared our JAMS-SG framework with the best known prior works in the area by

studying performance under varying jitter conditions. Our experimental analysis indicate that

JAMS-SG is able to achieve lower response times for most of the cases and more importantly,

without missing any message deadlines. Our experiments also show that JAMS-SG is highly

scalable and outperforms the best-known prior works for various system sizes and under a variety

of jitter patterns. Lastly, our framework can be extended to other time-triggered protocols with

minimal changes.

81

3. PRIORITY-BASED MULTI-LEVEL MONITORING OF SIGNAL INTEGRITY IN A

DISTRIBUTED POWERTRAIN CONTROL SYSTEM

As the number of Electronic Control Units (ECUs) in modern vehicles increases, the in-

vehicle control and communication network has become highly complex. This problem is perhaps

more acute in the case of a Hybrid Electric Vehicle (HEV) as there are a greater number of

electrical components such as motors, batteries, and DC-DC converters, than in conventional

vehicles. In most modern HEVs and conventional vehicles, Controller Area Network (CAN) is the

most widely used communication protocol because of its simplicity, low cost, noise immunity and

ease of implementation. However, it suffers from low bandwidth, poor security, message delays

etc. as discussed in [80]. The typical communication system in a HEV is shown in Figure 26. The

driver inputs are sent to the supervisory controller via CAN, and it sends the appropriate signals to

all the other local controllers via CAN messages. If there are multiple nodes connected to the same

CAN channel, then the network congestion increases which leads to many issues such as signal

delay, loss of signal integrity, jitter, and other failures as mentioned in [81]. All of these

communication system limitations must be detected and remedied to avoid catastrophic vehicle-

level malfunction.

Comprehensively monitoring the integrity of 100% of the signals in the vehicle would

greatly increase the required bandwidth of the communication system. To avoid this naïve

approach to signal integrity monitoring, we seek in this study to monitor signal integrity for only

those signals that are of importance to vehicle safety and performance. In particular, we focus on

monitoring the signal integrity of torque-related signals because of their importance in preserving

the safety and performance of the vehicles.

82

Figure 26 Typical communication system in an HEV.

3.1 RELATED WORK

Various techniques have been proposed to protect the signal integrity in CAN and other

busses. The authors in [82] present a delayed data authentication technique using the KASUMI

encryption algorithm in CBC-MAC (Cipher Block Chaining- Message Authentication Code) mode

to generate a 64-bit compound MAC for a group of four messages, which is further divided into

four 16-bit MACs and each of them is stored in the 16-bit CRC (Cyclic Redundancy Check) field

of the next four CAN messages. This technique assures message integrity, but suffers significant

delay as the first four messages are validated by comparing the generated MAC with the received

MAC in the CRC field of the next four messages. Furthermore, the delay in receiving the second

group of messages adds to the overall delay, limiting this algorithm’s usefulness in time-critical

powertrain control applications.

The authors in [83] discuss different controller integrity techniques and propose asymmetric

83

and extended asymmetric controller strategies. In these strategies an auxiliary controller is used to

check the integrity of the primary controller. Some of these techniques have synchronization

hardships, size and power overhead, and also encounter overhead in making changes to the existing

network. [84] introduce a signal integrity technique in which the original signal, along with a

redundant signal in encrypted form is sent in the same message. This signal is validated by

comparing the original signal and decrypted redundant signal. The main limitation of this

technique is that the bandwidth requirements get doubled, leading to a high bus load. Also,

encrypting and decrypting signals can incur high computational overhead in the system.

The motivation for our research is to come up with a signal integrity technique that helps to

improve the signal integrity in the CSU EcoCAR3 project without incurring significant overhead

on the controller while trying to minimize bus traffic. In this chapter we introduce a priority based,

multi-level signal integrity technique in which, error tolerance for different signals are set

according to the order of priority and are monitored using performance counters. The rest of the

chapter is organized as follows: In Section 3.2, the proposed technique is presented in detail and

in Sections 3.3 and 3.4, the experimental setup and results are discussed. In Section 3.5, this

method is illustrated by performing analysis on bus parameters and vehicle performance and

Section 3.6 presents our conclusions.

3.2 PRIORITY BASED MULTI-LEVEL SIGNAL INTEGRITY TECHNIQUE

An illustration of the proposed technique is shown in Figure 27. In the first step, we divide

different controller signals into different groups based on their criticality. In the next step,

messages are transmitted and a handshake signal is sent from the supervisory controller to the local

controller to which the torque command is sent. To monitor the signal integrity we make use of

84

performance counters in the supervisory controller and set a threshold for the number of negative

acknowledgements that command the local controller to discard the message and take appropriate

remediation actions. If the number of negative acknowledgements exceed the threshold, the

vehicle is moved into one of the limp modes depending on the criticality level of the failed signal,

otherwise the vehicle operates normally.

Figure 27 Flow chart of proposed technique. (NACK = Negative Acknowledgement, THR =

Threshold).

3.2.1. GROUPING OF TORQUE RELATED SIGNALS

In this subsection, we discuss how different torque–related signals are considered from

various components in the vehicle and grouped together based on their criticality. Each group is

assigned different levels of criticality with level-1 being the most critical group and level-4 being

the lowest. The signals in different levels impact the vehicle performance and safety in different

ways. Detection of failures in signal integrity should therefore be handled differently at each level

of criticality. Thus, the limit of fault tolerance varies from level to level as discussed in the next

85

subsection. Table 4 shows the grouping of different controller signals and their criticality levels.

Inefficient grouping of signals can have a negative impact on the safety and performance of the

vehicle.

Table 4 Grouping of signals and their criticality levels.

Criticality level Signals

Level- 1 Physical brake request, Motor regen request

Level- 2
Motor torque request, Engine torque request,
Acceleration pedal position sensors (A & B)

Level- 3 PRNDL, Ignition

Level- 4 Infotainment

3.2.2. MESSAGE TRANSMISSION WITH HANDSHAKE SIGNALS

In this subsection, the concept of measuring and verifying signal integrity is discussed in

detail. [85] states that in order to preserve signal integrity, it is necessary to add some redundancy

to the message which inevitably increases the bandwidth required. In the signal integrity

preservation technique proposed by [84], every CAN signal is transmitted twice, at every sample,

which doubles the required bandwidth and increases delays. In our technique we propose a multi-

channel CAN setup, in which there is a dedicated CAN channel for all the redundant and

handshake signals labelled Control Bus (CB) and there can be one or multiple CAN channels for

regular communications. When a CAN message is transmitted from the supervisory controller to

the local controller via the CAN bus, the local controller re-sends the received message back to

the supervisory controller via the CB. Then the supervisory controller compares the sent and

received messages and sends a handshake signal to the local controller via CB, indicating faulty

or not-faulty signal transmission. Performing this signal integrity monitoring and confirmation for

every transmission can be expensive and bandwidth-intense. In this study, for a particular

criticality level, the signal integrity monitoring and conformation is performed periodically at a

86

rate equal to the time window of that particular level. In other words, we do not monitor all the

samples of the signal, instead we perform our technique only on every nth sample of the signal

(where n = Time window (ms)/ Rate of transmission of original signal (ms)). The CAN network

setup for our technique is shown in Figure 28.

Figure 28 CAN network setup for our proposed technique.

In Figure 28, the driver torque request is sent to the local controller continuously via CAN

and is stored in the memory (M1) of the supervisory controller at the beginning of each time

window. In the same time window the local controller immediately sends the received torque

command back to the supervisory controller via the control bus (CB), which is then stored at a

different memory location (M2). The supervisory controller then sends out a signal ACK = 1

(positive acknowledgement) if values in both memory locations M1 and M2 match, else, it sends

ACK = 0 (negative acknowledgement) via CB, which are referred to as handshake signals. Thus,

ACK = 0 notifies the local controller that the received message is faulty while ACK = 1 indicates

a flawless transmission. The torque command is not executed at the local controller until it

encounters an ACK=1 (positive acknowledgement) signal from the supervisory controller.

87

3.2.3. PERFORMANCE COUNTERS

Any erroneous transmissions are reported to the local controller via negative

acknowledgement signals from the supervisory controller. The supervisory controller keeps a

record of these signals by making use of different performance counters, which monitor the

number of NACKs (Negative Acknowledgements) and the THR (Threshold). The values of NACK

and THR are specific for each signal type. For example, a motor torque request signal has a

dedicated counter MG_torque_NACK, which counts all the negative acknowledgements (ACK =

0) from the supervisory controller that are associated with the motor torque request.

MG_torque_NACK increments every time a negative acknowledgement is encountered until it

exceeds the threshold, MG_torque_THR. This threshold is set to different values for different

criticality levels. The counter is reset only when the vehicle moves from either of the limp modes

(discussed in the next subsection) to a normal operating state. This happens only when a set of

positive acknowledgements are sent to the local controller over a set of time windows.

Table 5 Time window and threshold for different levels.

Criticality Level Time window (ms) Threshold

Level- 1 150 5

Level- 2 100 10

Level- 3 2000 3

Level- 4 - -

The time windows and thresholds (shown in Table 5) for different levels of signals are

chosen by taking into account both safety and bus load. For example, for signals of criticality level-

2, the signal integrity check must be failed 10 times to enable a corrective action. With a time

window of 100ms, the time between signal integrity failure and a corrective action is 1000 ms.

88

The choice of the time window values is discussed in more detail in the analysis section (Section

3.5.1).

3.2.4. CORRECTIVE ACTION

The corrective or remedial action involves taking an appropriate action once a failure in a

controller is detected because of erroneous message transmissions. In developing the corrective

action, the first step is to keep a track of NACK counters for all the torque related signals that are

monitored. The NACK counter value is less than THR for normal operation of the controller. When

this condition is violated, the corrective action mechanism is initiated. As there are different levels

of signal criticalities and thresholds associated with them, there can be multiple safety modes (we

label them as limp modes) in the vehicle. The two different types of limp modes in our technique

are moderate limp mode and bad limp mode.

The vehicle enters moderate limp mode when a low criticality level signal (e.g. level-3 or

level-4) loses signal integrity. The function of the moderate limp mode depends on the failure that

is detected. Consider the example of an accelerator pedal position sensor (PPS-A) value going out

of range while the other sensor (PPS- B) is in range. In this case, the error is only associated with

PPS-A, which is discarded and the vehicle is moved to moderate limp mode. The PPS-B signal is

taken as the valid torque command signal, and only 50% of the total requested value is sent to the

local controller. In contrast, when a higher criticality level signal (e.g., brake request at level-1) is

faulty, the vehicle is moved to bad limp mode in which only 20% of the maximum allowable

acceleration is commanded to the vehicle, so that the driver can safely pull off the road. In the case

of multiple signal failures, depending on the criticality of the failed signal, one of these limp modes

is chosen. In some cases, if multiple low level signals are faulty, a bad limp mode can be chosen

89

over a moderate limp mode. This can be in the case when, for example, when both the acceleration

pedal position sensor values are faulty, whereby the vehicle is moved into bad limp mode and only

20% of the maximum allowable acceleration is given to the vehicle. The supervisory controller

decides which limp mode the vehicle should enter in the case of a signal integrity failure to protect

the powertrain and other actuators from deterioration. Figure 29 illustrates the Stateflow logic of

a level-2 signal (motor torque request) performance counter and associated remedial action.

Figure 29 Stateflow logic of a level-2 signal (motor torque request) performance counter and

corrective action.

In the initial Stateflow state, all the counters and the bad and moderate limp mode variables

are set to zero. The vehicle remains in this state, until a NACK (ACK=0) is encountered. The

controller checks for the maturity of the fault in the NACK_counter state. During this, if a series

of positive acknowledgements are encountered, the vehicle goes back to normal operation state. If

the fault is matured, the vehicle is moved into an appropriate limp mode. The vehicle goes back to

normal operation state only after ensuring there’s no erroneous transmission in the network.

90

3.3 EXPERIMENTAL SETUP

The function and performance of the proposed technique was verified using HIL testing. As

a part of HIL testing, we used the Woodward Motohawk SECM-112 controller [86] as the

supervisory controller. We adapted model based design approach to build a P2 type HEV fuel

economy and powertrain control model using MATLAB/SIMULINK™. The sizing of various

components such as electric motor, engine, battery etc. are determined so that they meet the

EcoCAR3 competition requirements such as range of the vehicle, time for 0-60 mph, time for 50-

70 mph etc. The control software was developed using Simulink and the Motohawk library and

was tested using various driver inputs from hardware, including acceleration and brake pedals,

PRNDL, ignition etc. Stateflow charts were used to implement performance counters and to define

corrective action for various failures as shown in Figure 29. Since signals of different criticality

levels have different time windows, their integrity testing mechanisms are triggered at a different

rate. We used the dSPACE mid-size real time simulator (RTS) [87] to run the vehicle model in

real time and established two channel CAN communication between the Motohawk controller and

the dSPACE RTS as illustrated in Figure 28.

3.4 RESULTS

In this section we discuss the vehicle control systems’ behavior with respect to the various

signals subjected to the integrity test.

Figure 30(a) shows the normal operation of the vehicle with no erroneous transmissions. The

first subplot in Figure 30(a) shows the driver brake command issued by the supervisory controller

(in red) and the re-transmitted command received from the local controller (in green). The second

and the third subplots show the acknowledgements and vehicle state respectively. Since both of

91

the signals in first subplot are equivalent all the time, there are no negative acknowledgements and

hence, the vehicle remains in its normal operation state (Good State). In the next case, noise is

introduced into the CAN channel and the driver command received at the local controller is

therefore different from what is actually commanded. In this case, the supervisory controller sets

a negative acknowledgement (NACK) as shown in Figure 30(b) indicating an erroneous

transmission. The NACK prevents the local controller from executing the faulty torque command.

Since the mismatch persists between the requested and re-transmitted signals, the vehicle is moved

to a bad limp mode. It can be seen that there is a small time interval between the vehicle going to

one of the limp mode and the beginning of the series of negative acknowledgements. This indicates

the buffer period during which the performance counters check for the maturity of the fault.

(a)

92

(b)

Figure 30 Signal integrity of a level-1 signal (Driver brake request) with (a) no faults in

transmission; (b) noise during transmission.

Similar results are obtained for the signals at different criticality levels which are shown in

figures Figure 31-Figure 34. In the case of failure of signal integrity test for level- 2 and level- 3

signals, it can be seen that the vehicle is moved into a moderate limp mode as shown in figures

Figure 32(b), Figure 33(b) and Figure 34(b).

93

(a)

(b)

Figure 31 Signal integrity of a level-1 signal (Motor regen request) with (a) no faults in

transmission; (b) noise during transmission.

94

(a)

(b)

Figure 32 Signal integrity of a level-2 signal (Motor torque request) with (a) no faults in

transmission; (b) noise during transmission.

95

(a)

(b)

Figure 33 Signal integrity of a level-2 signal (Engine torque request) with (a) no faults in

transmission; (b) noise during transmission.

96

(a)

(b)

Figure 34 Signal integrity of a level-3 signal (PRNDL position) with (a) no faults in

transmission; (b) noise during transmission.

97

By implementing our technique, the total bus load in the control bus was found to be

significantly lower and is approximately 0.5% for all the signals considered.

3.5 PARAMETER ANALYSIS

In order to determine the efficiency and overhead of our proposed technique, we carried out

a detailed analysis on two key parameters as discussed below.

3.5.1. IMPACT OF TIME WINDOW SIZE ON BUS LOAD

In this subsection, we present the results of how the bus load varies with different time

window sizes for a particular signal level. Time window size determines the frequency of

monitoring the signal. Having a higher time window size decreases the responsiveness of the

vehicle to a signal integrity faulty, but a smaller time window size increases the bus load.

(a)

98

(b)

(c)

Figure 35 Bus load of control bus for varying time windows of (a) level-1 signals; (b) level-2

signals; (c) level-3 signals.

99

From the figures Figure 35(a), Figure 35(b) and Figure 35(c) it is evident that bus load drops

almost hyperbolically with increasing time window size. Based on these tradeoffs it is important

to choose the appropriate time window for different levels. Time window for different levels are

chosen such that the bus load is minimal while the vehicle is being responsive. For example, in the

case of level-1, signals are transmitted every 50ms and the time window size of 150ms is chosen

as the drop in bus load is insubstantial after this point (as shown in fig 10(a)) and checking every

third sample makes the system sufficiently responsive to failures in signal integrity. Also, from

our study on Electric Power Research Institute (EPRI) databases of various HEVs it is observed

that the rate of change of the accelerator pedal is higher than the rate of change of the brake pedal,

PRNDL or ignition switch and hence the transmission rate of their associated signals. Since the

signals that are transmitted at a higher rate should be checked more often for signal integrity, level-

2 has the smallest time window, followed by level-1 and level-3. Analysis on level-4 signals is

not presented as our technique is not applied to signals in this lowest level of priority. Passenger

comfort, Infotainment related signals fall under this level.

3.5.2. IMPACT OF NUMBER OF MONITORED SIGNALS ON BUS LOAD

 In this subsection, we discuss how the bus load is affected by the number of signals that are

being monitored. This helps to understand the communication overhead of the proposed technique.

The number of signals under consideration are varied for different levels and the bus load of the

control bus (CB) is obtained.

100

(a)

(b)

101

(c)

Figure 36 Bus load of control bus for different number of (a) level-1 signals; (b) level-2

signals; (c) level-3 signals.

Figures Figure 36(a), Figure 36(b) and Figure 36(c) illustrate the change in bus load as a

function of the number of signals monitored in each level by maintaining the base line values of

time windows for each level (shown in table 2). It can be seen that the bus load increases at a faster

rate in the case of level-2 signals than level-1 and it almost negligible in level-3 signals. This is

because, the time windows defined for each of these levels dictate the rate of increase in bus load

with increase in number of signals in that group. From this study, it can be seen that the overhead

incurred by implementing our technique is minimal and also, the proposed technique is linearly

scalable with the number of signals to be monitored.

102

3.6 CONCLUSION

In this chapter, we have proposed a priority based multi-level signal integrity monitoring

and remediation technique which groups the controller signals based on their criticality and uses

performance counters and handshake signals to monitor signal integrity. Our technique effectively

handles different possible faults by changing the vehicle state to appropriate limp modes that

ensure the safety of the vehicle. We verified our technique using HIL testing as a part of the CSU

EcoCAR3 project and verified the signal integrity of various torque associated signals.

103

4. SEDAN: SECURITY-AWARE DESIGN OF TIME-CRITICAL

AUTOMOTIVE NETWORKS

Modern vehicles are examples of complex cyber-physical systems with tens of

interconnected Electronic Control Units (ECUs) that control various operations. The advent of

Advanced Driver Assistance Systems (ADAS) in vehicles has resulted in an increase in the number

of ECUs, which in turn has increased the complexity of the in-vehicle network and the entire

automotive system. It is projected that in the near future, improving ADAS effectiveness will

require connecting to external systems using vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) protocols [2]. This increased connectivity will make vehicles more vulnerable

to sophisticated security attacks. Ensuring the security of automotive systems will thus become

crucial as smart and self-driving vehicles become more ubiquitous.

Some of the most common attacks on vehicles include masquerade, replay, and denial of

service (DoS) attacks [88]. In a masquerade attack, an attacker ECU pretends to be an existing

ECU in the system. In a replay attack, the attacker eavesdrops on the in-vehicle network, captures

valid messages transmitted by other ECUs, and sends them on the network in the future. In a DoS

attack, the attacker ECU floods the network with random messages, thereby preventing the normal

operation of valid ECUs. Most of these attacks require access to the in-vehicle network either

physically e.g., using on-board diagnostics (OBD-II), or remotely e.g., using LTE or Bluetooth.

Some efforts, e.g., [25], [26], [89], [90], have demonstrated different ways to gain access to the in-

vehicle network and send malicious messages to take control of the vehicle. As wireless V2V/V2I

transfers become common, vehicle security will be further compromised.

104

Traditional in-vehicle network protocols such as CAN, FlexRay, etc., do not have any

inherent security features to address security concerns such as confidentiality, authentication, and

authorization. Hence, preventing unauthorized access to the in-vehicle network requires

implementing additional security mechanisms in ECUs. The two most widely used techniques

involve symmetric key and asymmetric key encryption. The former uses the same key for both

encryption and decryption, while the latter uses a public-private key pair that has a strong

mathematical relation. Both mechanisms incur computational overhead, which may

catastrophically delay the execution of real-time automotive tasks and message transfers, e.g., a

delay in the messages from impact sensors to airbag deployment systems could lead to serious

injuries for vehicle occupants. Thus, security mechanisms must be introduced very carefully in

vehicles.

Figure 37 Motivation for an in-vehicle security framework with low overhead; numbers on

top of bars indicate missed application real-time deadlines.

Figure 37 illustrates the individual ECU utilizations of a FlexRay-based automotive system

consisting of four ECUs running 12 different time-critical automotive applications (each with

multiple tasks). Each ECU has a utilization because of the execution of real-time automotive tasks

105

(RT Util) and a security utilization because of the execution of security-specific tasks (Sec Util).

The numbers on top of each bar show the number of applications that miss their deadlines when

executed on the corresponding ECU. Along the x-axis, the no security case has no security

mechanism implemented, while the security not optimized case uses AES-256 in the ECUs for

encryption and decryption of messages. In the latter case, the total utilization for ECUs 3 and 4

(sum of real-time and security task utilizations) exceeds 100% because of the overhead of security-

specific encryption/decryption task execution, resulting in missed deadlines for four applications.

The security-optimized case represents our goal in this work, to integrate all required security

mechanisms while keeping utilization below 100% for all ECUs, without any deadline violations.

In this chapter, we propose a novel framework called SEDAN to improve security in time-

triggered automotive systems with a minimal overhead on the in-vehicle ECUs. As symmetric key

cryptography is less computationally intense than asymmetric key cryptography, we adapt it as

part of SEDAN to enhance vehicle security; however, note that the use of symmetric encryption is

not the main novelty of our work. SEDAN aims to maximize overall system security without

violating real-time deadline constraints and per-message security constraints in the system. Our

novel contributions in this work are:

 We introduce a novel methodology to derive the security requirements for the different

messages in an automotive system based on ISO 26262 and an empirically derived metric

to quantify the security of a system;

 We devise a meta-heuristic based key management technique to provide effective security

for various message types and ensure ECU utilizations do not exceed 100%;

 We develop an approach for the joint exploration and synthesis of message schedules and

security characteristics in TDMA-based automotive systems, and also propose a technique

106

to efficiently map tasks to ECUs while meeting real-time message deadlines and ECU

utilization goals;

 We extract network traffic and ECU execution data from a real-world 2016 Chevrolet

Camaro vehicle, to compare SEDAN with [37] which is the best-known prior work in the

area, and also demonstrate the scalability of our work.

4.1 RELATED WORK

Security in automotive systems was not a major concern until recently. The first full vehicle

hack in 2010 was demonstrated in [25] where the authors had physical access to the vehicle and

were able to control various systems in the vehicle by injecting custom messages into the CAN

bus. Moreover, they reverse engineered a subset of the ECUs and were able to update the firmware

via the CAN bus. They were also able to perform the same attacks remotely [89]. The researchers

in [26] hacked the radio in a 2014 Jeep Cherokee which was connected to both the CAN buses in

that vehicle. They used the telematics system in the radio to send remote messages to the vehicle,

which were injected into the CAN bus. Most recently in [90], the authors developed a Trojan app

that was executed on a smartphone connected to the vehicle infotainment system via Bluetooth.

They used this app to send custom CAN messages into the vehicle network. All of these attacks

have raised serious concerns about security in automotive systems.

It is hard to prevent unauthorized access to the vehicle bus as the traditional in-vehicle

network protocols do not provide any security features. However, one of the popular solutions in

the literature to prevent unauthorized access is by authenticating the sender ECU using message

authentication codes (MACs). Several works [91]-[95], [97], [98] advocate the use of MACs to

improve security in automotive systems. A mixed integer linear programming (MILP) formulation

107

to minimize the overhead for MAC computation and end-to-end application latency in a CAN-

based system was proposed in [92], where the same MAC was used for a group of ECUs. This

work was extended in [93] to minimize the security risks associated with grouping of different

ECUs. In [95] an authentication protocol called LCAP was presented to encrypt messages, with

hash functions generating hashed MACs to authenticate ECUs. An RC4 encryption based

authentication is implemented in [97] to improve security in CAN-based systems. Another

lightweight authentication scheme based on PRESENT [96] is introduced in [98] and evaluated on

FPGAs. However, cryptanalysts have demonstrated successful attacks on both RC4 and

PRESENT. In [99], a technique is presented to protect a fleet of vehicles by obfuscating CAN bus

message identifiers (IDs). However, all of the above mentioned techniques are designed for event-

triggered protocols (such as CAN), and are not applicable to more scalable and sophisticated

time-triggered protocols.

In [91], a lightweight authentication technique is proposed which uses cipher-based MACs

that are generated using the ECU local time stamp and a secret key. However, this technique

requires strong synchronization between the ECUs and any uncertainty can result in a full system

failure. A device level technique is presented in [101] that uses an enhanced network interface (NI)

to authenticate ECUs in the system by making use of hardware-based security modules (HSMs).

In [94], FPGAs are used as co-processors for ECUs to handle all the security operations

implemented based on the TESLA [100] protocol. But both techniques in [94] and [101] require

additional computing resources and many modifications to the existing automotive systems, which

is not cost efficient. The authors in [102] proposed a virtual local network (VLAN) based solution

for improving security in Ethernet-based automotive systems. They proposed an integer linear

programming (ILP) model to minimize message routing times and authenticate the messages by

108

making multiple message transmissions on different routes. However, this technique results in

inefficient bandwidth utilization and also lacks scalability. In [103], a co-design framework is

proposed to improve message response times while meeting the security concerns. However, the

authors only consider encrypting a small subset of messages to guarantee control performance,

which makes the system vulnerable.

An interesting framework is proposed in [37] that uses a time delayed release of keys

approach (adapted from the TESLA protocol [100]) in conjunction with simulated annealing to

minimize the end-to-end latency of messages by co-optimizing task allocation and message

scheduling. This is one of the very few holistic frameworks that integrates the concept of security

with real-time system design from the beginning of the system design phase. This work is extended

in [38] by including V2V communication, using dedicated short-range communication (DSRC).

A lightweight authentication technique for vehicles called LASAN is proposed in [39] that is based

on the Kerberos protocol which is a popular network authentication protocol in the client-server

environment. The authors extended this work in [40] by performing a detailed analysis and

comparison with the TESLA [100] protocol. Though the LASAN technique demonstrated superior

performance over others, it has stringent requirements for a trusted centralized ECU, which creates

a single point of failure. In [41], a security mechanism using different authentication methods was

proposed for real time systems. In [104], a group-based security service model is presented with a

goal to maximize the combined security of the system. However, as the model ignores time-critical

constraints, it cannot be implemented in automotive systems.

An intrusion detection system based on principal component analysis (PCA) is proposed in

[105]. An in-vehicle network monitoring system that detects the presence of an attacker by

monitoring the increased transmission rates of the messages is proposed in [106]. In [107], the

109

usage of reactive runtime enforcers called safety guards is proposed, to detect the discrepancies

between the input data from sensors and output of the controllers. A challenge response

authentication approach was proposed in [108] to detect the presence of attackers and estimate the

values of the attacked signals. However, this technique requires prior (sometimes proprietary)

information about the sensors and also cannot be used for passive safety sensors.

The above mentioned prior works for securing time-triggered systems have various

limitations: (i) they do not consider the utilization overhead on ECUs and latency overhead on

messages due to the implemented security mechanisms, which leads to over-optimistic results; (ii)

they use only one key size for all messages, which ignores heterogeneous security goals in real

systems; (iii) they ignore precedence constraints between tasks and messages and; (iv) they

consider homogenous single core ECUs which do not accurately represent today’s vehicles. In

this work, we present the SEDAN framework that addresses these limitations of prior work.

SEDAN improves security in vehicles with time-triggered network protocols (we demonstrate it

for the FlexRay protocol, but it can be easily extended to other time-triggered protocols as well,

e.g., TTEthernet), while satisfying all designer-imposed security, utilization, and message timing

constraints.

4.2 PROBLEM DEFINITION

4.2.1. SYSTEM AND APPLICATION MODEL

We consider a general automotive system where multiple ECUs execute different time-

critical applications and are connected using a FlexRay bus-based network, as shown in Figure 38

Each ECU consists of two major components: a host processor (HP) and a communication

controller (CC). The HP is responsible for running automotive and security applications, whereas

110

a CC acts as an interface between the HP and the FlexRay bus, and is responsible for packing

message data into frames, sending and receiving messages, and filtering unwanted messages. We

consider heterogeneous HPs that have different numbers of cores, which aligns with the state-of-

the-art. Note that the heterogeneity is limited to varying the number of homogeneous cores per HP

(i.e., multicore parallelism).

Every automotive application consists of both dependent and independent tasks that are

mapped to different ECUs and executed in the corresponding HPs. If two dependent tasks are

mapped to the same ECU, they exchange information using shared memory. Otherwise, the tasks

communicate with each other by exchanging messages over the FlexRay bus. A message can

contain control or data signal values generated by an ECU as a result of task execution. Signals

are packed into messages by the HP and are given to the CC to transmit as FlexRay frames on the

bus. The automotive applications can be classified as one of two types: (i) time-triggered

(periodic), or (ii) event-triggered (aperiodic). Most safety-critical applications, e.g., anti-lock

braking, collision detection, etc., are time-triggered and generate time-triggered messages. Event-

triggered messages are generated by maintenance and diagnostic applications. Much like real-time

applications across other domains, the execution characteristics of these applications are known at

design time. In this work, we focus on time-triggered applications as they have a significant impact

on system performance and vehicle safety. Additionally, time-triggered messages generated by

these applications have strict timing and deadline constraints. Thus, it is vital to optimize the

security of the time-triggered messages while also meeting their real-time deadline constraints. We

adapt state-of-the-art standards, Advanced Encryption Standard (AES) with key sizes 128,192 and

256 bits, and evaluate Rivet-Shamir-Adleman (RSA) with key sizes 512, 1024, 2048 and 4096

111

bits, and Elliptic Curve Cryptography (ECC) with key sizes 256 and 384 bits to improve system

security.

Figure 38 Overview of our assumed automotive system model.

4.2.2. ATTACK MODEL

We focus on protecting a vehicle from masquerade and replay attacks as they are most

common, hard to detect, and can have a severe impact. The increased external connectivity of

modern vehicles creates multiple pathways (attack vectors) to gain access to the in-vehicle network

and ECUs. An attacker can employ available attack vectors to gain access to the in-vehicle network

and masquerade as an existing ECU or replay valid message transmissions to achieve their goal.

In our study, we considered the most common and feasible attack vectors in vehicles, which

include connecting to systems that communicate with the outside world (such as infotainment

systems), connecting to the OBD-II port, probe-based snooping on the vehicle bus, and replacing

an existing ECU. Our framework can still be effective even when the attacker gains access to the

in-vehicle network via other attack vectors. However, handling some of the advanced attack

112

vectors such as core tampering and hardware Trojans requires additional resources and is beyond

the scope of our work.

4.2.3. SECURITY MODEL

We aim to achieve the following security objectives in vehicles: (i) confidentiality of

message data, and (ii) the authentication of ECUs. Meeting these objectives can prevent

masquerade and replay attacks. Confidentiality refers to the practice of protecting information from

unauthorized ECUs, whereas authentication refers to the process of correctly identifying an ECU.

We use AES to achieve confidentiality by encrypting message data using a shared secret key. We

evaluate the choice of using RSA and ECC for setting up shared secret keys. However, it should

be noted that neither RSA nor ECC is used for message encryption as they are much slower than

AES. While AES with 128-bit keys (AES-128) is considered very secure today, the advent of

quantum computing may challenge this assumption, hence we also consider AES-192 and AES-

256. As each ECU can have messages of various criticalities, every ECU in the system can run all

three variants of AES. Section 4.3.6 presents the entire encryption/decryption flow in detail. The

key size for encrypting/decrypting messages is assigned based on security requirements of a

message, which is discussed in Section 4.3.3.

4.2.4. DEFINITIONS

Our system model has the following inputs:

 Set of heterogeneous (1 or 2 core) ECUs N= {1, 2, …, Ɲ};

 Set of applications A = {1, 2, …, λ} and set of tasks in the system T = {T1 ∪ T2… ∪ Tλ},

where Ta is the set of tasks in application a ∈ A;

 Every task in T has a unique task ID TID = {1, 2, …, G};

113

 After task allocation, each task t is represented as tq,n where q ∈ TID is the task ID, and n ∈ N is the ECU to which the task t is mapped;

 Every task t is characterized by the 4-tuple {ãq,n, pq̃,n, d̃q,n, ẽq,n}where ãq,n, pq̃,n, d̃q,n, ẽq,n

denote the arrival time, period, deadline, and execution time of the task respectively;

 For each ECU n ∈ N, Sn = { , , , …,
,

} is the set of signals transmitted from the

ECU; Kn is the total number of signals in n;

 Every signal si,n ∈ Sn, (i = 1, 2 …, Kn) is characterized by the 4-tuple {a̅i,n, p̅i,n, b̅i,n, d̅i,n},

where a̅i,n, p̅i,n, b̅i,n, d̅i,n are the arrival time, period, deadline, and data size (in bytes) of

signal , respectively;

 After frame packing, every ECU has a set of messages Mn = { , , , , …, , },

where is the total number of messages in n;

 Every message mj,n ∈ Mn, (j = 1, 2, …, Rn) is characterized by the 5-tuple {aj,n, pj,n, dj,n,

bj,n, Δj,n, ψj,n} where aj,n, pj,n, dj,n, bj,n, Δj,n, ψj,n are the arrival time, period, deadline, data

size (in bytes), and minimum security requirement of the message mj,n (see Section 4.3.3,

respectively. ψj,n is a binary variable that has a value = 1 when the security constraints of

the message are satisfied. Otherwise ψj,n = 0;

Problem Objective: Our goal is to maximize security (aggregate security value, described in

Section 4.3.3) while synthesizing a design time schedule for time-triggered tasks and messages

that meet three types of constraints: (i) real-time deadline constraints for tasks and messages in all

applications; (ii) minimum security constraints for each message in the system, (iii) ensure

utilization of an ECU does not exceed 100%.

114

Figure 39 Overview of the proposed SEDAN framework.

4.3 SEDAN FRAMEWORK: OVERVIEW

A high level illustration of our SEDAN framework is shown in Figure 39 with all of the

design time steps shown with white boxes and the runtime steps shown with gray boxes. The steps

involved in SEDAN can be classified into two categories: (i) security-related operations to improve

system security, and (ii) real-time operations to satisfy the application real-time performance

objectives. At design time, SEDAN begins by allocating tasks to available ECUs in the system and

generates the set of signals needed for inter-task communication. These signals are packed into

messages using a frame packing approach, and security requirements are derived for each message.

The size of the keys used for encryption and decryption of the messages are optimized using a

greedy randomized adaptive search procedure (GRASP) metaheuristic. At runtime, SEDAN first

sets up the session keys that will be used for generating keys to perform authenticated encryption

and decryption of messages. A runtime scheduler then makes use of the previously generated keys

115

and the optimal design time schedule to schedule messages online. Each of these steps is discussed

in detail in the following subsections.

4.3.1. TASK ALLOCATION

This is the first step of the SEDAN framework and occurs at design time. The goal here is to

quickly allocate each task in the system to an available ECU resulting in a balanced real-time

utilization across ECUs, which makes the load-balancing task allocation scheme a good choice

for this step. Note that if there are some tasks that need to be allocated to certain ECUs, e.g., due

to being in close proximity to sensors or actuators that they use heavily (or exclusively), we pre-

allocate those tasks and do not include them in the set of mappable tasks for allocation.

For any task tq, the real-time utilization of the task () is defined as the ratio of execution

time (ẽq) and the period (pq̃) of the task, as shown in (12) below. The real-time utilization of any

given ECU () is the sum of the real-time utilizations of the tasks (
,

) allocated to that ECU,

as shown in (13):

=
̃

 (12)

= ∑
,

 (13)

Our proposed load-balancing task allocation scheme begins by initializing all the ECUs’

real-time utilization () to zero and computing the real-time utilization of all the tasks’ ()

using (12). The allocation subsequently occurs in three steps: (i) the set of ECUs in the system is

sorted in the increasing order of the ECU real-time utilization (); (ii) the first unallocated task

in the set of tasks (T), sorted in decreasing order of real-time utilization, is selected and allocated

116

to the least loaded ECU; and (iii) the task’s real-time utilization () is added to the allocated

ECU’s real-time utilization (). These three steps are repeated until all the unallocated tasks in T

are allocated. If any task t ∈ T, cannot be allocated to an ECU during this process, then there exists

no solution for the given configuration. Otherwise, at the end, each task in the system is allocated

to an available ECU. After the task allocation step, it is trivial to generate the set of signals Sn for

each ECU, based on the precedence constraints of tasks in the application.

Note: As an alternative to a load-balancing task allocation, we also explored an allocation

approach with a goal of minimizing total communication volume between ECUs. However, it

resulted in non-uniform load allocation across ECUs, which led to violations in ECU utilization

constraints after implementing security mechanisms.

4.3.2. FRAME PACKING

Frame packing refers to the grouping of generated signals at each ECU into messages. This

is done to maximize bus bandwidth utilization. The set of signals generated by the mapped tasks

on each ECU are given as the input to this step and are packed into messages based on three

conditions: (i) for any two signals to be packed into the same message, they must originate from

the same source ECU; (ii) signals with the same periods are packed together to avoid multiple

message transmissions; and (iii) the total computed payload of the message is the sum of the size

of the cipher generated by AES and the size of the MAC; and should not exceed the maximum

possible FlexRay payload size. Because of the nature of AES, the size of the cipher is independent

of the key size used. But it is dependent on the input size to AES, which is the sum of signal sizes

grouped in that message. Thus the cipher size can be expressed as ⌈sum of signal sizes in the

message/16⌉ and the size of MAC is set to the maximum of the minimum required MAC size (49

117

bits, explained further in Section 4.3.3; a designer can also use a value greater than 49). We adapted

a fast greedy frame packing heuristic proposed in [44] by integrating the computed payload size

definition to generate a set of messages to be transmitted and received, for each ECU.

4.3.3. DERIVING SECURITY REQUIREMENTS

We now present a methodology to derive security requirements for each message obtained

from the output of the frame packing step. A risk classification scheme defined in ISO 26262 [14]

known as the Automotive Safety Integrity Level (ASIL) is adapted to derive security requirements

in our work. Four different ASILs: ASIL-A, ASIL-B, ASIL-C, and ASIL-D, are defined in the

standard to classify applications based on their risk upon failure. Applications classified as ASIL-

D have the lowest failure rate limit indicating high criticality, while ASIL-A applications are less

critical and subject to fewer security requirements. The underlying assumption for deriving

security requirements based on ASIL groups is that the applications that demand high safety levels

are more critical and need to be better protected from malicious attackers (hence, higher the safety

requirement, higher the security requirement).

We define two security requirements for every message based on their ASIL classification.

The first requirement is the minimum key size required to encrypt the message depending on

its ASIL group, which is as follows: ASIL-A (128 bits), ASIL-B (128 bits), ASIL-C (192 bits),

and ASIL-D (256 bits). The messages in the system are assigned ASIL groups as follows. Every

application is associated with an ASIL group depending on the criticality and tolerance to failure.

Each task in that application inherits the same ASIL group and so do the signals generated by these

tasks. When these signals are packed into messages, the highest ASIL group among the signals in

that message is assigned as the ASIL group (,) of the message. We assign a security score

118

(,) to each safety-critical message depending on its assigned key size, as follows: 128 bit key

(score=1), 192 bit key (score=2), and 256 bit key (score=3). Additionally, each message is assigned

a weight value called ASIL weight (,). A high ASIL weight value indicates a high message

criticality and is analogous to a Risk Priority Number (RPN) that can be calculated using Hazard

Analysis and Risk Assessment (HARA) approaches [111]. Using these metrics that we have

defined above, a security value (,) is derived for each message as shown in (14) below. The

overall security of the system can then be quantified using an empirically derived metric called

Aggregate Security Value (ASV), as shown in (15):

, = , ∗ . (14)

 () =
∑ ∑ , ∗ ,

Ɲ ∑Ɲ (15)

where ψj,n and Rn are defined in Section 4.2.4. ASV is essentially the ratio of the sum of

security values of all messages in the system for which minimum security requirements are

satisfied, to the total number of messages in the system. ASV can be used to compare the security

of multiple systems using the same encryption standard. A system with a higher ASV value is more

secure than a system with a lower value.

The second requirement is the minimum number of Message Authentication Code (MAC)

bits required for a message based on the assigned ASIL group. This is derived using the failure

rate limit of the ASIL group of the message. The failure rate limit is usually expressed as FIT

(Failure in Time), which denotes the maximum number of acceptable failures per 1 billion hours

of usage. According to specifications, ASIL-D has 10 FIT, ASIL-B and C have 100 FIT, and ASIL-

A has 1000 FIT as their maximum limits. In other words, ASIL-D applications need to have less

119

than 10-8 failures per hour while ASIL-A applications can have up to 10-5 failures per hour. The

security requirements for each message in the system are then derived as follows:

 Consider a message mj,n with period pj,n (in milliseconds)

 Number of transmissions of mj,n per second are (103/pj,n)

 Number of transmissions of mj,n per hour are ((3600*103)/pj,n)

 If there are k bits in the MAC field of a message, the probability of failure due to an attacker

guessing a valid MAC (e.g., using brute-forcing or other methods) is 2-k for one transmission

of that message;

 Thus the probability of failure due to a compromised MAC for an hour-long transmission

is ((3600*103)/pj,n)*2-k

 For an ASIL-D application, the probability of failure needs to be less than 10-8 per hour,

i.e., ((3600*103)/pj,n)*2-k ≤ 10-8

 Thus, the minimum number of MAC bits (Δj,n) required for the message (mj,n) according to

the ASIL-D requirement is:

∆ , () = ≥ + log
,

 (16)

where constant Q has a value of 48.35 for ASIL-D. Similarly, the minimum number of MAC

bits required (Δj,n) for other ASIL groups are calculated using (16) by using Q=45.04 for ASIL-B

and ASIL-C, and Q=41.72 for ASIL-A. The different values of Q for each ASIL group are

computed based on the FIT limit corresponding to that ASIL. Thus, for an ASIL-D message, for

the most stringent (smallest) period we observed (=1ms), ∆ , () = 49 bits (thus this is used in

frame packing).

120

4.3.4. OPTIMIZING MESSAGE KEY SIZES USING GRASP

This is the last step of the design time process. The goal here is to assign an optimal key size

for each message in the system that maximizes the ASV while meeting the security requirements

and real-time deadline constraints. Additionally, in this work, we model the overhead caused by

the security applications (i.e., encryption and decryption) in terms of the additional ECU utilization

(security-induced utilization) and latency (response time) of the message. For any message (mj,n),

encrypted or decrypted using a block cipher, the security-induced ECU utilization (
,

) due to

the message is:

,
= ∗ /

 (17)

where bsize denotes the block size in bytes and Tencr/decr represents the time to encrypt or decrypt

one block of data. As AES is the encryption algorithm used in this work, the above equation can

be re-written as:

,
= ∗ ()

 (18)

where TAES(X) is the time to encrypt or decrypt one block (16 Bytes) of data using AES with

an X bit long key (where X can be 128, 192 or 256). The security-induced utilization of any given

ECU () is the sum of the security-induced utilizations due to all transmitted and received

messages () for that ECU, as shown in (19) below. Thus, for an ECU n, its total utilization

() is the sum of the real-time utilization () and security-induced utilization () as shown in

(20):

= ∑
,

 (19)

121

= + (20)

To avoid undesirable latency overheads and uncertainty, we always constrain the utilization

for any ECU to be below 100%.

A greedy randomized adaptive search procedure (GRASP) metaheuristic [109] is developed

and utilized to achieve this goal. An overview of this approach is illustrated in Figure 40. The

optimal message key size allocation step takes the set of messages from the output of frame

packing (Section 4.3.2) and the derived security requirements (Section 4.3.3) as inputs. An initial

solution is generated by assigning the minimum required key sizes for all the messages based on

the derived security requirements. A feasibility check is performed later to determine the feasibility

of the initial solution. The feasibility check investigates the (i) total ECU utilization () for all

ECUs and (ii) number of missed deadlines using a design time scheduler. In this work we adapt

the fast design time scheduling heuristic proposed in [44] to synthesize an optimal design time

schedule. If there are no utilization violations at any ECU (≤ 100% ∀ ECUs) and deadline

misses for any message, the initial solution is given as the input to the GRASP metaheuristic. If

any of the above mentioned conditions fail, the optimal message key size allocation step terminates

and the system does not have a feasible solution. GRASP explores various design time schedule

configurations (assigning messages and ECUs to FlexRay static segment slots) and message key

sizes (that are greater than or equal to the minimum key size requirement for a message) to select

a solution that maximizes ASV, with no security violations, real-time deadline misses, and without

exceeding 100% utilization for any ECU.

122

Figure 40 Overview of optimal message key size allocation step using GRASP.

The GRASP metaheuristic is an iterative process in which each iteration has two major

phases: (i) greedy randomized construction phase that tries to build a local feasible solution and

(ii) local search phase that tries to investigate the neighborhood for a local optimum. At the end,

the best overall solution is chosen as the final solution. Two important aspects of the greedy

randomized construction phase are the greedy aspect and probabilistic aspect. The greedy aspect

involves generating a Restricted Candidate List (RCL), which consists of best elements that will

improve the partial solution (solution within the greedy randomized construction phase). The

random selection of an element from the RCL, to be incorporated into the partial solution, is the

probabilistic aspect. The solutions generated during the greedy randomized construction phase are

not necessarily optimal. Hence a local search phase is used to improve the constructed solution.

The local search is an iterative process that uses destroy and repair mechanisms to search for local

optimum within a defined neighborhood. If an improved solution is found, then the best solution

is updated.

123

Algorithm 6 presents an overview of our GRASP based optimal message key size

assignment where the inputs are: set of nodes (N), set of all the messages in the system (M), ASV

of the system and minimum required message key size assignment (init_solution) which is the

initial solution given to GRASP to reduce the search space, maximum iterations (max_iterations),

RCL threshold (α), and a destroy-repair threshold (β). The algorithm begins by assigning the

init_solution to the best_solution (step 1). GRASP iteratively tries to find a better solution (steps

2-8) until max_iterations is reached. In each iteration greedy_randomized_construction() (step 3)

generates a local feasible solution (current_solution) which is updated using local_search() (step

4). If a better solution is found at the end of local search phase, the best_solution is updated (steps

5-7). The output of the algorithm is an optimal message key size for every message and a feasible

design time schedule with no deadline misses, no security violations, and with utilization for each

ECU in the system below 100%. Note: Every solution in GRASP consists of two attributes (i) key

sizes for all the messages and (ii) ASV of the system as a result of the key size assignment. Every

solution generated by GRASP ensures that no message is allocated a key size less than the key

Algorithm 6: GRASP based optimal message key size assignment

Inputs: Set of nodes (N), Set of all messages (M), init_solution, max_iterations,

RCL threshold (α), and destroy-repair threshold (β)

1: best_solution ← init_solution
2: for iteration = 1, …, max_iterations do

3: current_solution ← greedy_randomized_construction(α, N, M)
4: current_solution ← local_search(β, N, M, current_solution)
5: if current_solution > best_solution do

6: best_solution ← current_solution
7: end if
8: end for

Output: Optimal message key sizes for every message that results in maximum

ASV and a feasible design time schedule with no deadline misses, security

violations and utilization of all ECUs below 100%.

124

size assigned in the initial solution and the overall system ASV is always greater than the ASV of

the initial solution.

4.3.4.1 GREEDY RANDOMIZED CONSTRUCTION PHASE

The greedy randomized construction phase tries to generate a feasible solution in every

iteration of GRASP by increasing the key sizes of some of the non ASIL-D messages with an aim

to maximize the ASV of the system without violating deadline, security, and ECU utilization

constraints. It also ensures that no message is allocated a key size less than the key size allocated

in the initial solution (minimum required key size). The solution generated by the greedy

randomized construction phase will be given as the input to the local search phase for refinement.

Algorithm 7: greedy_randomized_construction (α, N, M)

Inputs: RCL threshold (α), set of nodes (N), and set of all messages (M)

1: ← {m ∈ M | ≠ ASIL-D}

2: Increment by 1 ∀ ∈ and compute

3: Sort in the increasing order of

4: while ≠ { } do

5: SVmin = min ({ ∀ ∈ })

6: SVmax = max ({ ∀ ∈ })

7: RCL ← { ∈ | ≥ + ∗ (−)}

8: ← random element from RCL

9: Increment the key size of to the next higher key size
10: if feasibility_check() == fasle do

11: Revert the key size of back to its previous key size

12: Decrement by 1 for and compute
13: end if

14: Remove from
15: end while
16: current_solution ← {calculate_ASV(), message key size assignment}

Output: Local feasible solution that results in a feasible schedule with no

deadline misses, security violations and utilization of all ECUs below 100%.

Algorithm 7 shows the pseudocode of the greedy randomized construction phase where the

inputs are: set of nodes (N), set of messages (M), and RCL threshold (α). A set of non ASIL-D

125

messages () is created in step 1. The security score of each message () in is incremented

by one and the security values of the messages () are updated using (14) (step 2). In step 3,

is sorted in the increasing order of and the ties are resolved based on the message period. In

steps 4-15, the algorithm tries to find a local solution by incrementing key sizes for some of the

messages that would result in no deadline, security, and ECU utilization violations. In steps 5, 6

the minimum (SVmin) and maximum (SVmax) security values are computed respectively. The RCL

consists of messages in , that will result in increased ASV when their key size is incremented.

The messages whose security value () is within the interval [SVmin + α (SVmax - SVmin), SVmax]

are added to the RCL in step 7 (this is the greedy aspect of greedy randomized construction). The

quality of RCL is regulated using an RCL threshold (α ∈ [0, 1]). The threshold (α) controls the

amount of greediness and randomness in the algorithm. The case α = 0 corresponds to a pure

random approach, while α = 1 is equivalent to pure greedy approach. In step 8, a random message

() is selected from the RCL (probabilistic selection) and its key size is incremented to the next

higher key size in step 9 (i.e., 128 → 192 or 192 → 256). The feasibility_check() in step 10, checks

for any (i) ECU utilization violations (i.e., any ECU utilization > 100%) and (ii) deadline misses

using the design time scheduling heuristic proposed in [44]. If any of them fails, the

feasibility_check() returns false, and reverts the key size of () back to its previous key size (step

11) and re-computes of after decrementing the by one (step 12). Otherwise, the key

size increment is left unchanged. The message () is removed from and the steps 5-14 are

repeated until there are no messages left in . Lastly, in step 16, the ASV of the system and the

current message key size assignment are assigned to the current_solution. The function

calculate_ASV() is implemented using (15).

126

4.3.4.2 LOCAL SEARCH PHASE

The local search phase iteratively improves the solution found in the greedy randomized

construction phase by investigating a defined neighborhood in the problem space. This is achieved

by using destroy and repair methods which remove a part of the solution and recreate a feasible

solution, respectively. In this work, we define the neighborhood as the set of solutions that are

generated by randomly changing key sizes for β number of messages. The parameter β known as

the destroy-repair threshold specifies how much to destroy or repair in each iteration of the local

search. These random changes in message key sizes help in recovering from suboptimal ordering

(sorting in the increasing order of) of messages in the greedy randomized construction phase.

Algorithm 8 shows the pseudocode of the local search procedure. The destroy() function

(steps 1-4) randomly selects a message from the set of messages that are allocated a key size higher

than the minimum required key size, and decreases the key size to the next smaller key size.

min_score() returns the minimal security score demanded by the assigned ASIL group. repair()

(steps 5-18) aims to increase the key size for β non ASIL-D messages and computes

local_solution(). Every time a message needs to be selected for incrementing the key size in

repair(), the one message that results in maximum increase in the ASV of the system is selected

(step 8). Ties are resolved based on the ASIL group and if multiple messages have the same ASIL

group, one message is selected at random.

The local search algorithm iteratively explores the neighborhood around the

current_solution using destroy() and repair() to find a better solution (steps 19-29). In each

iteration, β is chosen randomly from [2, βmax] (step 20). destroy() is modeled as a stochastic process

which is controlled by the key decrease probability (pkd) (steps 21-24). Lastly, the current_solution

is updated if a better local_solution is found in the repair method (steps 25-28). In each iteration

127

of GRASP, at the end of local search phase a local optimum is found if there exits one. Otherwise,

the solution remains unchanged from the greedy randomized construction phase.

Algorithm 8 : local_search(β, N, M, current_solution)

Inputs: Destroy-repair threshold (β), set of nodes (N), set of all messages (M),

and current_solution

1: function destroy (M)

2: Md = {m ∈ M | > min_score()}
3: Decrement the key size of a random message () in Md

4: end function

5: function repair (β, M, N)

6: Mr = {m ∈ M | ≠ ASIL-D}
7: while (β > 0) or (Mr ≠ { }) do

8: = {m ∈ Mr | ∆ASV is maximum}

9: Increment the key size of message ()
10: if feasiblity_check() == false do

11: Revert the key size of () back to previous key size
12: else do

13 β = β – 1
14: end if

15: Remove () from Mr
16: end while

17: return {calculate_ASV(), message key size assignment}

18: end function

19: for local_iteration = 1,…, max_local_iterations do

20: β = random_integer(2, βmax)
21: if pkd > random(0,1) do

22: destroy (M)
23: β = β – 1
24: end if
25: local_solution ← repair (β, M, N)
26: if local_solution > current_solution do
27: current_solution ← local_solution
28: end if
29: end for

Output: Local optimum with in the defined neighborhood- if there exists one;

Otherwise, same solution as greedy_randomized_construction().

128

Note: When the message key size is changed, the size of the output cipher and MAC (or the

message size) remains unchanged. The key size only affects the time taken to encrypt/decrypt the

message and the security induced utilization of the sender and receiver ECUs. The real-time task

set induced utilization of the ECUs also remains unchanged, as the time-triggered task execution

times do not change with changing message key sizes.

4.3.5. SETTING UP SESSION KEY

This is the first step at runtime in the SEDAN framework. It involves settings up session keys

required for generating keys that will be used for the encryption and decryption of messages. In

general, using the same key every time for encryption and decryption for the entirety of the vehicle

lifetime makes the system highly vulnerable. Therefore, during runtime, we generate a new key for

every session (called session key).

A session is defined as the time duration between the start of a vehicle to turning off the

vehicle. As we use symmetric key encryption, all ECUs in the system need the same secret key to

function properly. As traditional automotive networks do not have any inbuilt security features,

the major challenge here is in exchanging the session keys between ECUs over an unsecure

channel. We adapt the Station-to-Station (STS) key agreement protocol [110] which is based on

the famous Diffie-Hellman key exchange method [111] to the automotive domain (as simple

Diffie-Hellman is vulnerable to man-in-the-middle attacks), to securely transfer session keys

between ECUs over an unsecured FlexRay bus. Moreover, within the STS protocol, we utilize

elliptic curve cryptography (ECC) operations as the basis for key agreement instead of RSA, as

the former is faster and has lower memory footprint for the same level of security compared to the

129

latter (as discussed in Section 4.4.2). The STS protocol with ECC is illustrated in Figure 41, and

discussed below.

Figure 41 Steps involved in setting up a session key using the STS protocol using ECC

operations over an unsecure FlexRay bus.

The approach begins with two ECUs agreeing upon a set of parameters known as domain

parameters that define the elliptic curve. In the first step in Figure 41, the parameter p defines the

field, a and b define the elliptic curve, G is the generator and n is its order, and h is the co-factor.

Additionally, each ECU has an asymmetric key pair used for authentication (sign and verify). In

the second step, each ECU generates a random private number (d1 in ECU 1 and d2 in ECU 2),

which is not shared with any other ECU in the system. In the next step (step 3), one of the ECUs

(e.g., ECU1) performs an elliptic curve scalar multiplication (hereafter referred to as scalar

multiplication) of the private number d1 and generator G. The output Q1 is transmitted to ECU2

over an unsecured FlexRay bus. A similar scalar multiplication (between d2 and G) is performed

at ECU2 but the output Q2 is not sent to ECU1 (step 4). Additionally, ECU2 also computes the

scalar multiplication of the private number d2 and the received output Q1 resulting in the common

secret key K (session key). In the next step (step 5), ECU2 computes the signature (S2 ()) of the

concatenation of Q2 and Q1 (represented as Q2 || Q1) using its private key of the asymmetric key

pair. The output signature is encrypted (Ek ()) using the computed session key from the previous

130

step resulting in the cipher α2. The scalar multiplication output (Q2), output cipher (α2), and the

certificate (Cert2) are all transmitted to ECU1 over the unsecured FlexRay bus. The certificate is

used to prove the ownership of a public key, which is issued by a trusted certificate authority (CA)

and programmed in the ECUs by the manufacturer. It consists of the public key of the owner and

signature of the CA. The public key of the CA is used to verify the certificate and extract the public

key of the owner. When the ECU1 receives them (in step 6), it performs a scalar multiplication of

private number d1 and Q2 to produce the shared secret key K (session key). Moreover, ECU1

utilizes the key K to decrypt (Dk ()) the received cipher (α2) and verifies (V1()) the decrypted output

using the public key extracted from the certificate of ECU2 (Cert2). ECU1 agrees to use the key K

for a session only when the verification is successful thereby authenticating ECU2. In the next step

(step 7), ECU1 computes the signature (S1()) of the concatenation of Q1 and Q2 (represented as Q1

|| Q2) using its private key of the asymmetric key pair. The output is encrypted using the key K

resulting in the cipher (α1) which is transmitted to ECU2 along with the certificate (Cert1). Lastly

(in step 8), at ECU 2, the received cipher (α1) is decrypted using the key K and the output is verified

using the public key extracted from certificate of ECU1 (Cert1). The key K is accepted to use for

the session only when the verification is successful. Thus, all the ECUs are authenticated and a

common secret key (session key) is established at every ECU without actually exchanging the key

over the bus. Additionally, the STS protocol uses no timestamps and provides a perfect forward

secrecy. This session key is used to generate 128-bit, 192-bit and 256-bit keys using a standard

AES key schedule at every ECU. These resulting keys are used for encrypting and decrypting

messages at runtime. Moreover, in order to avoid interference with the time-critical messages, the

messages related to the security operations utilize a small number of reserved FlexRay frames.

131

Note: Even if there was an attacker already in the system during the key setup phase, the

attacker cannot compute the secret key with the publicly available results due to the discrete

logarithm problem [112]. Moreover, the common type of man-in-the-middle attack that has been

performed on the simple Diffie-Hellman approach [113] fails with STS as the attacker cannot

authenticate successfully. To speed up the startup process, we assume that the manufacturer pre-

programs some of the session keys during manufacturing. New keys are generated continuously

during the idle time of an ECU, saved in local memory, and used in future sessions. To further

speedup this process, the public keys of the trusted ECUs can be pre-programmed in the ECU’s

tamper proof memory thereby avoiding the verification of the certificate, which saves both

computation time and network bandwidth.

4.3.6. AUTHENTICATED ENCRYPTION/ DECRYPTION

Authenticated encryption refers to simultaneously providing a message with confidentiality

and authenticity. This is a well-known technique in the literature and is not a novelty of our work.

However, we discuss it here to highlight how SEDAN leverages this process to achieve a more

secure runtime system.

The keys computed using the session key (Section 4.3.5) and the message to be encrypted

are given as the inputs to this step. The authenticated encryption and decryption phases are

illustrated in Figure 42(a) and Figure 42(b) and discussed next.

132

(a) (b)

Figure 42 (a) Authenticated encryption at the sender ECU; (b) Authenticated decryption at

the receiver ECU.

The authenticated encryption at the sender ECU begins with an XOR operation between the

message data (plain text) and a nonce (random number), and the result is encrypted using AES

with the key size allocated (as discussed in Section 4.3.4). The XOR operation is performed to

avoid generating the same cipher every time in cases where input data remains unchanged for long

durations. Even though protecting the system from side channel attacks is not within the scope of

this work, this simple step could be the first step in preventing information leakage. The output

cipher and the key used for encryption are given to a cryptographic hash function (MD5). The

result is XORed with a nonce to generate the MAC. The output MAC size is truncated if needed

and set to be at least the size computed in Section 4.3.3. It is then transmitted with the encrypted

message data in the payload section of the FlexRay frame.

At the receiver ECU, the first step is authenticating the sender ECU of a received message.

The received cipher and the selected key are given to the same cryptographic hash function whose

result is XORed with a nonce to generate a local MAC. The sender ECU is successfully

authenticated when the local MAC matches with the received MAC. Otherwise, the authentication

133

process fails and the received message is discarded. After successful authentication of a sender

ECU, AES decryption is initiated, and the output is XORed with the nonce to extract the original

message data (plain text).

As discussed in Section 4.2.2, we mainly focus on protecting the system from masquerade

and replay attacks as they are the most common, hard to detect, and have a severe impact on the

system. The system is protected against masquerade or impersonation attacks by authenticating

the ECUs in the system using the STS protocol, which also establishes the session keys used for

encryption and decryption only after a successful authentication. The attacker fails to authenticate

due to the lack of trusted certificates, and hence cannot masquerade as a legitimate ECU. The MAC

generated in the authenticated encryption protects the system from replay attacks. During the MAC

generation, it is important to XOR the output of the hash function with the nonce as it makes the

messages resilient to replay attacks. Whenever an attacker tries to perform a replay attack, the

authenticity of the replayed message fails as the nonce used in computing the local MAC at the

receiver is different from the nonce used in generating the received MAC at the sender. This results

in a MAC mismatch leading to discarding of the message sent by the attacker. Moreover, in the

event of a man-in-the middle attack, where the attacker tries to make any changes to the payload

content, the MAC comparison fails, thereby protecting the integrity of the messages. Due to the

broadcast nature of communication in automotive systems, an ECU or attacker can eavesdrop on

the network using any of the attack vectors mentioned in Section 4.2.2. However, the attacker

would not be able to decrypt the encrypted messages in the network. In this manner, we achieve

confidentiality of the message data. Hence, using the proposed SEDAN framework, we were able

to achieve all the security objectives- message confidentiality and integrity, and ECU authenticity

(as discussed in Section 4.2.3). The other common type of attack in automotive systems is

134

distributed denial of service (DDoS) attack. However, we do not focus on this attack as they can

be easily detected using a rule based intrusion detection systems (IDS) and can be prevented by

designing the network with appropriate gateways and proper bus isolation. Some of the other

complex attacks such as side channel attacks, core tampering and hardware trojans require

additional resources and are outside the scope of our current work. We plan to investigate these

attacks in our future work.

4.3.7. RUNTIME MESSAGE SCHEDULER

Runtime message scheduling is the last step in our framework that takes the unique values

of the cipher and MAC generated in the previous step and inserts them into FlexRay frames

generated during the frame packing step (Section 4.3.2). Other controls fields, such as the fields in

the header and trailer segments, that are required for the transmission of FlexRay frames are also

added by the scheduler at this point. The runtime scheduler uses the design time generated message

schedule and interacts with the FlexRay protocol engine to schedule messages on to the FlexRay

bus at runtime.

4.4 EXPERIMENTS

4.4.1. EXPERIMENTAL SETUP

We evaluated the performance of our proposed SEDAN framework by comparing it with

[37], which uses simulated annealing to minimize the end-to-end latencies of all in-vehicle

messages and uses symmetric key encryption and time-delayed release of keys to improve security

in a vehicle system. As [37] does not support variable key sizes, three different variants of [37] are

implemented using AES encryption with fixed key sizes of 128, 192 and 256 bits and referred to

135

as ‘Lin et al. AES-128’, ‘Lin et al. AES-192’, and ‘Lin et al. AES-256’ respectively in the results.

We generated test cases based on automotive network and ECU computation data extracted from

a real-world 2016 Chevrolet Camaro vehicle that we have access to. Directed acyclic graphs

(DAGs) were generated using TGFF [114] and annotated with this data. We generated multiple

test cases by scaling this data based on different combinations of the number of ECUs, number of

applications, number of tasks in each application, and the range of periods. Also, we assume that

the deadline for both tasks and messages are equal to their period. For all experiments, FlexRay

3.0.1 protocol [16] is used with the following network parameters: cycle duration of 5ms with 62

static segment slots, with a slot size of 42 bytes, and 64 communication cycles.

Table 6 AES, RSA and ECC execution times (ms) on ARM Cortex A9.

Cryptographic scheme Key size Encryption / Decryption

AES

128 0.35

192 0.393

256 0.415

Cryptographic scheme Key size
Public key

operation

Private key

operation

RSA

512 2.01 19.89

1024 6.48 139.15

2048 23.65 911.8

4096 91.52 6283.2

ECC
256 59.8 17.1

384 182.4 50.4

4.4.2. BENCHMARKING ENCRYPTION ALGORITHMS

To accurately model the runtime behavior of session key generation and authenticated

encryption/decryption we implemented these algorithms in software. We implemented AES-CBC

with key sizes of 128, 192 and 256 bits, RSA with key sizes of 512, 1024, 2048 and 4096 bits, and

the ECC with key sizes of 256 and 384 bits using OpenSSL [115]. The algorithms were executed

136

on an ARM Cortex-A9 CPU on a ZedBoard, which has similar specifications compared to many

of the state-of-the art ECUs [116], [117].

The average AES encryption/decryption times with different standard key sizes for one

block of data (16 Bytes) are shown in Table 6. These values are used at design time to model the

latency overhead on each message due to the added security mechanisms. They are also used in

computing the response time of the messages and when making scheduling decisions. The

encryption and decryption times of RSA with 512, 1024, 2048 and 4096 bit keys and ECC with

256 and 384 bit keys are also shown in Table 6. These values are used to decide between RSA or

ECC as the scheme for cryptographic operations in STS protocol. The NIST recommends a keys

size of 2048 bits for RSA [118], while NSA recommends a 256 bit key size for SECRET level and

384 bit key size for TOP SECRET level using ECC [119]. Moreover, ECC with 224, 256 and 384

bit key sizes provides a similar security as RSA with 2048, 3072 and 7680 key sizes respectively

[120]. In this work, we consider the minimum key sizes based on the above mentioned

recommendations. From Table 6, it can be observed that RSA is faster for verifying signatures

(operation performed using public key) and much slower for generating signatures (operation

performed using private key). However, on the other hand, ECC is much faster for generating

signatures while being relatively slower for verifying signatures. It is important to observe that the

security (provided by RSA using the equivalent key size) doubles when the ECC key size is

increased from 256 to 384. However, since the automotive systems are resource constrained, we

choose to employ ECC with a 256-bit key size (which still provides higher security than the

minimum recommended key size for RSA) for cryptographic operations in the STS key agreement

protocol. Additionally, the ECC values are used in estimating the worst-case time required for

setting up a session key, which is 0.24s for a 256-bit key, while an equivalent RSA 2048 takes

137

3.72s. Thus, ECC is much faster compared to RSA to achieve a similar level of security. Moreover,

the key size required to achieve a similar security is much shorter in ECC compared to RSA. The

latency associated with computing the hash value using MD5 for one block of data is 2.68µs.

Moreover, with the increasing complexity of automotive applications it is important to design the

security mechanisms that result in minimal power overhead. Hence, we profiled the security

mechanisms used in this work and presented the power consumption results in Table 7. Other

overheads such as memory consumption are not explicitly modeled as most modern day ECUs

have sufficient memory to store the small keys needed for secure transfers. However, the designer

can place an upper limit on the number of pre-computed session keys that can be stored to

minimize memory overhead. Based on the results shown in Table 6 and Table 7, ECC has lower

computation and memory overhead compared to RSA for the same level of security. Therefore, in

SEDAN we authenticate the ECUs in the system and setup session keys using the STS protocol

with ECC, instead of RSA. Additionally, we use AES to encrypt and decrypt the messages in the

system using the keys derived from the session key.

Table 7 AES, RSA and ECC power consumption on ARM Cortex A9.

Cryptographic scheme Key size Encryption / Decryption

AES (mW)

128 57.76

192 58.04

256 60.19

Cryptographic scheme Key size
Public key

operation

Private key

operation

RSA (W)

512 0.28 0.65

1024 0.34 1.22

2048 0.72 1.91

4096 1.08 2.58

ECC (W)
256 0.62 0.33

384 0.93 0.58

138

4.4.3. GRASP PARAMETER SELECTION

To get an efficient solution using the GRASP metaheuristic, it is important to choose the

appropriate values for the threshold parameters α and βmax. We ran a series of simulations by

changing the value of α from 0 to 1 with an increment of 0.2 and the greedy randomized

construction phase was run for 1000 times using different input test cases. We noticed that the

mean solution approached a greedy solution, while the variance approached zero as α tends to 1.

In contrast, when α is small and close to zero, the mean solution approaches a random solution

with high variance. In order to provide a good quality solution to the local search phase, we chose

α = 0.8 which leads to a near greedy solution in the presence of relatively large variance. Also, we

observed that βmax = 3 provided enough randomness to look for other solutions in each iteration of

the local search phase. A higher value of βmax could result in an exhaustive local search leading to

unreasonably long computation times. Also, the minimum value of β needs to be 2, in order to

increase the key size of at least one message when the key size is reduced in the event of a destroy

operation. This prevents the generation of a solution with lower ASV compared to the solutions in

previous iterations. Moreover, a relative small value for pkd = 0.3 is chosen to avoid frequent key

size decrements.

4.4.4. RESPONSE TIME ANALYSIS

We tested the SEDAN framework and the three variants from Lin et al. [37] with three

different test cases: (1) low input load, in a system with 5 ECUs (3 single-core and 2 dual-core)

and 77 tasks that produced 57 (time-triggered) signals; (2) medium input load, in a system with 12

ECUs (9 single-core and 3 dual-core) and 126 tasks with 93 signals; and (3) high input load, in a

system with 16 ECUs (12 single-core and 4 dual-core) and 243 tasks with 196 signals. Figure 43

139

(a)-(c) show the average message response time for the low, medium and high input load cases

with their deadlines on the x-axis. Response time of a message is its end-to-end latency, which is

the aggregate of the time for encryption and MAC generation, and queuing delay at the sender

ECU; transmission time on the Flexray bus, and the time for MAC verification and decryption at

the receiver ECU. The confidence interval on each bar shows the minimum and maximum average

response time of messages. The dashed horizontal lines represent different message deadlines. The

number on top of each bar is the number of deadlines misses.

(a)

(b)

140

(c)

Figure 43 Average response time of all messages (with number of missed deadlines shown on

top of bars) for (a) low; (b) medium and (c) high input application load conditions, for Lin

et al. AES-128, AES-192, AES-256 [37]; and SEDAN.

It is evident that SEDAN outperforms the three variants of [37] and achieves lower average

response times for all of the messages in the different input load cases. SEDAN achieves this by

balancing security and real-time performance goals by optimizing key sizes while meeting

message security requirements and ensuring that all ECU utilizations are below 100%. This

prevents the messages from experiencing additional delays on top of the latency caused by the

encryption-decryption processes. Moreover, compared to SEDAN, all the three variants of [37]

experience significant authentication delays (time taken from the transmission of the message to

decryption of the message), which results in increased response time of the messages. These high

authentication delays are because of the time delayed release of keys in all three variants of [37].

Also, the periodic computation of keys in every session at each ECU in all three variants of [37]

results in high ECU utilization overhead resulting in increased response time and power

consumption. Moreover, the requirement of large message buffers to hold multiple messages for

longer durations (due to time-delayed release of keys) further increases the power consumption

and response time.

141

Table 8 Number of security violations for each input load configuration.

Framework Lin et al. 128 Lin et al. 192 Lin et al. 256 SEDAN

Low load 28 12 0 0

Medium load 45 16 0 0

High load 96 31 0 0

4.4.5. SECURITY ANALYSIS

Table 8 shows the number of security violations in each technique, for the three different

input load cases (as discussed in the previous sub-section). A security violation is defined as an

instance when the derived security constraints (Section 4.3.3) for a message are not met. It can be

seen that the SEDAN and Lin et al. AES-256 are the only techniques that do not violate any security

requirements. It is important to note that unlike SEDAN, Lin et al. AES-256 has no smart key size

assignment scheme and assigns all the messages with 256-bit keys irrespective of their ASIL

group, which helps in meeting the message security requirements. But this results in increased

ECU utilization, which in turn incurs additional latency overheads for messages. Moreover, unlike

all the three variants of [37], SEDAN does not exchange or release keys on an unsecured

communication bus, thereby preventing an attacker from gaining knowledge about the current and

previously used keys. SEDAN also does not require frequent key computation at each ECU within

a single session, as done in [37], which helps reduce utilization overheads in ECUs when SEDAN

is used.

Lastly, Figure 44 depicts the ASV for the three input load cases, with numbers on top of

each bar showing the number of messages that missed deadlines. Lin et al. AES-256 achieves the

highest ASV, however this comes at the cost of multiple missed real-time deadlines. SEDAN is

able to satisfy minimum message security requirements (i.e., all messages have at least the

142

minimum key size required by the designer) and all real-time deadlines, while providing an ASV

value that is higher than that for Lin et al. AES-128 and Lin et al. AES-192.

Figure 44 Aggregate Security Value (ASV) for each input load configuration (with number

of missed deadlines on top of bars).

In summary, SEDAN represents a promising framework that can intelligently manage the

limited computing resources in vehicles while improving the security of the overall system.

SEDAN is able to do a better job of balancing security and real-time performance goals than [37]

as shown in Figure 44 and Table 8. It does so by intelligently optimizing key sizes and accurately

integrating overheads of security primitives while making task and message scheduling decisions.

4.5 CONCLUSION

In this work, we presented a novel security framework (SEDAN) that combines design time

schedule optimization with runtime symmetric key management to improve security in time-

critical automotive systems without utilizing any additional hardware. We demonstrated the

feasibility of our SEDAN framework by implementing the cryptographic algorithms on real

processors. Moreover, our experimental results indicate that SEDAN is able to reason about

security overheads to intelligently adapt security primitives during message and task scheduling,

143

ultimately ensuring that both security and real-time performance goals are met. Such a framework

promises to be extremely useful as we move towards connected autonomous vehicles with large

attack surfaces, by enabling security to be a first-class design objective without sacrificing real-

time performance objectives.

144

5. INDRA: INTRUSION DETECTION USING RECURRENT AUTOENCODERS

IN AUTOMOTIVE EMBEDDED SYSTEMS

Modern vehicles can be considered as complex distributed embedded systems that consist

of tens of interconnected Electronic Control Units (ECUs). These ECUs control various

components in the vehicle and communicate with each other using the in-vehicle network. The

number of ECUs and the complexity of software running on these ECUs has been steadily

increasing in emerging vehicles, to support state-of-the-art Advanced Driver Assistance Systems

(ADAS) features such as lane keep assist, collision warning, blind spot warning, parking assist,

etc. This in turn has resulted in an increase in the complexity of the in-vehicle network, which is

the backbone over which massive volumes of heterogeneous sensor and real-time decision data

and control directives are communicated.

The trend in recent ADAS solutions has been to interact with external systems using

advanced communication standards such as Vehicle-to-X (V2X) and 5G technology [2].

Unfortunately, this makes modern vehicles highly vulnerable to various security attacks that can

be catastrophic. Several attacks have been demonstrated in [25], [26], [90] showing different ways

to gain access to the in-vehicle network and take control of the vehicle via malicious messages.

With connected and autonomous vehicles becoming increasingly ubiquitous, these security issues

will only get worse. Hence, it is crucial to prevent unauthorized access of in-vehicle networks from

external attackers to ensure the security of automotive systems.

Traditionally, firewalls are used to defend a network from various external attackers.

However, no firewall is perfect and no network is impenetrable. Hence, there is a need for an active

monitoring system that scans the network to detect the presence of an attacker in the system. This

145

can be achieved using an intrusion detection system (IDS) which monitors’ network traffic and

triggers alerts when suspicious activity or known threats are detected. The IDS is often the last line

of defense in automotive systems.

IDSs can be classified into two types: (i) signature-based, and (ii) anomaly-based. The

former observes for traces of any known attack signatures while the latter observes for the

deviation from the known normal system behavior to indicate the presence of an attacker.

Signature-based IDS can have faster detection times and very few false positives, but can only

detect known attacks. On the other hand, anomaly-based IDS can detect both known and unknown

attacks, but can suffer from higher false positives and relatively slower detection times. An

efficient IDS needs to be lightweight, robust and scalable with different system sizes. Moreover,

a pragmatic IDS needs to have a large coverage of attacks (able to detect both known and unknown

attacks), high confidence in detection, and low false positive rate as recovery from false positives

can be expensive.

Since getting the signature of every possible attack is impractical and would limit us to only

detecting known attacks, we conjecture that using anomaly-based IDS is a more practical approach

to this problem. Additionally, due to the ease of in-vehicle network data acquisition (from test

driving), there can be a large amount of in-vehicle message data to work with, which facilitates

the use of advanced deep learning models for detecting the presence of an attacker in the system.

In this chapter, we propose a novel IDS framework called INDRA that monitors the messages

in Controller Area Network (CAN) based automotive systems for the presence of an attacker. In

the offline phase, INDRA uses deep learning to learn the normal system behavior in an

unsupervised fashion. At runtime, INDRA monitors the network and indicates the presence of an

146

attacker if any anomalies (any deviation from the normal behavior learned during the offline phase)

are detected. INDRA aims to maximize the detection accuracy and minimize false positive rate

with minimal overhead on the ECUs.

Our novel contributions in this work are as follows:

 We propose a Gated Recurrent Unit (GRU) based recurrent autoencoder network to learn

the latent representation of normal system behavior during the offline phase;

 We propose a metric called intrusion score (IS), which is a measure of deviation from the

normal system behavior;

 We perform a thorough analysis towards the selection of thresholds for this intrusion score

metric;

 We compare our proposed INDRA framework with the best known prior works in the area,

to show its effectiveness.

5.1 RELATED WORK

Several techniques have been proposed to design IDS for time-critical automotive systems.

The goal of these works is to detect various types of attacks by monitoring the in-vehicle network

traffic.

Signature-based IDS relies on detecting known and pre-modeled attack signatures. The

authors in [121], used a language theory-based model to derive attack signatures. However, this

technique fails to detect intrusions when it misses the packets transmitted during the early stages

of an attack. In [122], the authors used transition matrices to detect intrusions in a CAN bus. In

spite of achieving a low false-positive rate for trivial attacks, this technique failed to detect realistic

replay attacks. The authors in [123] identify notable attack patterns such as an increase in message

147

frequency and missing messages to detect intrusions. A specification-based approach to detect

intrusions is proposed in [124], where the authors analyze the behavior of the system and compare

it with the predefined attack patterns to detect intrusions. Nonetheless, their system fails to detect

unknown attacks. In [125], an IDS technique using the Myers algorithm [126] was proposed under

the map-reduce framework. A time-frequency analysis of CAN messages is used in [127] to detect

multiple intrusions. A rule-based regular operating mode region is derived in [106] by analyzing

the message frequency at design time. This region is observed for deviations at runtime to detect

anomalies. In [128], fingerprints of the sender ECU’s clock skew and the messages are used to

detect intrusions by observing for variations in the clock-skew at runtime. In [129], a formal

analysis is presented for clock-skew based IDS and evaluated on a real vehicle. A memory heat

map is used to characterize the memory behavior of the operating system to detect intrusions in

[130]. An entropy-based IDS is proposed in [131] that observes for change in system entropy to

detect intrusions. However, the technique fails to detect small scale attacks where the entropy

change is minimal. In summary, signature-based techniques offer a solution to the intrusion

detection problem with low false positive rates but cannot detect more complex and novel attacks.

Moreover, modeling signatures of every possible attack is impractical.

Anomaly-based IDS aims to learn the normal system behavior in an offline phase and

observe for any deviation from the learned normal behavior to detect intrusions at runtime. A

sensor-based IDS was proposed in [132], that utilizes attack detection sensors to monitor various

system events to observe for deviations from normal behavior. However, this approach is not only

expensive but also suffers from poor detection rates. A One-Class Support Vector Machine

(OCSVM) based IDS was proposed in [133]. However, this approach suffers from poor detection

latency. In [134], the authors used four different nearest neighbor classifiers to distinguish between

148

a normal and an attack induced CAN payload. In [135], a decision-tree based detection model is

proposed to monitor the physical features of the vehicle to detect intrusions. However, this model

is not realistic and suffers from high detection latencies. A Hidden Markov Model (HMM) based

technique was proposed in [136] that monitors the temporal relationships between messages to

detect intrusions. A deep neural network based approach was proposed to examine the messages

in the in-vehicle network in [137]. This approach is tuned for a low priority tire pressure

monitoring system (TPMS), which makes it hard to adapt to high priority safety-critical powertrain

applications. A Long Short-Term Memory (LSTM) based IDS for multi-message ID detection was

proposed in [138]. However, the model architecture is highly complex, which incurs high overhead

on the ECUs. In [139], the authors use LSTM based IDS to detect insertion and dropping attacks

(explained in Section 5.3.3). An LSTM based predictor model is proposed in [140] that predicts

the next time step message value at a bit level and observes for large variations in loss to detect

intrusions. In [141], a recurrent neural network (RNN) based IDS was proposed to learn the normal

patterns in CAN messages in the in-vehicle network. A hybrid IDS was proposed in [142], which

utilizes a specification-based system in the first stage and an RNN based model in the second stage

to detect anomalies in time-series data. However, none of these techniques provides a holistic

system-level solution that is lightweight, scalable, and reliable to detect multiple types of attacks

for in-vehicle networks.

In this chapter, we propose a lightweight recurrent autoencoder based IDS using gated

recurrent units (GRUs) that monitors messages at a signal level granularity to detect multiple types

of attacks more effectively and successfully than the state of the art. Table 9 summarizes some of

the state-of-the-art works’ performance under different metrics and shows how our proposed

INDRA framework fills the existing research gap. The INDRA framework aims at improving

149

multiple performance metrics compared to the state-of-the art IDS works that target a subset of

performance metrics. A detailed analysis of each metric and evaluation results are presented later

in Section 5.5.

Table 9 Comparison between our proposed INDRA framework and

state-of-the-art works.

Technique

Performance metrics

Lightweight
Low False

Positive Rate

High

accuracy

Fast

Inference

PLSTM [140] X X X

RepNet [141] X X

CANet [138] X X

INDRA

5.2 SEQUENCE LEARNING BACKGROUND

With the availability of increased computing power from GPUs and custom accelerators,

training neural networks with many hidden layers (known as deep neural networks) has led to the

creation of powerful models for solving difficult problems in many domains. One such problem is

detecting intrusions in the in-vehicle network. In an in-vehicle network, the communication

between ECUs happens in a time-dependent manner. Hence, there exist temporal relationships

between the messages, which is essential to exploit, in order to detect intrusions. However, this

cannot be achieved using traditional feedforward neural networks where the output of any input is

independent of the other inputs. Sequence models are a more appropriate approach for such

problems, as they are designed to handle sequences and time-series data.

5.2.1. SEQUENCE MODELS

A sequence model can be understood as a function which ensures that the output is dependent

not only on the current input, but also on the previous inputs. An example of such a sequence

150

model is the recurrent neural network (RNN), which was introduced in [143]. In recent years, other

sequence models such as long short-term memory (LSTM) and gated recurrent unit (GRU) have

also been developed.

5.2.1.1. RECURRENT NEURAL NETWORKS (RNN)

An RNN is a type of neural network which takes sequential data as the input and learns the

relationship between data sequences. RNNs have hidden states, which allows learned information

to persist over time steps. The hidden states enable the RNN to connect previous information to

current inputs. An RNN cell with feedback is shown in Figure 45(a), and an unrolled RNN in time

is shown in Figure 45(b).

(a)

(b)

Figure 45 (a) A single RNN cell and (b) unrolled RNN unit; where, f is the RNN cell, x is the

input, and h represents hidden states.

151

The output (ℎ) of an RNN cell is a function of both the input () and the previous output

(ℎ) as shown in (21):

ℎ = (+ ℎ +) (21)

where W, U are weight matrices, b is a bias term, and f is a nonlinear activation function (e.g.

sigmoid or tanh). One of the limitations of RNNs is that they are very hard to train. Since RNNs

and other sequence models deal with sequence or time-series inputs, backpropagation happens

through various time samples (known as backpropagation through time). During this process, the

feedback loop in RNNs causes the errors to shrink or grow rapidly (creating vanishing or exploding

gradients respectively), destroying the information in backpropagation. This problem of vanishing

gradients hampers the RNNs from learning long term dependencies. This problem was solved in

[144] with the introduction of additional states and gates in the RNN cell to remember long term

dependencies, which led to the introduction of Long Short-Term Memory Networks.

5.2.1.2. LONG SHORT-TERM MEMORY (LSTM) NETWORKS

LSTMs are modified RNNs that use cell state and hidden state information along with

multiple gates to remember long term dependencies. The cell state can be thought of as a transport

highway, that carries relevant information throughout the processing of a sequence. The state

accommodates the information from earlier time steps, which can be used in the later time steps,

thereby reducing the effects of short-term memory. The information in the cell state is modified

via gates. Hence, the gates in LSTM help the model decide which information has to be retained

and which information to forget.

152

(a)

(b)

Figure 46 (a) A single LSTM cell with different gates and (b) unrolled LSTM unit; where, f

is an LSTM cell, x is input, c is cell state and h is the hidden state.

An LSTM cell consists of three gates: (i) forget gate (ft) (ii) input gate (it), and (iii) output

gate (ot) as shown in Figure 46(a). The forget gate is a binary gate that chooses which information

to retain from the previous cell state (ct-1). The input gate adds relevant information to the cell state

(ct). Lastly, the output layer is controlled by the output gate, which uses information from the

previous two gates to produce an output. An unrolled LSTM unit is shown in Figure 46(b).

By using the combination of different gates and hidden states, LSTMs can learn long term

dependencies in a sequence. However, they are not computationally efficient as the sequence path

is more complicated than in RNNs, due to the addition of multiple gates, requiring more memory

at runtime. Moreover, training LSTMs is compute intensive even with advanced training methods

such as truncated backpropagation. To overcome these limitations, a simpler recurrent neural

153

network called gated recurrent unit (GRU) network was introduced in [145] that can be trained

faster than LSTMs and also remembers dependencies in long sequences with low memory

overhead, while solving the vanishing gradient problem.

(a)

(b)

Figure 47 (a) A single GRU cell with different gates and (b) unrolled GRU unit; where, f is a

GRU cell, x is input, and h represents hidden states.

5.2.1.3. GATED RECURRENT UNIT (GRU)

A GRU cell uses an alternate route for gating information when compared to LSTMs. It

combines the input and forget gate of the LSTM into a solitary update gate and furthermore

combines hidden and cell state, as shown in Figure 47(a) and Figure 47(b).

154

A traditional GRU cell has two gates (i) reset gate, and (ii) update gate. The reset gate

combines new input with past memory while the update layer chooses the amount of pertinent data

that should be held. Thus, a GRU cell can control the data stream like an LSTM by uncovering its

hidden layer contents. Moreover, GRUs achieve this using fewer gates and states, which makes

them computationally more efficient with low memory overhead. As real-time automotive ECUs

are highly resource-constrained embedded systems with tight energy and power budgets, it is

critical to use low overhead models for inferencing tasks. Thus, GRU based networks are an ideal

fit for inference in automotive systems. Additionally, GRUs are relatively new, less explored and

have a lot of potential to offer compared to the RNNs and LSTMs. Hence, in this work, we chose

to use a lightweight GRU based model to implement our IDS (explained in detail in Section 5.4).

One of the advantages of sequence models is that they can be trained using both supervised

and unsupervised learning approaches. As there is a large volume of CAN message data in a

vehicle, labeling the data can become very tedious. Additionally, the variability in the messages

between vehicle models from the same manufacturer and the proprietary nature of this information,

makes it even more challenging to label messages correctly. However, due to the ease of

availability to CAN message data via onboard diagnostics (OBD-II), large amounts of unlabeled

data can be collected easily. Thus, we use GRUs in an unsupervised learning setting in this work.

5.2.2. AUTOENCODERS

An autoencoder is an unsupervised learning algorithm whose goal is to reconstruct the input

by learning latent input features. It achieves this by encoding the input data (x) towards a hidden

layer, and finally decodes it to produce a reconstruction (as shown in Figure 48). This encoding

at the hidden layer is called an embedding. The layers that create this embedding are called the

155

encoder, and the layers that reconstruct the embedding into the original input are called the

decoder. During training, the encoder tries to learn a nonlinear mapping of the inputs, while the

decoder tries to learn the nonlinear mapping of the embedding to the inputs. Both encoder and

decoder achieve this with the help of non-linear activation functions, e.g., tanh, and relu. Moreover,

the autoencoder aims to recreate the input as accurately as possible by extracting the key features

from the inputs with a goal of minimizing reconstruction loss. The most commonly used loss

functions in autoencoders are mean squared error (MSE) and Kullback-Leibler (KL) divergence.

Figure 48 Autoencoders.

As autoencoders aim to reconstruct the input by learning the underlying distribution of the

input data, it makes them an ideal choice to learn and reconstruct highly correlated time-series data

efficiently by learning the temporal relations between signals. Hence, our proposed INDRA

framework uses light weight GRUs in an autoencoder to learn latent representations of CAN

messages in an unsupervised learning setting.

156

Figure 49 Overview of the system model.

5.3 PROBLEM DEFINITION

5.3.1 SYSTEM MODEL

We consider a generic automotive system consisting of multiple ECUs connected using a

CAN based in-vehicle network, as shown in Figure 49. Each ECU is responsible for running a set

of automotive applications that are hard-real time in nature, meaning they have strict timing and

deadline constraints. In addition, we assume that each ECU also executes intrusion detection

applications that are responsible for monitoring and detecting intrusions in the in-vehicle network.

We consider a distributed IDS approach (intrusion applications collocated with automotive

applications) as opposed to a centralized IDS approach where one central ECU handles all

intrusion detection tasks due to the following reasons:

 A centralized IDS approach is prone to single-point failures, which can completely open up

the system to the attacker.

 In extreme scenarios such as during a flooding attack (explained in Section 5.3.3), the in-

vehicle network can get highly congested and the centralized system might not be able to

communicate with the victim ECUs.

157

 If an attacker succeeds in fooling the centralized IDS ECU, attacks can go undetected by

the other ECUs, resulting in compromising the entire system; whereas with a distributed

IDS, fooling multiple ECUs is required which is much harder, and even if an ECU is

compromised, this can still be detected by the decentralized intelligence.

 In a distributed IDS, ECUs can stop accepting messages as soon as an intrusion is detected

without waiting for a centralized system to notify them, leading to faster response.

 The computation load of IDS is split among the ECUs with a distributed IDS, and the

monitoring can be limited to only the required messages. Thus, multiple ECUs can monitor

a subset of messages independently, with lower overhead.

Many prior works, e.g., in [121] and [106], consider a distributed IDS approach for these

reasons. Moreover, with automotive ECUs becoming increasingly powerful, the collocation of IDS

applications with real-time automotive applications in a distributed manner should not be a

problem, provided the overhead from the IDS is minimal. Our proposed framework is not only

lightweight, but also scalable, and achieves high intrusion detection performance, as discussed in

Section 5.5.

The design of an IDS should have low susceptibility to noise, low cost, and a low

power/energy footprint. The following are some of the goals that we considered for our IDS:

 Lightweight: Intrusion detection tasks can incur overhead on the ECUs that could result in

poor application performance or missed deadlines for real-time applications. This can be

catastrophic in some cases. Hence, we aim to have a lightweight IDS that incurs low

overhead on the system.

158

 Few false positives: This is a highly desired quality in any kind of IDS (even outside of the

automotive domain), as handling false positives can become expensive very quickly. A

good IDS needs to have few false positives or false alarms.

 Coverage: This is the range of attacks an IDS can detect. A good IDS needs to be able to

detect more than one type of attack. A high coverage for IDS will make the system resilient

to multiple attack surfaces.

 Scalability: This is an important requirement as emerging vehicles have increasing numbers

of ECUs, and high software and network complexity. A good IDS should be highly scalable

and be able to support multiple system sizes.

Figure 50 Standard CAN frame format.

5.3.2 COMMUNICATION MODEL

In this subsection, we discuss the vehicle communication model that was considered. We

primarily focus on detecting intrusions in a CAN bus-based automotive system. Controller Area

Network (CAN) is the defacto industry standard in-vehicle network protocol for automotive

systems today. CAN is a lightweight, low cost, and event-triggered communication protocol that

transmits messages in the form of frames. The structure of a standard CAN frame is shown in

Figure 50 and the length of each field (in bits) is shown on the top. The standard CAN frame

consists of header, payload, and trailer segments. The header consists of information such as the

159

message identifier (ID) and the length of the message. The actual data that needs to be transmitted

is in the payload segment. The trailer section is mainly used for error checking at the receiver. A

variation of the standard CAN, called CAN-extended or CAN 2.0B is also becoming increasingly

common in modern vehicles. The major difference is that CAN extended has a 29-bit identifier

allowing for more number of messages IDs.

Figure 51 Real-world CAN message with signal information.

In this work, we design our IDS with a focus on monitoring the message payload and observe

for anomalies to detect intrusions. This is because an attacker needs to modify the message payload

to accomplish a malicious activity. While an attacker could target the header or trailer segments,

it would result in the message getting rejected at the receiver. The payload segment consists of

multiple data entities called signals. An example real-world CAN message with the signals is

shown in Figure 51 [19]. Each signal has a fixed size (in bits), a particular data type, and a start bit

that specifies its location in the 64-bit payload segment of the CAN message.

In this work, we focus on monitoring individual signals within message payloads to observe

for anomalies and detect intrusions. Our model learns the temporal dependencies between the

messages at a signal level during training and observes for deviations at runtime to detect

intrusions. Signal level monitoring would give us the capability to not only detect the presence of

an intruder but also helps in identifying the signal within the message that is being targeted during

an attack. This can be valuable information for understanding the intentions of the attacker, which

160

can be used for developing countermeasures. The details about the signal level monitoring of our

IDS are discussed in Section 5.4.2. Note: Even though in this work we focus on detecting intrusions

by monitoring CAN messages, our approach is protocol-agnostic and can be used with other in-

vehicle network protocols.

5.3.3 ATTACK MODEL

Our proposed IDS aims to protect the vehicle from multiple types of attacks listed below.

These are some of the most common and hard to detect attacks, and have been widely considered

in literature to evaluate IDS models.

(1) Flooding attack: This is the most common and easy to launch attack and requires no

knowledge about the system. In this attack, the attacker floods the in-vehicle network with a

random or specific message and prevents the other ECUs from communicating. These attacks are

generally detected and prevented by the bridges and gateways in the in-vehicle network and often

do not reach the last line of defense (the IDS). However, it is important to consider these attacks

as they can have a severe impact when not handled correctly.

(2) Plateau attack: In this attack, an attacker overwrites a signal value with a constant value

over a period of time. The severity of this attack depends on the magnitude of the jump (increase

in signal value) and the duration for which it is held. Large jumps are easier to detect compared to

shorter jumps.

(3) Continuous attack: In this attack, an attacker slowly overwrites the signal value with the

goal of achieving some target value and avoid triggering of an IDS in the system. This attack is

hard to detect and can be sensitive to the IDS parameters (discussed in Section 5.4.2).

161

(4) Suppress attack: In this attack, the attacker suppresses the signal value(s) by either

disabling the communication controller of the target ECU or by powering off the ECU. These

attacks can be easily detected, as they shut down message transmission for long durations, but are

harder to detect for shorter durations.

(5) Playback attack: In this attack, the attacker replays a valid series of message

transmissions from the past trying to trick the IDS. This attack is hard to detect if the IDS does not

have the ability to capture the temporal relationships between messages.

In this work, we assume that the attacker can gain access to the vehicle using the most

common attack vectors, which include connecting to V2X systems that communicate with the

outside world (such as infotainment and connected ADAS systems), connecting to the OBD-II

port, probe-based snooping on the in-vehicle bus, and via replacing an existing ECU. We also

assume that the attacker has access to the bus parameters (such as BAUD rate, parity, flow control,

etc.) that can help in gaining access to the in-vehicle network.

Problem objective: The goal of our work is to implement a lightweight IDS that can detect

multiple types of attacks (as mentioned above) in a CAN based automotive system, with a high

detection accuracy and low false positive rate, and while maintaining a large attack coverage.

5.4 INDRA FRAMEWORK OVERVIEW

We propose the INDRA framework to enable a signal level anomaly-based IDS for

monitoring CAN messages in automotive embedded systems. An overview of the proposed

framework is shown in Figure 52. At a high level, the INDRA framework consists of design-time

and runtime components. At design time, INDRA uses trusted CAN message data to train a

recurrent autoencoder based model to learn the normal behavior of the system. At runtime, the

162

trained recurrent autoencoder model is used for observing deviations from normal behavior

(inference) and detect intrusions based on the deviation computed using the proposed intrusion

score metric (detection). The following subsections describe these steps in more detail.

Figure 52 Overview of proposed INDRA framework.

5.4.1. RECURRENT AUTOENCODER

Recurrent autoencoders are powerful neural networks that are designed to behave like an

encoder-decoder but handle time-series or sequence data as inputs. They can be visualized as

regular feed-forward neural network based autoencoders, with the neurons being RNN, LSTM or

GRU cells (discussed in Section 5.2). Similar to regular autoencoders, the recurrent autoencoders

have an encoder and a decoder stage. The encoder is responsible for generating a latent

representation of the input data in an n-dimensional space. The decoder uses the latent

representation from the encoder and tries to reconstruct the input data with minimal error. In this

work, we propose a new lightweight recurrent autoencoder model, that is customized for the design

163

of IDS to detect intrusions in the in-vehicle network data. The details of the proposed model

architecture and the stages involved in its training are discussed next.

Figure 53 Proposed recurrent autoencoder network (f is number of features i.e., number of

signals in the input CAN message, MCV is message context vector).

5.4.1.1. MODEL ARCHITECTURE

The proposed recurrent autoencoder model architecture with the dimensions (input, output)

of each layer is illustrated in Figure 53. The model consists of a linear layer at the input, GRU

based encoder, GRU based decoder and a final linear layer before the output. The input to the first

linear layer is the time-series of CAN message data with signal level values with f features (where

f is the number of signals in that particular message). The output of the linear layer is given to the

GRU based encoder to generate the latent representation of the time-series signal inputs. We call

this latent representation as a message context vector (MCV). The MCV captures the context of

different signals in the input message data, and hence has a vector form. Each value in the MCV

can be thought of as a point in an n-dimensional space that contains the context of the series of

signal values given as input. The MCV is fed into a GRU based decoder, which is then followed

by a linear layer to reconstruct the input time-series of CAN message data with individual signal

164

level values. Mean square error (MSE) is used to compute the loss between the input and the

reconstructed input. Weights are updated using backpropagation through time. We design a

recurrent autoencoder model for each message ID.

5.4.1.2. TRAINING PROCESS

The training process begins with the pre-processing of the CAN message data. Each sample

in the dataset consists of a message ID and corresponding values of the signals within that message

ID. The signal values are scaled between 0 to 1 for each signal type, as the range of signal values

can be very large in some cases. Using such unscaled inputs can result in an extremely slow or

very unstable training process. Moreover, as our goal is to reconstruct the input, scaling signal

values also helps us avoid the problem of exploding gradients.

Figure 54 Rolling window based approach.

After pre-processing the available data for training, it is split into training data (85%) and

validation data (15%), and is prepared for training using a rolling window based approach. This

involves selecting a window of fixed size and rolling it to the right by one time sample every time

step. A rolling window size of three samples for three time steps is illustrated in Figure 54, where

the term represents the ith signal value at jth sample. The elements in the rolling window are

collectively called as a subsequence and the subsequence size is equal to the size of the rolling

165

window. As each subsequence consists of a set of signal values over time, the proposed recurrent

autoencoder model tries to learn the temporal relationships that exist between the series of signal

values. These signal level temporal relationships help in identifying more complex attacks such as

continuous and playback (as discussed in Section 5.3.3). The process of training using

subsequences is done iteratively until the end of the sequence in training data.

During training, each iteration consists of a forward pass and a backward pass using

backpropagation through time to update the weights and biases of the neurons (discussed in

Section 5.2) based on the error value. At the end of the training, the model’s learning is evaluated

(forward pass only) using the validation data, which was not seen during the training. By the end

of validation, the model has seen the full dataset once and this is known as an epoch. The model

is trained for multiple epochs until the model reaches convergence. Moreover, the process of

training and validation using subsequences is sped up by training the input data in groups

subsequences known as mini-batches. Each mini-batch consists of multiple consecutive

subsequences that are given to the model in parallel. The size of each mini-batch is commonly

called batch size and it is a common practice to choose the batch size as a power of two. Lastly, to

control the rate of update of parameters during backpropagation, a learning rate needs to be

specified to the model. These hyperparameters such as subsequence size, batch size, learning rate,

etc., are presented later in Section 5.5.1.

5.4.2. INFERENCE AND DETECTION

At runtime, the trained model is set to evaluation mode, meaning only the forward passes

occur and the weights are not updated. In this phase, we can test for multiple attack scenarios

166

(mentioned in Section 5.3.3), by simulating appropriate attack condition in the CAN message

dataset.

Every data sample that goes through the model gets reconstructed and the reconstruction

loss is sent to the detection module to compute a metric called intrusion score (IS). The IS helps

us in identifying whether a signal is malicious or normal. We compute IS at a signal level to predict

the signal that is under attack. The IS is computed at every iteration during inference, as a squared

error to estimate the prediction deviation from the input signal value, as shown in (22).

= − ∀ ∈ [1,] (22)

where, represents ith signal value at jth sample, denotes its reconstruction, and m is the number

of signals in the message. We observe a large deviation for predicted value from the input signal

value (i.e., large IS value), when the signal pattern is not seen during the training phase, and a

minimal IS value otherwise. This is the basis for our detection phase.

As we do not have a signal level intrusion label information in the dataset, we combine the

signal level IS information into a message-level IS, by taking the maximum IS of the signals in

that message as shown in (23).

= max(, … ,) (23)

In order to get adequate detection accuracy, the intrusion threshold (IT) for flagging

messages needs to be selected carefully. We explored multiple choices for IT, using the best model

from the training process. The best model is defined as the model with the lowest validation

running loss during the training process. From this model, we log multiple metrics such as

167

maximum, mean, median, 99.99%, 99.9%, 99% and 90% validation loss across all iterations as

the choices for the IT. The analysis of IT metrics is presented in Section 5.5.2.

(a)

(b)

Figure 55 Snapshot of our proposed IDS checking a message with three signals under a

plateau attack, where (a) shows the signal comparisons and (b) shows IS for signals and IS

for the message and Intrusion flag.

168

A snapshot of our IDS working in an environment with attacks is illustrated in Figure 55(a)

and Figure 55(b) with a plateau attack on a message with three signals, between time 0 and 50.

Figure 55(a) shows the input (true) vs IDS predicted signal value comparisons for 3 signals. The

red highlighted area represents the attack interval. It can be seen that for most of the time, the

reconstruction is close for almost all signals except during the attack interval. Signal 3 is subjected

to a plateau attack where the attacker held a constant value until the end of attack interval as shown

in the third subplot of Figure 55(a) (note the larger difference between the predicted and actual

input signal values in that subplot, compared to for signals 1 and 2). Figure 55(b) shows the

different signal intrusion scores for the 3 signals. The dotted black line is the intrusion threshold

(IT). As mentioned earlier, the maximum of signal intrusion scores is chosen as message intrusion

score (MIS), which in this case is the IS of signal 3. It can be observed from Figure 55(b) that the

intrusion score of signal 3 is above the IT, for the entire duration of the attack interval, highlighting

the ability of INDRA to detect such attacks. The value of IT (equal to 0.002) in Figure 55(b) is

computed using the method discussed in Section 5.5.2. Note that this value is specific to the

example case shown in, Figure 55 and is not the threshold value used for our remaining

experiments. Section 5.5.2 describes how we select the IT value for our framework.

5.5 EXPERIMENTS

5.5.1. EXPERIMENTAL SETUP

To evaluate the performance of the INDRA framework, we first present an analysis for the

selection of intrusion threshold (IT). Using the derived IT, we contrast it against the two variants

of the same framework: INDRA-LED and INDRA-LD. The former removes the linear layer before

the output and essentially leaving the GRU to decode the context vector. The term LED implies,

169

(L)linear layer, (E) encoder GRU and (D) decoder GRU. The second variation replaces the GRU

and the linear layer at the decoder with a series of linear layers (LD implies linear decoder). These

experiments were conducted to test the importance of different layers in the network. However,

the encoder end of the network is not changed because we require a sequence model to generate

an encoding of the time-series data. We explored other variants as well, but they are not included

in the discussion as their performance was poor compared to the LED and LD variants.

Subsequently, we compare the best variant of our framework with three prior works:

Predictor LSTM (PLSTM [140]), Replicator Neural Network (RepNet [141]), and CANet [138].

The first comparison work (PLSTM) uses an LSTM based network that is trained to predict the

signal values in the next message transmission. PLSTM achieves this by taking the 64-bit CAN

message payload as the input, and learns to predict the signal at a bit-level granularity by

minimizing the prediction loss. A log loss or binary cross-entropy loss function is used to monitor

the bit level deviations between the real next signal values and the predicted next signal values,

and the gradient of this loss function is computed using backpropagation to update the weights in

the network. During runtime, PLSTM uses the prediction loss value to decide if that particular

message is malicious or not. The second comparison work (RepNet) uses a series of RNN layers

to increase the dimensionality of the input data and reconstruct the signal values by reducing back

to the original dimensionality. RepNet achieves this by minimizing the mean squared error

between the input and the reconstructed signal values. At runtime, large deviations between the

input received signal and the reconstructed signal values are used to detect intrusions. Lastly,

CANet unifies multiple LSTMs and linear layers in an autoencoder architecture and uses a

quadratic loss function to minimize the signal reconstruction error. All experiments conducted

with the INDRA variations and prior works are discussed in further subsections.

170

To evaluate our proposed framework with its variants and against prior works we used the

SynCAN dataset that was developed by ETAS and Robert Bosch GmbH [138]. The dataset

consists of CAN message data for 10 different IDs modeled after real-world CAN message data.

The dataset comes with both training and test data with multiple attacks as discussed in Section

5.3.3. Each row in the dataset consists of a timestamp, message ID, and individual signal values.

Additionally, there is a label column in the test data with either 0 or 1 values indicating normal or

malicious messages. The label information is available on a per message basis and does not

indicate which signal within the message is subjected to the attack. We use this label information

to evaluate our proposed IDS over several metrics such as detection accuracy and false positive

rate, as is discussed in detail in the next subsections. Moreover, to simulate a more realistic attack

scenario in the in-vehicle networks, the test data has normal CAN traffic between the attack

injections. Note: We do not use the label information in the training data when training our model,

as our model learns the patterns in the input data in an unsupervised manner.

All the machine learning based frameworks (INDRA and its variants, and comparison works)

are implemented using Pytorch 1.4. We conducted several experiments to select the best

performing model hyperparameters (number of layers, hidden unit sizes, and activation functions).

The final model discussed in Section 5.4.1 was trained using the SynCAN data set by splitting

85% of train data for training and the remaining for validation. The validation data is mainly used

to evaluate the performance of the model at the end of every epoch. We trained the model for 500

epochs, using a rolling window approach (as discussed in Section 5.4.1.2) with the subsequence

size of 20 messages and the batch size of 128. We also implemented an early stopping mechanism

that monitors the validation loss across epochs and stops the training process if there is no

improvement after 10 (patience) epochs. We chose the initial learning rate as 0.0001, and apply

171

tanh activations after each linear and GRU layers. Moreover, we used the ADAM optimizer with

the mean squared error (MSE) as the loss criterion. During testing, we used the trained model

parameters and considered multiple test data inputs to simulate attack scenarios. We monitored the

intrusion score metric (as described in Section 5.4.2) and the computed intrusion threshold to flag

the message as malicious or normal. We computed several performance metrics such as detection

accuracy, false positives, etc. to evaluate the performance of our model. All the simulations are

run on an AMD Ryzen 9 3900X server with an Nvidia GeForce RTX 2080Ti GPU.

Lastly, before showing the experimental results, we present the following definitions in the

context of IDS:

 True Positive (TP)- when the IDS detects an actual malicious message as malicious;

 False Negative (FN)- when the IDS detects an actual malicious message as normal;

 False Positive (FP)- when the IDS detects a normal message as malicious (also known as

false alarm);

 True Negative (TN)- when the IDS detects an actual normal message as normal.

We focus on two key performance metrics: (i) Detection accuracy- a measure of IDS ability

to detect intrusions correctly, and (ii) False positive rate: also known as false alarm rate. These

metrics are calculated as shown in (24) and (25):

 = (24)

 = (25)

172

5.5.2. INTRUSION THRESHOLD SELECTION

In this subsection, we present an analysis for the selection of intrusion threshold (IT) by

considering various options such as max, median, mean, and different quantile bins of validation

loss of the final model. The model reconstruction error for the normal message should be much

smaller than the error for malicious messages. Hence, we want to explore several candidate options

to achieve this goal, that would work across multiple attack and no-attack scenarios. Having a

large threshold value can make it harder for the model to detect the attacks that change the input

pattern minimally (e.g., continuous attack). On the other hand, having a small threshold value can

trigger multiple false alarms, which is highly undesirable. Hence it is important to select an

appropriate threshold value to optimize the performance of the model.

Figure 56(a) and Figure 56(b) illustrate the detection accuracy and false positive rate

respectively for various candidate options to calculate IT, under different attack scenario. It is clear

from the results in the figure that selecting higher validation loss as the IT can lead to a high

accuracy and low false alarm rate. However, choosing a very high value (e.g., ‘max’ or ‘99.99

percentile’) can sometimes result in missing small variations in the input patterns that are found in

more sophisticated attacks. From our experiments we found the maximum and 99.99 percentile

values to be very close. In order to capture the attacks that produce small deviations, we selected

a slightly smaller threshold that would still perform similar to max and 99.99 percentile thresholds

on all of our current attack scenarios. Hence, in this work, we choose the 99.9th percentile value

of the validation loss as the value of the intrusion threshold (IT). We use the same IT value for the

remainder of the experiments discussed in the next subsections.

173

(a)

(b)

Figure 56 Comparison of (a) detection accuracy, and (b) false positive rate for various

candidate options of intrusion threshold (IT) as a function of validation loss under different

attack scenarios. (% refers to percentile not percentage).

5.5.3. COMPARISION OF INDRA VARIANTS

After selecting the correct intrusion threshold from the previous subsection, we use that

criterion and evaluate our proposed INDRA framework with two other variants: INDRA-LED, and

174

INDRA-LD. The main intuition behind evaluating different variants of INDRA is to analyze the

impact of different types of layers in the model on the performance metrics discussed in Section

5.5.1.

(a)

(b)

Figure 57 Comparison of (a) detection accuracy, and (b) false positive rate for INDRA and

its variants INDRA-LED and INDRA-LD under different attack scenarios.

Figure 57(a) shows the detection accuracy for our INDRA framework and its variants on y-

axis with different attack types and for a no-attack scenario (normal) on the x-axis. We can observe

that INDRA outperforms the other two variants and has high accuracy in most of the attack

175

scenarios. It is to be noted that the high accuracy is achieved by monitoring at a signal level unlike

prior works that monitor at the message level. The false positive rate or false alarm rate of INDRA

and other variants under different attack scenarios is shown in Figure 57(b). It is evident that

INDRA has the lowest false positive rate and highest detection accuracy compared to the other

variants. Moreover, INDRA-LED which is just short of a linear layer at the decoder end is the

second best performing model after INDRA. INDRA-LED’s ability to use a GRU based decoder

helps in reconstructing the MCV back to original signals. It can be clearly seen in both Figure

57(a) and Figure 57(b), that the lack of GRU layers on the output decoder end for INDRA-LD leads

to a significant performance degradation. Hence, we chose INDRA as our candidate model for

subsequent experiments.

5.5.4. COMPARISION WITH PRIOR WORKS

We compare our INDRA framework with PLSTM [140], RepNet [141] and CANet [138],

which are some of the best known prior works in the IDS area. Figure 58(a)-(b) show the detection

accuracy and false positive rate respectively for the various techniques under different attack

scenarios.

(a)

176

(b)

Figure 58 Comparison of (a) detection accuracy, and (b) false positive rate of INDRA and the

prior works PLSTM [140], RepNet [141] and CANet [138].

From the results shown in Figure 58, it is evident that INDRA achieves high accuracy for

each attack scenario and also achieves low positive rates for most of the scenarios. The ability to

monitor signal level variations along with the more cautious selection of intrusion threshold gives

INDRA an advantage over comparison works. PLSTM and RepNet use the maximum validation

loss in the final model as the threshold to detect intrusions in the system, while CANet uses interval

based monitoring to detect attacks. Selecting a larger threshold helped PLSTM to achieve slightly

lower false positive rates for some scenarios, but it hurt the ability of both PLSTM and RepNet to

detect attacks with small variations in the input data. This is because the deviations produced by

some of the complex attacks are small and due to the large thresholds the attacks go undetected.

Moreover, the interval based monitoring in CANet struggles with finding an optimal value for the

thresholds. Lastly, the false positive rates of INDRA are still significantly low with the maximum

of 2.5% for plateau attacks. Please note that the y-axis in Figure 58(b) has a much smaller scale

than in Figure 58(a), and the magnitude of the false positive rate is very small.

177

5.5.5. IDS OVERHEAD ANALYSIS

In this subsection, we present a detailed analysis of the overhead incurred by our proposed

IDS. We quantify the overhead in terms of both memory footprint and time taken to process an

incoming message i.e., inference time. The former metric is important as the resource constrained

automotive ECUs have limited available memory, and it is crucial to have a low memory overhead

to avoid interference with real-time automotive applications. The inference time not only provides

important information about the time taken to detect the attacks, but also can be used to compute

the utilization overhead on the ECU. Thus, we choose the above-mentioned two metrics to analyze

the overhead and quantify the lightweight nature of our proposed IDS.

To accurately capture the overhead of our proposed INDRA framework and the prior works,

we implemented our proposed IDS approach on an ARM Cortex- A57 CPU on a Jetson TX2 board,

which has similar specifications to the state-of-the-art multi-core ECUs. Table 10 presents the

memory footprint of our proposed INDRA framework and the prior works mentioned in the

previous subsections. It is clear that our proposed INDRA framework has a low memory footprint

compared to the prior works, except for the RepNet [141]. However, it is important to observe that

even though our proposed framework has slightly higher memory footprint compared to the

RepNet [141], we outperform all of the prior works including RepNet [141] in all performance

metrics under different attack scenarios, as shown in Figure 58. The heavier (high memory

footprint) models can provide the ability to capture a large variety of details about the system

behavior, but they are not an ideal choice for resource constrained automotive systems. On the

other hand, a much lighter model such as RepNet, fails to capture key details about the system

behavior due to its limited parameters and therefore suffers from performance issues.

178

Table 10 Memory footprint comparison between INDRA framework and the prior works

PLSTM [140], RepNet [141] and CANet [138].

Framework Memory footprint (KB)

PLSTM [140] 13,417

RepNet [141] 55

CANet [138] 8,718

INDRA 443

In order to understand the inference overhead, we benchmarked the different IDS

frameworks on an ARM Cortex- A57 CPU. In this experiment, we consider different system

configurations to encompass a wide variety of ECU hardware that is available in the state-of-the-

art vehicles. Based on the available hardware resources on the Jetson TX2, we selected two

different system configurations. The first configuration utilizes only one CPU core (single core),

while the second configuration uses two CPU cores.

Table 11 Inference time comparisons between INDRA framework and the prior works

PLSTM [140], RepNet [141] and CANet [138] using single core, and dual core configurations.

Framework

Average inference time (µs)

Single core ARM Cortex

A57 CPU

Dual core ARM Cortex

A57 CPU

PLSTM [140] 681.18 644.76

RepNet [141] 19.46 21.46

CANet [138] 395.63 378.72

INDRA 80.35 72.91

We ran the frameworks 10 times for the different CPU configurations and computed the

average inference time (in µs), as shown in Table 11. From the results in Table 11, it is clear that

our proposed INDRA framework has significantly faster inference times compared to the prior

works (excluding RepNet) under all three configurations. This is partly due to the lower memory

footprint of our proposed IDS. As mentioned earlier, even though RepNet has a lower inference

179

time, it has the worst performance out of all frameworks, as shown in Figure 58. The large

inference times for the better performing frameworks can impact the real-time performance of the

control systems in the vehicle, and can result in catastrophic missing of deadlines. We also believe

that using a dedicated deep learning accelerator (DLA) would give us significant speed up

compared to the above presented configurations.

Thus, from Figure 58, and Table 10 and Table 11, it is clear that INDRA achieves a clear

balance of having superior intrusion detection performance while maintaining low memory

footprint and fast inference times, making it a powerful and lightweight IDS solution.

5.5.6. SCALABILITY RESULTS

In this subsection we present an analysis on the scalability of our proposed IDS by studying

the system performance using the ECU utilization metric as a function of increasing system

complexity (number of ECUs and messages).

Each ECU in our system model has a real-time utilization (URT) and an IDS utilization (UIDS)

from running real-time and IDS applications respectively. In this work, we primarily focus on

analyzing the IDS overhead (UIDS), as it is a measure of the compute efficiency of the IDS. Since

the safety-critical messages monitored by the IDS are periodic in nature, the IDS can be modeled

as a periodic application with period that is the same as the message period [46]. Thus, monitoring

an ith message mi results in an induced IDS utilization (UIDS, mi) at an ECU, and can be computed

as:

, = (26)

180

where, TIDS and Pmi indicate the time taken by the IDS to process one message (inference

time), and the period of the monitored message, respectively. Moreover, the sum of all IDS

utilizations as a result of monitoring different messages is the overall IDS utilization at that ECU

(UIDS) and is given by:

 = , (27)

To evaluate the scalability of our proposed IDS, we consider six different system sizes.

Moreover, we consider a pool of commonly used message periods {1, 5, 10, 15, 20, 25, 30, 45, 50,

100} (all periods in ms) in automotive systems to sample uniformly, when assigning periods to the

messages in the system. These messages are evenly distributed among different ECUs and the IDS

utilization is computed using (26) and (27). In this work, we assume a pessimistic scenario where

all of the ECUs in the system have only a single core. This would allow us to analyze the worst

case overhead of the IDS.

Figure 59 Scalability results of our proposed IDS for different system sizes and the prior

works PLSTM [140], RepNet [141] and CANet [138].

181

Figure 59 illustrates the average ECU utilization under various system sizes denoted by {p,

q}, where p is the number of ECUs and q is the number of messages in the system. A very

pessimistic estimate of 50% real-time ECU utilization for real-time automotive applications is

assumed (“RT Util”, as shown in the dotted bars). The solid bars on top of the dotted bars represent

the overhead incurred by the IDS executing on the ECUs, and the red horizontal dotted line

represents the 100% ECU utilization mark. It is important to avoid exceeding the 100% ECU

utilization under any scenario, as it could induce undesired latencies that could result in missing

deadlines for time-critical automotive applications, which can be catastrophic. It is clear from the

results that the prior works PLSTM and CANet incur heavy overhead on the ECUs while RepNet

and our proposed INDRA framework have very minimal overhead that scales favorably to

increasing system sizes. From the results in this section (Figure 58, Figure 59; Table 10, Table 11),

it is apparent that not only does INDRA achieve better performance in terms of both accuracy and

low false positive rate for intrusion detection than state-of-the-art prior work, but it is also

lightweight and scalable.

5.6 CONCLUSION

In this chapter, we proposed a novel recurrent autoencoder based lightweight intrusion

detection system called INDRA for distributed automotive embedded systems. We proposed a

metric called the intrusion score (IS), which measures the deviation of the prediction signal from

the actual input. We also presented a thorough analysis of our intrusion threshold selection process

and compared our approach with the best known prior works in this area. The promising results

indicate a compelling potential for utilizing our proposed approach in emerging automotive

182

platforms. In our future work, we plan to exploit the dependencies that exist between signals to

improve the performance of our intrusion detection framework.

183

6. LATTE: LSTM SELF-ATTENTION BASED ANOMALY DETECTION IN

EMBEDDED AUTOMOTIVE PLATFORMS

Modern vehicles are experiencing a rapid increase in the complexity of embedded systems

integrated into various vehicle subsystems, due to the increased interest in autonomous driving.

The aggressive competition between automakers to reach autonomy goals is further driving the

complexity of Electronic Control Units (ECUs) and the communication network that connects

them [146]. Additionally, recent solutions for Advanced Driver Assistance Systems (ADAS)

require interactions with various external systems using a variety of communication standards such

as 5G, Wi-Fi, and Vehicle-to-X (V2X) protocols [2]. The V2X communication facilitates a

spectrum of connections such as vehicle-to-vehicle (V2V), vehicle-to-pedestrian (V2P), vehicle-

to-infrastructure (V2I), and vehicle-to-cloud (V2C) [147]. These new solutions are transforming

modern vehicles by making them more connected to the external environment. To support the

increasingly sophisticated ADAS functionality and connectivity to the outside world, highly

complex software is required to run on the ECUs in such vehicles, to handle highly safety-critical

and time-sensitive automotive applications, e.g., pedestrian and traffic sign detection, lane

changing, automatic parking, path planning, etc. This increased software and hardware complexity

of the automotive electrical/electronic (E/E) architecture and increased connectivity with external

systems has an important implication: it provides a large attack surface and thus gives rise to more

opportunities for attackers to gain unauthorized access to the in-vehicle network and execute

cyber-attacks. The complexity in emerging vehicles also leads to poor attack visibility over the

network, making it hard to detect attacks that can be easily hidden within normal operational

activities. Such cyber-attacks on vehicles can induce various anomalies in the network, altering

184

the normal behavior of the network as well as the compute system (ECU) behavior. Due to the

time-sensitive and safety-critical nature of automotive applications, any minor instability in the

system due to these induced anomalies could lead to a major catastrophe, e.g., delaying the

perception of a pedestrian, preventing an airbag from deploying in the case of a collision, or

erroneously changing lanes into oncoming traffic, due to maliciously corrupted sensor readings.

An attack via an externally-linked component or compromised ECU can manifest in several

forms over the in-vehicle network. One of the most commonly observed attacks is flooding the in-

vehicle network with random or specific messages which increases the overall network load and

results in halting any useful activity over the network. An advanced remote attack on an ECU could

involve sending a kill command to the engine during normal driving. More sophisticated attacks

could involve installing malware on the ECU and using it to achieve malicious goals. Some of the

recent state-of-the-art attacks have used a vehicle’s infotainment system as an attack vector to

launch buffer overflow and denial of service attacks [148], performed reverse engineering of

keyless entry automotive systems to wirelessly lock pick the vehicle immobilizer [149], etc.

Researchers in [150] foresee a much more severe attack involving potentially targeting the U. S.

electric power grid by using public electric vehicle charging stations as an attack vector to infect

vehicles that use these stations with malware. Many other attacks on real-world vehicles are

presented in [25], [26], [90], [151]. The common aspect of these attacks is that they involve gaining

unauthorized access to the in-vehicle network and modifying certain fields in the message frames,

thereby tricking the receiving ECU into thinking that the malicious message is legitimate. All of

these attacks can have catastrophic effects and need to be detected before they are executed. This

problem will get exacerbated with the onset of connected and autonomous vehicles. Hence,

185

restricting external attackers via early detection of their attacks is vital to realizing secure

automotive systems.

Conventional computer networks utilize protective mechanisms such as firewalls (software)

and isolation units such as gateways and switches (hardware) to protect from external attacks

[152]. However, persistent attackers have been coming up with advanced attacks that leverage the

increased compute and communication capabilities in modern ECUs, causing the traditional

protection systems to become obsolete. This raises a need for a system-level solution that can

continuously monitor the vehicle network, to detect cyber-attacks. One promising solution is to

deploy a software framework for anomaly detection, which involves monitoring the network for

unusual activities and raising an alarm when suspicious activity is detected. This approach can be

extended to detect and classify various types of attacks on the in-vehicle network. Such a

framework can learn the normal system behavior at design time and monitor the network for

anomalies at runtime. A traditional approach for anomaly detection uses rule-based approaches

such as monitoring message frequency [133], memory heat map [130], etc., to detect known attack

signatures. However, due to the increased complexity of cyber-attacks, such traditional rule-based

systems fail to recognize new and complex patterns, rendering these approaches ineffective.

Fortunately, recent advances in deep learning and the availability of in-vehicle network data have

brought forth the possibility of using sophisticated deep learning models for anomaly detection.

In this chapter, we present a novel anomaly detection framework called LATTE to detect

cyber-attacks in the Controller Area Network (CAN) based automotive networks. Our proposed

LATTE framework uses sequence models in deep learning in an unsupervised setting to learn the

normal system behavior. LATTE leverages that information at runtime to detect anomalies by

observing for any deviations from the learned normal behavior. This is illustrated in Figure 60.

186

The plot on the top right shows the expected deviation (computed using the model that was trained

at design time) vs the observed deviation. The divergence in signal values during the attack

intervals (shown in red area) can be used as a metric to detect cyber-attacks as anomalies. Our

proposed LATTE framework aims to maximize the anomaly detection accuracy, precision, and

recall, while minimizing the false-positive rate.

Figure 60 An example of an anomaly detection framework that monitors the network traffic

and detects deviations from expected normal behavior during the attack intervals (shown in

red).

Our novel contributions in this chapter can be summarized as follows:

 We propose a stacked Long-Short Term Memory (LSTM) based predictor model that

integrates a novel self-attention mechanism to learn the normal automotive system behavior

at design time;

 We design a one class support vector machine (OCSVM) based detector that works with the

LSTM self-attention predictor model to detect different cyber-attacks at runtime;

 We present modifications to existing vehicle communication controllers that can help in

realizing the proposed anomaly detection system on a real-world ECU;

 We perform a comprehensive analysis on the selection of deviation measures that quantify

the deviation from the normal system behavior;

187

 We explore several variants of our proposed LATTE framework and selected the best

performing one, which is then compared with the best-known prior works in the area

(statistical-based, proximity-based, and ML-based works), to show LATTE’s effectiveness.

6.1. RELATED WORK

Several automotive attacks have been studied by researchers to discover vulnerabilities in

automotive systems. Recent attacks such as [153] exploit the vulnerability in security access

algorithms to deploy airbags without any actual impact. The attackers in [154] reverse engineered

a telematics control unit to exploit a memory vulnerability in the firmware to circumvent the

existing firewall and remotely send diagnostic messages to control an ECU. Other attacks that

compromised the ADAS camera sensor were studied in [155]. All of these attacks create

anomalous behavior during vehicle operation, which a good anomaly detection framework must

detect.

Anomaly detection has been a popular research topic in the domain of computer networks,

and several solutions have been proposed to detect cyber-attacks in large-scale computer networks

[156]. Although some of these solutions are highly successful in defending computer networks

against various attacks, they require high compute power. The resource-constrained nature of

automotive systems makes many of these solutions hard to adapt for detecting cyber-attacks in the

in-vehicle networks. In the past decade, several solutions were developed to tackle the problem of

anomaly detection in automotive systems [47], [106], [121], [122], [124], [127], [128], [131],

[137], [138], [140]-[142], [157]-[159]. These works can be broadly divided into two categories (i)

heuristic-based, and (ii) machine learning based. Heuristic-based anomaly detection approaches

typically observe for traces of known attack patterns, whereas a machine-learning-based approach

188

can learn the normal behavior during an offline phase and observes for any deviation from the

learned normal behavior at run-time, to detect anomalies. The heuristic-based techniques can be

simple and have fast detection times when compared to machine learning based techniques.

However, machine learning based techniques can detect both known and unknown attacks, which

is not possible with heuristic based techniques. Some of the key prior works in these categories

are discussed in the rest of this section.

6.1.1. HEURISTIC BASED ANOMALY DETECTION

The authors in [121] used a language theory-based model to obtain signatures of known

attacks from the vehicle’s CAN bus. However, their approach fails to detect anomalous sequences

when the model misses the packets transmitted during the early stages of an attack. In [122], the

authors used transition matrices to detect anomalous sequences in a CAN bus-based system. This

approach was able to achieve low false-positive rates for simple attacks but failed to detect realistic

replay attacks. The authors in [157] proposed a Hamming-distance based model which monitors

the CAN network to detect attacks. However, the model had very limited attack coverage. In

[124], the authors proposed a specification-based approach and compared it with predefined attack

patterns to detect anomalies. In [127], a time-frequency analysis model is used to continuously

monitor CAN message frequency to detect anomalies. In [106], a heuristic-based approach is used

to build a normal operating region by analyzing the messages at design time and using a message-

frequency-based in-vehicle network monitoring system to detect anomalies at runtime. The authors

in [128] use a clock-skew based fingerprint to detect anomalies by observing the variations in

clock-skew of sender ECUs at runtime. In [131], the authors propose an anomaly detection system

that monitors the entire system for change in entropy to detect anomalies. However, their approach

fails to detect smaller anomalous sequences that result in minimal change in the entropy. In a

189

nutshell, heuristic-based anomaly detection systems provide low-cost and high-speed detection

techniques but fail to detect complex and new attacks. Additionally, modeling every possible attack

signature is practically impossible, and hence these anomaly detection approaches have a limited

scope.

6.1.2. MACHINE LEARNING BASED ANOMALY DETECTION

Recent works leverage advances in machine learning to build highly efficient anomaly

detection systems. A deep neural network (DNN) based approach was introduced in [137], that

continuously monitors the network and observes for change in communication patterns. However,

this approach is only designed and tested for a low priority system (a tire pressure monitoring

system), which limits us from directly adapting this technique to safety-critical systems. In [141],

the authors proposed a recurrent neural network (RNN) based intrusion detection system that

attempts to learn the normal behavior of CAN messages in the in-vehicle network. A hybrid

approach was proposed in [142], which utilizes both specification and RNN based systems in two

stages to detect anomalies. In [140] the authors propose an LSTM based predictor model that

predicts the next time step message value at a bit level and detects intrusions by observing for large

deviations in prediction errors. A long short-term memory (LSTM) based multi message-id

detection model was proposed in [138]. However, the model is highly complex and has a high

implementation overhead when deployed on an ECU. In [47], the authors proposed a GRU-based

lightweight recurrent autoencoder and a static threshold-based detection scheme to detect various

attacks in the in-vehicle network. The use of static threshold values for detection limits the scheme

to detecting only very simple attacks. In [158], the authors propose a deep convolutional neural

network (CNN) model to detect anomalies in the vehicle’s CAN network. However, the model

does not consider the temporal relationships between messages, which can better predict certain

190

attacks. The authors in [159] proposed an LSTM framework with a hierarchical attention

mechanism to reconstruct the input messages. A non-parametric kernel density estimator along

with a k-nearest neighbors classifier is used to reconstruct the messages and the reconstruction

error is used to detect anomalies. Although most of these techniques attempt to increase the

detection accuracy and attack coverage, none of them offers the ability to process very long

sequences with relatively low memory and runtime overhead and still achieve reasonably high

performance.

In this chapter, we propose a robust deep learning model that integrates a stacked LSTM

based encoder-decoder model with a self-attention mechanism, to learn normal system behavior

by learning to predict the next message instance. Table 12 summarizes some of the state-of-the-art

anomaly detection works and their key features and highlights the unique characteristics of our

proposed LATTE framework. At runtime, we continuously monitor in-vehicle network messages

and provide a reliable detection mechanism using a non-linear classifier. Sections 6.3 and 6.4

provide a detailed explanation of the proposed model and overall framework. In Section 6.5 we

show how our model is capable of efficiently identifying a variety of attack scenarios.

Table 12 Comparison between our proposed LATTE framework and

state-of-the-art works.

Technique Task
Network

architecture

Attention

type

Detection

technique

Requires

labeled

data?

BWMP

[140]

Bit level
prediction

LSTM
network

-
Static

threshold
Yes

RepNet

[141]
Input recreation

Replicator
network

-
Static

threshold
No

HAbAD

[159]
Input recreation Autoencoder Hierarchical

KDE and
KNN

Yes

LATTE
Next message

value prediction
Encoder-
decoder

Self-
attention

OCSVM No

191

6.2. BACKGROUND

Solving complex problems using deep learning was made possible due to advances in

computing hardware and the availability of high-quality datasets. Anomaly detection is one such

problem that can leverage the power of deep learning. In an automotive system, ECUs exchange

safety-critical messages periodically over the in-vehicle network. This time series exchange of

data results in temporal relationships between messages, which can be exploited to detect

anomalies. However, this requires a special type of neural network, called Recurrent Neural

Network (RNN) to capture the temporal dependencies between messages. Unlike traditional feed-

forward neural networks where the output is independent of any previous inputs, RNNs use

previous sequence state information in computing the output, which makes them an ideal choice

to handle time-series data.

6.2.1. RECURRENT NEURAL NETWORK (RNN)

An RNN [160] is the most basic sequence model that takes sequential data such as time-

series data as the input and learns the underlying temporal relationships between data samples. An

RNN block consists of an input, an output, and a hidden state that allows it to remember the learned

temporal information. The input, output, and hidden state all correspond to a particular time step

in the sequence. The hidden-state information can be thought of as a data point in the latent space

that contains important temporal information about the inputs from previous time steps. The

current stage output of an RNN is computed by taking the previous hidden-state information along

with the current input. Moreover, since the backpropagation in RNNs occurs through time, the

error value shrinks or grows rapidly leading to vanishing or exploding gradients. This severely

restricts RNNs from learning patterns in the input data that have long-term dependencies [161].

192

To overcome this problem, long short-term memory (LSTM) networks [162] with additional gates

and states were introduced.

6.2.2. LONG SHORT-TERM MEMORY (LSTM) NETWORK

LSTMs are enhanced RNNs that consist of a cell state, hidden state, and multiple additional

gates that help in learning long-term dependencies. The cell state carries the relevant long-term

dependencies throughout the processing of an input sequence, whereas the hidden state contains

relevant information from the recent time steps accommodating short-term dependencies. The

gates in LSTM regulate the flow of the information from the hidden state to the cell state. These

combinations of gates and states give LSTM an edge over the simple RNN in remembering long-

term dependencies in sequences. LSTMs have therefore replaced simple RNNs in the areas of

natural language processing, time-series forecasting, and machine translation [161].

In general, LSTMs overcome many of the limitations of RNNs and provide a more than

acceptable solution for the vanishing and exploding gradient descent problems. However, their

performance drops significantly when handling very long sequences (e.g., with 100 or more time

steps). This is mainly because the predictions of an LSTM unit at the current time step t, are heavily

influenced by its previous hidden state and cell state at time step t-1 as compared to the past time

steps. Therefore, for a very long input sequence, the representation of the input at the first time

step tends to diminish as the LSTM processes inputs at the future time steps. To overcome this

limitation, we need a mechanism that can look back and identify the information that can influence

future sequences. One such look-back mechanism is neural attention, which is discussed next.

193

6.2.3. ATTENTION

Attention, or neural attention is a mechanism in neural networks that can mimic the visual

attention mechanism in humans [163]. A human eye can focus on certain objects or regions with

higher resolution compared to their surroundings. Similarly, the attention mechanism in neural

networks can allow focusing on the relevant parts of the input sequence and selectively output only

the most relevant information. While sequence models such as LSTMs typically take the previous

hidden state information and the input at the current time step to compute the current output, they

suffer in performance when processing very long input sequences as the information from the first

time step is less representative in the hidden states compared to the information from the very

recent time steps. Incorporating attention mechanisms with LSTMs can overcome this problem by

allowing the sequence models to capture the crucial information from any past time steps of the

input sequence.

Attention mechanisms are frequently used in encoder-decoder architectures [161]. An

encoder-decoder architecture mainly consists of three major components (i) encoder, (ii) latent

vector, and (iii) decoder. The encoder converts the input sequence to a fixed-size latent

representation called a latent vector. The latent vector contains all the information representing the

input sequence in a latent space. The decoder takes the latent vector as input and converts it to the

desired output. However, due to the latent vector’s fixed-length representation of the input

sequence, it fails to encapsulate all the information from a very long input sequence, thereby

resulting in poor performance. To address this problem, the authors in [164] introduced an

attention mechanism in sequence models that enabled encoders to build a context vector by

creating customized shortcuts to parts of the inputs. This ensures that the context vector represents

the crucial parts and learns the very long-term dependencies in the input sequence leading to

194

improved decoder outputs. In [165], the authors propose a self-attention mechanism for an LSTM

encoder-decoder model that consumes all the encoder hidden states to compute the attention

weights.

An illustration of generating the input to the decoder in an LSTM-based encoder-decoder

model rolled out in time for 4 time steps is shown in Figure 61. The input to the LSTM at each

time step is represented as (xt) and the initial hidden vector is h0. The colored rectangle next to

each LSTM unit for every time step represents the hidden state information and the height of each

color signifies the amount of information from each time step. Inside the LSTM cell at each time

step, a square filled with a different color is used to represent the hidden state information of that

time step. Moreover, for this example, we consider a scenario where the output at the last time step

(t=4) has a high dependency on the input at the second time step (x2). We can see that in Figure

61(a), the LSTM hidden state at t=4 largely comprises of information from the third (blue) and

fourth (orange) time steps. This results in sending the decoder an incorrect representation of current

time step dependency, which leads to poor results at the output of the decoder. On the contrary, in

Figure 61(b), the self-attention block consumes all hidden state representations at each time step

as well as the current time step (t=4) and generates the context vector (decoder input). It can be

observed that the self-attention mechanism clearly captures the high dependency of output at t=4

on the output at t=2 (shown in the hidden state information at the output of self-attention). This

can also be seen in the attention weights computed by the self-attention where the information

from the second (green) time step is given high weightage compared to others. Therefore, by better

representing the important parts of the input sequence in the decoder input, the self-attention

mechanism is able to facilitate better decoder outputs. Also, unlike other attention mechanisms

such as [166], the attention vector in self-attention aligns encoder outputs to encoder hidden states,

195

thereby removing the need for any feedback from previous decoder predictions. Moreover, due to

the lack of a decoder feedback loop, the self-attention mechanism can quickly learn the temporal

dependencies in the long input sequences. In this work, for the first time, we adapt the self-attention

mechanism to a stacked LSTM based encoder-decoder network to learn the temporal relationships

between messages in a CAN based automotive network.

(a)

(b)

Figure 61 Comparison of input to the decoder in case of (a) no attention, (b) with attention

in sequence models using LSTMs.

196

6.3. PROBLEM FORMULATION

6.3.1. SYSTEM OVERVIEW

In this work, we consider an automotive system that consists of multiple ECUs connected

using a CAN based in-vehicle network, as shown in Figure 62. Each ECU consists of three major

components: (a) processor, (b) communication controller, and (c) transceiver. A processor can

have single or multiple cores that are used to execute real-time automotive applications. Most of

these automotive applications are hard real-time and have strict timing and deadline constraints.

Each application can be modeled as a set of data dependent and independent tasks mapped to

different ECUs. The dependent tasks communicate by exchanging messages over the CAN

network. A communication controller acts as the interface between the computation and

communication realms. It facilitates the data movement from the processor to the network fabric

and vice versa. Some of the important functions of a communication controller include packing of

data from the processor into CAN frames, managing the transmission and reception of CAN

frames, and filtering CAN messages based on the pre-programmed CAN filters (done by the

original equipment manufacturer (OEM) when programming the communication controller).

Lastly, a transceiver acts as an interface between the physical CAN network and the ECU, and

facilitates the transmission and reception of CAN frames to and from the network respectively. In

this work, we do not consider monitoring the execution within the CAN hardware IPs as it would

require access to proprietary information that is only available to OEMs. We therefore assume that

the proprietary CAN hardware IPs are “black boxes” and design an anomaly detection solution

that does not require the complexity that comes with monitoring the internals of these IP blocks.

This assumption is also consistent with all prior works on in-vehicle network anomaly detection

work. However, if we were able to get access to this hardware stack and the program execution on

197

the CAN hardware IP, our framework can be extended to analyze CAN IPs and detect the attacks

before they appear on the in-vehicle network.

Figure 62 Overview of the system model with our proposed modifications to the

communication controller.

To accommodate anomaly detection, we require modifications to existing CAN

communication controllers. A traditional CAN communication controller consists of message

filters that are used to filter out unwanted CAN messages and message buffers to temporarily store

the messages before they are sent to the processor. This can be observed in the right region of

Figure 62. We introduce message counters to this controller, which take the output of the message

filters and keep a track of message frequencies. This bookkeeping helps in the observation of any

abnormal message rates that may occur during a distributed denial of service (DDoS) attack (see

Section 6.3.3). After confirming the message rate, the message is sent to the deployed anomaly

detection system where it goes through a two-step process to determine whether the message is

anomalous or not.

In the first step, our trained LSTM based attention model is used to predict the next message

instance, which is then used to compute the deviation from the true message. This deviation

measure is given as the input to a detector unit that uses a non-linear classifier to determine if a

198

given deviation measure represents a normal or an anomalous message. The details related to the

models and the deviation metrics used in our framework are discussed in detail in sections 6.4.2

and 6.4.3 respectively. Messages are temporarily stored in the message buffer before they are

validated and sent to the processor. If the anomaly detection system determines a particular

message to be anomalous, it is discarded from the buffer and will not be sent to the processor,

thereby avoiding the execution of attacker messages.

Note: Our anomaly detection system is implemented in the communication controller instead

of a centralized ECU to (i) avoid single-point failures, (ii) prevent scenarios where the in-vehicle

network load increases significantly due to high message injection (e.g., due to a DDoS attack,

explained in Section 6.3.3), where the centralized ECU will not be able to communicate with a

target ECU, and (iii) enable independent and immediate detection without delay compared to

relying on a message from a centralized ECU. Lastly, we chose the communication controller

instead of the processor to avoid jitter in real-time application execution.

6.3.2. COMMUNICATION OVERVIEW

In this work, we consider Controller Area Network (CAN) as the in-vehicle network protocol

that is used for exchanging time-critical messages between ECUs. CAN is a lightweight, low-cost,

event-triggered in-vehicle network protocol, and is the defacto industry standard. Several variants

of CAN have been proposed over time, but the CAN standard 2.0B remains the most popular and

widely used in-vehicle network protocol till today.

A CAN message consists of one or multiple signal values. Each signal contains independent

information corresponding to a sensor value, actuator control, or computation output of a task on

an ECU. Signals are grouped with additional information to form CAN frames. Each CAN frame

199

mainly consist of a header, payload, and trailer segments (Figure 63). The header consists of an

11-bit (CAN standard) or 29-bit (CAN extended) unique message identifier and a 6-bit control

field. This is followed by a 64-bit payload segment and a 15-bit cyclic redundancy check (CRC)

field in the trailer segment. The payload segment consists of multiple signals that are arranged in

a predetermined order as per the definitions in the CAN database (.dbc) files. In addition, the CAN

frame also has a 1-bit start of the frame (SOF) field at the beginning of the header, two 1-bit

delimiters separating the 1-bit acknowledgment (ACK) field, and a 7-bit end of frame (EOF) field

in the trailer segment.

Figure 63 Controller Area Network (CAN) 2.0B communication frame.

In this work, our proposed anomaly detection framework operates on the payload segment

of the CAN frame i.e., signals within each message. The main motivation for monitoring the

payload field is because the attacker needs to modify the bits in the payload to launch any attack

(a modification in the header or trailer segments would simply result in the frame getting

invalidated at the receiving ECU). Our proposed LATTE framework learns the temporal

dependencies between the message instances at design time by learning to predict the next message

instances and observe for deviations at runtime to detect cyber-attacks. Moreover, as our

framework mainly focuses on monitoring of the payload field, our technique is agnostic to the in-

vehicle network protocol and can be extended to other in-vehicle network protocols such as CAN-

FD, FlexRay, etc., with minimal changes. The details related to the detection of cyber-attacks using

our proposed anomaly detection system are presented in sections 6.4.2 and 6.4.3.

200

6.3.3. THREAT MODEL

We assume that the attacker can gain access to the in-vehicle network using the most

common threat vectors such as connecting to the vehicle OBD-II port, probing into the in-vehicle

network, and via advanced threat vectors such as connected V2X ADAS systems, insecure

infotainment systems, or by replacing a trusted ECU with a malicious ECU. We also assume that

the attacker has access to the in-vehicle network parameters such as flow control, BAUD rate,

parity, channel information, etc. that can be obtained by a simple CAN data logger, and can help

in the transmission of malicious messages. We further assume a pessimistic situation where the

attacker can access the in-vehicle network at any instance and try to send malicious messages.

Given the above assumptions, our proposed anomaly detection system tries to protect the in-

vehicle network from the multiple types of cyber-attacks listed below. These attacks are modeled

based on the most common and hard-to-detect attacks in the automotive domain.

1. Constant attack: In this attack, the attacker overwrites the signal value to a constant value

for the entire duration of the attack interval. The complexity of detection of this attack

depends on the change in magnitude of signal value. Intuitively, a small change in the

magnitude of the signal value is harder to detect than larger changes.

2. Continuous attack: In this attack, the attacker tries to trick the anomaly detection system by

continuously overwriting the signal value in small increments until a target value is

achieved. The complexity of detecting this attack depends on the rate of change of the signal

value. Larger change rates are easier to detect than smaller rates.

3. Replay attack: In this attack, the attacker plays back a valid message transmission from the

past, tricking the anomaly detector into believing it to be a valid message. The complexity

201

for detecting this attack depends mainly on the frequency and sometimes on the duration of

the playbacks. High-frequency replays are easier to detect compared to low-frequency

replays.

4. Dropping attack: In this attack, the attacker disables the transmission of a message or group

of messages resulting in missing or dropping of communication frames. The complexity of

detecting this attack depends on the duration for which the messages are disabled. Longer

durations are easier to detect due to missing message frames for a prolonged time compared

to shorter durations.

5. Distributed Denial of Service (DDoS) attack: In this attack, the attacker floods the in-vehicle

network with an arbitrary or specific message with the goal of increasing the overall bus

load and rendering the bus unusable for other ECUs. This is the most common and easy to

launch attack as it requires no information about the nature of the message. These attacks

are fairly simple to detect even using a rule-based approach as the message frequencies are

fixed and known at design time for automotive systems. Any deviation in this message rate

can be used as an indicator for detecting this attack.

Problem objective: The main objective of our work is to develop a real-time anomaly detection

framework that can detect various cyber-attacks in CAN-based automotive networks, that has (i)

high detection accuracy, (ii) low false-positive rate, (iii) high precision and recall, (iv) large attack

coverage, and (v) minimal implementation overhead (low memory footprint, fast runtime) for

practical anomaly detection in resource-constrained ECUs.

202

Figure 64 Overview of proposed LATTE framework.

6.4. PROPOSED FRAMEWORK

An overview of our proposed LATTE framework is shown in Figure 64. Our framework

consists of a novel self-attention based LSTM deep learning model that is trained with data

obtained from a data acquisition step. The data acquisition step collects trusted in-vehicle network

data under a controlled environment. We then post-process and use this data to train the stacked

LSTM self-attention predictor model in an unsupervised setting to learn the normal operating

behavior of the system. We also developed a one class support vector machine (OCSVM) based

detector model that utilizes the predictions from the LSTM predictor to detect cyber-attacks as

anomalies at run-time. After training, the framework is tested by being subjected to various attacks.

The details of this framework are presented in the subsequent subsections.

6.4.1. DATA ACQUISITION

This is the first step of the LATTE framework and involves collecting the in-vehicle network

data from a trusted vehicle. It is important to ensure that the in-vehicle network and the ECUs in

the vehicle are free from the attackers. This is because the presence of an attacker can result in

203

logging corrupt in-vehicle network data that falsely represents the normal operating conditions,

leading to learning an inaccurate representation of the normal system behavior with our proposed

models. Moreover, it is also crucial to cover a wide range of normal operating conditions and have

the data collected over multiple intervals, to ensure high confidence in the collected data. The

performance of the anomaly detection system is highly dependent on the quality of the collected

data, and thus this is a crucial step. Additionally, the type of data collected depends on the

functionalities or ECUs that are subjected to monitoring by the anomaly detection system. The

most common access point to collect the in-vehicle network data is the OBD-II port, which gives

access to the diagnostic and most commonly used messages. However, we recommend probing

into the CAN network and logging the messages, as it gives unrestricted access to the in-vehicle

network, unlike the OBD-II port.

After collecting the message data from the in-vehicle network, the data is prepared for pre-

processing to make it easier for the training models to learn the temporal relationships between

messages. The full dataset is split into groups based on the unique CAN message identifier and

each group is processed independently. The data entries in the dataset are arranged as rows and

columns with each row representing a single data sample corresponding to a particular timestamp

and each column representing a unique feature of the message. The columns consist of the

following features: (i) timestamp at which the message was logged, (ii) message identifier, (iii)

number of signals in the message, (iv) individual signal values (one per column), and (v) a single

bit representing the label of the message. The label column is 0 for non-anomalous samples and 1

for anomalous samples. The label column is set to 0 for all samples in the training and validation

dataset as all the data samples are non-anomalous and collected in a trusted environment. The label

column will have a value of 1 for the samples in the test dataset during the attack interval and 0

204

for the other cases. However, it is important to highlight that we do not use this label information

while training our predictor and detector models. Moreover, for each signal type, the signal values

are scaled between 0 to 1 as there can be a high variance in the signal magnitudes. Such high

variance in the input data can result in very slow or unstable training. Additionally, in this work,

we do not consider timestamp as a unique feature. We use the concept of time in a relative manner

when training (to learn patterns in sequences) and during deployment. We are not dependent on

absolute time during training and deployment. We use the dataset presented in [138] to train and

evaluate our proposed LATTE framework. The dataset consists of both normal and attack CAN

message data. Details related to the models and the training procedure are discussed in the next

subsections, while the dataset is discussed in Section 6.5.1.

Figure 65 Our proposed predictor model for the LATTE anomaly detection framework

showing the stacked LSTM encoder –decoder rolled out in time for t time steps along with

the self-attention mechanism generating context vector for time step t. The output at time

step t (x̂t) is the prediction of the input at time step t+1 (xt+1).

6.4.2. PREDICTOR MODEL

We designed predictor and detector models that work in tandem to detect cyber-attacks as

anomalies in the in-vehicle network. The predictor model attempts to learn the normal system

behavior via an unsupervised learning approach to predict the next message instance with high

205

accuracy at design time using the normal (non-anomalous) data. During this process, the predictor

model learns the underlying distribution of the normal data and relates it to the normal system

behavior. This knowledge of the learned distribution is used to make accurate predictions of the

next message instances at runtime for normal messages. In the event of a cyber-attack, the message

values no longer represent the learned distribution or maintain the same temporal relationships

between messages, leading to large deviations between the predictions and the true (observed)

messages. In this work, we employ a non-linear classifier based detector model to learn the

deviation patterns that correspond to the normal messages, which is then used to detect anomalies

(i.e., attacks that cause anomalous deviations) at runtime. The details related to the detector model

are discussed in detail in Section 6.4.3.

Our proposed predictor model consists of a stacked LSTM based encoder-decoder

architecture with the self-attention mechanism. This is illustrated in Figure 65. The first linear

layer in the predictor model takes the time series CAN message data as the input and generates a

128 dimensional embedding for each input. Each input sample consists of k features where each

feature represents a particular signal value within that message. The output embedding from the

linear layer is passed to the stacked two-layer LSTM encoder to produce a 64-dimension encoder

output (ℎ , ℎ … ℎ). The encoder output is the latent representation of the input time-series signal

values that encompass the temporal relationships between messages. The self-attention block

generates the context vector (φt) by applying the self-attention mechanism to the encoder outputs.

The self-attention mechanism begins by applying a linear transformation on the encoder’s current

hidden state (ℎ) and multiplies the result with the encoder output. The output from the

multiplication is passed through a softmax activation to compute the attention weights. The

attention weights represent the importance of each hidden state information from the earlier time

206

steps, at the current time step. The attention weights are scalars multiplied with the encoder outputs

to compute the attention applied vector (an) which is then combined with the encoder output to

compute the input to the decoder (context vector (φt)). The context vector along with the previous

decoder's hidden state (ℎ) is given as input to the stacked two-layer decoder, which produces a

64-dimension output that is passed to the last linear layer to obtain a k dimensional output. This k

dimension output represents the signal values of the next message instance. Thus, given an input

sequence X = {x1, x2, … xt}, our predictor model predicts the sequence = { , , … , }, where

the output at time step t () is the prediction of the input at time step t+1 (xt+1). The last prediction

() is generated by consuming the complete input sequence (X).

This predictor model is trained using non-anomalous (normal) data without any labels in an

unsupervised manner. To train the model with sequences, we employ a rolling window approach.

We consider a window of fixed size length (known as subsequence length) consisting of signal

values over time. The window with signal values is called a subsequence and has subsequence

length number of samples of signal values. Our predictor model learns the temporal dependencies

that exist between the signal values within the subsequence and uses them to predict the signal

values in the next subsequence (i.e., window shifted to the right by one-time step). The signal

values corresponding to the last time step in the output subsequence represent the final prediction,

as the model consumes the entire input subsequence to generate them. We compare this last time

step in the output subsequence with the actual signal values and compute the prediction error using

the mean square error (MSE) loss function. This process is repeated until the end of the training

dataset. The subsequence length is a hyperparameter related to the LSTM network and is

independent of the vehicle and the message data, and need to be selected before training the model.

We conducted multiple experiments with different model parameters and selected the

207

hyperparameters that gave us the best performance results. The predictor model is trained by

splitting the dataset into training (80%) and validation (20%) data without shuffling, as shuffling

would destroy the existing temporal relationships between messages. During the training process,

the model tries to minimize the prediction error in each iteration (a forward and backward pass)

by adjusting the weights of the neurons in each layer using backpropagation through time. At the

end of each training epoch, the model is validated (forward pass only) using the validation dataset

to evaluate the model performance. We employ mini-batches to speed up the training process and

use an early stopping mechanism to avoid overfitting. The details related to the non-anomalous

dataset and the hyperparameters selected for the model are presented in Section 6.5.1.

6.4.3. DETECTOR MODEL

After training the predictor model, we train a separate classifier (detector model) that utilizes

the information from the predictor to detects attacks. The anomaly detection problem can be treated

as a binary classification problem as we are mainly interested in distinguishing between normal

and anomalous messages. In general, as the in-vehicle network data recordings can grow in size

very rapidly, labeling this data can get very expensive. Additionally, due to the nature of the

frequency of attack scenarios, the number of attack samples would be quite small compared to

normal samples even when the dataset is labeled. This results in having a highly imbalanced dataset

that would result in poor performance when trained with a traditional binary classifier in a

supervised learning setting. However, a popular non-linear classifier known as a support vector

machine (SVM) can be altered to make it work with unbalanced datasets where there is only one

class. Hence, in this work, we use a one class support vector machine (OCSVM) to classify the

messages as anomalous or normal. The OCSVM learns the distribution of the training dataset by

constructing the smallest hypersphere that contains the training data at design time and identifies

208

any sample outside the hypersphere as an anomaly at runtime. We train an OCSVM by using the

output from the previously trained predictor model. We begin by giving the previously used normal

training dataset as the input to the predictor to generate the predictions. We then compute the

deviations (prediction errors) for all the training data and pass it as input to the OCSVM. The

OCSVM tries to generate the smallest hypersphere that can fit most of the deviation points and

uses it at runtime to detect anomalies. Figure 66 shows an example of a hypersphere generated by

training an OCSVM for a message with three signals. Each axis in the figure represents the relevant

signal deviation and the dark blue sphere represents the decision boundary. It can be observed that

almost the entirety of training data (shown via green dots) is confined to within the blue sphere.

Figure 66 OCSVM decision boundary shown in the blue sphere with the green dots showing

the normal samples from training data, and yellow and red dots showing the normal and

anomalous samples respectively from test data.

In our work, the deviation of a message is represented as a vector where each element of the

vector corresponds to the difference between the true and predicted signal value. Therefore, for a

message m with km number of signals, the deviation vector (Δm,t) computed at time step t is given

209

by equation (28).

∆ , = , − , ∈ ℝ , ∀ ∈ [1,] (28)

where , represent the prediction of the next true ith signal value (,) made at time step t. We

also experimented with other deviation measures that are given by equations (29), (30) and (31).

∆ , = ∑ Δ , , ∀ ∈ [1,] (29)

∆ , = ∑ Δ , , ∀ ∈ [1,] (30)

∆ , = max Δ , , ∀ ∈ [1,] (31)

Moreover, there can be situations where some of the signal deviations in a message can be

positive while others are negative. This could potentially result in making the sum or mean of

signal deviations zero or near zero, falsely representing no deviation or very small deviation. To

avoid these situations, we use the absolute signal deviations to compute the deviations for the

variants. Note: Unlike equation (28) that uses a vector of k dimensions to represent the message

deviation, equations (29), (30), and (31) reduce the vector to a single value using different

reduction operations. We explored these reduced deviation scores (shown in equations (29), (30),

and (31)) that utilize absolute deviation values to determine the best one, as discussed in Section

6.5.2.

In summary, our predictor model predicts the normal samples with very small deviations

and anomalous samples with high deviations. The OCSVM takes this predictor property into

account when constructing the hypersphere. In Figure 66, the yellow dots and red dots represent

the normal and anomalous samples respectively in the test dataset. It can be observed that when

210

the test data with anomalies is given as input to the OCSVM, it generally correctly classifies the

yellow samples within the hypersphere and red samples outside the hypersphere. Thus, both

predictor and detector models work collectively to detect attacks as anomalies. The details related

to the testing process are described in the next subsection.

6.4.4. MODEL TESTING

In the deployment/testing step, we present a test dataset consisting of anomalous samples

representing multiple attacks (outlined in Section 6.3.3) along with the normal samples to the

LATTE framework. The normal messages have a label value of 0 and the attack messages have a

label value of 1. During this step, each sample (signal values in a message) is first sent to the

predictor model to predict the signal values of the next message instance, and the deviation is

computed based on the true message data. This deviation vector is passed to the OCSVM detector

model, to compute the position of the deviation vector in the k-dimensional space, where k

represents the number of signals in the message. The message is marked as non-anomalous when

the point corresponding to the deviation vector falls completely inside the learned hypersphere.

Otherwise, the message is marked as anomalous and an anomaly alert is raised. This can be used

to invoke an appropriate remedial action to suppress further actions from the attacker. However,

the design of remedial actions and response mechanisms falls outside the scope of this chapter.

The performance evaluation of our proposed LATTE framework under various attack scenarios is

presented in detail in sections 6.5.2 and 6.5.3.

6.4.5. ANOMALY DETECTION SYSTEM DEPLOYMENT

Our proposed anomaly detection system can be deployed in a real-world vehicle in two

different approaches. The first is a global monitoring or centralized approach, where a powerful

211

centralized ECU monitors the messages on the CAN bus and detects anomalies. The second

approach involves distributing the anomaly detection task to across ECUs and only monitoring the

messages that are relevant to that particular ECU (distributed monitoring). Both choices have pros

and cons, but we believe that the distributed monitoring has multiple advantages over the

centralized approach because of the following reasons:

 A centralized approach is prone to single-point failures, which can completely open up the

system to the attacker;

 In extreme scenarios such as during a DDoS attack (explained in Section 6.3.3), the in-

vehicle network can get highly congested, and the centralized system might not be able to

communicate with the victim ECUs;

 If an attacker succeeds in fooling the centralized ECU, attacks can go undetected by the

other ECUs, resulting in compromising the entire system; whereas with a distributed

detection scheme, fooling multiple ECUs is required which is much harder, and even if an

ECU is compromised, this can still be detected by the decentralized intelligence in a

distributed detection;

 In a distributed detection, ECUs can stop accepting messages as soon as an anomaly is

detected without waiting for a centralized system to notify them, leading to faster response;

 The computation load of detection is split among the ECUs with a distributed approach, and

the monitoring can be limited to only the required messages. Thus, multiple ECUs can

monitor a subset of messages independently, with lower overhead;

Many prior works, e.g., in [121] and [106], consider a distributed local detection approach

for these reasons. Moreover, with automotive ECUs becoming increasingly powerful, the

collocation of detection tasks with real-time automotive applications in a distributed manner

212

should not be a problem, provided the overhead from the detection is minimal. The light weight

nature and anomaly detection performance of our proposed LATTE framework are discussed

further in Section 6.5. Moreover, as the detector looks at the payload segment individually, it needs

to keeps a track of the previous messages to detect anomalous patterns. We can cache the previous

normal samples and predictions (in the case of anomalies) and use them to preserve the

dependencies within the data, which can be later used in determining whether the next sample is

normal or anomalous. To minimize the storage overhead, we can employ a circular buffer of size

equal to the subsequence length (configured at design time). Using this approach, we can still look

into the message dependencies in the past.

6.5. EXPERIMENTS

6.5.1. EXPERIMENTAL SETUP

To evaluate the effectiveness of our proposed LATTE framework, we first explored five

variants of the same framework with different deviation criteria: LATTE-ST, LATTE-Diff, LATTE-

Sum, LATTE-Avg, and LATTE-Max. LATTE-ST uses our proposed predictor model with a static

threshold (ST) value to determine whether a given message is anomalous or normal based on the

deviation. The other four variants use the same predictor model but different detection criteria for

computing the deviations for OCSVM. LATTE-Diff uses the difference in signal values (equation

(28)); LATTE-Sum and LATTE-Avg use a sum and mean of absolute signal deviations respectively

(equations (29), and (30)); and LATTE-Max uses the maximum absolute signal deviation (equation

(31)), as the input to the detector model.

Subsequently, we compare the best variant of our framework with four prior works: Bitwise

Message Predictor (BWMP [140]), Hierarchical Attention-based Anomaly Detection (HAbAD

213

[159]), a variant of [159] called Stacked HAbAD (S-HAbAD [159]), and RepNet [141]. BWMP

[140] trains an LSTM based neural network that aims to predict the next 64 bits of a CAN message

by minimizing the bitwise prediction error using a binary cross-entropy loss function. At runtime,

BWMP uses the prediction loss as a measure to detect anomalies. HAbAD [159] uses an LSTM

based autoencoder model with hierarchical attention. The HAbAD model attempts to recreate the

input message sequences at the output and aims to minimize reconstruction loss. Additionally,

HAbAD uses supervised learning in the second step to model a detector using the combination of

a non-parametric kernel density estimator (KDE) and k-nearest neighbors (KNN) algorithm to

detect cyber-attacks at runtime. Lastly, S-HAbAD is a variant of HAbAD that uses stacked LSTMs

as autoencoders and uses the same detection logic used by the HAbAD. The S-HAbAD variant is

compared against to show the effectiveness of using stacked LSTM layers. Lastly, RepNet [141]

uses simple RNNs to increase the dimensionality of input signal values and attempts to reconstruct

the signal values at the output by minimizing the reconstruction error using mean squared error.

At runtime, RepNet monitors for large reconstruction errors to detect anomalies. The results of all

experiments are discussed in detail in subsections 6.5.2-6.5.4.

We conducted all experiments using an open-source CAN message dataset developed by

ETAS and Robert Bosch GmbH [138]. The dataset consists of CAN message data for different

message IDs consisting of various fields such as timestamps, message ID, and individual signal

values. Additionally, the dataset consists of a training dataset with only normal data and a labeled

test dataset with multiple attacks (as discussed in Section 6.3.3). The attack data in the dataset is

modeled from the real world attacks that are commonly seen in automotive systems. It is important

to note that we do not use any labeled data during the training or validation of our models and

learn the normal system behavior in an unsupervised manner. The labeled data is given to the

214

models only during the testing phase and used to compute performance metrics. Moreover, the

dataset consists of multiple message frequencies {15, 30, 45} ms. Since the high frequency

messages pose a significant challenge to the anomaly detection system, and could result in high

overhead, in this work we consider the message frequency of 15 ms for all of our experiments.

We used PyTorch 1.5 to implement all of the machine learning models including LATTE and

its variants, and the models from the comparison works. Our proposed predictor model is trained

with 80% of the available normal data and the remaining 20% is used for validation. We conducted

multiple experiments with different model parameters, and selected the hyperparameters that gave

us the best performance results. The training phase is repeated for 500 epochs with an early

stopping mechanism that monitors the validation loss after the end of each epoch and stops if there

is no improvement after 10 (patience) epochs. We used the ADAM optimizer with mean squared

error (MSE) as the loss function. Additionally, we employed a rolling window approach (discussed

in Section 6.4.2) with a subsequence length of 32 time steps, a batch size of 256, and a starting

learning rate of 0.0001. We used the scikit-learn package to implement the OCSVM in the detector

model (Section 6.4.3). We used a radial basis function (RBF) kernel with a kernel coefficient

(gamma) equal to the reciprocal of the number of features (i.e., number of signals in the message).

Moreover, to speed up OCSVM training, we set the kernel cache size to 400 MB and enabled the

shrinking technique to avoid solving redundant optimizations. All the simulations are run on an

AMD Ryzen 9 3900X server with an Nvidia GeForce RTX 2080Ti GPU.

Before looking at the experimental results for various performance metrics, it is important

to understand some key definitions in the context of anomaly detection. We define a true positive

as the scenario when an actual attack is detected as an anomaly by the anomaly detection system

and a true negative as the situation where an actual normal message is detected as normal.

215

Additionally, a false positive would be a false alarm where a normal message is incorrectly

classified as an anomaly and a false negative would occur when an anomalous message is

incorrectly classified as normal. Using the above definitions, we evaluate our proposed framework

using four different metrics: (i) Detection accuracy: a measure of the anomaly detection system’s

ability to detect anomalies correctly, (ii) False positive rate: i.e., false alarm rate, (iii) F1 score: a

harmonic mean of precision and recall; we use the F1-score instead of individual precision and

recall values as it captures the combined effect of both precision and recall metrics, and (iv)

receiver operating characteristic (ROC) curve with area under the curve (AUC): a popular

measure of classifier performance. A highly efficient anomaly detection system has high detection

accuracy, F1 score, and ROC-AUC while having a very low false-positive rate.

6.5.2. COMPARISON OF LATTE VARIANTS

In this subsection, we present the comparison results of the five variants LATTE-ST, LATTE-

Sum, LATTE-Avg, LATTE-Max and LATTE-Diff. All the variants of LATTE use the trained

predictor model (discussed in Section 6.4.2) to make the predictions and use OCSVM as a detector

except in the case of LATTE-ST, which uses a fixed threshold scheme introduced in [47] to predict

the given message as normal or anomalous. The main purpose of this experiment is to analyze the

impact of using a non-linear classifier such as OCSVM on the model performance instead of a

simple static threshold scheme (LATTE-ST). Additionally, with the last four variants, we aim to

study the effect of different deviation criteria on the OCSVM detection performance. The

deviations for any given message in LATTE-Diff (∆ ,), LATTE-Sum ∆ , , LATTE-Avg ∆ ,

and LATTE-Max ∆ , are computed using the equations (28), (29), (30) and (31) respectively.

216

Figure 67(a)-(c) shows the detection accuracy, false-positive rate, and F1 score respectively

for the five different variants of LATTE under five different attack scenarios discussed in Section

6.3.3. The ‘No attack’ case involves testing the model with new non-anomalous data that the model

has not seen before. Firstly, from Figure 67(a)-(c) it is clear that the OCSVM based detection

models clearly outperform the static threshold models (LATTE-ST). This is mainly because of their

ability to process complex attack patterns and generate non-linear decision boundaries that can

distinguish better between normal and anomalous data. Moreover, it can be seen that LATTE-Diff

outperforms all the OCSVM based models in detection accuracy, false-positive rate, and F1 score.

Lastly, in Figure 67(d), we present the ROC curves and the corresponding AUC values in the

brackets next to each legend. Out of the various attacks, we show results for continuous attacks,

as it is the most challenging attack to detect. This is because during this attack, the attacker

constantly tries to fool the anomaly detection system into thinking that the signal values in the

messages are legitimate. This requires careful monitoring and the ability to learn complex patterns

to differentiate between normal and anomalous samples.

(a)

217

(b)

(c)

218

(d)

Figure 67 Comparison of (a) detection accuracy, (b) false-positive rates, (c) F1 score of

LATTE variants under different attack scenarios, and (d) ROC curve with AUC for

continuous attack.

On average, across all attacks, LATTE-Diff was able to achieve an average of 13.36%

improvement in accuracy, 11.34% improvement in F1 score, 17.86 % improvement in AUC and

47.9% reduction in false positive rate, and up to 42% improvement in accuracy, 32.6%

improvement in F1 score, 29.4% improvement in AUC and 95% decrement in false positive rate,

compared to the other variants. Therefore, we selected LATTE-Diff as our candidate model for

subsequent experiments where we present comparisons with the state-of-the-art anomaly

detectors. Henceforth, we refer to LATTE-Diff as LATTE.

6.5.3. COMPARISON WITH PRIOR WORKS

We compared our LATTE framework with BWMP [140], HAbAD [159], a variant of

HAbAD called S-HAbAD [159], and RepNet [141]. Figure 68(a)-(c) show the detection accuracy,

false-positive rate, and F1 score respectively for these frameworks under different attack scenarios.

219

It can be observed that LATTE outperforms all the prior works in terms of detection accuracy,

false-positive rate, and F1 score. Moreover, from Figure 68(d), we can see that LATTE outperforms

all comparison works in terms of ROC-AUC under challenging continuous attack. This is mainly

due to three factors. Firstly, the stacked LSTM encoder-decoder structure provides adequate depth

to the model to learn complex time-series patterns. This can be seen when comparing HAbAD

with S-HAbAD, as the latter differs only in terms of stacked LSTM layers in comparison to the

former. Second, the self-attention mechanism helps LATTE in learning message sequences that

have very long-term dependencies. Lastly, the use of powerful OCSVMs as non-linear classifiers

helps in constructing a highly efficient classifier. These factors together resulted in the superior

performance of LATTE compared to all the comparison works. On average, across all attacks,

LATTE was able to achieve an average of 18.94% improvement in accuracy, 19.5% improvement

in F1 score, 37% improvement in AUC and 79% reduction in false positive rate, and up to 47.8%

improvement in accuracy, 37.5% improvement in F1 score, 76% improvement in AUC and 95%

reduction in false positive rate.

(a)

220

(b)

(c)

221

(d)

Figure 68 Comparison of (a) accuracy, (b) false-positive rates, (c) F1 score of LATTE and the

comparison works under different attack scenarios, and (d) ROC curve with AUC for

continuous attack.

To highlight the effectiveness of our proposed LATTE framework, we further compared

LATTE with statistical and proximity based techniques. We selected Bollinger bands (a popular

statistical technique used in the finance domain) as the candidate for a statistical technique to detect

anomalies in time series data. Bollinger bands generate envelopes that are two standard deviation

levels above and below the moving average. In this work, we considered two different moving

average based variants of the approach: (i) simple moving average (SMA), and (ii) exponential

weighted moving average (EWMA) similar to [167]. We also compared LATTE against a local

outlier factor (LOF) [168] based anomaly detection technique, which is a popular proximity-based

anomaly detection technique. The LOF algorithm measures the local deviation of each point in the

dataset with respect to the neighbors (given by KNN) to detect anomalies. The F1 score results for

SMA based Bollinger bands (SMA-BB), EWMA based Bollinger bands (EWMA-BB), LOF, and

222

LATTE under different attack scenarios are shown in Figure 69. It can be seen that LATTE

outperforms both statistical and proximity-based anomaly detection techniques under different

attack scenarios. This is mainly because the complex patterns in CAN message data are hard to

capture using statistical and proximity-based techniques. On the other hand, the LSTM based

predictor model in our proposed LATTE framework learns these complex patterns and is thus able

to more efficiently detect complex attacks.

Figure 69 Comparison of F1 score for SMA-BB [167], EWMA-BB [167], LOF [168], and

LATTE under different attack scenarios.

6.5.4. OVERHEAD ANALYSIS

In this subsection, we present an overhead analysis of our LATTE framework. We quantify

the overhead of our LATTE framework and the comparison works using memory footprint, the

number of model parameters, and the inference time metrics. We profiled each framework on a

dual core ARM Cortex- A57 CPU on an NVidia Jetson TX2 board (shown in Figure 70), which

has similar specifications to that of a real-world ECU. We repeated the inference time experiment

10 times and computed the average inference time. Moreover, in this work, we consider a total

223

buffer size of 2.25 KB. This accounts for the storage of 32 CAN message payloads (0.25 KB

assuming a worst case max payload of 8 Bytes) that represent the subsequence length number of

past messages, and storage of 16 CAN message frames (2 KB assuming the CAN extended

protocol and a worst case max payload of 8 Bytes) that is used by the transceiver. In this work, we

only introduce the additional 0.25 KB storage as the 2 KB transceiver buffer space is already

available in the traditional CAN communication controller interfaces. We consider a 2 KB

transceiver buffer, as it is the most commonly used size in many real-world automotive ECUs such

as Woodward SECM 112, and dSpace MicroAutoBox. Additionally, we computed the area

overhead of the 0.25 KB buffer using CACTI tool [169] by modeling the buffer as a scratchpad

cache using 32 nm technology node. Our additional 0.25 KB buffer resulted in a minimal area

overhead of around 581.25 µm2. From Table 13, we can observe that our LATTE framework has

minimal overhead compared to both attention-based prior works (HAbAD and S-HAbAD) and the

non-attention based work (BWMP except RepNet). The high runtime and memory overhead in

HAbAD and S-HAbAD is associated with the use of KNNs. KNN does not generalize the data in

advance, but rather scans through each training data sample to make a prediction. This makes it

very slow and consume high memory overhead (due to the requirement of having training data

available at runtime). It needs to be noted that, even though RepNet has the lowest memory and

runtime overhead, it fails to capture the complex attack patterns due to the smaller model size and

the lack of ability of simple RNNs to learn long-term dependencies, leading to poor performance

(as shown in Figure 68).

224

Table 13 Overhead of LATTE, BWMP [140], HAbAD [159], S-HAbAD [159], RepNet [141]

Framework
Memory

footprint (KB)

#Model

parameters (x103)

Average inference

time (µs)

BWMP [140] 13,147 3435 644.76

HAbAD [159] 4558 64 685.05

S-HAbAD [159] 5600 325 976.65

LATTE 1439 331 193.90

RepNet [141] 5 0.8 68.75

Figure 70 Nvidia Jetson TX2 development board

Assuming a distributed anomaly detection implementation, we factor in this additional

latency into our real-time constraints for message transmission (i.e., a constant time overhead).

But since the latency overhead (shown in Table 13) is very minimal, we envision that our proposed

LATTE framework will have a minimal change in the timing constraints when compared to the

prior works. Moreover, the deadline constraints for some of the fastest (i.e., most stringent) safety-

critical applications are around 10 ms, which is much higher than our overhead that is around 193

µs. Hence, the additional latency due to our anomaly detection should not violate any safety-

critical deadlines. In summary, from Figure 68 and the results in Table 13, we can clearly observe

that LATTE achieves superior performance compared to all of the comparison works across diverse

attack scenarios, while maintaining relatively low memory and runtime overhead.

Nvidia Jetson TX2

225

6.6. CONCLUSION

In this chapter, we proposed a novel stacked LSTM with self-attention framework called

LATTE that learns the normal system behavior by learning to predict the next message instance

under normal operating conditions. We presented a one class support vector (OCSVM) based

detector model to detect cyber-attacks by monitoring the message deviations from the normal

behavior. We presented a detailed analysis by comparing our proposed model with multiple

variants of our model and the best-known prior works in this area. Our LATTE framework

surpasses all the variants and the best-known prior works under different attack scenarios while

having a relatively low memory and runtime overhead. As a part of future work, we will explore

extending our framework to detect malfunctions such as blockages, deadlocks, and faults in

addition to detecting malicious behavior on the in-vehicle network.

226

7. TENET: TEMPORAL CNN WITH ATTENTION FOR ANOMALY DETECTION IN

AUTOMOTIVE CYBER-PHYSICAL SYSTEMS

Today’s vehicles are becoming increasingly autonomous and connected, to achieve

improved safety and fuel efficiency goals. To support this evolution, new technologies such as

advanced driver assistance systems (ADAS [170]), vehicle-to-vehicle (V2V), 5G vehicle-to-

infrastructure (5G V2I), etc. have emerged [2]. These advances have led to an increase in the

complexity of electronic control units (ECUs) and the in-vehicle network that connects them. As

a result, vehicles today represent distributed cyber-physical systems (CPS) of immense

complexity. The ever-growing connectivity to external systems in such vehicles is introducing new

challenges, related to the increasing vulnerability of these vehicles to a variety of cyber-attacks

[46].

Attackers can use various access points (known as an attack surface) in a vehicle, e.g.,

Bluetooth, telematic systems, and OBD-II ports, to gain unauthorized access to the in-vehicle

network. After gaining access to the network, an attacker can inject malicious messages to try and

take control of the vehicle. Recent automotive attacks on the in-vehicle network include

manipulating speedometer and indicator signals [26], unlocking doors [171], manipulating the fuel

level indicator [171], etc. These types of attacks confuse the driver but are not fatal. More complex

machine learning-based attacks can cause incorrect traffic sign recognition in a vehicle's camera-

connected ECU [172]. In [153], researchers analyzed vulnerabilities in airbag systems and

remotely deployed the airbags in a vehicle. These types of attacks can be catastrophic and

potentially fatal.

227

With the increasing complexity of vehicular CPS, the attack surface is only going to increase,

paving the way for more complex and novel attacks in the future. Thus, there is an urgent need for

an advanced attack detection solution that can actively monitor the in-vehicle network and detect

complex cyber-attacks. One of the many approaches to achieve this goal is by using an anomaly

detection solution (ADS). An ADS can be a hardware or software-based system that continuously

monitors the in-vehicle network to detect attacks without any human supervision. Many state-of-

the-art ADS use machine learning algorithms to detect cyber-attacks due to large availability of

vehicle network data and more computationally capable ECUs today. At a very high level, the

machine learning model in an ADS tries to learn the normal operating behavior of the vehicle

system during design and test time. This learned knowledge of the normal system behavior is then

used at runtime to continuously monitor for any anomalous behavior, to detect attacks. The major

advantage of this approach is that it can detect both known and unknown attacks. Due to its high

attack coverage and ability to detect complex attack patterns, we focus on (and make new

contributions to) machine learning based ADS for cyber-attack detection in vehicles.

In this chapter, we propose a novel ADS framework called TENET to actively monitor the

in-vehicle network and observe for any deviation from the normal behavior to detect cyber-attacks.

TENET attempts to increase the detection accuracy, receiver operating characteristic (ROC) curve

with area under the curve (AUC), Mathews correlation coefficient (MCC) metrics, and minimize

false negative rate (FNR) with minimal overhead. Our novel contributions can be summarized as

follows:

 We present a temporal convolutional neural attention (TCNA) architecture to learn very-

long term temporal dependencies between messages in the in-vehicle network;

228

 We introduce a metric called divergence score to quantify the deviation from expected

behavior;

 We adapt a decision tree-based classifier to detect a variety of attacks at runtime using the

proposed metric;

 We compare our TENET framework with multiple state-of-the-art ADS frameworks to

demonstrate its effectiveness.

7.1. RELATED WORK

Several researchers have proposed solutions to detect in-vehicle network attacks. These

solutions can be classified as either signature-based or anomaly-based. In this section, we discuss

these solutions in detail and present a distinction between the existing works and our proposed

TENET framework.

The authors in [173] proposed a language-theory based model to derive attack signatures.

However, their technique fails to detect attack packets at the initial stages of the attack. In [174],

[175] message frequency-based techniques were proposed to detect attacks. A transition matrix-

based ADS was proposed in [122] to detect attacks on the controller area network (CAN).

However, the approach could not detect complex attacks, such as replay attacks. An entropy-based

ADS was presented in [131], [176] to detect in-vehicle network attacks. However, these techniques

fail to detect small variations in the entropy and modifications in CAN message data. In [157], the

Hamming distance between messages was used to detect attacks. However, this approach incurs a

high computational overhead. In [177], ECUs were fingerprinted using their voltage measurements

during message transmission and reception. However, this method cannot detect attacks at the

application layer. In general, signature-based ADS approaches can detect attacks in the network

229

with high accuracy and low false-positive rate. However, obtaining all possible attack signatures

and frequently updating them is impractical. Moreover, none of these works provide a holistic

solution to detect unknown and complex attack patterns.

In contrast, anomaly-based solutions attempt to learn the normal system behavior and

observe for any abnormal behavior in the network to detect both known and unknown attacks. In

[137], the authors used deep neural networks (DNNs) to extract the low dimensional features of

transmitted packets and differentiate between normal and attack-injected packets. The authors in

[141] used a recurrent neural network (RNN) to learn the normal behavior of the network and used

that information to detect attacks at runtime. Several other works, such as [138], [139], [178], and

[140], have proposed long short-term memory (LSTM) based ADS to learn the relationship

between messages traversing the in-vehicle networks. However, these models were not tested on

complex attack patterns and impose high overheads on the ECU. The authors in [48] proposed an

LSTM based encoder-decoder architecture with an attention mechanism as an ADS for in-vehicle

network. The attention was used to enhance the encoder’s context vector to provide the decoder

with quality inputs. A gated recurrent unit (GRU) based autoencoder ADS was proposed to learn

the normal system behavior in [47]. However, a static threshold approach was used to classify

messages, which is unable to capture non-linear behaviors. In [159], an LSTM based encoder-

decoder ADS was proposed with attention to reconstruct input messages. A kernel density

estimator (KDE) and k-nearest neighbors (KNN) were further used to detect anomalies. But the

approach incurs a high overhead on the ECU. An approach that combined an LSTM with a

convolutional neural network (CNN) was proposed in [179] to learn the dependencies between

messages in a CAN network. However, the model was trained on a labeled dataset in a supervised

manner; due to the large volume of in-vehicle CAN message data, labeling the data is impractical.

230

All these works suggest that sequence models with LSTMs and GRUs are popular for

detecting attacks on vehicles. However, the increased vehicular CPS complexity today has resulted

in very long-term dependencies between messages exchanged between ECUs that cannot be

effectively captured using LSTMs and GRUs. This is because the current time step output of

LSTMs and GRUs is heavily influenced by recent time steps compared to time steps in the distant

past, which makes it hard to capture very long-term dependencies. Processing very long sequences

also exacerbates the computational and memory overhead of LSTMs and GRUs.

In summary, none of the existing ADS provides a holistic approach that can efficiently learn

very long-term dependencies between in-vehicle network messages with a low memory and

computational overhead, and also accurately detect a multitude of simple and complex attacks on

the vehicle. Our proposed TENET ADS uses a novel TCNA (temporal CNN with attention) model

to overcome these shortcomings of state-of-the-art ADS. The next section describes TENET in

detail. The comparative performance analysis results are presented in Section 7.3.

Figure 71 Overview of the different phases of the TENET framework.

231

7.2. TENET FRAMEWORK: OVERVIEW

The TENET framework consists of three phases: (i) data collection and preprocessing, (ii)

learning, and (iii) evaluation. The first phase involves collecting in-vehicle network data from a

trusted vehicle and preprocessing the collected data. In the learning phase (offline), the

preprocessed data is used to train a Temporal Convolutional Neural attention (TCNA) network in

an unsupervised manner to learn the normal behavior of the system. In the evaluation phase

(online), the trained TCNA network is deployed and used to calculate a divergence score (DS),

which is then used by a decision tree-based classifier to detect attacks. The overview of our

proposed TENET framework is shown in Figure 71.

7.2.1. DATA COLLECTION AND PREPROCESSING

This first phase of the TENET framework involves collecting in-vehicle network data from

a trusted vehicle and over a variety of normal operating conditions. Otherwise, the model may

learn an incorrect representation of the normal operation of the vehicle. In this work, we

recommended splicing into the vehicle network and directly logging the messages using a standard

logger such as Vector GL 1000 [180], as this allows one to record any message traversing the

network.

After data collection, the data is prepared for pre-processing to facilitate easy and efficient

training of the machine learning models. Every vehicle message in typical vehicle network

protocols (CAN, FlexRay [45], etc) has a unique identifier (ID) and each message in the dataset is

grouped by this unique ID and processed independently. Each message has the following attributes

(columns): (i) unique timestamp corresponding to the log time of the message (used for relative

232

ordering of messages), (ii) message ID, (iii) number of signals in the message, (iv) individual signal

values in the message (which together constitute the message payload), and (v) label of the message

(‘0’ for no-attack and ‘1’ for attack). Due to the possibility of high variance in message signal

values, all signal values of each signal type are scaled between 0 and 1. The learning phase and

evaluation phases in TENET use training and testing data, respectively. The label values of all

samples in the training dataset are set to 0 to represent no-attack data. The test data has a label

value of 1 for attack samples and a label value of 0 for no-attack samples. Furthermore, the original

training data is split into training (85%) and validation (15%) sets. Details of the training procedure

and the model architecture are discussed in the next subsections.

7.2.2. MODEL LEARNING

In this subsection, we describe our proposed TCNA network architecture and the training

procedure we employed for it. TENET uses this TCNA network to learn the normal system

behavior of the in-vehicle network in an unsupervised manner. The proposed TCNA model takes

the sequence of signal values in a message as the input and uses CNNs to predict the signal values

of the next message instance, by trying to learn the underlying probability distribution of the

normal data.

An early adaptation of CNNs for sequence modeling tasks was presented in [181], where a

convolution-based time-delay neural network (TDNN) was proposed for phoneme recognition. To

capture very-long term dependencies, traditional CNNs need to employ a very deep network of

CNN layers with large filters. Consequently, this increases the number of convolutional operations

incurring a high computational overhead. Thus, adapting CNNs directly to sequence modeling

tasks in resource constrained automotive systems is not a feasible solution. However, recent

233

advances have enabled the use of CNNs to capture very-long term dependencies with the help of

dilated causal convolution (DCC) layers [182]. The dilation factor of each DCC layer dictates the

number of input samples to be skipped by that layer. The total number of samples influencing the

output at a particular time step is called the receptive field. Using a larger dilation factor enables

an output to represent a wider range of inputs, which helps to learn very-long term dependencies.

Unlike RNNs/LSTMs/GRUs, CNNs do not have to wait for the previous time step output to

process the input at the current time step. Thus, CNNs can process input sequences in parallel,

making them more computationally efficient during both training and testing. Due to these

promising properties, we adapt dilated CNNs for learning dependencies between in-vehicle

messages in our TCNA model. We custom designed our TCNA network to consist of three TCNA

blocks. A TCNA block consists of an attention block and a TCN residual block (TRB), as shown

in Figure 72(a). The input to the first TCNA block is a time series of message data with n signal

values as features. This partial sequence from the complete time-series dataset, that is given as the

input to the model every time, is called a subsequence. The TRB is inspired by [182] and employs

two DCC layers, two weight normalization layers, and two ReLU layers stacked together, as shown

in Figure 72(b). This residual architecture helps to efficiently backpropagate gradients and

encourages the reuse of learned features. We enhanced this TRB from [182] by: (i) adding an

attention layer (discussed later); (ii) removing dropout layers to avoid thinning the network and

provide our attention block with non-sparse inputs; and (iii) avoiding zero-padding the input time-

series by computing the length of the subsequence using (32):

= (− 1) ∗ 2 (32)

234

where R is the subsequence length, k is the kernel size, and l is the number of DCC layers in

the network. This was done because we found that padding zeros to an input sequence distorts the

sequential nature of in-vehicle time series data.

The first TCNA block does not contain an attention block, and the inputs are directly fed to

the TRB as shown in Figure 72(a), where {f1, f2, …, fm} represent multiple channels of the first

TRB block, m is equal to the number of features of the inputs, {c1, c2, …, ck} represent multiple

channels of the remaining TRBs, and k is the number of channels of TRB inputs. The first DCC

layer inside the TRB processes each feature of the input sequence as a separate channel as shown

in Figure 72(a). A 1-D dilated causal convolution operation is performed using a kernel of size

two and the number of filters is three times the input features (m) in each DCC layer. The input

and normalized outputs are passed through a ReLU activation function. This process is repeated

one more time inside the TRB. A convolution layer with a filter size of 1×1 is added to make the

dimensions of the outputs from the last ReLU activation and the input of the TRB consistent with

each other. Each DCC layer in the TRB learns temporal relationships between messages by

applying filters to its inputs and output dimensions are the same except for the first TRB. The

output from the DCC layer is weight normalized for fast convergence and to avoid explosion of

weight values. The weight updating filter weight values.

Our TCNA block also contains an attention block. Attention mechanisms enable deep neural

networks to focus on the important aspects of the input sequences when producing outputs [183].

We devised a scaled dot product attention mechanism and modeled the attention as a mapping of

three vectors, namely query (Q), key (K), and value (V). A weight vector is computed by comparing

the similarities between the Q and K vectors, and a dot product between the weight vector and the

V vector generates the output attention weights. As this attention mechanism does not use the

235

previous output information when generating the attention weights, it is a self-attention

mechanism. In the context of our proposed TCNA network, self-attention mechanisms can help in

identifying important feature maps and enhance the quality of intermediate inputs received by the

DCC layers. This further assists with efficient learning of the very-long term dependencies

between messages in an in-vehicle network.

(a)

(b) (c)

Figure 72 (a) TCNA network architecture with the internal structure of the TCNA block, (b)

TCN residual block showing the various layers of transformation and, (c) the attention

mechanism.

236

The output feature maps of the TRB are given as the input to this attention block, shown in

Figure 72(c). The attention block repeats its inputs to obtain the Q, K, and V vectors. A scalar-dot

product is performed between Q and the transpose of key (KT) to calculate the similarities between

each Q and K vectors. The resultant dot product is scaled by a factor of 1/ and passed through

a softmax layer to calculate attention weights as shown in (33):

(, ,) = . (33)

where the term dk represents the dimension of the K vector. The attention weights represent the

importance of each feature map of the previous DCC layer. The attention weights are then scalar

multiplied with V to produce the output of the attention block. Thus, the attention block uses a self-

attention mechanism to improve the quality of feature maps that will be received by the subsequent

TRBs. Ultimately, as shown in Figure 72(a), an input sequence flows through the entire TCNA

network and is fed to the final linear layer which produces an output of m dimensions. The m-

dimensional output represents the predicted signal values.

The TCNA network is trained using a rolling window approach. Each window consists of

signal values corresponding to the current subsequence. Our TCNA network learns the temporal

dependencies between messages inside a subsequence and tries to predict the signal values of the

subsequence that are shifted by one time step to the right. We employ a mean squared error (MSE)

loss function to compute the prediction error between signal values of the last time step in the

predicted subsequence and the last time step of the input subsequence. The error is back propagated

to update the weights for the filters. This process is repeated for each subsequence until the end of

the training data, which constitutes one epoch. We train the model for multiple epochs and employ

237

a mini-batch training approach to speed up the training. At the end of each epoch, the model is

evaluated using the unseen validation data. An early stopping mechanism is used to prevent model

overfitting. The details of the model hyperparameters are discussed later, in Section 7.3.

7.2.3. MODEL TESTING

7.2.3.1. ATTACK MODEL

Here we present details of the various attack scenarios considered in this study. Our TENET

framework attempts to detect the following complex and most widely seen attack scenarios in the

in-vehicle network:

1) Plateau attack: This is an attack scenario where the attacker sets a constant value for a

signal or multiple signals over the attack interval. It is hard to detect this attack especially when

the set constant value is close to the true signal value.

2) Suppress attack: In this attack, the attacker tries to suppress a signal value by either

disabling the ECU or deactivating the communication controller, effectively resulting in no

message being transmitted. It is hard to detect short bursts of these attacks as they could be

confused for a missing or delayed message.

3) Continuous attack: This attack represents a scenario where the attacker gradually

overwrites the true signal value. The attacker then eventually will achieve the target value without

triggering most ADS frameworks. These attacks are hard to detect and require an advanced ADS.

4) Playback attack: This attack involves the attacker using the previously observed

sequences of signal values and trying to replay them again at a later time to trick the ADS. If the

ADS is not trained to understand patterns in the sequence of transmitted messages, it will fail to

detect these types of advanced attacks.

238

7.2.3.2. EVALUATION PHASE

We use the trained TCNA network in conjunction with a detection classifier to detect attacks

on vehicles at runtime. The high frequency of messages in the in-vehicle network requires a

detection classifier that is lightweight and can classify messages quickly with high detection

accuracy and minimal overhead. Hence, we use the well-studied categorical variable decision tree-

based classifier to detect between normal and attack samples (binary classification) due to their

simpler nature, speed, and precise classification capabilities.

A decision tree starts with a single node (root node), which branches into possible outcomes.

Each of those outcomes leads to additional nodes called branch nodes. Each branch node branches

off into other possibilities and ends in a leaf node giving it a treelike structure. During training, the

decision creates the tree structure by determining the set of rules in each branch node based on its

input. During testing, the decision tree takes the input and traverses the tree structure until it

reaches a leaf node. The evaluation phase begins by splitting the test data with attacks into two

parts: (i) calibration data, and (ii) evaluation data. In the first part, only the calibration data is fed

to the trained TCNA network to generate the predicted sequences. We then compute a divergence

score (DS) for each signal in every message using (34):

() = () − (+ 1) ∀ ∈ [1,], ∈ [1,] (34)

where m represents the mth message sample and M represents the total number of message

samples, i represents the ith signal of the mth message sample and Nm represents the total number

of signals in the mth message, t represents the current time step, () represents the ith predicted

signal value of the mth message at time step t, and (+ 1) represents the true ith signal value of

the mth message sample at time step t + 1.

239

The DS is higher during an attack as the TCNA model is trained on the no-attack data and

fails to predict the signal values correctly in the event of an attack. This sensitive nature of the DS

to attacks makes it a good candidate for the input to our detection classifier. Moreover, the group

of signal level DS for each message sample is stacked together to obtain a DS vector. We train the

decision tree classifier using this DS vector as input to learn the distribution of both no-attack

samples and attack samples. We use the unseen evaluation data (that has both attack and no-attack

samples) to evaluate the performance of TENET.

7.3. EXPERIMENTAL SETUP

To evaluate the effectiveness of the TENET framework, we conducted various experiments.

We compared TENET against four state-of-the-art prior works on ADS: RN [141], INDRA [47],

LATTE [48] and HAbAD [159]. Together, these approaches reflect a wide range of sequence

modeling architectures. RN [141] uses RNNs to increase the dimensionality of input signal values

and reconstruct the input signal at the output by minimizing MSE. The trained RN model scans

continuously for large reconstruction errors at runtime to detect anomalies over in-vehicle

networks. INDRA [47] uses a GRU-based autoencoder that reconstructs input sequences at the

output by reducing the MSE reconstruction loss. At runtime, INDRA utilizes a pre-computed static

threshold to flag anomalous messages. LATTE [48] uses stacked LSTMs and self-attention

mechanisms to build a predictor model, which is trained at design time to learn the normal

operation of the system. At runtime, LATTE uses a one class support vector machine (OCSVM)

based detector to detect attacks. HAbAD [159] uses an LSTM based autoencoder model with

attention to detect anomalies in real-time embedded systems. HAbAD uses a supervised learning

detector that combines a kernel density estimator (KDE) and k-nearest neighbors (KNN) algorithm

240

to detect anomalies. The comparisons of TENET with the above-mentioned ADS are presented in

subsections 7.3.2 and 7.3.3.

We adopted an open-source CAN message dataset developed by ETAS and Robert Bosch

GmbH [138] to train our model, and the comparison works. The dataset consists of multiple CAN

messages with different number of signals that were modeled after real-world vehicular network

information. Moreover, the dataset has a distinct training set that has normal CAN messages and

a labeled testing dataset for different types of attacks. For training and validation, we used the

training dataset from [138] without any attack scenarios in an unsupervised manner. We tested our

proposed TENET framework, and all comparison works by modeling various real-world attacks

(discussed in Section 7.2.3.1) using the test dataset in [138]. Note that TENET can be easily adapted

to other in-vehicle network protocols such as Flexray [45] and Ethernet, as it relies only on the

message payload information. However, the lack of any openly available datasets for these

protocols prevents us from showing results on them.

We used PyTorch 1.8 to model and train various machine learning models including TENET,

and the comparison works. Our framework uses 85% of data for training and the remaining 15%

for validation. We trained TENET for 200 epochs with an early stopping mechanism that constantly

monitors the validation loss after each epoch. If no improvement in validation loss is observed in

the past 10 (patience) epochs, training is terminated. We used MSE to compute the prediction error

and the ADAM optimizer with a learning rate of 1e-4. We employed a rolling window approach

(discussed in Section 7.2.2) with a batch size of 256, and a subsequence length of 64. We used

scikit-learn to implement the decision tree classifier, with the gini criterion, and best splitter to

detect anomalies based on the divergence score. Before discussing the results, we define

performance metrics that we used in the context of ADS. We classify a message as a true positive

241

(TP) only if the model detects a true attack as an anomaly, and a true negative (TN) is when a

normal message is detected as a no-attack message. When the model detects a normal message as

an anomalous message it is defined as a false positive (FP), whereas an actual anomalous message

which is not detected is a false negative (FN). Using these definitions, we evaluate the ADS based

on four different performance metrics:

(i) Detection Accuracy: quantifies the ability of the ADS to detect an anomaly correctly, as

calculated using (35):

 = (35)

(ii) Receiver Operating Characteristic (ROC) curve with area under the curve (AUC): which

measures the ADS performance as the area under the curve in a plot between the true positive rate

(TPR) and false positive rate (FPR). The TPR and FPR are computed using (36) and (37)

respectively.

= (36)

= (37)

(iii) False Negative Rate (FNR): which quantifies the probability that a TP will be missed

by the ADS (lower is better). It is calculated using (38).

= (38)

(iv) Mathews Correlation Coefficient (MCC): which provides an accurate evaluation of the

ADS performance while working with imbalanced datasets, and is defined in (39).

242

=
(∗) (∗)

()()()()
 (39)

Another metric that is sometimes used is the F-1 score, which is the harmonic mean of

precision and recall. As both precision and recall do not include the true negatives in their

computation, the F-1 score metric fails to represent the true performance of the classifier. Unlike

the F-1 score metric, the MCC metric that we consider includes all the cells of the confusion

matrix, thus providing a much more accurate evaluation of the frameworks.

7.3.1. RECEPTIVE FIELD LENGTH SENSITIVITY ANALYSIS

In the first experiment, we compare the performance of our TCNA architecture with four

different receptive field lengths while the remaining hyperparameters are unchanged. We conduct

this analysis to evaluate whether very long receptive lengths can help with a better understanding

of normal system behavior. All the variants are evaluated based on their performance on two

training metrics: average training loss and average validation loss, and the best model is selected

for further comparisons. The average training loss value represents the average loss between the

predicted behavior and observed behavior of each iteration in the training data. In contrast, the

average validation loss represents the average loss between the predicted behavior and the

observed behavior of each iteration in the validation data.

Table 14 TCNA variants with different receptive field lengths.

Metrics
Receptive field lengths

16 32 64 128

Average training loss 4.1e-4 3e-4 2.5e-4 6.8e-4

Average validation loss 5.5e-4 4.3e-4 2.9e-4 9.3e-4

243

Table 14 shows the average training and validation loss of the four variants of TCNA. We

can observe that a receptive length of 64 has the lowest average training and validation loss.

Therefore, we select 64 as our receptive field value, which is twice the maximum receptive field

length presented in one of the comparison works (sequence length of 32 in [159]). This long

receptive field length enables us to more effectively learn very long-term dependencies in the input

time series data and allows us to better understand the normal vehicle operating behavior.

(a)

(b)

244

(c)

(d)

Figure 73 Comparison of (a) detection accuracy, (b) ROC-AUC for playback attack, (c)

MCC, and (d) FNR for TENET and ADSs from prior works.

7.3.2. PRIOR WORK COMPARISON

In this subsection, we compare our TENET framework with the state-of-the-art ADS works

RN [141], INDRA [47], LATTE [48] and HAbAD [159]. The results of the comparison on the

metrics discussed in the previous section are as shown in Figure 73. From Figure 73(a)-(d), it is

245

evident that TENET outperforms all comparison works in detection accuracy, ROC-AUC and

MCC metrics and achieves the second-best performance in FNR under various attack scenarios.

Table 15 summarizes the average relative percentage improvement of TENET over the comparison

works under all attack scenarios. (Note: A negative value in Table 15 indicates percentage

degradation in performance). We can see that our proposed TENET framework achieves an

improvement of up to 69.47% in FNR, 64.30% in MCC, 37.25% in ROC-AUC, and 9.48% in

detection accuracy under all attack scenarios.

Table 15 Relative percentage improvement of TENET vs. other ADS.

Prior ADS

Works

Detection

accuracy
ROC-AUC MCC FNR

LATTE [48] 1.26 0.00 3.95 -6.63

INDRA [47] 3.32 17.25 19.14 32.70

HABAD [159] 9.07 26.50 49.26 44.05

RN [141] 9.48 37.25 64.30 69.47

In summary, our TENET framework with a customized TCNA network outperforms all prior

recurrent architectures with and without attention, due to its ability to capture very-long term

dependencies in time-series data. Moreover, the attention mechanism within the TCNA improves

the quality of the outputs of the TRB, which enables efficient learning of very-long term

dependencies. Thus, our TCNA network with the decision tree classifier represents a formidable

anomaly detection framework.

7.3.3. MEMORY OVERHEAD AND LATENCY ANALYSIS

Lastly, we compare the number of trainable parameters, the memory footprint, and inference

time of the TENET framework, and the comparison ADS works to evaluate their memory and

computational overheads. Table 16 shows the memory footprint, model parameters, and average

246

inference latency of TENET and the other ADS. It is important to consider the memory and latency

overhead of ADS models because automotive ECUs are resource constrained and it is crucial to

have an ADS that does not interfere with the normal operation of safety-critical automotive

applications. All results are obtained for deployment on an NVIDIA Jetson TX2 with dual-core

ARM Cortex-A57 CPUs, which has specifications similar to real-world ECUs.

Table 16 Memory, model size, and inference latency analysis.

ADS

framework

Memory

footprint (KB)

Model

parameters (x 103)

Inference time

()

RN [141] 7.2 1.3 412.50

INDRA [47] 453.8 112.9 482.10

LATTE [48] 1300 332.03 258.53

HAbAD [159] 261.63 64.48 1370.10

TENET 59.62 6.06 250.24

It can be observed that TENET has the second lowest number of model parameters and

memory footprint over all the other comparison works except RN [141]. Even though RN has the

least number of model parameters and memory footprint, it fails to effectively capture the temporal

dependencies between messages, resulting in very poor performance, as can be seen in Figure 73

(a)-(d). Compared to INDRA, LATTE, and HAbAD, TENET achieves an average reduction of

86.49% in memory footprint and 94.46% in the number of trainable model parameters. TENET is

able to achieve high performance with significantly fewer trainable parameters because of the

fewer filters used by each DCC layer in the TCNA network. This is achieved using the attention

block in TCNA which improves the quality of the outputs of each TRB thus eliminating the need

for more filters. Moreover, TENET also has the lowest inference time with an average of 43.09%

reduction against all comparison works. TENET is able to achieve faster inferencing because,

unlike recurrent architectures, TENET employs CNNs to process multiple subsequences in parallel,

247

which helps reduce the inference time. Thus, TENET is able to achieve superior performance

across various attack scenarios in automotive platforms with minimal memory and computational

overhead.

7.4. CONCLUSION

In this chapter, we have proposed a novel anomaly detection framework called TENET for

automotive cyber-physical systems based on Temporal Convolutional Neural Attention (TCNA)

networks. We also proposed a metric called the divergence score (DS), which measures the

deviation of the predicted signal value from the actual signal value. We compared our framework

with the best-known prior works that employ a variety of sequence model architectures for

anomaly detection. Compared to the best performing prior work, TENET achieves an improvement

of up to 9.48% in detection accuracy, 37.25% in ROC-AUC, 64.30% in MCC, and 69.47% in FNR

metrics with 98.17% fewer model parameters, 95.41% decrease in memory footprint, and 81.73%

lower inference time. Given the proliferation of connected vehicles with large attack surfaces on

the roads today, the promising results in this work highlight a compelling potential for deploying

TENET to achieve fast, low-footprint, and accurate anomaly detection in emerging automotive

platforms.

248

8. CONCLUSION AND FUTURE WORK RECOMMENDATIONS

8.1. RESEARCH CONCLUSION

In this dissertation, we addressed significant design challenges related to the reliability,

security, and real-time performance of automotive cyber-physical systems. Our proposed

ROSETTA framework enhances the reliability of automotive cyber-physical systems by integrating

jitter-aware message scheduling approaches and techniques that aid in preserving signal integrity

while meeting timing and deadline constraints. In addition, ROSETTA enhances the security of

automotive cyber-physical systems by incorporating intelligent key management and schedule

optimization techniques. These techniques have minimal overhead and ensure that the ECU loads

stay below 100% to avoid any undesirable overhead on the real-time automotive applications and

prevent them from missing deadlines. Additionally, ROSETTA uses various deep learning based

intrusion detection systems to detect cyber-attacks in complex modern automotive systems. Lastly,

ROSETTA utilizes a variety of runtime management frameworks to handle real-time perturbations

and support design time generated solutions while meeting real-time performance and deadline

requirements. The experimental results of our proposed ROSETTA framework confirm the benefits

of the holistic solution that jointly improves the reliability, security, and real-time performance of

automotive system designs.

JAMS-SG is the first component of ROSETTA framework that utilizes a fast hybrid heuristic

combining simulated annealing (SA) and greedy randomized adaptive search procedure (GRASP)

to jointly explore jitter-aware frame packing and design time schedule synthesis for FlexRay

protocol based automotive systems. Unlike prior works, we consider random jitter (which is hard

to handle compared to deterministic jitter) and realistic stochastic jitter models to accurately model

249

the impacts of jitter on automotive systems. We propose an intelligent runtime scheduler that

opportunistically packs jitter-affected time-triggered messages and high-priority event-triggered

messages using a multi-level feedback queue (MLFQ). We introduce a partial message

transmission scheme using our runtime scheduler and a custom addressing and segmentation

scheme within the payload segment of the FlexRay frame. Lastly, our proposed framework

demonstrated high robustness to varying levels of jitter by achieving an average reduction of

around 16.63%, 16.31%, and 17.72% in average response times under low, medium, and high jitter

conditions respectively, with no deadline misses compared to the best-known prior works in this

area. Moreover, JAMS-SG proved to be highly scalable with no deadline misses and outperforms

the best-known prior works under various system sizes in the presence of jitter.

We then proposed a priority-based multi-level monitoring approach to preserve signal

integrity of high-criticality torque-related signals in automotive systems. Our proposed approach

uses handshake mechanisms and performance counters to monitor the signals and uses a state

machine based model to track the maturity of the faults. Moreover, our proposed technique also

initiates different remedial actions in the form of fail-safe vehicle modes known as limp modes

based on the severity of the fault. Lastly, a comprehensive analysis of our proposed technique is

presented using real automotive hardware of a prototype hybrid electric vehicle in a hardware-in-

the-loop test setup. Our experimental results demonstrate that we can detect level-1 and level-2

critical faults under 100 ms and initiate a remedial action under one second with less than 1%

(insubstantial) overhead on the CAN bus.

Our next contribution is a holistic security-aware design framework called SEDAN that aims

to improve the security of time-triggered automotive systems without violating any security, ECU

utilization, and deadline constraints. We introduce a novel methodology to derive security

250

requirements for messages in the system using automotive signal integrity level (ASIL), a risk

classification scheme defined in ISO 26262. The messages and the derived security requirements

are set up for joint exploration and synthesis of message schedules and security characteristics

(e.g., key size) using GRASP while ensuring that no ECU utilization exceeds 100%. At runtime,

SEDAN employs a session key-based approach using station-to-station key agreement protocol

using the elliptic curve cryptography (ECC) operations. Moreover, SEDAN uses an authenticated

encryption and decryption scheme to simultaneously achieve confidentiality and authenticity to

the message data. We benchmarked various cryptographic algorithms such as advanced encryption

standard (AES), Rivest–Shamir–Adleman (RSA), and ECC on a real-world automotive ECU to

model the runtime behavior of encryption/decryption operations. Lastly, SEDAN demonstrated an

average reduction of around 68% in average response time for messages under all application loads

without any deadline misses compared to the best-known prior works in this area.

Next, we proposed a novel deep learning based intrusion detection framework called INDRA

that utilizes a gated recurrent unit (GRU) based recurrent autoencoder network to learn the normal

system behavior at design time. At runtime, INDRA uses a static threshold approach that uses the

proposed intrusion score (IS) metric, which quantifies the deviation from learned normal behavior.

We present a comprehensive analysis on the selection of the threshold for IS and compare our

proposed INDRA framework with various state-of-the-art intrusion detection works. Our proposed

INDRA framework outperformed all the comparison works and achieved an average improvement

of around 18.1% in detection accuracy and 37.4% reduction in false positive rate when evaluated

under different attack scenarios. Lastly, benchmarking our proposed INDRA framework on a real-

world automotive ECU and the scalability analysis conducted using the benchmarking results has

demonstrated the lightweight nature and scalability of our proposed INDRA framework.

251

We subsequently proposed a deep learning based anomaly detection framework called

LATTE that uses stacked long short-term memory networks (LSTMs) organized in an encoder-

decoder configuration and integrates novel self-attention mechanisms to predict the next message

value at design time. The self-attention mechanism enhanced the ability of the model to focus on

the important hidden state information from the past. At runtime, LATTE monitors the prediction

error (deviation) for each message sample and uses one class support vector machine (OCSVM)

based non-linear classifier to detect anomalies as cyber-attacks. We presented a comprehensive

analysis for the selection of the deviation measure. To evaluate the effectiveness of our proposed

LATTE framework, we compared it with various machine learning, statistical, and proximity-based

anomaly detection techniques under different attack scenarios. On average, across all attacks,

LATTE achieved an average of 18.94% improvement in detection accuracy, 19.5% improvement

in F1 score, 37% improvement in receiver operating characteristic curve with area under the curve

(ROC-AUC), and 79% reduction in false-positive rate. Moreover, the overhead analysis results

obtained by implementing our proposed LATTE framework on a real-world automotive ECU

indicates the lightweight nature and fast execution time of the proposed approach.

Lastly, we proposed a temporal CNN with neural attention (TCNA) based anomaly detection

framework called TENET to learn very long-term temporal dependencies between messages to

better understand the normal operating conditions of the system at design time. During runtime,

TENET uses a decision tree based fast classifier and the proposed divergence score (DS) to

quantify the deviation from the normal behavior to detect anomalies as cyber-attacks. Compared

to the best performing prior works, TENET achieved up to 9.48% improvement in detection

accuracy, 64.30% improvement in Matthews correlation coefficient (MCC), 37.25% improvement

in ROC-AUC, and 69.47% reduction in false-negative rate. Moreover, the implementation of

252

TENET on a real-world automotive ECU indicates the low memory footprint, a fewer number of

model parameters, and fast inference time of our proposed approach.

8.2. RECOMMENDATIONS FOR FUTURE WORK

Modern automotive systems are rapidly evolving to realize the goals of autonomous driving.

This increased the adoption of a suite of sensors, complex AI algorithms, a diverse set of new

communication standards, and advanced vehicle control. As a result, numerous new challenges

have emerged that impact the reliability, security, and real-time performance of automotive cyber-

physical systems. We envision the following as possible directions for future work.

 Resilience to adversarial attacks: Modern deep learning algorithms have shown superior

performance in the area of sensing and perception that are crucial for various ADAS

applications. However, these algorithms are vulnerable to carefully crafted adversarial attacks.

In [30], researchers generated various robust visual adversarial perturbations to a stop sign that

resulted in it being misidentified as a 45 mph speed limit sign. Other researchers were able to

blind a Mobileye C2-270 camera and demonstrate jamming, spoofing, and relay attacks on an

Ibeo LUX3 LiDAR sensor [155]. More recent attacks include tricking the lane change system

of a Tesla Model S with bright stickers on the road by Tencent Keen security lab in 2019 [31]

and object removal attacks on LiDAR sensors in 2021 [32]. Moreover, recent model inversion

attacks [185] that try to reconstruct training data from the model parameters are gaining

popularity. Such attacks pose a significant threat to the proprietary data of the automakers that

are used to train the deep learning models. Moreover, with newer and scalable learning

approaches for large deep learning algorithms, such as with federated learning in data center

253

environments, the need for creating new approaches for tamper-proof deep learning algorithms

and building resilience to adversarial attacks becomes even more imperative.

 Advanced deep learning models for intrusion detection: Several deep learning based models

that encompass monitoring and attack detection at an in-vehicle network level (such as in

Chapters 5, 6, and 7) and vehicular ad hoc network (VANET) level (such as [184], [186]-[188])

have been studied in the literature. However, due to the rollout of increasingly connected

vehicles, we envision that Black-hole DDoS attacks [189] (where communication between

vehicles is blocked) and Sybil attacks [190] (where a vehicle operates with multiple identities)

will become increasingly common. Such attacks will result in confusing the existing deep

learning algorithms, potentially causing failure across vehicle subsystems. Moreover, sequence

models such as RNNs, LSTMs, and GRUs operate sequentially on the input data, which limits

their ability to achieve faster inference times, especially on resource-constrained ECUs. The

state-of-the-art advanced deep learning models such as Transformers [183], graph neural nets

[191], customized natural language processing (NLP) models [192], and generative adversarial

networks (GANs) [193] that were proven to perform well in their respective fields can be

adapted to automotive systems.

 Intelligent scheduler design using machine learning: The era of intelligent transportation

systems (ITS) is driven by VANETs using advanced communication modes such as vehicle-

to-vehicle (V2V) and vehicle-to-infrastructure (V2I). Today, VANETs play a crucial role in

building a safe and reliable connected vehicular ecosystem by relying on data gathered from

vehicles and roadside units (RSUs). Moreover, this communication is highly time-sensitive

254

and must be reliably conveyed to several vehicles and RSUs. This brings up the challenge of

designing an intelligent scheduler that can effectively handle communication from various

vehicles and RSUs. In [194], the authors proposed a reinforcement learning based scheduler

for V2V communication and show its effectiveness in avoiding collisions and its ability to

reuse existing resources better than the state-of-the-art schedulers. In [195], the authors

proposed a deep Q-network based energy-efficient V2I scheduler that satisfies all the safety

and quality-of-service (QoS) concerns. These works show promising potential for using

advanced machine learning approaches to tackle the problem of designing intelligent

schedulers that can be deployed in emerging automotive systems. Similar approaches can be

adapted to develop intelligent schedulers for scheduling in-vehicle network traffic.

 Resource management challenges in electric vehicles: Battery-based electric vehicles (EVs)

have become increasingly popular due to growing concerns about minimizing greenhouse gas

emissions. Unlike traditional internal combustion engine (ICE) vehicles that rely on gasoline,

EVs only rely on the onboard electrical energy stored in the batteries. Many modern EVs use

lithium-ion batteries as the primary energy storage system (ESS), which has around 1/100th of

the energy density of gasoline, making the onboard electrical energy extremely valuable. This

creates a unique challenge with energy management and requires the functionalities of the EVs

to be highly energy-efficient, as they can have a direct impact on the vehicle’s overall range

and performance. Thus, the strategies that are developed for non-electric vehicles cannot be

directly adopted in EVs, which presents an exciting opportunity to explore the problem of

energy-aware resource management in EVs. Many ESS management techniques are proactive

in nature and require accurate estimation of the current and future approximation of the state

255

of the system [196]. Thus, building accurate predictive models for estimating metrics such as

vehicle velocity and energy consumption of different subsystems is highly crucial for

designing an efficient ESS management technique. State-of-the-art deep learning models are

an excellent choice as they have proven to be highly efficient when presented with sufficient

quality data, and many vehicles facilitate the recording of this data. Some of the recent works

such as, [196] and [197], focus on predicting the vehicle velocity and integrate it into the

vehicle’s energy management strategy to make intelligent decisions. Moreover, efforts need to

be focused on developing energy-aware security mechanisms to deal with various security

vulnerabilities due to the increased number of electronic components and attack vectors.

Additionally, the fuel economy of the EVs should also be a crucial component of EV resource

management as it plays a key role in determining the range of the vehicle. Various fuel

economy metrics such as kWh/mile (kilowatt hours per mile) and miles per gallon gasoline

equivalent (mpgge) can be considered to analyze and compare the energy efficiencies across

different vehicle types.

 Intelligent vehicle control: The integration of powerful multi-core ECUs that can run various

complex applications has enabled intelligent vehicle control in modern vehicles. These control

algorithms heavily rely on heterogeneous sensor data, communication from many external

systems (V2X and 5G), and advanced computation methods (deep learning models). Many

researchers have studied the adoption of intelligent vehicle control for achieving high energy

efficiency and fuel economy. An intelligent engine on/off control strategy based on the vehicle

velocity prediction using a neural network is proposed in [198] to improve the fuel economy

of a prototype hybrid electric vehicle. In [199], a V2V based vehicle speed prediction

256

methodology was introduced to determine the optimal operation of the engine to increase the

fuel economy. Although these techniques achieve improvements in fuel economy, they can

quickly lead to poor performance when the prediction methodologies fail due to runtime

disruptions such as incorrect sensor data, computation and communication uncertainties (such

as jitter), and missing data. Moreover, as these control algorithms rely on information from

external sources to control various safety-critical systems, they need to be protected from

cyber-attacks. Thus, there is a need to enable robust and secure intelligent vehicle control,

which is critical in enabling future autonomous vehicles.

 Exploring the impact of deep learning subsystems: Due to the large-scale integration of various

deep learning models into different vehicular subsystems for realizing applications such as

intrusion detection systems (IDS), intelligent vehicle control, and perception applications, it is

essential to study and understand the implications of these systems on the overall performance

and safety of the vehicle. Furthermore, these systems will be operating co-operatively in a

pipeline manner to achieve various goals such as ESS management, secure communication,

and vehicle autonomy. This becomes increasingly critical as these systems actively exchange

information, which can sometimes lead to issues such as unintended error propagation, failure

of a critical subsystem due to a dependent subsystem failure (cascading failures), and new

complex vulnerability chains. Moreover, deep learning models lack robustness and are highly

susceptible to small input perturbations [200]. Therefore, it is essential to study the

performance implications of cascading these subsystems and develop new methodologies that

improve the resiliency to runtime uncertainties and handle worst-case scenarios such as

missing data and failure of dependent subsystems. These issues are crucial to address as they

257

can have detrimental effects on the latencies of automotive applications and messages,

resulting in missed deadlines and catastrophic failures of safety-critical systems.

 Reliable and secure multi-sensor fusion: Modern vehicles are equipped with a variety of

sensors to perceive the environment. They often combine the information from multiple

homogeneous or heterogeneous sensors to find the single best estimate of the state of the

environment, and this process is referred to as sensor fusion. Sensor fusion helps sensors

complement each other’s limitations and offers greater leverage to the system compared to a

system with individual sensors. This results in high precision, extended spatial and temporal

coverage, and improved resolution, which are crucial in safety-critical automotive systems.

However, these sensor fusion algorithms are highly sensitive to the quality of the data from

various sensors, which can be susceptible to various runtime perturbations and uncertainties

due to the harsh operating conditions of the vehicle, such as high operating temperatures,

vibrations, electromagnetic interference (EMI), radio frequency interference (RFI), aging

sensors, and from various environmental sources. Moreover, works such as [30] have

demonstrated that these sensors can be hijacked and tricked to achieve malicious goals. Thus,

there is a need for the design of reliable and secure multi-sensor fusion algorithms that are

resilient to uncertainties and robust to variations in sensor data to ensure the safety of present

semi-autonomous and future autonomous vehicles. Various aspects of resource management

such as scheduling of sensor fusion tasks and messages, designing of lightweight algorithms

to minimize ECU overhead, robustness to faulty vehicular control, ensuring sensor data

integrity, and managing security and real-time requirements are crucial elements that need to

be explored when designing reliable and robust sensor fusion techniques. Moreover, it is

258

crucial to ensure optimal placement and configuration of heterogeneous sensors in the vehicle

to achieve an extended coverage which aids in the sensor fusion. Thus, it is vital to consider

works such as [170] as the baseline for achieving optimal placement and configuration.

259

BIBLIOGRAPHY

[1] H. Kellerman, G. Nemeth, J. Kostelezky, K. Barbehön, F. El‐Dwaik, and L. Hochmuth,

“BMW 7 Series architecture,” ATZextra, November 2008.

[2] V. K. Kukkala, S. Pasricha, and T. Bradley, “Advanced Driver-Assistance Systems: A path

toward autonomous vehicles,” in IEEE Consumer Electronics Magazine, Vol. 7, Iss. 5,

September 2018.

[3] SAE International, “Taxonomy and Definitions for Terms Related to Driving Automation

Systems for On-Road Motor Vehicles.” [Online]. Available: https://www.sae.org/standards

/content/j3016_202104/, 2021.

[4] V. K. Kukkala, S. V. Thiruloga, and S. Pasricha, “Roadmap for Cybersecurity in

Autonomous Vehicles,” in IEEE Consumer Electronics Magazine (CEM), 2022.

[5] D. Jiang and L. Delgrossi, “IEEE 802.11p: Towards an International Standard for Wireless

Access in Vehicular Environments,” in Proc. of IEEE Vehicular Technology Conference

(VTC) Spring, 2008.

[6] J. B. Kenney, “Dedicated Short-Range Communications (DSRC) Standards in the United

States,” in Proc. of the IEEE, Vol. 99, No. 7, July 2011.

[7] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in Proc. of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[8] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks,” in Advances in Neural Information Processing

Systems (NIPS), 2015.

https://www.sae.org/standards

260

[9] Tesla Autopilot. [Online]. Available: https://www.tesla.com/autopilot.

[10] H. Thapliyal, S. P. Mohanty, and S. J. Prowell, “Emerging Paradigms in Vehicular

Cybersecurity,” in IEEE Consumer Electronics Magazine (CEM), Vol. 8, No. 6, Nov. 2019.

[11] ABESE Team, “Future advances in body electronics,” in NXP White paper. [Online].

Available: https://www.nxp.com/docs/en/white-paper/BODYDELECTRWP.pdf

[12] Automotive IQ, “In-Car Network Architecture 2020”. [Online]. Available:

https://www.automotive-iq.com/electrics-electronics/infographics/in-car-network-

architecture-2020.

[13] “Upstream Security’s 2021 Global Automotive Cybersecurity Report,” [Online]. Available:

https://upstream.auto/2021report, 2021.

[14] ISO 26262: Road Vehicles- Functional Safety, ISO Standard, 2011.

[15] “CAN Specifications version 2.0,” Robert Bosch gmbh, 1991.

[16] “FlexRay Communications System Protocol Specification, ver.3.0.1.” [Online]. Available:

http://www.flexray.com

[17] “SAE AS6802: Time-Triggered Ethernet,” SAE Standard, 2016.

[18] “IEEE 802.1 Time-Sensitive Networking Task Group”. [Online]. Available:

www.ieee802.org.

[19] G. C. DiDomenico, J. Bair, V. K. Kukkala, J. Tunnell, M. Peyfuss, M. Kraus, J. Ax, J.

Lazarri, M. Munin, C. Cooke, and E. Christensen, “Colorado State University EcoCAR 3

Final Technical Report,” in SAE World Congress Experience (WCX), April 2019.

https://www.tesla.com/autopilot.
https://www.nxp.com/docs/en/white-paper/BODYDELECTRWP.pdf
https://www.automotive-iq.com/electrics-electronics/infographics/in-car-network-
https://upstream.auto/2021report,
http://www.flexray.com
http://www.ieee802.org.

261

[20] K. Schmidt and E.G. Schmidt, “Message Scheduling for the FlexRay Protocol: The Static

Segment”, in IEEE Transactions on Vehicular Technology (TVT), Vol. 58, Iss. 5, 2009.

[21] K. Schmidt and E.G. Schmidt, “Optimal Message Scheduling for the Static Segment of

FlexRay”, in Proc. of IEEE Vehicular Technology Conference (VTC) Fall, 2010.

[22] Semiconductor engineering, “Chasing Reliability in Automotive Electronics.” [Online].

Available: https://semiengineering.com/chasing-reliability-in-automotive-electronics, 2019.

[23] R. Baumann, “Soft errors in advanced computer systems,” in IEEE Design & Test of

Computers, Vol. 22, No. 3, 2005.

[24] D. Kraak, M. Taouil, S. Hamdioui, P. Weckx, F. Catthoor, A. Chatterjee, A. Singh, H. J.

Wunderlich, and N. Karimi, “Device aging: A reliability and security concern,” in Proc. of

IEEE European Test Symposium (ETS), 2018.

[25] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B.

Kantor, D. Anderson, H. Shacham, and S. Savage, “Experimental Security Analysis of a

Modern Automobile,” in Proc. of IEEE Symposium on Security and Privacy (SP), 2010.

[26] C. Valasek and C. Miller, “Remote Exploitation of an Unaltered Passenger Vehicle,” in

Black Hat USA, 2015.

[27] F. D. Garcia, D. Oswald, T. Kasper, and P. Pavlidès, “Lock it and still lose it-on the (in)

security of automotive remote keyless entry systems,” in Proc. of USENIX, 2016.

[28] L. Wouters, E. Marin, T. Ashur, B. Gierlichs, and B. Preneel, “Fast, Furious and Insecure:

Passive Keyless Entry and Start Systems in Modern Supercars,” in IACR Transactions on

Cryptographic Hardware and Embedded Systems (TCHES), 2019.

https://semiengineering.com/chasing-reliability-in-automotive-electronics,

262

[29] L. Wouters, B. Gierlichs, and B. Preneel, “My other car is your car: compromising the Tesla

Model X keyless entry system,” in IACR Transactions on Cryptographic Hardware and

Embedded Systems (TCHES), 2021.

[30] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno,

and D. Song, “Robust physical-world attacks on deep learning visual classification,” in Proc.

of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[31] Tencent Keen Security Lab, “Experimental Security Research of Tesla Autopilot,” 2019.

[32] Z. Hau, K. T. Co, S. Demetriou, and E. C. Lupu, “Object removal attacks on lidar-based 3d

object detectors,” in arXiv preprint, 2021.

[33] R.P Weinmann and B. Schmotzle, “TBONE – A zero-click exploit for Tesla MCUs,” White

paper, ComSecuris, 2020.

[34] “Kia Motors America suffers ransomware attack, $20 million ransom,” [Online]. Available:

https://www.bleepingcomputer.com/news/security/kia-motors-america-suffers-ansomware-

attack-20-million-ransom/

[35] J. Burke, J. McDonald, and T. Austin, “Architectural support for fast symmetric-key

cryptography,” in Proc. of ACM International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 2000.

[36] G. J. Simmons, “Symmetric and Asymmetric Encryption,” in ACM Computing Surveys,

Vol. 11, No. 4, 1979.

[37] C. W. Lin, Q. Zhu, and A. Sangiovanni-Vincentelli, “Security-aware mapping for TDMA-

based real-time distributed systems,” in Proc. of IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), 2014.

https://www.bleepingcomputer.com/news/security/kia-motors-america-suffers-ansomware-

263

[38] C. W. Lin, B. Zheng, Q. Zhu, and A. Sangiovanni-Vincentelli, “Security-aware design

methodology and optimization for automotive systems,” in ACM Transactions on Design

Automation of Electronic Systems (TODAES), Vol. 21, No. 1, 2015.

[39] P. Mundhenk, S. Steinhorst, M. Lukasiewycz, S. A. Fahmy, and S. Chakraborty,

“Lightweight authentication for secure automotive networks,” in Proc. of IEEE/ACM

Design, Automation & Test in Europe & Exhibition (DATE), 2015.

[40] P. Mundhenk, A. Paverd, A. Mrowca, S. Steinhorst, M. Lukasiewycz, S. A. Fahmy, and S.

Chakraborty, “Security in Automotive Networks: Lightweight Authentication and

Authorization,” in ACM Transactions on Design Automation of Electronic Systems

(TODAES), Vol. 22, No. 2, 2017.

[41] T. Xie and X. Qin, “Improving security for periodic tasks in embedded systems through

scheduling,” in ACM Transactions on Embedded Computing Systems (TECS), Vol. 6, No.

3, 2007.

[42] V. K. Kukkala, T. Bradley, and S. Pasricha, “Priority-based Multi-level Monitoring of Signal

Integrity in a Distributed Powertrain Control System,” in Proc. of IFAC Workshop on

Engine and Powertrain Control, Simulation and Modeling, July 2015.

[43] V. K. Kukkala, T. Bradley, and S. Pasricha, “Uncertainty Analysis and Propagation for an

Auxiliary Power Module,” in Proc. of IEEE Transportation Electrification Conference

(TEC), June 2017.

[44] V. K. Kukkala, S. Pasricha, and T. Bradley, “JAMS: Jitter-Aware Message Scheduling for

FlexRay Automotive Networks,” in Proc. of IEEE/ACM International Symposium on

Network-on-Chip (NOCS), October 2017.

264

[45] V. K. Kukkala, S. Pasricha, and T. Bradley, “JAMS-SG: A Framework for Jitter-Aware

Message Scheduling for Time-Triggered Automotive Networks,” in ACM Transactions on

Design Automation of Electronic Systems (TODAES), Vol. 24, Iss. 6, September 2019.

[46] V. Kukkala, S. Pasricha, and T. Bradley, “SEDAN: Security-Aware Design of Time-Critical

Automotive Networks,” in IEEE Transaction on Vehicular Technology (TVT), Vol. 69, Iss.

8, August 2020.

[47] V. K. Kukkala, S. V. Thiruloga, and S. Pasricha, “INDRA: Intrusion Detection using

Recurrent Autoencoders in Automotive Embedded Systems,” in IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD), Vol. 39, Iss. 11,

November 2020.

[48] V. K. Kukkala, S. V. Thiruloga, and S. Pasricha, “LATTE: LSTM Self-Attention based

Anomaly Detection in Embedded Automotive Platforms,” in ACM Transactions on

Embedded Computing Systems (TECS), Vol. 20, No. 5s, Article 67, August 2021.

[49] S. V. Thiruloga, V. K. Kukkala, and S. Pasricha, “TENET: Temporal CNN with Attention

for Anomaly Detection in Automotive Cyber-Physical Systems,” in Proc. of IEEE/ACM

Asia & South Pacific Design Automation Conference (ASPDAC), January 2022.

[50] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, and A. Sangiovanni-Vincentelli,

“Period Optimization for Hard Real-time Distributed Automotive Systems”, in Proc. of

IEEE/ACM Design Automation Conference (DAC), 2007.

[51] SAE, “Automotive Engineering International,” July 2016. [Online]. Available:

https://www.sae.org/publications/magazines/content/16autd07/

https://www.sae.org/publications/magazines/content/16autd07/

265

[52] I. R. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller Area Network (CAN)

schedulability analysis: Refuted, revisited and revised”, in Real-Time Systems, Vol. 35, No.

3, 2007.

[53] R. Saket and N. Navet, “Frame Packing Algorithms for Automotive Applications”, in

Journal of Embedded Computing (JEC), Vol. 2, No. 1, 2006.

[54] L. L. Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent Advances and Trends in On-

board Embedded and Networked Automotive Systems”, in IEEE Transactions on Industrial

Informatics (TII), Vol. 15, Iss. 2, 2019.

[55] Audi A5 Driver assistance systems [Online]. Available: https://www.audi-

mediacenter.com/en/the-new-audi-a5-and-audi-s5-coupe-6269/driver-assistance-systems-

6281

[56] M. Fleiss, T. M. Müller, M. Nilsson, and J. Carlsson, “Volvo Powertrain Integration into

Complete Vehicle”, in ATZ worldwide, Vol. 118, Iss. 3, March 2016.

[57] B. Tanasa, U.D. Bordoloi, P. Eles, and Z. Peng, “Reliability-Aware Frame Packing for the

Static Segment of FlexRay”, in Proc. of IEEE/ACM International Conference on Embedded

Software (EMSOFT), 2011.

[58] M. Kang, K. Park, and M.K. Jeong, “Frame Packing for Minimizing the Bandwidth

Consumption of the FlexRay Static Segment”, in IEEE Transactions on Industrial

Electronics (TIE), Vol. 60, No. 9, 2013.

[59] S. Ding, R. Huang, R. Kurachi, and G. Zeng, “A Genetic Algorithm for Minimizing

Bandwidth Utilization by Packing CAN-FD Frame”, in Proc. of IEEE International

Conference on Embedded Software and Systems (ICESS), 2016.

https://www.audi-

266

[60] H. Zeng, W. Zheng, M. Di Natale, A. Ghosal, P. Giusto, and A. Sangiovanni-Vincentelli,

“Scheduling the FlexRay Bus Using Optimization Techniques”, in Proc. of IEEE/ACM

Design Automation Conference (DAC), 2009.

[61] M. Lukasiewycz, M. Glaß, J. Teich, and P. Milbredt, “Flexray Schedule Optimization of the

Static Segment”, in Proc. of IEEE/ACM international conference on Hardware/software

codesign and system synthesis (CODES+ISSS), 2009.

[62] H.Zeng, M. Di Natale, A. Ghosal, and A. Sangiovanni-Vincentelli, “Schedule Optimization

of Time-Triggered Systems Communicating Over the FlexRay Static Segment”, in IEEE

Transactions on Industrial Informatics (TII), Vol. 7, No. 1 , 2011.

[63] M. Grenier, L. Havet, and N. Navet, “Configuring the communication on FlexRay- the case

of the static segment”, in Proc. of European Congress on Embedded Real Time Software

(ERTS), 2008.

[64] Z. Sun, H. Li, M. Yao, and N. Li, “Scheduling Optimization Techniques for FlexRay Using

Constraint-Programming”, in Proc. of IEEE/ACM International Conference on Green

Computing and Communications and International Conference on Cyber, Physical and

Social Computing, 2010.

[65] M. Lukasiewycz, R. Schneider, D. Goswami, and S. Chakraborty, “Modular Scheduling of

Distributed Heterogeneous Time-Triggered Automotive Systems”, in Proc. of IEEE Asia

and South Pacific Design Automation Conference (ASP-DAC), 2012.

[66] D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty, “Time-triggered

Implementations of Mixed-Criticality Automotive Software”, in Proc. of IEEE/ACM

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2012.

267

[67] P. Mundhenk, F. Sagstetter, S. Steinhorst, M. Lukasiewycz, and S. Chakraborty, “Policy-

based Message Scheduling Using FlexRay”, in Proc. of IEEE/ACM International

Conference on Hardware/Software Codesign and System Synthesis (CODES+ ISSS), 2014.

[68] B. Tanasa, U.D. Bordoloi, P. Eles, and Z. Peng, “Scheduling for Fault-Tolerant

Communication on the Static Segment of FlexRay”, in Proc. of IEEE Real-Time Systems

Symposium (RTSS), 2010.

[69] R. Lange, F. Vasques, P. Portugal, and R.S. de Oliveira, “Guaranteeing Real-Time Message

Deadlines in The FlexRay Static Segment Using a On-line Scheduling Approach”, in Proc.

of IEEE International Workshop on Factory Communication Systems (WFCS), 2014.

[70] L. Zhang, D. Goswami, R. Schneider, and S. Chakraborty, “Task-and Network-level

Schedule Co-Synthesis of Ethernet-based Time-triggered Systems”, in Proc. of IEEE/ACM

Asia and South Pacific Design Automation Conference (ASP-DAC), 2014.

[71] F. Sagstetter, S. Andalam, P. Waszecki, M. Lukasiewycz, H. Stähle, S. Chakraborty, and A.

Knoll, “Schedule Integration Framework for Time-Triggered Automotive Architectures”, in

Proc. of IEEE/ACM Design Automation Conference (DAC), 2014.

[72] S. S. Craciunas and R. S. Oliver, “Combined task-and network-level scheduling for

distributed time-triggered systems”, in Real-Time Systems, Vol. 52, No. 2, 2016.

[73] A. Novak, P. Sucha, and Z. Hanzalek, “Efficient Algorithm for Jitter Minimization in Time-

Triggered Periodic Mixed-Criticality Message Scheduling Problem”, in Proc. of ACM

International Conference on Real-Time Networks and Systems (RTNS), 2016.

268

[74] A. Minaeva, B. Akesson, Z. Hanzálek, and D. Dasari, “Time-triggered Co-Scheduling of

Computation and Communication with Jitter Requirements”, in IEEE Transactions on

Computers (TC), 2018.

[75] L. Maldonado, W. Chang, D. Roy, A. Annaswamy, D. Goswami, and S. Chakraborty,

“Exploiting System Dynamics for Resource-Efficient Automotive CPS Design”, in Proc. of

IEEE/ACM Design, Automation & Test in Europe Conference & Exhibition (DATE), 2019.

[76] D. Roy, W. Chang, S. K. Mitter, and S. Chakraborty, “Tighter Dimensioning of

Heterogeneous Multi-Resource Autonomous CPS with Control Performance Guarantees”,

in Proc. of IEEE/ACM Design Automation Conference (DAC), 2019.

[77] T. J. Yamaguchi, K. Ichiyama, H. X. Hou, and M. Ishida, “A Robust Method for Identifying

a Deterministic Jitter Model in a Total Jitter Distribution”, in Proc. of IEEE International

Test Conference (ITC), 2009.

[78] T. Witkowski, P. Antczak, and A. Antczak, “Solving the Flexible Open-Job Shop

Scheduling Problem with GRASP and Simulated Annealing”, in Proc. of IEEE International

Conference on Artificial Intelligence and Computational Intelligence (AICI), 2010.

[79] L. Liu, H. Mu, and J. Yang, “Simulated annealing based GRASP for Pareto-optimal

dissimilar paths problem”, in Soft Computing (SC), Vol. 21, No. 18, 2016.

[80] P. Kleberger, T. Olovsson, and E. Jonsson, “Security Aspects of the In-Vehicle Network in

the Connected Car,” in Proc. of IEEE Intelligent Vehicles Symposium (IV), 2011.

[81] K. Tindell, H. Hansson, and A.J Wellings, “Analysing Real-Time Communications:

Controller Area Network (CAN),” in Proc. of IEEE Real-Time Systems Symposium

(RTSS), 1994.

269

[82] D. K. Nilsson, U. E Larson, and E. Jonsson, “Efficient In-Vehicle Delayed Data

Authentication Based on Compound Message Authentication Codes,” in Proc. of IEEE

Vehicular Technology Conference (VTC) Fall, 2008.

[83] P. Sundaram and J. D’Ambrosio, “Controller Integrity in Automotive Failsafe System

Architectures,” in SAE World Congress & Exhibition (WCX), 2006.

[84] H. Buur, W. R. Cawthorne, T. W. Haines, J. J. Park, and L. G. Wozniak, “Method and

apparatus for monitoring software and signal integrity in a distributed control module system

for a powertrain system,” in US Patent 8428816 B2, 2013.

[85] M. K. Mandal, “Multimedia Signals and Systems,” in Springer Science & Business Media,

2012.

[86] Woodward SECM 112. [Online]. Available: mcs.woodward.com/support/wiki/index.php?

title=SECM112, 2015.

[87] dSPACE Simulator Mid-Size: Standardized, off- the- shelf HIL simulator. Available from:

http://www.dspace.com/en/pub/home/products/hw/simulator_hardware/dspace_simulator_

mid_size.cfm, June 2015.

[88] I. Studnia, V. Nicomette, E.Alata, Y. Deswarte, M. Kaâniche, and Y. Laarouchi, “Survey of

security threats and protection mechanisms in embedded automotive systems,” in Proc. of

IEEE Dependable Systems and Networks Workshop, 2013.

[89] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher, A.

Czeskis, F. Roesner, and T. Kohno, “Comprehensive Experimental Analyses of Automotive

Attack Surfaces,” in Proc. of USENIX Security Symposium, 2011.

http://www.dspace.com/en/pub/home/products/hw/simulator_hardware/dspace_simulator_

270

[90] V. Izosimov, A. Asvestopoulos, O. Blomkvist, and M. Törngren, “Security-aware

development of cyber-physical systems illustrated with automotive case study,” in Proc. of

IEEE/ACM Design, Automation & Test in Europe & Exhibition (DATE), 2016.

[91] R. Zalman and A. Mayer, “A secure but still safe and low cost automotive communication

technique,” in Proc. of IEEE/ACM Design Automation Conference (DAC), 2014.

[92] C. W. Lin, Q. Zhu, C. Phung, and A. Sangiovanni-Vincentelli, “Security-aware mapping for

CAN-based real-time distributed automotive systems,” in Proc. of IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), 2013.

[93] C. W. Lin, Q. Zhu, and A. Sangiovanni-Vincentelli, “Security-aware modeling and efficient

mapping for CAN-based real-time distributed automotive systems,” in IEEE Embedded

Systems Letter, Vol. 7, No. 1, 2015.

[94] G. Han, H. Zeng, Y. Li, and W. Dou, “SAFE: Security Aware FlexRay Scheduling Engine,”

in Proc. of IEEE/ACM Design, Automation & Test in Europe & Exhibition (DATE), 2014.

[95] A. Hazem and H. A. Fahmy, “LCAP- A Lightweight CAN Authentication Protocol for

Scheduling In-Vehicle Networks,” in Proc. of ESCAR Embedded Security in Cars

Conference, 2012.

[96] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. Robshaw, Y. Seurin,

and C. Vikkelsoe, “PRESENT: An Ultra-lightweight block cipher,” in Proc. of Springer

International Workshop on Cryptographic Hardware and Embedded Systems, 2007.

[97] M. L. Chavez, C. H. Rosete, and F. R. Henriquez, “Achieving Confidentiality Security

Service for CAN,” in Proc. of IEEE International Conference on Electronics,

Communications and Computers (CONIELECOMP), 2005.

271

[98] M. Yoshikawa, K. Sugioka, Y. Nozaki, and K. Asahi, “Secure In-vehicle Systems against

Trojan Attacks,” in Proc. of IEEE/ACIS International Conference on Computers and

Information Science (ICIS), 2015.

[99] M. Lukasiewycz, P. Mundhenk, and S. Steinhorst, “Security-aware obfuscated priority

assignment for automotive CAN platforms,” in ACM Transactions on Design Automation

on Electrical Systems (TODAES), Vol. 21, No. 2, 2016.

[100] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “The TESLA broadcast authentication

protocol,” in RSA Cryptobytes, Vol. 5, No. 2, 2005.

[101] S. Shreejith and S. A. Fahmy, “Security aware network controllers for next generation

automotive embedded systems,” in Proc. of IEEE/ACM Design Automation Conference

(DAC), 2015.

[102] C. W. Lin and H. Yu, “Coexistence of safety and security in next-generation ethernet-based

automotive networks,” in Proc. of IEEE/ACM Design Automation Conference (DAC),

2016.

[103] B. Zheng, P. Deng, R. Anguluri, Q. Zhu, and F. Pasqualetti, “Cross-layer codesign for secure

cyber-physical systems,” in IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), Vol. 35, No. 5, 2016.

[104] M. Lin, L. Xu, L. T. Yang, X. Qin, N. Zheng, Z. Wu, and M. Qiu, “Static security

optimization for real-time systems,” in IEEE Transaction on Industrial Informatics (TII),

Vol. 5, No. 1, 2009.

272

[105] H. Liang, M. Jagielski, B. Zheng, C. W. Lin, E. Kang, S. Shiraishi, C. Nita-Rotaru, and Q.

Zhu, “Network and system level security in connected vehicle applications,” in Proc. of

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2018.

[106] P. Waszecki, P. Mundhenk, S. Steinhorst, M. Lukasiewycz, R. Karri, and S. Chakraborty,

“Automotive electrical and electronic architecture security via distributed in-vehicle traffic

monitoring,” in IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems (TCAD), Vol. 36, No. 11, 2017.

[107] M. Wu, H. Zeng, C. Wang, and H. Yu, “Safety guard: Runtime enforcement for safety-

critical cyber-physical systems,” in Proc. of IEEE/ACM Design Automation Conference

(DAC), 2017.

[108] R. G. Dutta, X. Guo, T. Zhang, K. Kwiat, C. Kamhoua, L. Njilla, and Y. Jin, “Estimation of

safe sensor measurements of autonomous system under attack,” in Proc. of IEEE/ACM

Design Automation Conference (DAC), 2017.

[109] T. A. Feo and M. G. Resende, “Greedy randomized adaptive search procedures,” in Journal

of Global Optimization, Vol. 6, No. 2, 1995.

[110] B. O’Higgins, W. Diffie, L. Strawczynski, and R. De Hoog, “Encryption and ISDN- A

Natural Fit,” in Proc. of IEEE International Switching Symposium (ISS), 1987.

[111] W. Diffie and M. Hellman, “New directions in cryptography,” in IEEE Transactions on

Information Theory (TIT), Vol. 22, No. 6, 1976.

[112] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete

logarithms,” in IEEE Transactions on Information Theory (TIT), Vol. 31, No. 4, 1985.

273

[113] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A. Halderman, N.

Heninger, D. Springall, E. Thomé, L. Valenta, and B. VanderSloot, “Imperfect forward

secrecy: How Diffie-Hellman fails in practice,” in Proc. of ACM SIGSAC Conference on

Computer and Communications Security (CCS), 2015.

[114] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs for free,” in Proc. of IEEE/ACM

International Workshop on Hardware/Software Codesign (CODES/CASHE), 1998.

[115] OpenSSL: Cryptography and SSL/TLS toolkit [Online]. Available: http://www.openssl.org/

[116] NXP MPC5775K [Online]. Available: www.nxp.com/docs/en/data-sheet/MPC5775KDS.pdf

[117] NXP i.MX 6 [Online]. Available: www.nxp.com/docs/en/fact-sheet/IMX6SRSFS.pdf

[118] E. Barker and Q. Dang, “Recommendation for Key Management: Application-Specific Key

Management Guidance,” in NIST special publication 800-57 Part 3, Revision 1, 2015.

[119] E. Barker, L. Chen, A. Roginsky, A. Vassilev, and R. Davis, “Recommendation for Pair-

Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography,” in NIST

special publication 800-56A Revision 3, 2018.

[120] National Security Agency, “The Case for Elliptic Curve Cryptography.” [Online]. Available:

www.nsa.gov/business/programs/elliptic_curve.shtml

[121] I. Studnia, E. Alata, V. Nicomette, M. Kaâniche, and Y. Laarouchi, “A language-based

intrusion detection approach for automotive embedded networks” in International Journal

on Embedded Systems (IJES), Vol. 10, No. 8, 2018.

[122] M. Marchetti and D. Stabili, “Anomaly detection of CAN bus messages through analysis of

ID sequences,” in Proc. of IEEE Intelligent Vehicle Symposium (IV), 2017.

http://www.openssl.org/
http://www.nxp.com/docs/en/data-sheet/MPC5775KDS.pdf
http://www.nxp.com/docs/en/fact-sheet/IMX6SRSFS.pdf
http://www.nsa.gov/business/programs/elliptic_curve.shtml

274

[123] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive CAN networks-

practical examples and selected short-term countermeasures,” in Reliability Engineering &

System Safety, Vol. 96, No. 1, 2011.

[124] U. E. Larson, D. K. Nilsson, and E. Jonsson, “An approach to specification-based attack

detection for in-vehicle networks,” in Proc. of IEEE Intelligent Vehicles Symposium (IV),

2008.

[125] M. Aldwairi, A. M. Abu-Dalo, and M. Jarrah, “Pattern matching of signature-based IDS

using Myers algorithm under MapReduce framework,” in EURASIP Journal on Information

Security, No. 1, 2017.

[126] E. W. Myers, “An O(ND) difference algorithm and its variations,” in Algorithmica,1986.

[127] T. Hoppe, S. Kiltz, and J. Dittmann, “Applying intrusion detection to automotive IT-early

insights and remaining challenges,” in Journal of Information Assurance and Security

(JIAS), Vol. 4, No. 6, 2009.

[128] K. T. Cho and K. G. Shin, “Fingerprinting electronic control units for vehicle intrusion

detection,” in Proc. of USENIX, 2016.

[129] X. Ying, S. U. Sagong, A. Clark, L. Bushnell, and R. Poovendran, “Shape of the Cloak:

Formal analysis of clock skew-based intrusion detection system in controller area networks.”

In IEEE Transactions on Information Forensics and Security (TIFS), Vol. 14, No. 9, 2019.

[130] M. K. Yoon, S. Mohan, J. Choi, and L. Sha, “Memory heat map: Anomaly detection in real-

time embedded systems using memory behavior,” in Proc. of IEEE/ACM/EDAC Design

Automation Conference (DAC), 2015.

275

[131] M. Müter, and N. Asaj, “Entropy-based anomaly detection for in-vehicle networks,” in Proc.

of IEEE Intelligent Vehicles Symposium (IV), 2011.

[132] M. Müter, A. Groll, and F. C. Freiling, “A structured approach to anomaly detection for in-

vehicle networks,” in Proc. of IEEE International Conference on Intelligent and Advanced

System (ICIAS), 2010.

[133] A. Taylor, N. Japkowicz, and S. Leblanc, “Frequency-based anomaly detection for the

automotive CAN bus,” in Proc. of World Congress on Industrial Control Systems Security

(WCICSS), 2015.

[134] F. Martinelli, F. Mercaldo, V. Nardone, and A. Santone, “Car hacking identification through

fuzzy logic algorithms,” in Proc. of IEEE International Conference on Fuzzy Systems

(FUZZ-IEEE), 2017.

[135] T. P. Vuong, G. Loukas, and D. Gan, “Performance evaluation of cyber-physical intrusion

detection on a robotic vehicle,” in Proc. of IEEE International Conference on Computer and

Information Technology; Ubiquitous Computing and Communications; Dependable,

Autonomic and Secure Computing; Pervasive Intelligence and Computing

(CIT/IUCC/DASC/PICOM), 2015.

[136] M. Levi, Y. Allouche, and A. Kontorovich, “Advanced analytics for connected car

cybersecurity,” in Proc. of IEEE Vehicular Technology Conference (VTC) Spring, 2018.

[137] M. J. Kang and J.W. Kang, “A novel intrusion detection method using deep neural network

for in-vehicle network security,” in IEEE Proc. of Vehicular Technology Conference (VTC)

Spring, 2016.

276

[138] M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer, “CANet: An Unsupervised

Intrusion Detection System for High Dimensional CAN Bus Data,” in IEEE Access, 2020.

[139] G. Loukas, T. Vuong, R. Heartfield, G. Sakellari, Y. Yoon, and D. Gan, “Cloud-based cyber-

physical intrusion detection for vehicles using deep learning,” in IEEE Access 2018.

[140] A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly detection in automobile control network

data with long short-term memory networks,” in Proc. of IEEE International Conference on

Data Science and Advanced Analytics (DSAA), 2016.

[141] M. Weber, G. Wolf, E. Sax, and B. Zimmer, “Online Detection of Anomalies in Vehicle

Signals using Replicator Neural Networks,” in Proc. of ESCAR USA, 2018.

[142] M. Weber, S. Klug, E. Sax, and B. Zimmer, “Embedded hybrid anomaly detection for

automotive can communication,” in Embedded Real Time Software and Systems (ERTS),

2018.

[143] J. Schmidhuber, “Habilitation thesis: System modeling and optimization,” 1993.

[144] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, “Gradient flow in recurrent nets:

the difficulty of learning long-term dependencies,” in IEEE Press, 2001.

[145] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y.

Bengio, “Learning phrase representations using RNN encoder-decoder for statistical

machine translation,” in arXiv preprint, arXiv:1406.1078, 2014.

[146] Renub Research, “Self Driving Car Market Global Forecast by Levels, Hardware, Software,

and Companies,” in Research and Markets – Market Research Reports, 2018.

277

[147] M. Hasan, S. Mohan, T. Shimizu, and H. Lu, “Securing Vehicle-to-Everything (V2X)

Communication Platforms,” in IEEE Transactions on Intelligent Vehicles (TIV), Vol 5, No.

4, 2020.

[148] P. Braeckel, “Feeling Bluetooth: From a Security Perspective,” in Advances in Computers

2011.

[149] R. Verdult, F.D. Garcia, and B. Ege, “Dismantling Megamos Crypto: Wirelessly

Lockpicking a Vehicle Immobilizer,” in Proc. of USENIX, 2013.

[150] S. Acharya, Y. Dvorkin, and R. Karri, “Public Plug-in Electric Vehicles + Grid Data: Is a

New Cyberattack Vector Viable?” in IEEE Transactions on Smart Grid (TSG), Vol. 11, No.

6, 2020.

[151] A. Francillon, B. Danev, and S. Capkun, “Relay attacks on passive keyless entry and start

systems in modern cars,” in Proc. of Network and Distributed System Security Symposium

(NDSS), 2011.

[152] R. Dastres and M. Soori, “A Review in Recent Development of Network Threats and

Security Measures,” in International Journal of Information Sciences and Computer

Engineering, 2021.

[153] J. Dürrwang, J. Braun, M. Rumez, R. Kriesten, and A. Pretschner, “Enhancement of

Automotive Penetration Testing with Threat Analyses Results,” in SAE International

Journal of Transportation Cybersecurity and Privacy, 2018.

[154] Keen Lab, “Experimental Security Assessment of BMW Cars: A Summary Report,”

[Online]. Available: https://keenlab.tencent.com/en/whitepapers/Experimental_Security_A

ssessment_of_BMW_Cars_by_KeenLab.pdf, 2017.

https://keenlab.tencent.com/en/whitepapers/Experimental_Security_A

278

[155] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote Attacks on Automated Vehicles

Sensors: Experiments on Camera and LiDAR,” in Black Hat Europe, 2015.

[156] J. Raiyn, “A survey of Cyber Attack Detection Strategies,” in International Journal of

Security and Its Applications (IJSIA), Vol. 8, No. 1, 2014.

[157] D. Stabili, M. Marchetti, and M. Colajanni, “Detecting attacks to internal vehicle networks

through hamming distance,” in Proc. of IEEE International Annual Conference (AEIT),

2017.

[158] H.M. Song, J. Woo, and H.K. Kim, “In-vehicle network intrusion detection using deep

convolutional neural network,” in Vehicular Communications, 2020.

[159] M. O. Ezeme, Q. H. Mahmoud, and A. Azim, “Hierarchical Attention-Based Anomaly

Detection Model for Embedded Operating Systems,” in Proc. of IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),

2018.

[160] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient

descent is difficult,” in IEEE Transactions on Neural Networks (TNN), Vol. 5, No. 2, 1994.

[161] S. Elsworth and S. Güttel, “Time Series Forecasting Using LSTM Networks: A Symbolic

Approach,” [Online]. Available: https://arxiv.org/abs/2003.05672 2020.

[162] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” in Neural Computation, Vol.

9, No. 8, 1997.

[163] E. Sood, S. Tannert, D. Frassinelli, A. Bulling, and N. T. Vu, “Interpreting Attention Models

with Human Visual Attention in Machine Reading Comprehension,” [Online]. Available:

https://arxiv.org/abs/2010.06396, 2020.

https://arxiv.org/abs/2003.05672
https://arxiv.org/abs/2010.06396,

279

[164] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to

Align and Translate,” [Online]. Available: https://arxiv.org/abs/1409.0473, 2016.

[165] R. Jing, “A Self-attention Based LSTM Network for Text Classification,” in Journal of

Physics: Conference Series (JPCS), Vol. 1207, No. 1, 2019.

[166] M. T. Luong, H. Pham, and C. D. Manning, “Effective Approaches to Attention-based

Neural Machine Translation,” [Online]. Available: https://arxiv.org/abs/1508.04025, 2015.

[167] S. Vergura, “Bollinger Bands Based on Exponential Moving Average for Statistical

Monitoring of Multi-Array Photovoltaic Systems,” in Energies, 2020.

[168] M. M. Breunig, H. P. Kriegel, R. T. Ng, and J. Sander, “LOF: identifying density-based local

outliers,” in Proc. of ACM ACM SIGMOD International Conference on Management of

Data (MOD), 2000.

[169] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0: A tool to model

large caches,” HP laboratories, [Online]. Available: https://github.com/HewlettPackard/cacti,

2014.

[170] J. Dey, W. Taylor, and S. Pasricha, “VESPA: Optimizing Heterogeneous Sensor Placement

and Orientation for Autonomous Vehicles,” in IEEE Consumer Electronics Magazine

(CEM), Vol. 10, No. 2, 2021.

[171] C. Valasek and C. Miller, “Adventures in Automotive Networks and Control Units,”

[Online]. Available: https://ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Net

works_and_Control_Units.pdf, 2013.

[172] C. Sitawarin, A. N. Bhagoji, A. Mosenia, M. Chiang, and P. Mittal, “DARTS: Deceiving

Autonomous Cars with Toxic Signs,” [Online]. Available: https://arxiv.org/abs/1802.06430.

https://arxiv.org/abs/1409.0473,
https://arxiv.org/abs/1508.04025,
https://github.com/HewlettPackard/cacti,
https://ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Net
https://arxiv.org/abs/1802.06430.

280

[173] H. M. Song, H. R. Kim, and H. K. Kim, “Intrusion detection system based on the analysis

of time intervals of can messages for in-vehicle network,” in Proc. of IEEE International

Conference on Information Networking (ICOIN), 2016.

[174] M. Gmiden, M. H. Gmiden, and H. Trabelsi, “An intrusion detection method for securing

in-vehicle CAN bus,” in Proc. of IEEE International Conference on Sciences and Techniques

of Automatic Control and Computer Engineering (STA), 2016.

[175] H. Lee, S. H. Jeong, and H. K. Kim, “OTIDS: A novel intrusion detection system for in-

vehicle network by using remote frame,” in Proc. of IEEE Annual Conference on Privacy,

Security and Trust (PST), 2017.

[176] W. Wu, Y. Huang, R. Kurachi, G. Zeng, G. Xie, R. Li, and K. Li, “Sliding window optimized

information entropy analysis method for intrusion detection on in-vehicle networks,” in

IEEE Access, 2018.

[177] K. T. Cho and K. G. Shin, “Viden: Attacker identification on in-vehicle networks,” in Proc.

of ACM SIGSAC Conference on Computer and Communications Security (CCS), 2017.

[178] M. D. Hossain, H. Inoue, H. Ochiai, D. Fall, and Y. Kadobayashi, “LSTM-based intrusion

detection system for in-vehicle can bus communications,” in IEEE Access, 2020.

[179] S. Tariq, S. Lee, and S. S. Woo, “CANTransfer: Transfer learning based intrusion detection

on a controller area network using convolutional lstm network,” in Proc. of ACM

Symposium on Applied Computing (SAC), 2020.

[180] Vector GL1000. [Online]. Available: https://assets.vector.com/cms/content/products/gl_

logger/Docs/ GL1000_Manual_EN.pdf.

https://assets.vector.com/cms/content/products/gl_

281

[181] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme recognition

using time-delay neural networks,” in IEEE Transactions on Acoustics, Speech, and Signal

Processing (TASSP), Vol. 37, No. 3, 1989.

[182] S. Bai, J. Z. Kolter, and V. Koltun, “An Empirical Evaluation of Generic Convolutional and

Recurrent Networks for Sequence Modeling,” [Online]. Available: https://arxiv.org/abs/180

3.01271, 2018.

[183] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I.

Polosukhin, “Attention Is All You Need,” in Proc. Neural Information Processing Systems

(NIPS), 2017.

[184] L. Nie, Z. Ning, X. Wang, X. Hu, Y. Li, and J. Cheng, “Datadriven intrusion detection for

intelligent Internet of vehicles: A deep convolutional neural network-based method,” in

IEEE Transactions on Network Science and Engineering (TNSE), Vol. 7, No. 4, April 2020.

[185] S. Chen, M. Kahla, R. Jia, and G. J. Qi, “Knowledge-Enriched Distributional Model

Inversion Attacks,” in Proc. of IEEE/CVF International Conference on Computer Vision

(ICCV), 2021.

[186] M. Aloqaily, S. Otoum, I. Al Ridhawi, and Y. Jararweh, “An intrusion detection system for

connected vehicles in smart cities,” in Ad Hoc Networks 90, 2019.

[187] S. Boddupalli, A. S. Rao, and S. Ray, “Resilient Cooperative Adaptive Cruise Control for

Autonomous Vehicles Using Machine Learning,” in arXiv preprint, 2021.

[188] J. Ashraf, A. D. Bakhshi, N. Moustafa, H. Khurshid, A. Javed, and A. Beheshti, “Novel deep

learning-enabled lstm autoencoder architecture for discovering anomalous events from

https://arxiv.org/abs/180

282

intelligent transportation systems,” in IEEE Transactions on Intelligent Transportation

Systems (TITS), 2020.

[189] Z. Hassan, A. Mehmood, C. Maple, M. A. Khan, and A. Aldegheishem, “Intelligent

Detection of Black Hole Attacks for Secure Communication in Autonomous and Connected

Vehicles,” in IEEE Access, Vol. 8, 2020.

[190] S. Chang, Y. Qi, H. Zhu, J. Zhao, and X. Shen, “Footprint: detecting Sybil attacks in urban

vehicular networks,” in IEEE Transactions on Parallel and Distributed Systems (TPDS),

Vol. 23, No. 6, 2011.

[191] Z. Zhang, P. Cui, and W. Zhu, “Deep Learning on Graphs: A Survey,” in arXiv:1812.04202,

2018.

[192] H. Guo, S. Yuan, and X. Wu, “LogBERT: Log Anomaly Detection via BERT,” in

arXiv:2103.04475, 2021.

[193] A. Geiger, D. Liu, S. Alnegheimish, A. Cuesta-Infante, and K. Veeramachaneni, “TadGAN:

Time series anomaly detection using generative adversarial networks,” in IEEE International

Conference on Big Data (Big Data), 2020.

[194] T. Sahin, R. Khalili, M. Boban, and A. Wolisz, “VRLS: A Unified Reinforcement Learning

Scheduler for Vehicle-to-Vehicle Communications,” in Proc. of IEEE Connected and

Automated Vehicles Symposium (CAVS), 2019.

[195] R. Atallah, C. Assi, and M. Khabbaz, “Deep reinforcement learning-based scheduling for

roadside communication networks,” in Proc. of IEEE International Symposium on Modeling

and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2017.

283

[196] C. Zhai, F. Luo and Y. Liu, “A Novel Predictive Energy Management Strategy for Electric

Vehicles Based on Velocity Prediction,” in IEEE Transactions on Vehicular Technology,

Vol. 69, No. 11, November 2020.

[197] K. Liu, Z. Asher, X. Gong, M. Huang, and I Kolmanovsky, “Vehicle Velocity Prediction

and Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity

Prediction Using Machine Learning,” in SAE World Congress Experience (WCX), 2019.

[198] D. Baker, Z. Asher, and T. Bradley, “Investigation of vehicle speed prediction from neural

network fit of real world driving data for improved engine on/off control of the EcoCAR3

hybrid Camaro,” SAE Technical Paper, 2017.

[199] D. Baker, Z. D. Asher, and T. Bradley, “V2V communication based real-world velocity

predictions for improved HEV fuel economy,” SAE Technical Paper, 2018.

[200] S. A. Seshia, A. Desai, T. Dreossi, D.J. Fremont, S. Ghosh, E. Kim, S. Shivakumar, M.

Vazquez-Chanlatte, and X. Yue, “Formal specification for deep neural networks,” in Proc.

of Springer International Symposium on Automated Technology for Verification and

Analysis, 2018.

