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Zusammenfassung

Basierend auf neuen Erkenntnissen aus der Scheduling-Analyse entwickel-
te sich in den 1970er Jahren mit der formalen Ende-zu-Ende Latenzanalyse
in Echtzeitsystemen ein neues Forschgungsgebiet. Obgleich verschiedene
Ansätze erfolgreich in der Praxis Anwendungen gefunden haben, ist eine
Lücke zwischen den Möglichkeiten, die die formale Analyse bietet und
dem Bedarf der Automobilindustrie entstanden, da hier cyber-physische
Systeme die klassischen eingebetteten Systeme zunehmend abgelöst ha-
ben. Diese fußen auf der Vernetzung eingebetteter Systeme, die zudem
heutzutage meist mit Mehrkernprozessoren ausgestattet sind. Der Einsatz
cyber-physischer Systeme hat zur Folge, dass etablierte wissenschaftliche
Modelle und Methoden nicht mehr mächtig genug sind. Weiterhin wurden
wichtige Ende-zu-Ende Latenzen lange nicht präzise genug abgeschätzt.
Aus diesem Grund wird in dieser Arbeit ein umfassendes formales Modell
vorgestellt, das die Basis für präzise formale Abschätzungen von Ende-
zu-Ende Latenzen in modernen automobilen cyber-physischen Systemen
ist. Ansätze für die Abschätzung von Ende-zu-Ende Latenzen werden in
Kapitel 4 und Kapitel 5 dieser Arbeit vorgestellt. Die vorgestellten Ansätze
unterstützen entsprechend eine Vielzahl relevanter Systemkonfigurationen.
Der für die Abschätzung der Latenzzeiten von Task-Ketten vorgeschlagene
Ansatz weist dabei eine höhere Präzision auf als bisher vorgestelle Ver-
fahren. Im letzten Kapitel findet ein Exkurs in die Messdatenauswertung
statt, da Messungen und Simulationen in der heutigen Praxis wichtige
Verifikationswerkzeuge sind.
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Abstract

Based on advances in scheduling analysis in the 1970s, a whole area
of research has evolved: formal end-to-end latency analysis in real-time
systems. Although multiple approaches from the scientific community
have successfully been applied in industrial practice, a gap is emerging
between the means provided by formally backed approaches and the
need of the automotive industry where cyber-physical systems have taken
over from classic embedded systems. They are accompanied by a shift
to heterogeneous platforms build upon multicore architectures. Scien-
tific techniques are often still based on too simple system models and
estimations on important end-to-end latencies have only been tightened
recently. To this end, we present an expressive system model and formally
describe the problem of end-to-end latency analysis in modern automotive
cyber-physical systems. Based on this we examine approaches to formally
estimate tight end-to-end latencies in Chapter 4 and Chapter 5. The de-
veloped approaches include a wide range of relevant systems. We show
that our approach for the estimation of latencies of task chains dominates
existing approaches in terms of tightness of the results. In the last chapter
we make a brief digression to measurement analysis since measuring
and simulation is an important part of verification in current industrial
practice.
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Introduction

A wide range of automotive and industrial systems have strong require-
ments on correct behavior in order to avoid annoying flaws or even acci-
dents. Nowadays, such systems are classified as distributed cyber-physical
systems (CPSs). Being an extension of classic embedded computing, CPSs
stand for the integration of computing and physical processes in networks
of heterogeneous components [86, 73]. Consequently, functionalities pro-
vided by the system require the collaboration of different parts of the
system. There are two issues which need to be addressed to assess the
correct behavior of a CPS with regard to a distributed system function:
how does the system react and when does the system react. The first issue
is concerned with the so-called functional correctness of the system: do
all possible inputs lead to a functionally correct response? The second
question is all about timing and although sometimes treated as being of
secondary relevance, for the outcome in many situations it is equally im-
portant whether the system reacts in time. If the sensors of an automated
car correctly recognize an obstacle on the road but the command to brake
does not reach the braking system fast enough, the situation will have the
same outcome as if the obstacle got not detected correctly: the car will not
be able to avoid a collision. That is why end-to-end latency analysis is an
inherent step in building dependable CPS.

Due to the distributed nature of many of today’s systems the question
whether end-to-end latencies are fulfilled can not be answered by con-
ducting local analyses only. Only looking at how the different parts of
the system interact results in a meaningful analysis with tight estimations.
Given the importance of these problems, a lot of approaches to tackle this
problem have been proposed from the scientific community. Although
some approaches have been successfully applied on industrial use cases,
a gap exists between industry demands and available solutions. It must
also be pointed out that tool support for the task of latency estimation
in the development of today’s complex automotive systems is indispens-
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Introduction

able. Even the most experienced engineer can not possibly understand
the complex interactions of huge distributed systems as it simply exceeds
the scope of human understanding. At the same time, electrical/electronic
(E/E) architectures of automotive CPSs have made a long evolution [95]
and this trend is currently reinforced due to the electrification of power-
trains. In addition to that, an increasing digitalization of the automotive
industry demands for faster processes once again [134]. Estimations for
latencies have to be available as early as possible to reduce development
costs and develop products faster. Therefore it is important to increase the
capabilities of formal approaches to provide solutions for this demand.

The aim of this work is to make a huge step towards closing this
gap. First, we will define a formal model allowing to encode the problem
instances relevant in the automotive industry. Secondly, two approaches
are presented to obtain end-to-end latencies. Hence, this work is structured
as follows. In Chapter 1 an introduction on how the systems we consider
here looked like yesterday, how they look today and how they might look
tomorrow, as well as an overview on how they are developed is given. In
Chapter 2 the mathematical basis for the following chapters is introduced.
Chapter 3 brings together the systems to encode and the formal structures
of the previous chapters to create a comprehensive model suiting industrial
applications while being completely formal. In Chapter 4 and Chapter 5
instances of this model are taken as an input for an approach to obtain
safe and tight upper bounds for different end-to-end latency semantics.
Chapter 4 is based on the author’s work published in [49] and [50] and
the work [75] which is submitted and currently under review. Chapter 5
is based on the work published in [52]. Finally, in Chapter 6 we look
at the problem from a different perspective once again: how can end-to-
end latencies be determined from data obtained by measurements. The
presented specification language was first published in [53].
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Chapter 1

Automotive CPS - A biased
Overview

In this chapter, the most important characteristics automotive CPS as well
as some general industrial practices for their development are described.
The requirements imposed on the formal methodology can be derived the
characteristics and development practices. The verification process has to
cope with different levels of concreteness as implementation details change
through the development process. The chapter starts with an overview
about the V-model, a common development life cycle in the automotive
industry. Subsequently in Section 1.2, two examples for automotive E/E

topologies are described and a general outline of the communication
design and both hardware and software of ECUs is given. Although some
of the topics are worth a book on their own some key aspects are described
and put into a historical context.

1.1 Development of Automotive CPS

In this section we take a look at the different stages of automotive devel-
opment especially with an eye on the role of end-to-end timing analysis
through the process. The development of automotive CPS can be divided
into three major phases: a concept phase, a serial development phase and a
production phase. Each phase poses different challenges for when it comes
to the evaluation of the systems timing behavior. In the concept phase,
different system designs have to be compared. A comparison requires
methods of measuring to obtain indicators for the expected performance.
The systematic analysis of such indicators is called design space explo-
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1. Automotive CPS - A biased Overview

ration (DSE) [68]. The complexity of this task tremendously increases when
multiprocessor systems and dynamic behavior are involved. To cope with
the resulting design space, scenario-based DSE was introduced [101]. An
inherent part however is and remains a method to determine fitness values
for the different design candidates. Some fitness values, e.g. power con-
sumption or heat dissipation, only require knowledge about local factors
of one ECU and can be evaluated individually. End-to-end latencies on
the other hand require the well-orchestrated interplay of multiple ECUs.
From an overall-system´s point of view, it is therefore necessary to inte-
grate design candidates with different degrees of implementation when
it comes to evaluating different system designs. In Chapter 3 we discuss
an approach for this challenge which allows to combine different levels of
implementation details.

At the end of the concept phase, an initial choice for the hardware
is made and the network topology of the overall system is outlined. In
the subsequent phase of series development, the network communication
design and software-side implementation is put into more concrete terms.
Different process models exists to support the development, e.g. the water-
fall model, the V-model, the V-model-XT, and the W-Model [66, 117]. The
V-model-XT, which was introduced as an extension of the V-model in 2005,
is currently the most common process model in the automotive industry
[110, 94, 104, 69]. In all V-model-like process models, the development
process is subdivided into two phases: a top-down specification, and a
bottom up integration process. At the transition of these two phases the
implementation of system elements, e.g. software components, is realized.
In practice, the overall process is repeated iteratively [104]. The results of
the previous iteration are the baseline for the next one. After specifying
the requirements for newly added features, the overall set of requirements
is amended and broken down to individual requirements.

A visual representation of the process tailored for the development of
automotive CPS based on timing requirements is depicted in Figure 1.1. In
this tailoring, an iteration starts with the breakdown of end-to-end timing
constraints into individual timing constraints for network transmission
and data processing within ECUs. Different types of timing constraints
need to be considered on system- and component-level. System-level
timing constraints apply to end-to-end latencies while component-level
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1.1. Development of Automotive CPS

timing constraints refer to the worst-case execution time (WCET) of soft-
ware components. Accordingly, the verification on the left-hand side starts
with checking whether local deadlines are met. The interaction of differ-
ent components regarding end-to-end timing is examined subsequently.
This results in two stages in the process where the estimation of end-to-
end latencies needs to be carried out: (1) for checking the specification
whether all timing constraints can be met, and (2) for verification of the
implementation. Both points are marked with red dots in Figure 1.1.

With the start of production, series development ends and development
efforts are focused on the next product. Only if defects occur in the field,
development continues for a comprehensive fault analysis and to develop
a fault removal. However, these scenarios are obviously not foreseen in a
standard development process and methodologies strongly depend on the
circumstances.

System-level

Component-level

End-to-end timing
constraints

Component timing
constraints

Component timing
verification

End-to-end timing
verification

Implementaion

Figure 1.1. End-to-end timing analysis whilst system development based on
ISO 26262 (Cf. [122])

5
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1.2 Properties of Automotive CPS

In this section we examine the general properties of automotive CPS. First,
we take a broader perspective and look at network topologies usually
found in cars and how they will possibly look like in the future. Subse-
quently, two elements of the communication clusters described by these
topologies are examined in more detail: fieldbuses and ECUs. For both
of these elements a plethora of different properties need to be consid-
ered for a comprehensive analysis of the temporal behavior. The most
important aspects for the analysis of networks are the topology of the
network and its communication design. Some current and expected future
topologies and communication designs are described in Section 1.2.2 and
Section 1.2.1 respectively. For ECUs hard- and software properties need to
be considered. On the hardware side microcontroller and microprocessors
are distinguished. The differences are discussed in Section 1.2.3. On the
software side different properties of the real-time operating system (RTOS)
as well as the software architecture need to be considered as described in
Section 1.2.4.

1.2.1 Communication Design

Similar to the emerging E/E architectures, network communication is
changing to cope with the expected complexity and to meet demands in
flexibility. Classically, the networks of embedded systems in cars were
characterized by signal-based communication which emerged from the
switching signals computed by controllers in early systems. In early sys-
tems, communication between ECUs was realized with discrete point-to-
point wiring [87]. With an increasing amount E/E functionalities however,
the sheer weight of the wiring harness limited possibilities. Thus, discrete
wiring got replaced by serial fieldbuses [99]. The best known representa-
tive of classical fieldbuses is the controller area network (CAN) bus which
was introduced in 1986 and developed by Bosch and Intel [84]. as The
next major changes in the evolution process of automotive communication
came as part of the requirements opposed by the so-called drive-by-wire
technologies in the late 1990s. The term subsumes the replacement of
mechanical or hydraulic components by electrical or electro-mechanical
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substitutes [88]. However, since many components where this replace-
ments were implemented are safety critical, e.g. steering and braking, new
requirements for the networks in use arose. This particularly concerned
communication latencies and jitter which are hard to predict for the origi-
nal CAN bus due to its event-triggered nature and the priority-based access
mechanism [4]. To improve predictability, time-triggered alternatives were
developed. Two approaches were followed. Firstly, time-tiggered CAN
(TTCAN) defines a session layer extension (see page 8) for CAN which is
based on a static schedule [89]. Secondly, the FlexRay protocol was intro-
duced with a time-division multiple access (TMDA) mechanism. In contrast
to carrier-sense multiple access (CSMA) where a transmitting node checks
for other transmission processes before initiating a transmission attempt,
in TMDA, the channel is divided into multiple time slots. Some details and a
comparison to other fieldbuses is given in Section 1.2.2. The time-triggered
communication systems allow to implement so-called fail-silent systems
because message losses can be detected if a message is not received in
the expected time slot [84, 38, 39]. Alongside reduced jitter and therefore
more deterministic communication latencies, the improved detection for
message losses laid the foundations to create reliable systems with less
mechanical components as proposed in the drive-by-wire concepts.

With an increasing number of functionalities now being implemented
in the cyber part of the system, the demand for communication capacities
continued to increase. In order to make better use of existing communi-
cation channels, package data unit (PDU) multiplexing was introduced in
the mid 2000s with the AUTOSAR I-PDU multiplexer (IpduM) [12]. This was
another step in the direction of more flexible systems as it diluted the
statically configured communication in favor of mappings which are de-
cided at run-time. On the downside, less static configuration is inseparably
tied to less predictable behavior. New approaches to cope with the arising
challenges for end-to-end latency estimation are discussed in Chapter 5.

The next step towards even more dynamic systems is currently made
with the implementation of so-called service-oriented architectures (SOAs).
However, this time the transformation is imposed by external factors. Tech-
nology companies which are testing out opportunities of the automotive
market as well as new original equipment manufacturers (OEMs) force
traditional car makers to take initiative on digital transformation [55, 133].
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One consequence is, that OEMs need to break with architectures grown
with the organizational structure [79]. SOAs is expected to help coping with
some of the arising challenges. Accordingly, efforts are made to formalize
the concepts and improve tool support for architectural tasks [28, 71].

However due to cost and safety constraints in the hard real-time parts
of CPSs and because methods to calculate response time guarantees SOAs
are still in development, the next generation’s architectures will contain
a mixture of both worlds. In mechatronic parts of the systems, classic
signal-based communication will be used. The backbone of the car on
the other hand will be built upon services. Consequently, the main ECUs
of each architectural domain need to meet the requirements from both
worlds. This is further described in Section 1.2.2.

OSI model

The OSI reference model is a model to describe the abstract structure of
communication systems. It divides such systems in several layers and
was first published in [114]. Later it was standardized by the ISO in the
International Electrotechnical Commission (IEC) standard 7498-1 [123].

In the OSI reference model each layer only communicates with its direct
vertical predecessor and successor. More precisely, a layer submits data to
be send to and accepts received data from the next lower layer. The data
of layer N is the so-called sevice data unit (SDU) of the layer N + 1. There
it is placed together with the protocol information of layer N + 1 to the
PDU of that layer.

The classic automotive fieldbuses are concerned with the Physical
Layer up to the Data Link Layer [138]. Application software takes over the
role of Network Layer and above in this cases. Only recently, in the 2010s,
Transport Layer protocols for CAN and FlexRay have been published, the
ISO 15765-2 (cf. [124]) for CAN-like buses and the ISO 10681-2 (cf. [125]) for
FlexRay to be precise. Ethernet brings the TCP and UDP stacks into the car.
Together with the IP protocol these stacks span over Physical, Data Link,
Network and Transport Layer.
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Table 1.1. Layers of the OSI Reference Model

Layer Function

7 Application Layer Encryption, data compression, session
management, and high-level APIs6 Presentation Layer

5 Session Layer

4 Transport Layer Segmentation of data possibly state-full and with
acknowledgments

3 Network Layer Addressing of communication nodes and routing
of variable length packets

2 Data Link Layer Transmission of data frames with correction of
errors from physical layer

1 Physical Layer Symbol encoding on the physical medium, e.g.
voltages

1.2.2 Network Topologies

The topology of a network is closely linked to the communication design.
The complexity of the topologies is one aspect making it harder to conduct
a verification of the temporal behavior. Main driver for the complexity
is the amount of connected ECUs. Different numbers are circulating: the
numbers reach from 100 (cf. [108]) over 150 (EMCC presentation [67])
to around 200 (cf. [126]). Usually, these numbers include all possible
variants, meaning that no configuration with all ECUs exists. Furthermore,
this number also varies with the market segment of the considered car.
The network of a full-size luxury sedan comprises more ECUs than the
network of a compact car. However, one thing is uncontested: topologies
are steadily evolving and the number of nodes has risen constantly up to
the complexity found in today’s cars.

In this section, the network interconnecting the nodes automotive com-
munication clusters are described. In the previous section we already
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learned about CAN. Local interconnect network (LIN) and media oriented
systems transport (MOST) are completing the list of more traditional stan-
dards. They were additionally introduced as a cost-saving alternative in
the case of LIN and as a multimedia-oriented alternative in the case of
MOST.

LIN is primarily used in less performance critical application areas, like
e.g. seat control or door locks. A LIN network can have at most 16 nodes.
One of the nodes is configured to be the master and works through a static
schedule by sending the message identifier for the next message to be
send. One node is then responsible to send this message which is received
by all other nodes.

MOST was developed to be optimized for applications where the focus
lies on bandwidth rather than real-time properties. Typical areas of ap-
plication therefore include the audio and video players or the navigation
system [58]. MOST uses synchronous transmission for efficient transfer
rates. Newer versions of MOST also use packet-based communication for
control data when the bus is free. MOST is mostly used in ring-topologies
where data is transmitted from one device to another.

Line Bus

Ring Star

Figure 1.2. Examples of Network Topologies

As indicated in the previous section, the data transfer rates as well as
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synchronization mechanisms of the classical fieldbuses did not meet the
requirements for implementing advanced electronic control systems in
the late 1990s. Different technologies were developed to cope with these
challenges. FlexRay and CAN with Flexible Data-rate (CAN-FD) are two of
these which prevailed in the automotive industry.

FlexRay was developed between 2000 and 2006 by a partnership of
automotive OEMs and two telecommunications companies. The first use in
series production was in 2006 [115]. FlexRay was developed aiming for a
CAN-alternative with time-triggered communication, high dependability,
and an increased data transmission rate. The FlexRay specification there-
fore allows data rates up to 10 Mbps. Furthermore, the dependability was
increased by adding a second physical channel including a synchroniza-
tion mechanism to support redundancy. On Data Link Layer, FlexRay uses
TMDA as a channel access method. In TMDA, transmission is organized in
time slots. Each slot has a dedicated message assigned and only one ECU

is allowed to send within one slot. A characteristic feature of FlexRay is,
that it combines static TMDA and dynamic TMDA. The so-called Macroperiod
is divided into two segments: a static segment with a fixed number of so-
called time slots and a dynamic segment with so-called Minislots. After the
static and dynamic segment are over, a new Macroperiod starts. Minislots
are shorter than the time slots of the static segment, conversely, a message
can span over multiple Minislots. In the dynamic segment communication
is priority based on the slot count. Each ECU has the right to send at its
slot count or increase directly to pass on the next ECU. The slot counts may
vary for the different channels but the maximum length of the dynamic
segment is determined at design-time. Therefore, low-priority messages of
the dynamic segment might postponed to the next Macroperiod. In terms
of the network topology, FlexRay supports line and star topologies. ECUs
do not need to be connected to both channels, allowing for a different
logical topology for each channel.

The CAN-FD technology is newer than FlexRay. It was released in 2012
and has been developed with a strong focus on backward-compatibility
due to the prevalence of classic CAN [62]. With CAN-FD a data transfer rate
about six times higher can be achieved while also being able to take part in
classic CAN communication. To the downside of compatibility, the CAN-FD

specification is only for Physical and Data Link Layer and a mechanism to
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achieve synchronization is therefore not included.

Alongside the further development of proprietary fieldbuses, Ethernet
has found its way into the car. It promises higher bandwidth and less
development cost for dedicated hardware as Ethernet is widely used
together with the IP and hardware costs already have reduced sharply.
The great success of Ethernet in computer networking lets the question
arise why it was not adopted for in-car usage before 2008. Not only the
cost for hardware capable of participating in Ethernet communication in
terms of processing power and available memory was a problem. The
physical properties of Ethernet did not meet automotive needs. Two issues
existed. Firstly, standard Ethernet was not designed to work within the
harsh in-car conditions. Besides temperature and humidity, especially
requirements on electromagnetic interference (EMI) disturbance immunity
have to be mentioned. These issues have been addressed in the BroadR-
Reach Physical Layer standard for Ethernet [32]. Secondly, Ethernet follows
the so-called best-effort approach. This means, the network service does not
give any guarantee for bit rate, latency or even packet loss. Therefore, some
additional features for the application in real-time environments had to be
added. These are in particular: (1) guarantees on latencies, (2) guarantees
on free bandwidth, and (3) mechanisms for clock synchronization. Support
for these issues has been developed within the IEEE audio/video bridging
standard and the time-triggered Ethernet technology [22]. However, the real-
time application also entails some curtailing of Ethernet, particularly when
it comes to network expansion. Although scalability is often listed as an
advantage, adding devices to safety-critical networks has to be done with
great care [91]. Nevertheless, Ethernet allows for new topologies. Although
classical fieldbuses still take a major role, it is likely that Ethernet will play
a stronger role in the future. The following sections contain a not purely
scientific outlook of how topologies might develop.

Physical Layer technologies which are currently popular in the auto-
motive industry are compared regarding some key metrics in Table 1.2.
The information given is based on [127, 62, 138]).

In the following, the general form of current and next generation, as
well as expected future E/E architectures are described to give the reader
an idea of the systems being the subject to mathematical modeling.
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Table 1.2. Automotive fieldbuses in comparison

Bus Technology Topology Max. Bit Rate Frame size Application (exemplary)

LIN 2.0 Bus with Mas-
ter/ Slave

20 Kbps 88 bits Connecting ECUs to sensors/ac-
tuators

CAN 2.0 Bus 1 Mbps 109 bits Chassis electronics

MOST 150 Ring 10 Mbps 384 bits Transmission of multimedia
contents

CAN FD Bus 8 Mbps 512 bits Powertrain electronics

FlexRay Line/Star 10 Mbps 2096 bits Brake-by-wire, Steer-by-wire

Ethernet various 100 Mbps 1530 bytes Backbone connecting domain
controllers

Automotive CPS - Current Architecture

Figure 1.3. Current Automotive E/E Architecture (exemplary)

A general form of an architecture likely to be found in today’s middle
and upper class cars is depicted in Figure 1.3. It features a gateway han-
dling the connections between central control units of vaguely outline
domains (sometimes also called zones). Gateways might be directly con-
nected to multiple other communication clusters where tight interaction is
demanded. Some cross-domain connections might be found in around the
advanced driver assistance systems which are closely connected to chassis
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and powertrain functions.

Automotive CPS - Upcoming Architecture

Figure 1.4. Next Generation E/E Architectures (exemplary)

The E/E architectures of cars hitting the market around 2020 are likely
to feature stronger outlined domains with a dedicated domain controller
each. Presumably, an Ethernet backbone continues to be the choice to con-
nect the domain controllers with the central vehicle controller as depicted
in Figure 1.4. Inter-domain communication is presumably implemented
with the help of services provided by the domain controllers. For network
communication with security requirements, the backbone is separated in
logical sub-nets, so-called VLANs. The increased demand for computing
power owing to the increased bandwidth of Ethernet and service provision
additionally brings new hardware and therefore inevitably new software
for the basis system. It is expected that some domain controllers will be
switched from microcontrollers to microprocessors to satisfy new perfor-
mance demands [105]. However, semiconductor companies may not be
able to justify huge research efforts for dedicated automotive processors.

This means, general purpose processors witch a wider range of ap-
plication must be used. For the ECUs within the different domains with
their hard real-time requirements, e.g in mechatronic parts of the system,
the use of microcontrollers is however still more likely due to their more

14



1.2. Properties of Automotive CPS

predictable behavior. Consequently, the domain controllers decouple the
dynamic part of the system from the static parts with high requirements
on functional safety.

Automotive CPS - Future Architecture

The exact shape of future architectures is hard to predict. It is however prob-
able that they will contain less dedicated hardware [6, 15]. Instead, some
of the functionalities currently implemented with the help of specialized
microcontrollers might be virtualized and computed on microprocessor-
based platforms. The processing nodes are possibly connected via Ethernet,
but more integrated than today, meaning that component sub-systems are
combined to one functional system. Some experts even predict full central-
ized architectures [139]. It is clear, however, that sensors and actuators still
need to be connected to the processing hardware and that key mechatronic
systems, e.g. anti-lock braking systems, will remain.

Figure 1.5. Future E/E Architectures (exemplary)

1.2.3 ECU Hardware

The beginning of the widespread use of electronic fuel injection in the 1970s
marks the starting point of the successful use of ECUs in cars. Initially, the
new possibilities of computing were used to calculate the optimal amount
of fuel and achieve better engine performance based on different sensors.
The general structure of an ECU is depicted in Figure 1.6.

The applications of ECUs expanded steadily after their introduction.
Transmission control modules and telematic units followed shortly after
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ECU

Digital Inputs

Analog Inputs

Communication Connectors

Power 
Supply

Digital Outputs

Analog Outputs

Controller

Figure 1.6. Structure of an ECU

the engine control module. The introduction of displays showing basic
travel information like average fuel consumption or estimated time of
arrival soon raised the demand for distributed computing. Different in-
formation needed to be delivered inside the vehicle’s cabin from the
motor compartment. At the same time, the first driver assistance systems
raised questions about dependability of hard- and software. From here
on, driver assistance has undergone a continuous development to this
day. In parallel, the term connected car has been coined, which stands for
the connection of the car and devices inside the car to the internet and
other capable devices [31]. The connected car has its origin in a safety
feature, which automatically calls for help in the case of an emergency.
From this starting-point, various features from commerce through the
navigation system over well-being and driver comfort to breakdown pre-
vention were added. As a consequence, telematic control units need even
more computing power. Microcontrollers integrating a microprocessor
with peripheral devices on one system are used less often for this task.
Instead, microprocessors are deployed. The difference can be seen when
comparing Figure 1.7 and Figure 1.8. Besides the general higher clock
speed, microprocessor-based implementations can be better scaled with
regards to connected peripherals due to their less dedicated nature. On the
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other hand, microcontroller-based solutions are less costly and generally
have a lower power consumption. Furthermore, most microcontroller solu-
tion feature a dedicated hardware watchdog to detect malfunctions [26].
Another difference is, that microcontrollers are often build following the
Harvard Architecture while microprocessor-based solutions feature a Von
Neumann architecture. One major difference is the separation of memory
for data and programs in Harvard Archictectures as depicted in Figure 1.7.
In accordance with the dedicated function, microcontrollers are used with
more specialized RTOSs. Microprocessors on the other hand can be used
with embedded operating systems or even lightweight versions of desktop
operating systems like known from personal computers.

Microcontroller
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Units

Processing 
Units

Processing 
Units

Processing 
Units

Program
Flash

Data
Flash

I/O Ports

Timer

Bus 
Interfaces

Program
Memory

Data 
Memory

Interrupt 
Controller

Serial 
Interface

Figure 1.7. Structure of a Microcontroller

The latest and once again significant trend affecting the demand for
processing resources in cars are advanced driver-assistance systems (ADASs)
[105]. In the context of ADASs, classic microcontroller-based ECUs are
replaced by microprocessor-based systems with high computing power
and even systems build on manycore processors.
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Figure 1.8. Structure of a Microprocessor

Sensors

Sensors translate physical measurands into electrical values. Measured
variables come from a wide spectrum of physical values ranging from
temperature and pressure over rotational speeds to the strength of mag-
netic fields and even information about chemical compositions. Lately, for
advanced driver assistance functionalities different new sensors entered
the car, especially sensors for environment recognition, like cameras ul-
trasonic sensors, laser scanners and different-range light detection and
ranging (LIDAR) and radio detection and ranging (RADAR) detectors.

Two aspects of sensors are important to consider when looking at
the dynamic behavior of the system. Firstly, the question whether the
sensor samples value periodically or captures a sporadic event, e.g. the
press of a button. The second aspect is the the amount of data to be
processed. This particularly concerns LIDAR and image data. Generating a
three-dimensional model of the environment from point clouds and image
data requires the processing of complex models with huge amounts of
data [137].
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Actuators

Actuators are used to control physical processes, e.g. a throttle valve for
regulating the air intake of an engine. Actuators can be differentiated based
on two properties: (1) control signal type and (2) source of power. The
control signal type can be digital, only allowing two points of operation
or analog allowing the actuator to function at a range, e.g. opening a
throttle valve halfway. In the latter case the discrete states of the ECUs
controlling signal need to be mapped to a range of voltages. This can
either be achieved with the help of pulse-width modulation 1 or with the
help of a dedicated component called digital-to-analog converter.

The most common sources of power are hydraulic or pneumatic pres-
sure and electric current. In modern cars a wide range of electric motors
can be found. The area of application starts with small motors used for
power windows or sunroofs and extends to propulsion technology in
electric vehicles. In Table 1.3 some examples of the different actuator types
are listed.

Table 1.3. Examples of different actuator types

Actuator Control Power Area of Application

Directional control valve Digital Hydraulic pressure Automatic transmission
Control valve Analog Pneumatic pressure Brake booster
Electric motor (AC) Analog Electric current Asynchronous motor (driving)
Electric motor (DC) Digital Electric current Power windows

1.2.4 ECU Software

For a long time the development of automotive software was highly
interdependent with the development of the hardware it was processed
on. As the use of electronics was not widespread in the car, and control
algorithms were focused on very specific tasks, software was usually
developed in independent monoliths [126]. However, with the connection
of multiple ECUs the question arises which functionality is located on
which ECU.

1The interested reader is referred to [17] for more details.
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Another perspective on the software processed on ECUs is looking at the
dynamic aspects. This perspective is concerned with the behavior of the
system at run-time. In the early days of automotive software no distinction
was made between the static and dynamic behavior architecture. As ECUs
had single-core processing units, only the frequency of processing and
the processing order of the functions had to be decided. Hard real-time
processes were able to be implemented with embedded solutions. Over
time, activation rates spread more broadly and multi-core ECUs were
introduced. As a result, it is practically impossible to directly understand
the behavior at run-time anymore. Consequently, scheduling and end-to-
end analyses are important tools for engineers to verify correct dynamic
behavior.

A typical automotive task set in a time-critical application consists
of periodic tasks and sporadic tasks. Sporadic tasks are activated when
different events occur, e.g. at sensor readings. A special type of sporadic
tasks are angle-synchronous tasks which are activated synchronously to
the rotation of the crankshaft. The activation rates of periodic tasks range
from one second to one millisecond [78].

Scheduling of such task sets is either done using fixed-priority preemp-
tive scheduling or fixed-priority non-preemptive scheduling. The static
priorities of periodic tasks are assigned rate monotonic, meaning that fre-
quent task have a higher priority. Sporadic tasks usually have the highest
priorities for fast handling of incoming events.

Lately, a new paradigm for real-time software emerged: LET. The idea
of LET was introduced with the time triggered programming language
Giotto in 2000 [65] and is driven by the observation, that the key aspects
of the dynamic behavior of real-time systems are the points time when
input is read and output is written. So when these points of time are fix
relatively to the start of the schedule, the actual processing in between
is not relevant for the temporal behavior as long as deadlines are met.
Although the LET idea is discussed contrary, it is gaining more acceptance
[74] and has also found its way into automotive systems [64].

Opposing the increased determinism achieved by deploying LET, the
above-mentioned shift to more dynamic systems negatively impacts pre-
dictability of the systems behavior at run-time. If more decisions are made
at run-time the dynamic perspective on the system needs to consider more
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possibilities. This aggravates system verification. In short, one could say:
more dynamic at run-time often also means less predictability at design-
time. In addition to this trend POSIX-based systems with Automotive Linux
hit the market in 2018 [8]. The targeted use-case in a first step are however
in the are of audio and video applications, and rear seat entertainment. In
this work we focus on the evolving real-time systems.

1.2.5 OSEK/VDX

The Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug
(OSEK) 2 is a standards body founded 1993 by different German automotive
OEMs and the University of Karlsruhe. In 1994 two French automotive
OEMs, which previously grouped together to the VDX, joined the consor-
tium. The OSEK/VDX consortium created a operating system (OS) and
communication standard of the same name. Moreover, the OSEK-OS and
OSEK-communication (COM) has been standardized by the ISO in the stan-
dards [118, 119, 120, 121].

We want to go into more detail on two parts of the standard: (1) the task
concept and (2) the interaction layer (IL). The concepts for the tasks as well
as the ideas around the IL have been included and further developed in the
AUTOSAR standards. As a consequence, they still have a huge relevance in
today’s automotive embedded systems and will accompany us throughout
this work.

The task concept differentiates two types of tasks: basic tasks and
extended tasks which can either be active or in idle-state. The difference be-
tween basic tasks and extended tasks is, that the latter have and additional
waiting state which allows to preempt a extended task without actually
terminating it. The possible states and state transitions for a extended task
are shown in Figure 1.9. The states and transitions for basic tasks are a
proper subset of the states and transitions as the Waiting-state is omitted.
The state automaton for basic tasks is depicted in Figure 1.10. Addition-
ally, mechanism for task activation, switching and scheduling policies are
defined which found wide application in the automotive industry.

2German for “open systems and their interfaces for the electronics in motor vehicles”
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Figure 1.9. States of OSEK/VDX Extended Tasks (Cf. [120])
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Figure 1.10. States of OSEK/VDX Basic Tasks (Cf. [120])

Just like the task concept, the concept of the IL is the basis for many im-
plementations in the automotive domain. It is message-based and provides
a common interface for communication between different applications to
abstract from the communication protocol used for the actual transmission.
Two kinds of communication are distinguished: (1) internal communica-
tion and (2) external communication. Messages which are sent to internal
receivers are directly routed through the IL. Messages which are sent to
external receivers are packed into interaction layer package data units
(I-PDUs). Furthermore, an external message has a transfer property which
is either triggered or pending. If the transfer property of a message is set to
be triggered, the content in the assigned I-PDU is updated and a request for
transmission is made. If the transfer property of an I-PDU is set to pending,
the message is updated without transmission request. Furthermore, it is
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specified that an I-PDU can have one of the following transmission modes:
direct, periodic, or mixed. Providing, the transmission mode of an I-PDU is
set to direct, the I-PDU is only sent due to a transmission request by a con-
tained message. On the contrary, if a PDU is configured to have a periodic
transmission mode, it is sent periodically with a predefined frequency.
Finally, if the transmission mode is set to mixed periodic and on-demand,
transmissions are combined.

Figure 1.11. Message Passing via OSEK/VDX IL (Source: [121])

1.2.6 AUTOSAR

Automotive Open System Architecture (AUTOSAR) is a consortium similar
to the OSEK/VDX consortium. It was founded in 2003 by German OEMs
and suppliers. In the course of the year, international OEMs joined the
partnership. The self-defined goal of AUTOSARs consortium is to create
standards for development methodologies, basic system functionalities
and their interfaces. Because there is a clear overlap in the technical field
and in the stakeholders involved, some ideas from the OSEK/VDX standards
were adopted and continued in the standards around the AUTOSAR classic
platform. Responding to the increased demand for computing performance
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1. Automotive CPS - A biased Overview

specifications for a adaptive platform have been added around 2017 [10].
Several ideas of the OSEK/VDX standards are continued and further

developed in AUTOSAR. The IL for example has strong similarities to the
virtual functional bus (VFB) of AUTOSAR [9]. In some parts the standars of
OSEK/VDX are even referenced in the AUTOSAR standards, e.g. in the case
of OsTasks in [13].

A further important concept which AUTOSAR is the Layered Software
Architecture introduced in the year 2005 (cf. [11]). It aims at providing
an interface to abstract from the underlying hardware. Consequently, the
two most important layers of the architecture are the basic software (BSW)
layer and the application software (ASW) layer. Between these two layers
a runtime environment (RTE) layer is generated. It completely decouples
both layers as depicted in Figure 1.12. To achieve this, it implements the
communication paths according to the VFB specifications. This approach
allows to develop software in the ASW layer independently from the under-
lying hardware and improves portability of the of the application software
components. Furthermore, the encapsulation of memory accesses allows to
partition memory into regions to prevent software components to interfere
wrongfully.

Non-functional requirements however have not been part of the method-
ology right at the outset. Standardized methods to define timing require-
ments have been added in 2009 with the initial version of the TIMEX [14].
How the AUTOSAR TIMEX can be used to define so-called event chains and
their timing requirements is described in more detail in Section 3.1.4.

1.3 Scope of the Thesis

The analysis of various performance metrics for real-time systems is sub-
ject to academic research for over five decades now [35] and although
some work has successfully been applied in industry, a gap exists be-
tween industry needs and solutions provided by academia [103]. Precision
and scalability are important criteria for acceptance of an approach, but
a question which is often observed to be the main difficulty is how to
encode the real system in a formal model. At the same time, systems
are still getting more complex and there is no doubt that even the most
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Figure 1.12. Components and Interfaces View of AUTOSAR Layered Software Archi-
tecture (Source: [11])

experienced engineers cannot possibly keep the overview of the behavior
of the complete system, especially when it comes to end-to-end latencies.
As a consequence, tool support for latency analysis is more important
than ever. It is therefore the objective of the present work to close the
above-mentioned gap for automotive systems and present precise esti-
mation approaches for end-to-end latencies scaling for relevant systems.
To compromise between theorists and practitioners and to support easy
comprehensibility the modeling process is divided into multiple steps.

Our main focus for all presented formal approaches is expressiveness
and precision. These are, in the author’s opinion, the most important crite-
ria for the acceptance of such approaches. Nonetheless, scalability for the
relevant systems is a necessary requirement for the actual application of
any approach. For this reason, we test the proposed approaches with actu-
ally implemented as well as synthetically generated systems. An example
which will accompany us through this work is part of the communication
cluster of automotive powertrains. As an example for an actual system, we
study the formal model of the central powertrain control module (CPCM)
as well as the network communication of the CPCM with the egine control
module (ECM) and transmission control module (TCM). The CPCM is partic-
ularly suitable because of its domain controller role. The blurring borders
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between static and dynamic architectures can be observed here. Some hard
real-time properties are an inherent part of the powertrain but the CPCM

also needs to participate in dynamic back-end communication. The size
of the task set and the amount and type of network communication are
consequently a profound benchmark.

A different challenge in the area of latency analysis is taken up in
the last chapter: the work is no viable solution with the growing amount
of measurement data produced. An increased amount must be expected
since systems are getting bigger and data logging gets potent, e.g. with
FPGA-based live tracing [51]. In the next sections we discuss the problem
of end-to-end latency analysis and why a combination of both formal
verification and measurement data evaluation is the most solid option for
reliable estimations.

1.3.1 End-to-end Latency Analysis

The objective of end-to-end latency analysis is to estimate the system-level
performance of network of heterogeneous ECUs to verify that end-to-end
latency constraints are met. Such constraints exists for different func-
tionalities of the car, e.g. braking. Multiple so-called cause-effect chains
(sometimes called event chains) are assigned to one system function to de-
scribe the sequences of processing steps made by the system to implement
the functionality. Usually, these chains start with an user action or at one
of the above-mentioned sensors and ends at one of the above-mentioned
actuators. An instance of the chain starts with the triggering event and
ends at actuation. Depending on the possible relative offsets between the
events within the course of the cause-effect chain, different instances with
different end-to-end latencies are possible. The set of possible instances
therefore determines the set of possible end-to-end latencies. The events in
the course of the chain refer to tasks reading and producing signals while
processing the chain and the transmission of signals via network.

Predicting end-to-end latencies in early design phases and verifying
them for the final product are important steps in building dependable
systems and with the current developments as outlined above, these task
are in strong demand for computer-aided solutions. Data acquisition for
this can either be done with the help of formal methods or by measurement
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as discussed in the next section.
End-to-end latency constraints exist for different latency semantics. Age

of data and time to first response are the two important latency semantics
for automotive systems [45]. The age of data, or data age, is the time span
between the start an instance of the event chain and the latest possible
impact the generated signal value might have in the course of the effect
chain. The time to first response or response time on the other hand is the
time between the start of an instance of the chain an the first reaction at
the end of the chain.

Different measures of data age and response time are of interest. The
most important one is the maximal possible value. If it can be shown that
the maximum latencies meet the constraints on the end-to-end latency for
all chains in ay situation, the system meets all end-to-end constraint in
a worst-case scenario. Additionally, the minimum and average value are
interesting to get an idea about the range of possible behaviors. A deviation
from the expected value is also referred to as jitter. Jitter is especially
challenging for calibration engineers as they need to find calibration
parameters working for a broad range of possible latencies.

1.3.2 Formal Methods vs. Measurement Data Evaluation

The challenge in end-to-end latency analysis for a system function is, that
all possible instances the cause-effect chains must be considered. Basically,
two approaches exist to identify the set of possible chain instances: (1)
analyzing simulation or measurement data and (2) conducting a formal
analysis.

The challenge for simulation and measurement data is test coverage.
Since all instances of cause-effect chains spanning over multiple ECUs need
to be covered, potentially a lot of stimuli need to be tested.

Figure 1.13 depicts the problem potentially exiting for non-exhaustive
analyses like simulation or measure-data analysis. In general, not all
input combinations can be possibly tested. Non-tested input combinations
however potentially include a situation with a worse case than found thus
far.

Covering all possible situations is also the main challenge for formal
approaches. However, in this case it leads to a trade-off between computa-
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tional complexity and precision.
In summary, from a economic efficiency point of view, both formal

methods (FM) and measurement data analysis (MDA) need to be pursued.
Only a combination gives the best validation results with an eye on cost
efficiency, because although overestimation is in contrast to profit motives
since they lead to too pessimistic system designs, undetected timing defects
in products possibly result in product callbacks with costs very difficult to
assess but definitely high.
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Figure 1.13. Test Coverage vs. Over Estimation
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Chapter 2

Mathematical Preliminaries

In the previous chapter a broad outline of the systems which are subject
to the analyses developed in this work was given. The following chapters
are concerned with the most important two steps of performance analysis:
encoding the system in a mathematical model and proving or measur-
ing properties of the system. Before we look at the systems and their
formal representation in more detail, the basis for the formal models are
introduced. The models used for measuring or proving properties of the
system often have a clear focus, e.g. the temporal properties of the system.
A model for the analyses of data dependencies, on the other hand, is not
concerned with this perspective at all. However, for the comprehensive
analysis, first the latter and secondly the former perspective might be
needed. In other words, the different models need different but possibly
overlapping input data. Therefore, a more general and exhaustive system
model should be used for data acquisition prior to and between the dif-
ferent analyses. For measuring or reasoning with specialized models, a
projection or a transformation from the more general model can be used.

In this chapter, the basic mathematical concepts and the language
used throughout this work are introduced. First, notations and constants
are defined. Secondly, some extended structures are introduced. In this
work, tuples are used to specify the system model. This approach has
two advantages. On the one hand, a database model can be constructed
directly to support the development of computer-aided tools. On the
other hand, describing translations of data to more specialized models, i.e.
transformation algorithms, can be described more comfortable in a formal
way.

The subsequent sections are concerned with records, graphs, a formal
representation of time, and constraint programming. Their purposes are:
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Ź Records
to formally describe the input data of the models used to encode the
real-word systems.

Ź Graphs
to describe different relationships between sets of objects. For this
purpose, nodes and vertices are labeled, e.g. a node can be labeled with
a tuple representing an artifact in the system model.

Ź Time
for both, reasoning about temporal properties and evaluation of mea-
surement data, a formal representation of time is needed.

Ź Constraint Programming
for automated reasoning. The properties of the system are encoded in
more specialized models. Constraint programming allows for declar-
atively stating the systems behavior in terms of constraints. Feasible
solutions for the variables of these constraints represent possible sys-
tem’s behavior.

2.1 Basic notations

Let A be a set. The cardinality A is denoted by |A|, e.g. | { 5, 2, 7 } | = 3.
Let B be a second set. The Cartesian product, or product set Aˆ B is the
set of all ordered pairs (a, b) where a P A and b P B, that is:

Aˆ B = { (a, b) | a P A and b P B } . (2.1.1)

The power set of a set A is the set of all subsets of A and is denoted by
P(A).

The inline restriction of a set A is denoted A| f where f is a function
mapping elements from A to the set { true, false } and is defined as the set
{ a P A| f (a) = true }.

2.1.2 Definition (Kleene closure). An alphabet is a set A containing sym-
bols (or characters). Set A0 = { ε } where ε is a special symbol representing
the empty string, A1 = A, and Ai = { uv | u P Ai´1 and v P A } for i P N
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and i ą 1. The string uv denotes the concatenation of u P Ai and v P A.
The definition of the Kleene closure of A is:

A˚ =
⋃

iPN

Ai . (2.1.3)

Throughout this work the following symbols are used to refer the
respective set:

N Denotes the set of Natural numbers, { 0, 1, 2, . . . }. The number is in-
cluded 0 unless stated otherwise.

Z Denotes the set of Integers, { . . . ,´2,´1, 0, 1, 2, . . . }, i.e. the set of natural
numbers and their additive inverses.

Q Denotes the set of Rationals. A rational number is any number that can
be expressed as the fraction of two integers p

q , p, q P N with q ‰ 0.

R The set of Reals. The real numbers include the rational numbers and
the irrational numbers, i.e. the numbers which can not be represented
as fractions of two integers (excluding imaginary numbers).

S The set of Strings. Let Σ = { a, . . . , z, A, . . . , Z, 0, . . . , 9 } be the set of
Characters, then S = Σ˚. Note that the number 1 is not equal to the
character 1. A word in Σ˚ is also referred to as string. In this work, we
use strings as identifiers.

B The set of truth values, B = { true, false }. Note that true ‰ true and
false ‰ false for the Strings true, false P S.

Throughout this work we use the following symbols to denote the
respective logical connectives of two Boolean variables a, b P B:

^ Denotes the logical conjunction, i.e. a^ b is true if and only if a is true
and b is true.

_ Denotes the logical disjunction, i.e. a_ b is true if and only if a is true
or b is true.

 Denotes the inversion of proportion or truth value, i.e.  a is true if and
only if a is false. Note, that unary operators have a higher precedence
than binary operators.
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ñ Denotes the logical implication, i.e. a ñ b is true if and only if  a_ b
is true.

2.1.1 Tuples

A tuple of length n P N, or n-tuple, is a finite and ordered sequence
of elements. Parentheses are used to enclose tuples, e.g. (0, 1, 1, 2) is the
4-tuple consisting of the elements 0,1, and 2. Formally, the definition is
based on the definition of ordered pairs. Let A and B be sets. An ordered
pair p = (a, b) over the domain Aˆ B is an pair of elements a P A, b P B.
It equals p1 = (a1, b1) P Aˆ B if and only if a = a1 and b = b1, i.e. the
order of the elements in p is determining identity as well as the identity
of the domains. Formally, tuples can be defined as nested ordered pairs.
The 0-tuple is represented by H. An n-tuple is represented by an ordered
pair (a, b) where a is the first component of the tuple and b is an (n´ 1)-
tuple. We write (x1, . . . , xn) to denote the n-tuple (x1, (. . . , (xn,H))). The
Cartesian Product of the domains of each component determines the type
of the tuple.

Note that, unlike the properties of sets where { 0, 1, 2 } = { 2, 1, 0 }, for
tuples (0, 1, 2) ‰ (0, 2, 1) and (0, 1, 1, 2) ‰ (0, 1, 2) holds.

Lists

A special case of tuples are lists or sequences which are used as synonyms
in this work. They are tuples where each element has the same type
and serve as ordered collections of values. Unlike the properties of sets,
elements can be contained in the collection multiple times. Similar to the
Kleene-closure, we define an operation which gives us all lists of length k
which can be constructed with the elements of a set.

2.1.4 Definition (Lists over a Set). Let A be set. We define Al(0) = H. The
lists of length i P N, i ą 0 over A is defined as

Al(i) = { (a, b) | a P A, b P Al(i´1) } .
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The set of tuples of arbitrary length is denoted Al(˚) and defined as

Al(˚) =
⋃

iPN

Al(i)

2.1.5 Definition (List). Let A be a set. A list of length n over domain A
is a tuple of length n P N where each element comes from A. As an
abbreviation the notation (ai)

n
i=1 is used for a list l = (a1, . . . , an) P Al(˚).

Furthermore, we define the following operations on lists:

Empty list The nil-constant creates an empty list:

nil() : Al(0)

nil() = H .

Length The len-operator gives the length of a list:

len : Al(n) Ñ N

len(a1, . . . , an) = n .

Contruction The cons-operator allows to append elements to a list. Let
a P A, then

cons : Al(n) ˆ A Ñ Al(n+1)

cons(l, a) = (a1, . . . , an, a)

Concatenation The infix operator ‘ denotes the concatenation of two lists:

‘ : Al(n) ˆ Al(m) Ñ Al(n+m)

(a1
1, . . . , a1

n)‘ (a2
1, . . . , a2

m) = (a1
1, . . . , a1

n, a2
1, . . . , a2

m) .

Selection The elemi-operator is a projection to the ith element of a list l:

elemi : Al(n) Ñ A

elemi(a1, . . . , an) = (ai)

for all i P { 1, . . . , n }.

To-Set The set-operator gives all elements of a list in a set:

set Al(n) Ñ P(A)
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set(l) =
⋃

iPN

{ ai } .

2.1.2 Functions

Let A and B be sets. A relation between two sets is a subset of the Cartesian
product Aˆ B. A relation R Ă Aˆ B encodes that element a P A is related
to element b P B if (a, b) P R. A function is a special type of relation
between two sets. It associates each element from the first set set to exactly
one element of the second set. To denote that a function f maps values
from A to values in B, we write f : A Ñ B. A is called the domain of f ,
formally denoted by domain( f ) and B is called the codomain of f , formally
denoted by codomain( f ).

In this work, the inline notation for functions is used. We write

{ a1 ÞÑ b1, . . . an ÞÑ bn }

to denote the function f with

f (a1) = b1

...

f (an) = bn

.
A partial function from A to B is a function g : A1 Ñ B with A1 Ă A.

In contrast, the term total function is a synonym for function, used to
emphasize on the fact that the whole domain must be mapped.

A function f : A Ñ B can fulfill the following properties:

Injectivity f is said to be injective if

@a1, a2 P A : f (a1) = f (a2)ñ a1 = a2 .

Surjectivity f is said to be surjective if

@b P B : Da P A : f (a) = b .

Bijectivity f is said to be bijective if f is injective and surjective.

34



2.2. Records

Invertibility f is called invertible if and only if f is bijective. If f is invertible,
a function g : B Ñ A exists such that g( f (a)) = a for all a P A and
f (g(b)) = b for all b P B. g is called the inverse function of f . In this
work, we denote the inverse function of a invertible function f by f´1.

The following relations between domain and codomain can be inferred
from injectivity, surjectivity, and bijectivity 1.

2.1.6 Remark (Domain and Codomain of injective Functions). Let A and
A be sets. If an injective function f : A Ñ B exists, then |A| ď |B|. From
injectivity follows a1 ‰ a2 Ñ f (a1) ‰ f (a2). Since f maps all values from
A to a unique value in B, B must contain at least as much elements as A.

2.1.7 Remark (Domain and Codomain of surjective Functions). Let A and
B be sets. If a surjective function f : A Ñ B exists, then |B| ď |A|. Since
all values in B need to have a value in A which is mapped to it, A must
contain at least as much elements as B.

2.1.8 Remark (Domain and Codomain of bijective Functions). Let A and B
be sets. If a bijective function f : A Ñ B exists, then |A| = |B|. If |A| ď |B|
and |B| ď |A| then |A| = |B|.

2.2 Records

A record is a collection of different named values. The formal definition is
formulated based on nested ordered pairs.

2.2.1 Definition (Record Type). A record type is a ordered pair (n, t) where
n P S is an identifier and t is an n-tuple (t1, . . . , tn) with ti = (ni, Di) an
ordered pair with ni P S the name of the field and Di a set i P { 1, . . . , n }.
Di are the allowed values for the field i, i.e.the value of ith field of a record
of type n must be some d P Di.

Let T = (RecordTypeName, ((FieldName1, D1), . . . , (FieldNamen, Dn)))
be a record type. As an abbreviation, we write

RecordTypeName (FieldName1 : D1, . . . , FieldNamen : Dn )

to denote T .
1Author’s note: these statements can be further generalized and extended but here we

confine ourselves to the needed properties.
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An instantiation of a record type is called record. In the following, the
name of a record type is used to denote the set of all records of that type.

2.2.2 Definition (Record). Let

T = RecordTypeName (FieldName1 : D1, . . . , FieldNamen : Dn )

be a record type. A record of T is a tuple with type D1 ˆ . . .ˆ Dn. To
avoid any confusion, we write

R = RecordTypeName (v1, . . . , vn )

to denote a record (v1, . . . , vn) P D1 ˆ . . .ˆDn of type T .

To conveniently access the fields of a record, implicitly defined selection
functions are used.

2.2.3 Definition (Selector Function). Let

T = (RecordTypeName, ((FieldName1, D1), . . . , (FieldNamen, Dn)))

be a record type. The following selector functions are implicitly defined for
all i P { 1, . . . , n }:

RecordTypeName.FieldNamei : D1 ˆ . . .ˆDn Ñ Di

RecordTypeName.FieldNamei((v1, . . . , vn)) = vi .

2.3 Graphs

In this work the following notations for graphs are used: a graph G consists
of a finite set of vertices V and a finite set of edges E.

2.3.1 Definition (Finite Graph). A finite graph is an ordered pair G =
(V, E) with V a finite set of vertices and either E Ď V ˆ V (defining a
directed graph), or E Ď { { v1, v2 } | v1, v2 P V } (defining an undirected
graph).

A graph can have the following special forms: In the case of directed
graphs write v1 Ñ v2 if and only if (v1, v2) P E. In the case of undirected
graphs we write v1 – v2 if and only if { v1, v2 } P E.
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Irrespective of whether a graph is directed or undirected, the edges
and vertices of a graph can be labeled. Formally, with L a set of labels, this
is achieved with labeling functions lE : E Ñ L or lV : V Ñ L respectively.
We write G = (V, E, LV , LE) for a graph with two labeling functions, G =
(V, E, LV) for a graph with a vertex labeling function, and G = (V, E, LE)
for a graph with an edge labeling function respectively.

A walk of length n in a graph G = (V, E) is a sequence of edges
(u, v)n

i=1 with (u, v)i P E where vi = ui+1 for all i P { 1, . . . , (n´ 1) }. The
vertex walk for a walk (u, v)n

i=1 is the sequence (u1, . . . , ui, vi). A cycle is a
walk for which the first and last vertex of the vertex walk are identical.

2.4 Continuous and discrete time

For the formal analysis of timing properties an abstraction for time mea-
surement is needed. In physics, there is a plethora of different concepts
that would go way too far to be covered here. In computer science, two
mappings of time to abstract clocks are common: continuous and discrete.
The full list of time abstractions additionally includes dense and logical
time.

The continuous time model models a clock with a differentiable func-
tion Ccon : R Ñ R. This clock possibly has discontinuities where a reset
happens. It has a precision which is given in d

dt C(t0) at all t0 P Rě0 where
C is continuous and differentiable. This notion of time pays attention to the
fact that physical values are possibly incommensurable, which is relevant
for clocks which are not perfectly synchronized [54].

In the case of discrete and dense time the domain for the clock reads
are not continuous but countably infinite sets. More precisely, for dense
time the domain for points of time is Q, for discrete time it is N. Again a
clock maps time to points of dense or discrete clock readings, i.e. a discrete
function C : R Ñ D where D = Q or D = N. Discrete and dense clock
values increase every time the interval of a tick is elapsed.

Besides the above-mentioned metric formalism with an underlying
time domain, there is a fourth, which is more general in that it detaches
from the idea of time flowing in equidistant measures. This concept is
also known as logical time. The idea is to order events in a system by their
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occurrence. It was first introduced by Lamport in 1979 [80]. The clocks to
measure logical time are especially useful in situations where a specification
of right system behavior in terms of timing can not rely on the presence of
accurate physical clocks. Instead, a logical clock assigns numbers to events
in the system, only satisfying the constraint, that an event A gets a lower
number than an event B if A occurred before B.

Depending on the method and focus, a different abstraction of time is
useful for the modeling and the analysis of CPS. In this work the discrete
time abstraction is used for the formal analysis of the temporal behavior
of cause-effect chains in task sets and within a cluster of connected ECUs.
In the context of time, two notations are used: t is used to denote intervals
of time, and [t0, t1] denotes the interval containing all points of time in
{ t | t P D^ t0 ď t ď t1 }

2.5 Constraint Programming

Constraint programming is a technique to solve combinatorial problems
based on a declarative problem description. The programming aspect should
partly be viewed as the programming in mathematical programming. The
user declaratively models the problem as the feasible solutions for a set of
decision variables. However, on top of this, the user may specify a search
strategy to optimize the systematic search for solutions to his specific
problem [109]. Although constraint programming does, in general, not
prescribe how to solve a problem, search strategies allow to adapt the
technique to better perform on certain problems. A constraint solver takes
the encoding of the real-world problem and the search strategy, and tries
to find an assignment to the variables that satisfies all constraints. Defining
the set of constraints to model a real-world problem seems easy at first
glance, however there are some pitfalls for finding a good model, e.g.
over-constraining [61].

While the question whether a satisfying assignment exists or not can
be used to check whether the modeled real-world object has a certain
property or not, adding a objective function to the problem description
additionally allows to identify extrema, e.g. a worst-case situation. The
solver will then try to find a feasible solution yielding the largest value
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for the objective function. If such a solution is found, the assignment of
the variables models the real-world situation leading to the worst case.
Furthermore, a proof that no worse case can be found is implicitly part of
the solution.

In this section, the formal foundation of constraint programming is
introduced: the constraint satisfaction problem (CSP).

The first ingredient for a CSP are Variables.

2.5.1 Definition (CSP Variable). A variable in a CSP has an identifier and a
domain of valid values for this variable.

2.5.2 Definition (Constraint). Let S = { (x1, D1), . . . , (xn, Dn) } be a set of
CSP variables and D =

⋃
iP{ 1,...n } Di. A constraint is a tuple c = (R, S)

where R is a relation over arithmetic expressions containing variables from
S and constants from D.

To search for and check solutions, the variables in constraints need to
be replaced by values from their domain. This is formally described with
the help of a substitution.

2.5.3 Definition (Substitution). Let c = (R, S) be a constraint. A substi-
tution for c is a partial function ϕ : S Ñ D. A substitution ϕ is called
consistent if R holds true for the assigned values. A substitution ϕ is
called complete if ϕ is a total function. If a substitution ϕ is consistent and
complete, we write ϕ |ù c.

A CSP consists of variables, domains for the variables, and constraints
on the variables.

2.5.4 Definition (Constraint Satisfaction Problem). A CSP is a triple P =
(X,D, C) where X = ((x1, D1), . . . , (xn, Dn)) is a list of variables, D =⋃

iP{ 1,...n } Di is the universe all variables might attain values from, and C
is a set of constraints such that

@(R, S) P C : S Ď set(X) .

An assignment to a CSP is tuple which contains a value for each variable.

2.5.5 Definition (Assignment for a CSP). Let P = (X,D, C) be a CSP with
X = ((x1, D1), . . . , (xn, Dn)). An assignment to P is a n-tuple (a1, . . . , an) P
D1 ˆ . . .ˆDn.
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Finally, a solution of a CSP is defined as an assignment which yields
consistent substitutions for every constraint.

2.5.6 Definition (Solution of CSP). Let P = (X,D, C) be a CSP and let
A = (a1, . . . , an) be an assignment to P . A is called a solution to P if

@(R, S) P C : { xi ÞÑ ai | i P { 1, . . . , n }^ (xi, Di) P S } |ù (R, S)

The set of solutions for P is denoted sols(P).

To find solutions with certain properties, an objective function can be
added to a CSP to rate the solutions found by the solver.

2.5.7 Definition (Constraint Optimization Problem). Let P = (X,D, C)
be a CSP with D = (D1, . . . , Dn). A constraint optimization problem is
a 4-tuple Pmax = (X,D, C, ς) with ς : (D1, . . . , Dn) Ñ Q an objective
function.

A solution to Pmax is an assignment A = (a1, . . . , an) to P for which

@A1 P sols(P) : ς(A1) ď ς(A)

The set of solutions for Pmax is denoted sols(Pmax).

In this work, we will use CSP as a general term for constraint satisfaction
and constraint optimization problems.

2.5.8 Example (CSP). Consider the the CSP P = (X,D, C) with

X = (x1, x2, x3)

D = ({ 1, 2 } , { 2, 3 } , { 1, 2 })
c1 = x1 ă x2 _ x1 ą x3

c2 = x2 ą x3

c3 = x1 = 4_ x3 ą x1

C = { c1, c2, c3 }

A solution for P is the assignment A = (1, 3, 2). To verify this, we have
to look at the substitutions resulting from a:

ϕ1 = { x1 ÞÑ 1, x2 ÞÑ 3, x3 ÞÑ 2 }
ϕ2 = { x2 ÞÑ 3, x3 ÞÑ 2 }
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ϕ3 = { x1 ÞÑ 1, x3 ÞÑ 2 }

and check whether all constraints in P are satisfied:

ϕ1 |ù c1 ðñ domain(ϕ1) = { x1, x2, x3 }^ 1 ă 3_ 1 ą 2

ϕ2 |ù c2 ðñ domain(ϕ2) = { x2, x3 }^ 3 ą 2

ϕ3 |ù c3 ðñ domain(ϕ3) = { x1, x3 }^ 1 = 4_ 2 ą 1

The small CSP given in Example 2.5.8 shows, that the problem of finding
a solution gets complex quickly. In fact, the problem of finding a solution
to a CSP is NP-hard in general. A compact, further discussion can be found
in [42].
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Chapter 3

Modeling Automotive
Cyber-physical Systems

This chapter is dedicated to the modeling of CPS regarding their temporal
behavior in order to conduct end-to-end timing analyses. The models
introduced in this chapter are the basis for the formal models used in
Chapter 4 and Chapter 5, and the measurement data analysis described in
Chapter 6. We do not take sensor and actuator into account but focus on
ECU software and network communication between sensing and actuating.

The end-to-end estimation process is therefore subdivided two parts:
firstly, all relevant information for an exhaustive timing analysis need to
be listed. Secondly, for each real-world object represented by its relevant
properties, the best-fitting formal model needs to be defined or chosen and
a transformation needs to be defined. This is the step in the verification
procedure where usually a gap between formal models and the models
used in the industry is observed. The former are usually described using
mathematical notations. The latter are focused on data exchange between
different parties involved in the development process. Scientific models
usually strive high abstraction and generality, the data models of industry
a focused on electronic data exchange and contain implementation details
of different granularity.

As an example ECUs and networks might be abstracted to service-
providing entities in an abstract mathematical model. Software tasks as
well as network messages are abstracted to service consuming entities
accordingly. Contrary to that, ECUs with their different processing units
and networks with different types of physical channels can be modeled
with completely dedicated object types in a less abstract approach. From
another point of view, in an abstract model, the impact of multiple service
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consuming entities might be aggregated to reduce the complexity of the
analysis. This comes at cost of some overestimation in most cases. That
is why an approach with several layers of abstraction is followed in this
work. We make a plead for a separation of concerns: data collection
and analysis. Both steps can work on different models to find a good
balance between the two trade-offs: abstraction versus comprehensibility,
and comprehensiveness versus solvability. The data model needs to have
a strong orientation towards comprehensibility and comprehensiveness.
The analysis model on the other hand needs to serve as an input for an
algorithm executed by a machine which is easier to do with more abstract
models.

Generally speaking, the properties needed to estimate the temporal
behavior of a system come down to how often is the input data processed
and how long it takes until a response is computed. The latter question
is significantly harder than the first one. It does not only depend on
the possible data flows existing between an input or request and an
appropriate response but also on how often the respective routines are
processed and the resulting possible interactions. As described above, the
cyber-part of modern CPS usually comprises multiple heterogeneous ECUs
interconnected by different buses.

This chapter is organized as follows: First of all related work with differ-
ent backgrounds and different levels of abstraction is examined regarding
the underlying model for a selection of the most promising concepts.
Subsequently, the system model used in the rest of this work in formally
defined in Section 3.2. It is divided into multiple parts: the relevant prop-
erties of the ECUs and networks of ECUs are discussed in Section 3.2.1 and
Section 3.2.2 respectively. Building upon this, a formalization of cause-effect
chains is introduced in Section 3.2.3. In Section 3.3 exemplary data sources
for the system model are listed and the different parts are put in a broader
context.

3.1 Related work

In this section related work from the field of modeling the temporal
behavior of CPS is discussed. We distinguish two origins: data models
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for standardized data exchange in the industry, and scientific models.
Examples from both areas are discussed below.

In the scientific community, a plethora of system models where de-
veloped over time. They can be categorized according to various criteria
which is discussed in more detail in Section 4.1. In this section we focus
on the level of abstraction of the underlying models. As one would expect,
models from the scientific community are more abstract. Theoretically,
some even allow to consider software and networks together, like e.g. the
Real-time Calculus (RTC). Similar ideas have been further developed, com-
monly known as compositional performance analysis (CPA) approaches.
The underlying models are presented in Section 3.1.1. Furthermore, ap-
proaches exist, that are focused on either the networking properties or the
software of single ECUs. Naturally, these models used are less abstract as
described in Section 3.1.2 for a network-focused model and in Section 3.1.3
for a software-focused model respectively.

In industrial applications, models are usually more extensive, some-
times they even tend to be bulky as many stakeholder were involved in
the development process. In any case they are less abstract. A well known
model from the industry is the timing extensions of the methodology for
describing automotive ECUs and bus systems of the AUTOSAR. It is further
described in Section 3.1.4.

3.1.1 Real-time calculus and CPA

Real-time Calculus [136] is a method for formal performance analysis of
embedded systems and networks. It is based on network calculus [27]
which was introduced as an method to reason about data flows in networks
based on so-called input arrival curves and input service curves. The result of
the analysis are output arrival curves describing the outgoing event stream
and output service curves describing the remaining capacity of the service
providing entity. The modeling process for a system with one resource
and one task, as well as all curves included is depicted in Figure 3.1. The
relationship between the in- and output streams is the core of RTC: the
description of the manipulation of the streams is described with the help
of min-plus and max-plus algebra. These discrete algebraic systems can be
used to describe discrete event systems. The interested reader is referred
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to Part II of [16] for an profound introduction.
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Figure 3.1. Data Model of Real-time Calculus

Another CPA approach developed around the same time as RTC is
presented in [70]. The major difference is, that the approach presented in
[70] allows to combine multiple input events for task activation to support
the modeling of more complex systems. This approach has been further
developed [113]. It was also the theoretical basis for a commercial tool
[132].

However, all CPA approaches suffer from the problem of a context
loss when the next compound is analyzed which is further discussed in
Chapter 4.

As an interesting concept for our model, we note the idea to describe
the arrival of tasks or network messages in terms of functions.

3.1.2 Timing analysis of vehicular networks

Another system model from the scientific community is the one introduced
and used in [82, 81]. It has a strong focus on network transmission and
is less abstract than the model underlying CPA. The core of the model is
formed by so-called message streams. Each message stream is characterized
by at least the following attributes:

Ź the length of the network message in bytes or the time it needs to
transmit the message on the bus

Ź the minimum interval between the generation of two messages
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Ź the relative deadline for a message

Furthermore, the model contains tasks between which message streams
flow. A task is characterized by the following attributes:

Ź the execution time on a processing unit

Ź the minimum interval between two activations of the task

Ź the relative deadline of the task

As we can see, the authors distinguish between network communica-
tion and software tasks in their model. They use two rather specific models
and consider the integration of network and software parts model-wise.
This seems like a natural cut and we therefore note this partitioning for
our data model. We will however see, that the network communication
in todays automotive communication clusters has some properties which
are essential for end-to-end latency analysis but not covered by the model
proposed in [82, 81].

3.1.3 Synthesis of job-level dependencies

For the end-to-end timing analysis of multi-rate effect chains Becker et al.
presented an approach in [20, 19]. Multi-rate here means, that a set of
time-triggered tasks with different activation periods is analyzed. The
underlying model has three parts: an application model, a chain model
and a model for the dynamic behavior, i.e. the job-level dependencies.
The application model is a set of tasks, where each task comprises the
following elements:

1. an optional offset for the activation of a task

2. the period for the activation of a task

3. the worst-case response time of the task

The deadline of a task is implicitly assumed to be the period.
The chain model straight forward: a cause-effect chain is described as

sequence of data-dependent tasks. The model for the dynamic behavior
adds a new aspect: to calculate all possible data propagation paths, the
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notions of a read and write interval is introduced. The read interval starts
at the earliest possible point of time a job can read a value and ends at
the last possible point of time it can read a value. In the context of a
cause-effect chain this can be further refined since it is well-known which
value is of interest. The write-interval is accordingly defined as the interval
between the earliest point of time the output of the task is available and
the last point of time the output of the task is available. These points of
time can be derived from the information given in the instance of the
application model.

From this approach, we note a third concept for our model: the differen-
tiation between data dependencies in the application model, i.e. static task
sequences corresponding to cause-effect chains, and the possible job-level
instantiation at run-time. The static model provides the constraints to
describe the possibilities of the dynamic model. The continuation of this
thought leads to a further separation of data and analysis model.

3.1.4 AUTOSAR TIMEX

To do justice to the growing importance of timing analysis in automotive
development processes, the AUTOSAR Timing Extensions (TIMEX) were
added to the standard’s methodology in 2009 [14].

The main objective of the extensions is to provide the means to de-
scribe timings and to specify timing constraints on them. The basis of the
description is formed by so-called events which are combined to event
chains in order to model end-to-end timings. The provided information
are additionally intended to serve as the foundation for a validation of
the temporal behavior [14]. The definition of events and consequently the
definition of an event chain is broadly formulated in the TIMEX:

Events refer to locations in systems at which the occurrences of events are
observed. The AUTOSAR Specification of Timing Extensions defines a set of
predefined event types for such observable locations. [...] Event chains specify a
causal relationship between events and their temporal occurrences. The notion
of event chain enables one to specify the relationship between two events, for
example when an event A occurs then the event B occurs, or in other words,
the event B occurs if and only if the event A occurred before. [...]
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(Source: [14])

For events, the TIMEX allows to constrain the activation patterns. For
event chains, latency constraints can be specified. Latency constraints are
a bound on the reaction time or the data age between the first and last
event of the chain. Additionally, execution time constraints and execution
order constraints can be specified for runnable entities.

To make the concept of events more tangible, different so-called timing
views for different phases of the development process are defined. They re-
fer to the locations mentioned in the definition given above. The following
timing views exist:

VfBTiming
Timing on the level of the Virtual Function Bus. This view is concerned
with the interaction of so-called SwComponentTypes which is a abstract
base class for all AUTOSAR software components.

SwcTiming
Timing on the level of Software Components. This view is concerned
with the internal behavior of so-called AtomicSwComponentTypes. Atom-
icSwComponentTypes are software components which can not be further
decomposed or distributed across multiple ECUs.

SystemTiming
Timing on the uppermost level, the level which is described by a
topology, a software implementation and a mapping on ECUs, and a
communication design.

BswModuleTiming
Timing on the level of Basis Software Module. This view is concerned
with the internal behavior of so-called BswModuleDescription which
describe the software modules underneath the AUTOSAR runtime envi-
ronment.

EcuTminig
Timing on the uppermost level within one ECU. In this view the tim-
ing can be described with the help of references to all ECU-relevant
information, e.g. input and output values of basic software modules.
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Figure 3.2. SystemTiming-view of AUTOSAR TIMEX (Source: [14])

Most of the different timing views are well suited to help OEMs to break
down requirements and to exchange them with their suppliers focused on
different parts of the systems. For timing analysis multiple views of the
focused views have to be combined. The SystemTiming-view is intended for
this purpose. Consequently, this view is the one with the most similarity
to the perspective we take in our system model. The main difference is
that we do not consider software components to be black boxes but look
at their internal behavior. Additionally, we do not distinguish between
application software and the software responsible for the communication
stack.

3.2 System Model

In this section, the system model used in the rest of this work is formally
defined. The heart of the model are communication clusters consisting of
two elements: ECUs and networks which connect them. Although a higher
degree of abstraction would be possible by reducing ECUs and networks
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to service-providing entities, we decided to go separate concerns for two
reasons: Firstly, the analysis process as we propose it is already divided
in two parts due to different challenges in the verification process. The
stronger argument is however that, secondly, an abstract model bringing
together the service consuming entities of both domains with the needed
detail would be cumbersome. For the network communication artifacts on
the one side, sending triggers for PDUs of different OSI layers are needed.
For runnable entities on the other side, the activation pattern and memory
accesses are relevant. An overview of the differences is given in Table 3.1.

Table 3.1. End-to-end analysis - Software vs. Network

Software Network

Challenge Find all possible relative offsets
between reads and writes of
runnable entities

Find the longest delay possible
for one artifact to be triggered
and send based on various con-
ditions

Artifacts analyzed Runnable entities processed in
task contexts

Network packets on different
layers

Structure of arti-
facts

Set of sequences of runnable en-
tities

Hierarchical, tree-like structure
for all frames

Most relevant tem-
poral properties

Activation by timer or event and
core-execution time

Sending trigger, trigger depen-
dencies, and transmission time

3.2.1 Electronic Control Units

The first artifact in our model are ECUs. The ECU model has two parts:
hardware and software. Properties of the hardware are, e.g., the amount of
processing units determines how many tasks can be processed in parallel.
The software is organized in tasks which call a sequence of runnable
entities. The scheduling of tasks as well as the mapping to the processing
units of ECUs affects the possible data flows which again have an direct
impact on the possible latencies.

ECU Hardware

The timing-relevant properties of the hardware of an ECU include the
physical connections to sensors and actuators, as well as communication
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controllers, the speed of its processing units and the size and speed of
its memories. As aforementioned, in this work, we are focused on the
cyber-part of CPS. Thus, interfaces to sensors and actuators are reduced to
an abstract event source or sink which are implicitly part of every ECU.

3.2.1 Definition (Communication Port). Let n, s P S be identifiers, let c P N,
and let d P { in, out }. A communication port is a tuple P = (n, c, r, d)
describing that the resource identified by r is provided (out) or consumed
(in) via the the cth channel of the network identified by n.

Accordingly, we define the following record type:

CommunicationPort (

Network : S,

Channel : N,

Resource : S,

Direction : { in, out } )

3.2.2 Definition (Processing Unit). Let c P N and s P { SPP, SPNP }. A
processing unit is a tuple U = (c, s) describing a processing unit with an
index c and a scheduling policy s where SPP stands for fixed-priority pre-
emptive scheduling and SPNP stands for fixed-priority non pre-emptive
scheduling.

Accordingly, we define the following record type:

ProcessingUnit (

CoreNr : N,

Scheduler : { SPP, SPNP } )

3.2.3 Definition (Electronic Control Unit). Let P be a finite set of com-
munication ports and let U be a finite set of processing units The tuple
E = (w, P, U) is called ECU w with communication ports P and the pro-
cessing units U.

Accordingly, we define the following record type:

ElectronicControlUnit (

EcuName : S,

Ports : CommunicationPort,
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Processors : ProcessingUnit )

ECU Software

The characteristics of the software processed in automotive ECUs is de-
scribed in Section 1.2.4 in detail. At this point we briefly revisit the topic
to extract the important properties for our model.

Each task has a sequence of so-called software runnables assigned for
processing. Software runnables are list of statements or instructions that
perform a sub-task, basically like a function, e.g. in the C-programming
language. The processing of a runnable might depend on the mode of
operation. In our approach, the different modes of operation need to be
validated individually with their configuration of runnables.

A task is activated by OS-interrupts which occur periodically or event-
driven e.g. when a sensor reads a specific input. Each time a task is
activated, an instance of this task is processed. Within the system model
we assume that the processing unit a task is processed on is determined
at design time. If this is not the case, the verification process as described
below has to be performed for all possible configurations by generating
different instances of the model.

For tasks which are activated by a periodic timer, the Periodic Activation
Model is used:

3.2.4 Definition (Periodic Activation Model). Accordingly, we define the
following record type:

PeriodicActivationModel (

Offset : N,

Period : N )

For task which are activated by events where a minimal and maximal
time between two readings can be specified, the Bound Activation Model is
used:

3.2.5 Definition (Bound Activation Model). Accordingly, we define the
following record type:

BoundActivationModel (
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DtMin : N,

DtMax : N )

For tasks which only occur sporadically without an upper bound on
the inter-arrival time, the Sporadic Activaion Model is used:

3.2.6 Definition (Sporadic Activation Model). Accordingly, we define the
following record type:

SporadicActivationModel (

DtMin : N )

A third option for task activation is that one task is being activated
by a predecessor, which is also referred to as task chaining. Therefore, we
define an additional timing model for chained activation:

3.2.7 Definition (Chained Activation Model). Accordingly, we define the
following record type:

ChainedActivationModel (

Predecessor : S )

Set

AM =PeriodicActivationModel

Y BoundActivationModel

Y SporadicActivationModel

Y ChainedActivationModel

i.e. AM is the set of all possible activation models.
The time between activation of a task and termination the runnables of

the task are processed sequentially. The time needed to process a runnable
is called core execution time (CET). The CET of a task instance is the sum
of the CETs of its runnables. While being processed, a runnable might be
paused due to a higher priority task instance being scheduled first. Fur-
thermore, a whole task instance might be delayed due to a higher priority
task instance currently being processed. Therefore, the time span between
activation and termination of a task instance is in general not only its CET

but CET plus delay plus paused time. This time span is called response time
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of the task. The CETs as well as the response times for a task instance vary.
Therefore, we consider intervals between a best-case execution time and
worst-case execution time, and best-case response time and worst-case
response time. The WCRT of a task is constrained by a deadline, which we
assume to be met by any task instance. The focus of this work lies on hard
and firm real-time systems (cf. [116] for categorization), overload situations
are however not considered in the analyses. In both categories of systems
results are not useful if they are generated after the relative deadline of
a task instance as this directly influences the end-to-end functionalities.
Correct results cannot be expected anymore. Furthermore, deadlines are
monitored in most cases and a reset is performed if a deadline is exceeded
too often. The verification for no overload situations should be performed
prior to the integration process in the quality assurance on module-level.

The communication between task instances which run on the same
ECU happens within a shared memory, for tasks which are located on
different ECU, the exchange of data is realized with the help of buses. The
latter communication is based on network signals and is discussed in
Section 3.2.2. The former one can be broken down to the level of software
runnables. In this work, the abstraction of software signals is used for
global variables which can potentially be written and read by all runnables.
Access restrictions of the software architecture are not modeled explicitly.

For the access on software signals different communication patterns
are possible. The communication pattern of a task or runnable restricts the
read and write accesses on software signals. The following communication
pattern are considered here:

Direct access (or explicit communication)
The executable block can read and write on its global variables at any
time.

Indirect access (or implicit communication)
The executable block works on a local copy of all global variables
which is obtained when the execution of the blocks starts and written
back when the execution ends. Hence, only the last written value is
transmitted to global memory. The points of time for communication
can either be the start and end of the task container or the start and
end of the runnable entity.
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Deterministic access
The executable block works on a local copy of all global variables which
is obtained when the execution of the block starts and written back at
a well defined point of time, e.g. the relative deadline. Again, only the
last valid value is written back.

Set

CP = { explicit, implicit-runnable, implicit-task, deterministic } .

Based on the described properties, we define the record type for a Runnable
Entitiy as follows:

3.2.8 Definition (Runnable Entity). Let r P S, let P be a processing unit,
and let b, w P N. Let I Ă S be a set of identifiers, O Ă S be a set of
identifiers, and let p P CP . The Tuple R = (r, p, I, O) is called a runnable
entity r processed on P with BCET b and WCET w using input signals I and
output signals O through communication pattern p.

Accordingly, we define the following record type:

RunnableEntity (

RunnableName : S,

CommPattern : CP
Input : P(S),

Ouput : P(S) ) .

The record type for a Software Task is defined as follows:

3.2.9 Definition (Software Task). Let t P S, let p P N, let a P AM, let q P B,
let (r)n

i=1 be a list of runnables and let d P N. The Tuple T = (t, p, a, q, r, d)
is called a software task t with priority p, activation pattern a, which
is preemptable if q = true and has the the runnables r and deadline d
assigned.

Accordingly, we define the following record type:

SoftwareTask (

TaskName : S,

Priority : N,
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Activation : AM,

Preemtable : B

Runnables : RunnableEntityl(˚),

Deadline : N ) .

If all runnables of a task implement the deterministic communication
pattern, we call this task a LET task.

Finally, software task need to be assigned to the processing units of
ECUs. This mapping also determines the CET bounds for the runnable
entities.

3.2.10 Definition (Software Mapping). A software mapping is a function
ξ : SoftwareTask Ñ ProcessingUnit assigning a task to a processing
unit.

The CET of a runnable entity depends on the the processing unit it
is processed on. For multicore platforms the allocation and scheduling
of runnables on other processing units potentially also has an impact
[72]. Since tasks might be shifted to different processing units over the
development cycles, we introduce CET Measurements allowing to model
best and worst case execution times based on software mappings. Note,
that the models developed in Chapter 4 and Chapter 5 only give upper
bounds if the CETs provided for the runnables are safe upper bounds.

3.2.11 Definition (CET Measurement). A CET measurement is a function
(SoftwareTask Ñ ProcessingUnit) Ñ (RunnableEntityˆNˆN) tak-
ing a software mapping and returning the BCET and WCET of each runnable.

The software task record type also allows to model black-box tasks,
if no runnables are assigned to it. Black box tasks are tasks where no
implementation details are known, e.g. because they are developed by a
supplier. In this case, analyses must work with the assumption, that the
whole time from activation to deadline is used to generate results.

Although the delay of a physical input at sensing or the inertia of
actuators are not subject to analysis here, they can nevertheless be modeled
with the help of software tasks. For example, a sensor producing a value
can be modeled with a runnable entity producing the signal which needs
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no time to be processed. The temporal properties of the sensed value can
be modeled in the activation model of the task. Accordingly, actuators
can be model as chained tasks with one runnable consuming the signal
for actuation. The time to react can be modeled in the execution time
of this runnable. Sensor and actuator tasks should therefore be assigned
to dedicated processing units to ensure that they do not interfere with
software tasks.

3.2.2 ECU Networks

To connect ECUs to the communication clusters of a CPS, a model for
the connecting networks is needed. Although only an approach for CAN-

FD is presented in this work (see Chapter 5), for generality and with a
view to future developments, we consider CAN, CAN-FD, FlexRay, Ether-
net, MOST, and LIN as possible types of fieldbuses. Therefore, set BT =
{ CAN, CAN-FD, FR, Eth, MOST, LIN } be the set of bus types. This selection
is motivated and explained in Chapter 1. The model for a fieldbus is a
collection of network channels of a certain bus type.

3.2.12 Definition (Fieldbus). Let n P S be an identifier, let t P BT , and let
C Ă N. The tuple (n, t, C) is called a fieldbus n of type t with channels C.

Accordingly, we define the following record type:

FieldBus (

BusName : S,

Type : BT ,

Channels : P(N)

) .

With the help of fieldbuses we can now connect ECUs to ECU networks
in our model. Directed graphs are used for the formal representation of a
network.

3.2.13 Definition (ECU Network). Let E be a set of electronic control units
and let N be a set of fieldbuses. The ECU Network formed N by and E
is a directed graph G = (E , A) with surjective edge labeling function
lA : A Ñ N having the following properties:
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An edge exists between two communicating ECUs.

@(w1, P1, U1), (w2, P2, U2) P E : w1 ‰ w2^ Ñ

@(n1, c1, s1, out), (n2, c2, s2, in) P P1 X P2 :

((w1, P1, U1), (w2, P2, U2)) P A

(3.2.14)

All connecting fieldbuses are available and edges are labeled accordingly.

@(w1, P1, U1), (w2, P2, U2) P E : w1 ‰ w2 Ñ

@(n1, c1, s1, d1), (n2, c2, s2, d2) P P1 X P2 :

D(n, t, C) P N : n = n1 ^ c1 P C^

lA (((w1, P1, U1), (w2, P2, U2))) = (n, t, C)

(3.2.15)

ECUs communicate using network packets. A network packet can
be subject to end-to-end encryption (E2EE) or secure onboard commu-
nication (SecOC). SecOC means, that data is sent with an additional au-
thentication added to messages to assure that messages are generated
by a specific sender and have not been altered. Encryption and protec-
tion of messages need additional processing for decryption and check-
ing authentication and therefore possibly impact the timing of mes-
sages. Furthermore, signals have different properties for triggering the
transmission of an encapsulating PDU. The possible transfer properties
are: TP = { always, never, on-change }. If a signal has transfer property
always, any writing access on the variable will trigger a transmission, if
the transfer property is set to be on-change, transmission is only initiated
if the value actually changed. No transmission is initiated if the property
is configured to be never.

3.2.16 Definition (Network Signal). Let s P S be an identifier, let l P N, and
let t P TP . The tuple (s, l, t) is called network signal s with transmission
property t.

Accordingly, we define the following record type:

NetworkSignal (

SignalName : S,

Length : N,

Transmission : TP ) .
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In the next step, signals a are put into network packets. Such a packet
can have one of the following trigger types: TT P = { always, never }. The
length of a network packet can be derived from the summed length of the
contained signals plus the overhead for the protocol overhead information.
The latter are depending on the chosen protocol and implementation.
Therefore, they this information is not stored individually for each packet.

3.2.17 Definition (Network Packet). Let p P S be an identifier, let a P AM,
let e P B, let s P B, let t P TT P, and let S Ă NetworkSignal be a set
of network signals. The tuple (p, a, e, s, t, S) is called network packet p
containing network signals S which triggers the transmission of data
according to t, has E2EE if e = true, and is subject to SecOC if p = true.

Accordingly, we define the following record type:

NetworkPacket (

PacketName : S,

SendingTimer : AM,

Length : N,

Encrypted : B,

Protected : B,

Triggers : TT P,

Signals : P(S) ) .

To allow arbitrary hierarchies of network packets, network packets
can be encapsulated in containers. Such a container network packet has
different so-called sending triggers. It can be send due to a threshold
for the filling-level being exceeded, due to a timeout, or due to direct
sending request. The contained packets are taken from buffers and the
collection semantics of the container specify which value is used for
transmission. This can either be the last valid value or the first value
after last transmission. Therefore, set TT C = { first, none } the set of
possible trigger reasons due to contained network packets and set CS =
{ last-is-best, queued } the possible collection semantics.

3.2.18 Definition (Container Network Packet). Let c P S be an identifier,
let t P N, let t P N, let t P TT C, let s P CS , and let C Ă NetworkPacketY
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ContainerNetworkPacket, The tuple (c, t, s, C) is called container network
packet c with contained trigger type t, collection semantics s and containees
C.

Accordingly, we define the following record type:

ContainerNetworkPacket (

ContainerName : S,

TransmissionTrigger : TT C

ColletionSemantics : CS
Containees : PDUs )

with PDUs = P(NetworkPacketY ContainerNetworkPacket).

3.2.19 Definition (Network Resource). Let r P S, let P Ă NetworkPacketY

ContainerNetworkPacket, The Tuple R = (r, P) is called a network re-
source r

Accordingly, we define the following record type:

NetworkResource (

ResName : S,

Provided : PDUs )

with PDUs = P(NetworkPacketY ContainerNetworkPacket).

In the following, signals : A Ñ P(NetworkSignal) with

A = NetworkResourceY NetworkPacketY ContainerNetworkPacket

denotes the function collecting all network signals assigned to a network
resource. It is recursively defined as

signals(a) =



⋃
pPP signals(p)
if a = (r, P) P NetworkResource⋃

pPC signals(p)
if a = (c, t, s, C) P ContainerNetworkPacket

S
if a = (p, a, e, s, t, S) P NetworkPacket

(3.2.20)
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Network resources need additional information depending on the
protocol, e.g. for CAN-FD an identifier to derive the priority for is needed.
Formally, we assume that a function exists which returns all timing relevant
attributes for a network resource in the form of a set of key-value-pairs. An
implementation based on a relational database is presented in the section
Section 3.3.

The mapping of network resources to network channels is defined
through the outgoing communication ports of the ECUs. However, two
things still need to be brought together: software tasks need to control
the network controller for the transmission and reception of network
resources, and the translation of software signals to network signals and
vice versa. The mapping of software signals and network signals is handled
by consistent naming, i.e. we assume that a software signal l and network
signal s contain the same information if they have the same name. In the
real system, the transition between a software signal and network signal is
happening when data from the global memory of the ECU is copied into
the buffers used in the communication stacks for bus communication. The
buffer operations are performed by the so-called Communication Tasks.

3.2.21 Definition (Communication Task Mapping). A communication task
mapping ψ : CommunicationPortÑ SoftwareTask is a function mapping
communication ports to software tasks.

Finally, the formal model is completed with the definition of the Com-
munication Cluster.

3.2.22 Definition (Communication Cluster). Let G = (E , A, lA) be a ECU

network. Let R be a set of network resources and ψ be a communication
task mapping. Let T be a set of tasks and ξ be a software mapping.

The tuple Γ = (G,R, T , ξ, ψ) is called Communication Cluster. Γ is
well-formed if all identifiers except of network signals are unique and

Γ is complete with regards to network resources:

@(r, p) P R : D(w, P, U) P E : D(n, c, r1, d) P P : r = r1 ^ d = out (3.2.23)

@(w, P, U) P E : @(n, c, r, d) P P : D(r1, p) P E : r = r1 (3.2.24)
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Γ is complete with regards to communication task mapping:

domain(ψ) = R^ codomain(ψ) = T (3.2.25)

Γ is complete with regards to signal mappings:

@(w, P, U) P E : @(n, c, r, d) P P : d = outñ

@res P R|R ÞÑName(R)=r : @sig P signals(res) :

D(e, p, I, O) P set(SoftwareTask.Runnables(ψ(n, c, r, d))) :

sig P O

(3.2.26)

@(w, P, U) P E : @(n, c, r, d) P P : d = inñ

@res P R|R ÞÑName(R)=r : @sig P signals(res) :

D(e, p, I, O) P set(SoftwareTask.Runnables(ψ(n, c, r, d))) :

sig P I

(3.2.27)

3.2.3 Cause-effect Chains

Recalling our main objective, we want to use a set of cause-effect chains to
represent the data flows which are possible to occur for a system function.
Different ECUs and networks are relevant when it comes to implement
a system function as depicted in Figure 3.3. Multiple cause-effect chains
describe the run-time behavior of a system function. In this section the
formal encoding of cause-effect chains in our model is presented, however,
first we discuss which mathematical structure fits best for this purpose.

With the system model defined above, this is achieved in two steps.
Firstly we use directed graphs to describe the data dependencies between
the different parts of the chain. In a second step, these graphs are flattened
to cause effect chains which are are a sequences of of runnable entities,
each consuming and producing a software signal. If the a cause-effect
chain spans over multiple ECUs we call it Distributed Cause-effect Chain.

3.2.28 Definition (Data Dependency Graph). Let R be a set of runnables
and let S Ă S be a set of identifiers. A Data Dependency Graph over R and
S is a directed graph G = (V, A) with label function lV : V Ñ R and
lA : A Ñ S .

The cause-effect chains belonging to a system function are finite walks
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Figure 3.3. End-to end latency of an cause-effect chain (Source: [131])

in the data dependency graph where each visited node is labeled with a
runnable mapped to one ECU. However, the analysis of end-to-end latencies
for cause-effect chains relies on flat sequences. The problem of data flows
which split and join add an additional dimension of complexity. Since
the set of walks is possibly infinite if a cycle exists, an engineer with
knowledge about the implementation has to consulted on how often a
node can be visited. The reason why we consider the data dependency
graph in a first step is twofold: (1) it is a more convenient way to specify
chains from a functional point of view and (2) a set of chains does lead to
a unique graph.

Consider graphs depicted in Figure 3.4b and Figure 3.4a, to obtain a la-
tency estimation for the functions described the following flat chains need
to be analyzed: { (R1, R2, R4, R5), (R1, R3, R4, R5) }. Therefore, from a non-
functional timing perspective, the graphs make no difference, functionally
however the situation might lead to different results.

Cause-effect chains are defined as follows:

3.2.29 Definition (Cause-effect Chain). Let Γ = ((E , A, lA),R, T , ξ, ψ) be a
well-formed communication cluster. A Cause-effect Chain in Γ is a sequence
of tuples (c, R, p)n

i=1 where ci, pi P S and Ri P RunnableEntites for all
i P { 1, . . . , n } and the following holds:

@i P { 1, . . . , n´ 1 } : pi = si+1 (3.2.30)
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Figure 3.4. Exemplary Graphs

@i P { 1, . . . , n } : ci P RunnableEntity.Input(ri) (3.2.31)

@i P { 1, . . . , n } : pi P RunnableEntity.Output(ri) (3.2.32)

D(w, P, U) P E : @i P { 0, . . . , n } : Du P U : DT P T :

ξ(T) = U ^ Ri P Task.Runnables(T)
(3.2.33)

In general, not all runnables of a walk in a data dependency graph
need to be mapped to the same ECU. If this is not the case, the cause-effect
chain is distributed over multiple ECUs. The sub-chains on the different
ECUs are connected via a network signal.

3.2.34 Definition (Distributed Cause-effect Chain).
Let Γ = ((E , A, lA),R, T , ξ, ψ) be a well-formed communication cluster. A
Distributed Cause-effect Chain in Γ is a sequence (C)n

i=1 where Ci a cause-
effect chain for all i P { 1, . . . , n }. We use double subscript to denote the
segments of the chain, more precisely for more convenient notation we
assume the form:(

((c1,1, R1,1, p1,1), . . . , (c1,m1 , R1,m1 , p1,m1)),
...

((cn,1, Rn,1, pn,1), . . . , (cn,mn , Rn,mn , pn,mn))
)

Then, following must hold for all i P { 1, . . . , n }:

@i P { 1, . . . , n´ 1 } : pi,mi = ci+1,1 (3.2.35)
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@i P { 1, . . . , n´ 1 } : D(w1, P1, U1), (w2, P1, U2) P E :

(D(b, c, r, d) P P1 : d = out^ (b, c, r, in) P P2^

D(s, l, t) P signals : s = (pmi )i)^

(Du1 P U1 : Dt1 P T : ξ(t1) = u1 ^ Ri,mi P Task.Runnables(T1))^

(Du2 P U2 : Dt2 P T : ξ(t2) = u2 ^ Ri,1 P Task.Runnables(T2))

(3.2.36)

In order to work with distributed cause-effect chains conveniently in
the following let rxPort(s) denote the sending communication port of a
signal in the course of a distributed cause-effect chain and let txPort(s)
denote the receiving communication port of a signal in the course of a
distributed cause-effect chain.

Latency and Jitter

For the definition of end-to-end latencies, instances of the modeled objects
need to be considered. More precisely, we consider task instances (or jobs)
repeatedly spawned and processed. For each task instance all runnable
entities of that task are processed. We call this an instance of the runnable,
formally τR [i] denotes the processing of runnable R P R in the ith instance
of its task container. For each pair of runnable instance and signal we
introduce two points of time for each input signal framing the read interval
and two points of time for each output signal framing the write interval.

3.2.37 Definition (Read Interval). Let R P RunnableEntity, i P N and
S P RunnableEntity.Input(R), Read

(
τR [i] , S

)
denotes the first point of

time S is possibly read by τR
i and Read

(
τR [i] , S

)
denotes the last point of

time S is possibly read by τR
i .

3.2.38 Definition (Write Interval). Let R P RunnableEntity, i P N and
S P RunnableEntity.Output(R), Write

(
τR [i] , S

)
denotes the first point of

time S is possibly written by τR
i and Write

(
τR [i] , S

)
denotes the last point

of time S is possibly written by τR
i .

For the transmission of information in a chain distributed over multiple
ECUs, communication intervals additionally need to be considered. They
are defined for a combination of communication port and network signal.
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3.2.39 Definition (Communication Interval). Let
P1, P2 P CommunicationPort and let S P NetworkSignal. Trans (P1, S, P2)
denotes the minimum amount of time required to transfer a change in
signal S from P1 to P2 and Trans (P1, S, P2) denotes the maximum amount
of time required to transfer a change in signal S from P1 to P2. Both times
are assumed to include the potential drift between the clocks of the ECUs.

Based on read and write intervals we define two different end-to-end
latency semantics: data age denotes the interval between first change and
last reaction, response time denotes the interval between first change and
first reaction. The data age and the response time of the a cause-effect
chain on task-level are depicted in Figure 3.5.

Due to offsets, additional delays can occur during the startup phase,
that is why we only consider jobs start at index 1. This has an additional
advantage for the definition of the response time of a cause-effect chain
which would be more complicated if we started at index 0.

3.2.40 Definition (Data age of a cause-effect chain). The data age of a
cause-effect chain (c, R, p)n

i=1 is the length of the time span between any
change c1 and the last associated reaction observed in pn, more precisely,
for a sequence (j1, . . . , jn) for which ji ą 0

Read
(

τRi+1 [ji+1] , ci+1

)
ď Write

(
τRi [ji + 1] , pi

)
@i P { 1, . . . , n´ 1 }

(3.2.41)

Read
(

τRi+1 [ji+1] , ci+1

)
ě Write

(
τRi [ji] , pi

)
@i P { 1, . . . , n´ 1 }

(3.2.42)

the data age is

Write
(

τRn [jn] , pn

)
´Read

(
τR1 [j1] , c1

)
.

The maximum data age is the highest possible difference in time which
can be obtained with any sequence fulfilling Equation 3.2.41 and Equa-
tion 3.2.42.

3.2.43 Definition (Response time a cause-effect chain). The response time
of a cause-effect chain (c, R, p)n

i=1 is the length of the time span between
any change c1 and the first associated reaction observed in pn, more
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precisely, for a sequence (j1, . . . , jn) for which ji ą 0 and

Write
(

τRi [ji] , pi

)
ě Read

(
τRi+1 [ji+1 ´ 1] , ci+1

)
@i P { 1, . . . , n´ 1 }

(3.2.44)

Write
(

τRi [ji] , pi

)
ď Read

(
τRi+1 [ji+1] , ci+1

)
@i P { 1, . . . , n´ 1 }

(3.2.45)

the response time is

Write
(

τRn [jn] , pn

)
´Read

(
τR1 [j1] , c1

)
.

The maximum response time is the highest possible difference in time
which can be obtained with any sequence fulfilling Equation 3.2.44 and
Equation 3.2.45.

For the end-to-end latencies of distributed cause-effect chains, addi-
tionally the time to transfer network signals needs to be considered. We
assume that the clocks on one ECU are sufficiently synchronized in the
sense that a fixed and low bound on the clock drift between the processing
resources can be given. For distributed chains, this is not necessarily the
case. The clocks of two ECUs might drift. However, this is included in
the definition of the communication interval of a signal. Therefore, the
end-to-end latencies of distributed cause-effect chains are defined as in
Definition 3.2.49 and Definition 3.2.46.

3.2.46 Definition (Data age of a distributed cause-effect chain). Let Γ =
((E , A, lA),R, T , ξ, ψ) be a well-formed communication cluster and (C)n

i=1
be a distributed cause-effect chain in Γ. Let (S)n´1

i=1 be the sequence of
network signals exchanges form i to i + 1 in the course of the distributed
cause-effect chain.

The data age of the distributed cause-effect chain is the length of
the time span between any change c1,1 and the last associated reaction
observed in pn,mn , more precisely, for a sequence (j1,1, . . . , j1,m1 , . . . , jn,1, . . .
, jn,mn) for which Equation 3.2.41 and Equation 3.2.42 hold for all cause-
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effect chains and furthermore for all i P { 1, . . . , n´ 1 }

Read
(

τRi+1,1 [ji+1,1] , ci+1,1

)
ď

Write
(

τRi,mi
[
ji,mi + 1

]
, pi,mi

)
+ Trans (rxPort(Si), Si, txPort(Si))

(3.2.47)

Read
(

τRi+1,1 [ji+1,1] , ci+1,1

)
ě

Write
(

τRi,mi
[
ji,mi

]
, pi,mi

)
+ Trans (rxPort(Si), Si, txPort(Si))

(3.2.48)

the data age is

Write
(

τRn,mn [jn,mn ] , pn,mn

)
´Read

(
τR1,1 [j1,1] , c1,1

)
.

The maximum data age is highest possible difference in time which can
be obtained with any sequence fulfilling the requirements.

3.2.49 Definition (Response time of a distributed cause-effect chain). Let
Γ = ((E , A, lA),R, T , ξ, ψ) be a well-formed communication cluster and
(C)n

i=1 be a distributed cause-effect chain in Γ. Let (S)n´1
i=1 be the sequence

of network signals exchanges form i to i + 1 in the course of the distributed
cause-effect chain.

The response time of the distributed cause-effect chain is the length of
the time span between any change c1,1 and the first associated reaction
observed in pn,mn , more precisely, for a sequence (j1,1, . . . , j1,m1 , . . . , jn,1, . . .
, jn,mn) for which Equation 3.2.44 and Equation 3.2.45 hold for all cause-
effect chains and furthermore for all i P { 1, . . . , n´ 1 }

Write
(

τRi,mi
[
ji,mi

]
, pi,mi

)
+ Trans (rxPort(Si), Si, txPort(Si)) ě

Read
(

τRi+1,1 [ji+1,1 ´ 1] , ci+1,1

) (3.2.50)

Write
(

τRi,mi
[
ji,mi

]
, pi,mi

)
+ Trans (rxPort(Si), Si, txPort(Si)) ď

Read
(

τRi+1,1 [ji+1,1] , ci+1,1

) (3.2.51)

the response time is

Write
(

τRn,mn [jn,mn ] , pn,mn

)
´Read

(
τR1,1 [j1,1] , c1,1

)
.
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Task A
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Task C

t+0 t+10 t+20

Figure 3.5. Response Time (green) and Data Age (orange) of the Chain
Task A Ñ Task B Ñ Task C Ñ Task A. Processing of task instances is in darker
blue.From activation to start and from end to deadline is in lighter blue.

The maximum response time is highest possible difference in time which
can be obtained with any sequence fulfilling the requirements.

Finally, the end-to-end latency for any system function with a given
data dependency graph is obtained by analyzing all cause-effect chains
regarding the desired end-to-end latency semantic and determine the
maximum of all latencies.

3.2.4 Example

As mentioned in Section 1.3 one of the most important criteria for our
model is the fitness for practical use. As also noted, the CPCM of au-
tomotive powertrains provides a telling example for this. Therefore, in
Example 3.2.52 the topology of an exemplary powertrain communication
cluster is encoded. In the following chapters, examples of industrial scale
task-sets and network communication designs are mentioned. Showing
an encoding would go beyond the size of a good example, however when
comparing the attributes needed to create the CSP model and the attributes
specified above, the reader will see that all necessary information is avail-
able.

3.2.52 Example (Automotive CPS - Pt Domain). Consider the communication
cluster depicted in Figure 3.6. To model the cluster, the following ECUs are
needed:

CPC = ECU(PtGateway, CPCPC, PUCPC),
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INV1 = ECU(Inverter1, CPInv1, PUInv1),

INV2 = ECU(Inverter2, CPInv2, PUInv2),

TCM = ECU(Transmission, CPTCM, PUTCM),

ECM = ECU(Engine, CPECM, PUECM)

With CP‹ being the communication ports of each ECU and the following
sets of processing units:

PUCPC = {ProcessingUnit(1, SPP), ProcessingUnit(2, SPP),

ProcessingUnit(3, SPP), ProcessingUnit(4, SPP)}
PUInv1 = {ProcessingUnit(1, SPP), ProcessingUnit(2, SPP)}
PUInv2 = {ProcessingUnit(1, SPP), ProcessingUnit(2, SPP)}
PUTCM = {ProcessingUnit(1, SPP), ProcessingUnit(2, SPP),

ProcessingUnit(3, SPP), ProcessingUnit(4, SPP)}
PUECM = {ProcessingUnit(1, SPP), ProcessingUnit(2, SPP),

ProcessingUnit(3, SPP), ProcessingUnit(4, SPP)}

The ECU network G = (E ,A) with

E = (CPC, INV1, INV2, TCM, ECM)

V = ((CPC, ECM), (CPC, TCM), (CPC, INV1), (CPC, INV2))
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Figure 3.6. Network Topology of the powertrain (exemplary)

3.3 Data Collection and Storage

The data needed to model the system’s temporal behavior as described
above is usually not directly available, especially when it comes to create a
model for an entire CPS. Communication design and software architecture
are complex tasks and the development is distributed over several teams.
Therefore, it is likely that data for ECUs and network comes from different
sources. A single perspective is however not sufficient to obtain precise
estimations of the temporal behavior. Consequently, the data needs to be
aggregated to a consistent model even if it is divided again for analysis.
The challenges of integration are similar to the challenges of the integration
of the real system. At the borders of responsibilities, the integrity of the
data has to be checked. Tool support with a sophisticated storage solution
has become indispensable with today’s ever shorter development cycles.
The challenges of integrity checks and consistency are not discussed here,
however, Figure 3.7 shows a entity-relationship model for a database
allowing to store all information needed for the formal model presented
in the previous section.
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The records types can almost directly be translated to the according
relationships. Besides, the database model has the following features:

Software Release The software tasks of an ECU are weak entities, connected
to both, the ECU and a relationship for software releases. Thus, software
artifacts can only be added if an ECU and software release exist and a
new runnable is added for each release. Although this looks like a huge
amount of data at first glance, the overhead compared to a mapping of
un-versioned software artifacts to releases is relatively low since the
amount of attributes of the software artifacts is low. On the upside, a
potentially complicated versioning is avoided.

NCD Version Analogously to ECUs and their software, networks and
communication artifacts are brought together through network com-
munication design (NCD) versions.

Referencing Chains Since runnables with their software signals and net-
work signals are weak entities connected to software and NCD releases
respectively, referencing them through the hierarchy of identifiers
means a lot of maintenance effort. Since these references are needed in
cause-effect chains, they are implemented referencing only the artifact’s
identifier instead. This is indicated by the bright highlighting of the
respective relationships in Figure 3.7.

Timing Relevant Attributes To specialize communication artifacts regarding
bus-dependent attributes, the notion of timing relevant attributes is
added. These relationships are not shown in Figure 3.7 but can be
found in Appendix 6.6. They are tuples containing the key of the
communication artifact, an additional key for the attribute name and a
field for the value of the attribute.

A relational model described by create-scripts for the relationships
depicted in Figure 3.7 can be found in Appendix 6.6.
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3.4 Summary and Conclusion

In this chapter we discussed a system model which allows to describe
the temporal behavior of the cyber-part of automotive CPS. It is close to
the actual implementation of automotive systems but also allows to omit
details where information might not be available. Attention is payed to
the iterative procedures in automotive development, possibly running at
different speeds for different parts of the system. It is compatible with but
not tied to the AUTOSAR methodology.
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Chapter 4

Latencies of Cause-effect Chains

In the previous chapter, a system model to describe instances of end-to-end
latency analyses was introduced. The component of the model which is
the subject of the analysis are cause-effect chains. They consist of sequences
of runnables which are assigned to tasks for processing and the activation
pattern of the task determines how frequently a runnable is processed. The
idea of the task-level constraint model for end-to-end timing analysis is to
enumerate all possible relative offsets between the task instances of the
chain with all possible points of time for data accesses. Figure 4.1 shows
the possible relative offsets between for the chain Task AÑTask BÑTask C.

Since support for different levels of details for the task is important
during the development process we start with a task-level model in Sec-
tion 4.2. Subsequently, in Section 4.3, we add detailed information about
runnables of the tasks where it is possible and useful in terms of precision
gained for the analysis. Afterwards, the correctness of the model, two
optimizations, and the solving process are described. Finally, the results
of different experiments to show scalability and to compare precision are
presented. We start with an overview of related work provided in the
following section.

4.1 Related work

End-to-end timing analysis has a long history and accordingly, a lot of work
has been presented in this field. Besides very abstract models like Petri
nets, which were initially presented in [100] to model chemical processes,
and timed automatons presented in 1991 [3], work comes especially from
the area of scheduling theories. Over time, a plethora of work around end-
to-end latency analyses for different kinds of task sets have been presented.
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Task A

Task B

Task C

t+0 t+10 t+20

Figure 4.1. Example of a Task-level Chain with possible Instance-level Flows for
Chain Task AÑTask BÑTask C

Mostly, presented approaches are specific to one kind of task activation
or chain. An overview of recent work is shown in Table 4.1. Note, that
only related work is listed which aims to analyze already implemented
systems. Approaches to check end-to-end constraints while generating
systems based on specifications, like e.g. [48, 47, 102] are not included.

Table 4.1. Estimation Approaches in Comparison

Task Activation

Approach
Supports Periodic Offsets Sporadic Chained Mixed

Chains
Multi-
core

Becker et al. (2016) [19, 20] 3 3 7 7 7 3

Schlatow et al. (2016) [111] 7 7 7 3 7 3

Girault et al. (2018) [57] 7 7 7 3 7 7

Martinez et al. (2018) [92] 3 3 7 7 7 3

Dürr et al. (2019) [41] 3 3 3 7 7 3

Köhler et al. (2020) 1 3 3 3 3 7 3

This approach (2018) [49, 50] 3 3 3 3 3 3

Regarding the underlying approach, related work listed in Table 4.1 can
be divided into to three categories: transition, compositional, and holistic
analyses. The approach followed here belongs to the third category. The
difference between transition and compositional, and holistic approaches
is that the former divide the problem into smaller sub-problems while
the latter look at the whole problem instance at once. The difference

1Work currently under review.
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between compositional and transition approaches is a slightly different
way of partitioning the problem. For compositional approaches, the to
sub-problems are translated to an abstract processing model similar to
the model of real-time calculus presented in Chapter 3. In transitional
approaches the time for the transition between the different sections of the
chain is summed with the time needed for the section itself. A variation
of this is presented by Becker [20, 19] and Dürr [41]. Martinez et al. [92]
follow a related approach but are focused on LET chains only. They bound
the time between to task instances based on their periods and offsets.
Schlatow et al. follow a purely compositional approach in [111]. Girault et
al. [57] follow a different approach by using a busy-window analysis to
bound the time a subsequent part of the chain can be delayed.

Another holistic approach to estimating end-to-end latencies is based
on mixed integer linear programming (MILP) and was presented in [25,
83]. However, the scheduling mechanism considered differs from static
priority preemptive scheduling as it assigns different, fixed time intervals
for each task instance within one hyper period of the processing resource.

Besides the work from the scientific community, a range of industrial
tools for the analysis of heterogeneous multiprocessor systems exists [107,
7, 130]. Some of them can also be used to perform timing analysis on
multi-rate cause effect chains.

4.2 Task-level Model

The task-level encoding is based on different points of time for a finite
set of task instances. To obtain the model, first of all a cause-effect chain
record is translated into a set of parameters for the constraint model.
Subsequently, the variables describing the different points of time are
constrained based on these values. Finally, the situation modeling the
worst-case response time is searched within all possible valuations.

The parameters of each task in the constraint model are listed in
Table 4.2. How these parameters can be obtained from for a cause-effect
chain in a communication cluster is described in Section 4.5.2.
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Table 4.2. Task Variables with Domain

Variable Description Domain

period Period of a periodically activated task N

offset Offset of a periodically activated task N

pred Pointer to the predecessor of a
chained task

T

dt_min Minimum temporal distance of two
consecutive activations of a sporadic
task (bounded or interrupt)

N

dt_max Maximum temporal distance of two
consecutive activations of a sporadic
task with bounded occurrence

N

prio The priority of the task for fixed pri-
ority scheduling

N

core The index of the processing unit on
which the task is scheduled (we as-
sume an enumeration.)

N

preemptable A flag to define whether a task can be
interrupted

{ t, f }

deadline The deadline of the task N

4.2.1 Task Instance Encoding

For encoding tasks and task instances are numbered consecutively. Let T
be the set of indices for T and let mi hold the number of instances which
need to be considered for a safe estimation for all i P T. How the values
for mi are determined is described in Section 4.5.2. Let Ji = { 1, . . . , mi }
for all i P T. In the constraint model, each task instance j P { 1, . . . , mi } of
task i P T is represented by three points of time: activation αi,j, start σi,j,
and end εi,j. Furthermore, a task instance has a total time it was paused
from processing which is modeled by the variable ιi,j. The variables of a
task are depicted in Figure 4.2. Task instances are ordered by activation
time, this means,

j ă k ñ αi,j ď αi,k @i P T j, k P Ji . (4.2.1)
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Task A

Task B

α σ
ι

ε

Figure 4.2. Variables of a task instance

The constraints for the variables of a task instance are given in Con-
straint 4.2.2 to Constraint 4.2.14. They model the following behavior:

Task Instance Activation (Constraint (4.2.2), Constraint (4.2.3), Constraint (4.2.4),
Constraint (4.2.5), Constraint (4.2.6), Constraint (4.2.7))
Instances of tasks are activated according to the activation model of
the task.

Task Instance Scheduling (Constraints (4.2.10),(4.2.11) and (4.2.12))
A task instance activated is delayed if a task instance of another task is
currently being processed which either has a higher priority or can not
be preempted. If a task instance is not further delayed, it is started. If
a task instance is started while a instance of another task with lower
priority is being processed, the latter gets paused.

Task Instance WCRT (Constraints (4.2.13) and (4.2.14))
A task instance is completely processed after its paused time plus BCET

and before its paused time plus WCET.

The task activation of a task i depends on its activation model. Task
activated by a periodic activation model are activated at multiples of their
period starting at the offset:

αi,j = offset(i) + j ¨ period(i) @j P Ji . (4.2.2)

In the case of chained activation, an instance of task i is activated every
time an instance of its predecessor pred(i) terminates. This is,

αi,j = εpred(i),j @j P Ji . (4.2.3)

For a task i P T which is activated non-periodically but according to
a bounded activation model, the time between two activations lies in the
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interval [dt_min(i), dt_max(i)]. Thus,

αi,1 ě 0 (4.2.4)

αi,1 ď dt_max(i) (4.2.5)

αi,j ě αi,j´1 + dt_min(i) @j P Ji (4.2.6)

αi,j ď αi,j´1 + dt_max(i) @j P Ji . (4.2.7)

The set points of time at which all other task instance are completely
processed which have been activated before jth instance of task i was
started and have a higher priority is:

DHP
i,j =

{
ε`,k

∣∣ σ`,k ď σi,j ^ core(i) = core(`)^

prio(i) ă prio(`)
}

.
(4.2.8)

The set points of time at which all other task instance are completely
processed which have been started before jth instance of task i was acti-
vated and cannot be preempted is:

DNP
i,j =

{
ε`,k

∣∣ σ`,k ă αi,j ^ core(i) = core(`)^

preemptable(`) = false
}

.
(4.2.9)

A task instance is started when it is activated or after other delaying
task instances got completely processed if such instances exist:

σi,j = max
(

DHP
i,j YDNP

i,j Y { αi,j }
)

@i P T, j P Ji . (4.2.10)

To determine the time a task instance was paused due to other task
instances with higher priority being processed first, we define a function
mapping all i, ` P T, j P Ji and k P J` to 1 if instance j of i is paused by
instance k of ` and 0 otherwise:

pausesHP(i, j, `, k) =


1 if σ`,k ą σi,j ^ ε`,k ă εi,j^

core(i) = core(`)^
prio(i) ă prio(`)

0 otherwise

(4.2.11)

Now, if an task instance caused a pause of another task instance, the
former instance is certainly processed completely before the processing of
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the latter is resumed. Therefore, the interrupted instance is paused for the
whole core execution time of the preempting instance. For all i P T and
j P Ji we thus define the following constraint:

ιi,j = ∑
`PT z{i}

(
m`

∑
k=1

pausesHP(i, j, `, k) ¨ (ε`,k ´ σ`,k ´ ι`,k)

)
. (4.2.12)

Finally, the processing of a task instance is completed between the BCET

and WCET of the task plus the time it was paused. This is, we can give an
estimation for when a task instance may terminate and therefore bound
point of time for termination by the following two constraints:

εi,j ě σi,j + bcet(i) + ιi,j @i P T, j P Ji (4.2.13)

εi,j ď αi,j + deadline(i) @i P T, j P Ji. (4.2.14)

4.2.2 Chain Encoding

Finally, we use the established variables of the constraint model to im-
plement the constraints and estimate the latency semantics described in
Definition 3.2.43 and Definition 3.2.40. The model parameter for the chain
subject to the end-to-end latency analysis is a sequence of task indices
(p)len

i=1 where len P N is the length of the chain. To encode the chain on
instance level two additional values are added to our model: ni and xi for
all i P { 1, . . . , len }. The xi array contains the point of time at which data
is ready for the next task in the chain in the case of response times and the
point of time to which data is not overwritten in the case of data age. The
ni array contains the index of the instance of task pi which participated
in the worst-case chain instance for all i P { 1, . . . , len }. The constraints
on x and n depend on the latency semantic and on the communication
pattern of the tasks in the chain. The different constraints are listed in
Table 4.3. Note, that implicit communication on runnable-level is treated
like explicit communication as this is an over-estimation for the read and
write intervals.

The constraints for explicit communication and response time are:

n1 P Jp1 (4.2.15)

nk = min
(
{ j | j P Jpk ^ σpk ,j ě xk´1 }

)
@k P { 2, . . . , len } (4.2.16)
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Table 4.3. Constraints for Latency Semantics and Communication Pattern on
Task-level

Explicit Implicit Deterministic

Response Time 4.2.15 - 4.2.18 4.2.15, 4.2.16, 4.2.19 4.2.15, 4.2.20, 4.2.21
Data Age 4.2.22 - 4.2.25 4.2.22, 4.2.23, 4.2.26 4.2.22, 4.2.27, 4.2.28

xk ě σpk ,nk @k P { 1, . . . , len } (4.2.17)

xk ď εpk ,nk @k P { 1, . . . , len } (4.2.18)

The constraints for implicit communication and response time are
Constraint 4.2.15, Constraint 4.2.16 and:

xk = εpk ,nk @k P { 1, . . . , len } (4.2.19)

The constraints for deterministic communication and response time
are Constraint 4.2.15 and:

nk = min
(
{ j | j P Jpk ^ αpk ,j ě xk´1 }

)
@k P { 2, . . . , len } (4.2.20)

xk = αpk ,nk + deadline(i) @k P { 1, . . . , len } (4.2.21)

The constraints for explicit communication and data age are:

n1 P Jp1 (4.2.22)

nk = max
(
{ j | j P Jpk ^ σpk ,j ă xk´1 }

)
@k P { 2, . . . , len } (4.2.23)

xk ě σpk ,(nk+1) @k P { 1, . . . , len } (4.2.24)

xk ď εpk ,(nk+1) @k P { 1, . . . , len } (4.2.25)

The constraints for implicit communication and data age are Con-
straint 4.2.15, Constraint 4.2.16 and:

xk = εpk ,(nk+1) @k P { 1, . . . , len } (4.2.26)

The constraints for deterministic communication and data age are
Constraint 4.2.15 and:

nk = max
(
{ j | j P Jpk ^ αpk ,j ă xk´1 }

)
@k P { 2, . . . , len } (4.2.27)

xk = αpk ,(nk+1) + deadline(pi) @k P { 1, . . . , len } (4.2.28)
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The constraints on the x array show that in the case of implicit and
explicit communication, precision can be gained if more details about
the actual run time behavior of the tasks is added. Hence, in the next
section a runnable-level modeling for the analysis of end-to-end latencies
in software task chains is presented.

4.3 Runnable-level Model

In the previous section, the basic idea of the encoding of task and chain
instances was presented. To add more details about the actual behavior of
tasks at run time, we study their insides. Information about the runnable
entities allow for more precise modeling. However, since the number of
runnable entities assigned to a task possibly lies in the range of multiple
hundreds, generating a quadratic amount of constraints for each runnable
entity of each task instance is beyond scalability of today’s constraint
programming (CP) solvers. Strategies to retain precision where needed and
being coarse where it has no impact are discussed in Section 4.6.

To formulate the additional constraints necessary for runnable-level
modeling, let rnbls(i) denote the set of runnable entities for task i P T.
Each runnable entity has four input parameter for the model: a BCET, a
WCET, its sequence number, and a flag to determine whether processing of
the runnable can be interrupted by the scheduler. Two runnables of the
same task cannot have the same sequence number, formally we therefore
require

ra ‰ rb ñ nr(ra) ‰ nr(rb) @i P T, ra, rb P rnbls(i) . (4.3.1)

4.3.1 Task Instance Encoding

Additional variables are added to the model for each runnable entity of
each task instance. The variable σR

i,j,r holds the point of time the processing

of a runnable entity r in the jth instance of task i started, εR
i,j,r the point

of time the processing finished. Furthermore, ιR
i,j,r holds the time span

the processing of r was paused. We use the same symbols as for tasks,
therefore task variables get a superscript T for better differentiation, e.g.
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Table 4.4. Runnable entity variables with domain

Variable Description Domain

bcet The BCET of a runnable entity N

wcet The WCET of a runnable entity N

nr The sequence number of the
runnable entity

N

preemptable A flag to define whether a
runnable entity can be interrupted

{ t, f }

Task A

Task B

αT σT εTσR εRιR

Figure 4.3. Variables of task instances and runnable instances

σT
i,j from now on denotes the point of time the processing of jth instance of

of task i started. Figure 4.3 depicts the variables of a runnable entity in the
context of a task instance.

With the newly introduced variables, additionally to the behavior
modeled with then constraints in Section 4.2, the following behavior is
modeled:

Runnable Entities (Constraint (4.3.2)) If a task is scheduled for processing,
an instance of the first runnable of the task is started. The runnable
entities of a task are activated in sequence, each runnable after its
predecessor was completely processed.

Detailed Scheduling (Constraint (4.3.5)) When a task instance gets activated,
it may pause the processing of a runnable currently being processed
runnable if preferred for execution by the scheduling policy and both
are assigned to the same processing unit. The processing time of all
runnable instance of the preempting task is added to the paused time
of the preempted runnable. Analogously to the task-level model, the
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interrupting task instance is certainly processed completely before
processing of any paused instance is resumed.

Runnable WCRT (Constraints (4.3.6), (4.3.7)) The time between start and end
of processing a runnable entity is at least its paused time plus it BCET

and at most its paused time plus its WCET. The results of a runnable
are produced between its start and end and written back according to
the communication pattern of the runnable.

With the start of the processing of a task instance, the first runnable
of the task is processed. Each following runnable is processed after the
processing of its predecessors finished. Therefore,

σR
i,j,r = max({ σT

i,j }Y { εR
i,j,o | o P rnbls(i)^ nr(o) ă nr(r) }) (4.3.2)

must hold for all i P T and j P Ji and r P rnbls(i).
Analogously to the task-level model, to calculate the total paused time,

ιR, we introduce a function to determine whether the processing of a
runnable entity causes a pause of the processing of another runnable
entity. On runnable-level, pausesHP is defined as

pausesHP
i,j,r,`,k,o =


1 if σT

`,k,r ě σT
i,j ^ εT

`,k ď εT
i,j ^ σR

`,k,o ą σR
i,j,r^

core(i) = core(`)^ prio(i) ă prio(`)^
preemptable(r) = t

0 otherwise

(4.3.3)

for all i, ` P T, j P Ji, k P J`, r P rnbls(i), and o P rnbls(`). More precisely,
pausesHP

i,j,r,`,k,o maps to 1 if the runnable o of the kth instance of task ` causes

a pause of the runnable r of the jth instance of task i. Additionally, an
auxiliary variable, γR

i,j,r denoting the actual CET of r is introduced:

γR
i,j,r = εR

i,j,r ´ σR
i,j,r ´ ιR

i,jr @i, ` P T, j P Ji, r P rnbls(i). (4.3.4)

The pause time ιR then is the sum of the CETs of all pausing runnables:

ιR
i,j,r = ∑

`PT z{ i }

m`

∑
k=1

∑
oPrnbls(`)

iHP
i,j,r,`,k,o ¨ γ

R
`,k,o @i P T, j P Ji, r P rnbls(i)

(4.3.5)

87



4. Latencies of Cause-effect Chains

The point of time the processing of a runnable entity is finished is
constrained by its CET and its paused time:

εR
i,j,r ě σR

i,j,r + ιR
i,j,r + bcet(r) @i P T, j P Ji, r P rnbls(i) (4.3.6)

εR
i,j,r ď σR

i,j,r + ιR
i,j,r + wcet(r) @i P T, j P Ji, r P rnbls(i) . (4.3.7)

The end of processing of the last runnable marks the termination of
the task instance εT :

εT
i,j = max

(
{ εR

i,j,r | r P rnbls(i) }
)

. (4.3.8)

4.3.2 Chain Encoding

Contrary to the expectations of an attentive reader, the encoding of the
cause-effect chain in the runnable-level CP model is not based on a sequence
of runnable entities. For more convenient modeling, we rather assume a
pre-processing step that arranges the chain in the following way: (pT)

length
k=1

with pT
k P T for all k P { 1, . . . , length } is the cause-effect chain on task-level

and (pR)`k=1 with pR
k Ď rnbls(pk) is the cause-effect chain on runnable-

level for each segment of the chain. The pre-processing step is described in
more detail in Section 4.5.2. This saves us the problem of checking whether
the chain on runnable-level is arranged in the correct order within each
task. Moreover, constraints on the chain variables can be implemented
using max- and min-operations on sets which are more easy to handle for
the constraint solver. Last but not least, the variables for task-level chain
encoding can be reused with the same semantics. The arrays ni and xi
f.a. i P { 1, . . . , len } are used exactly the same as in task-level encoding,
but the constraints on n and x are updated to reflect the newly gained
precision in the case of explicit or runnable-level implicit communication.
An overview over the updated constraints for response time and data age
are shown in Table 4.3

The constraints for explicit communication and response time are:

n1 P Ji

with i = pT
1

(4.3.9)
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Table 4.5. Constraints for Latency Semantics and Communication Pattern on
Runnable-level

Explicit Implicit Deterministic
Ö Œ

Task-level Runnable-level

Response
Time

4.3.9 - 4.3.12 4.3.9, 4.3.10,
4.3.13, 4.3.14

4.3.9, 4.3.10,
4.3.16

4.3.9, 4.3.17,
4.3.18

Data Age 4.3.19 - 4.3.22 4.3.19, 4.3.20,
4.3.23, 4.3.24

4.3.19, 4.3.20,
4.3.25

4.3.19, 4.3.26,
4.3.27

nk = min
(
{ j | j P Ji ^min

(
{ σR

i,j,r | r P pR
k }
)
ě xk´1 }

)
with i = pT

k @k P { 2, . . . , len }
(4.3.10)

xk ě min
(
{ σR

i,j,r | r P pR
k }
)

with i = pT
k , j = nk @k P { 1, . . . , len }

(4.3.11)

xk ď max
(
{ εR

i,nk ,r | r P pR
k }
)

with i = pT
k , j = nk @k P { 1, . . . , len }

(4.3.12)

The constraints for implicit communication on runnable-level and
response time are Constraint 4.3.9, Constraint 4.3.10 and

xk = min
(
{ σR

i,j,r | r P pR
k }
)

with i = pT
k , j = nk @k P { 1, . . . , len }

(4.3.13)

xk = max
(
{ εR

i,j,r | r P pR
k }
)

with i = pT
k , j = nk @k P { 1, . . . , len }

(4.3.14)

The constraints for implicit communication on task-level and response
time are Constraint 4.3.9, Constraint 4.3.10 and:

xk = εT
i,j (4.3.15)
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with i = pT
k , j = nk @k P { 1, . . . , len } (4.3.16)

The constraints for deterministic communication and response time
are Constraint 4.2.15 and:

nk = min
(
{ j | j P Jpk ^ αT

i,j ě xk´1 }
)

with i = pT
k @k P { 1, . . . , len }

(4.3.17)

xk = αT
i,j + deadline(i)

with i = pT
k , j = nk @k P { 1, . . . , len }

(4.3.18)

The constraints for explicit communication and data age are:

n1 P Ji

with i = pT
1

(4.3.19)

nk = min
(
{ j | j P Ji ^min

(
{ σR

i,j,r | r P pR
k }
)
ă xk´1 }

)
with i = pT

k @k P { 1, . . . , len }
(4.3.20)

xk ě max
(
{ σR

i,j,r | r P pR
k }
)

with i = pT
k , j = (nk + 1) @k P { 1, . . . , len }

(4.3.21)

xk ď max
(
{ εR

i,j,r | r P pR
k }
)

with i = pT
k , j = (nk + 1) @k P { 1, . . . , len }

(4.3.22)

The constraints for implicit communication on runnable-level and data
age are Constraint 4.2.15, Constraint 4.2.16 and:

xk ě max
(
{ σR

i,j,r | r P pR
k }
)

with i = pT
k , j = (nk + 1) @k P { 1, . . . , len }

(4.3.23)
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xk ď max
(
{ εR

i,j,r | r P pR
k }
)

with i = pT
k , j = (nk + 1) @k P { 1, . . . , len }

(4.3.24)

The constraints for implicit communication on task-level and data age
are Constraint 4.2.15, Constraint 4.2.16 and:

xk = εT
i,j

with i = pT
k , j = (nk + 1) @k P { 1, . . . , len }

(4.3.25)

The constraints for deterministic communication and data age are
Constraint 4.2.15 and:

nk = max
(
{ j | j P Ji ^ αT

i,j ă xk´1 }
)

with i = pT
k @k P { 1, . . . , len }

(4.3.26)

xk = αT
i,j + deadline(i)

with i = pT
k , j = (nk + 1) @k P { 1, . . . , len }

(4.3.27)

4.4 Model Validation

Although the constraint model presented in the previous sections is pre-
cisely described and the constraints are carefully chosen, it can not be
ruled out that bugs in the model exists like bugs possibly exist in the code
of computer programs. In fact, the constraints as stated above allow for
an imprecision: a result in which a runnable is terminated while being
preempted. This is not possible for real-world instances of a task because
the return statement needs to be processed. Since such results have no
counterpart in any real run of the system they possibly lead to more
overestimation. In this case, they can be removed from the solution space
by adding an additional constraint. Let (i, j, r) denote the r-th runnable
in the j-th instance of task i, and (l, k, o) accordingly. Then, the follow-
ing constraint enforces that if (i, j, r) is preempted by (l, k, o), it must be
terminated after (l, k, o):

(σR
l,k,o ą σR

i,j,r ^ σR
l,k,o ă εR

i,j,r)Ñ (εR
i,j,r ą εR

l,k,o) (4.4.1)
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4. Latencies of Cause-effect Chains

However, this gives rise to the question if there are any other overestima-
tions or possibly even bugs excluding valid results. To check the constraint
model for problems, we use an additional set of constraints modeling the
same behavior for cross-checking. We use the well-known concept of the
busy-window to check whether the outcome is the same. Let Bi,j denote
the starting times of task instances which may delay the start of the j-th
instance of task i, i.e. Bi,j = { σT

`,k | ` P T| core(i) ^ εT
`,k ą αT

i,j ^ εT
`,k ď εT

i,j } .
Then, the busy window starts at time bwstart

i,j with

bwstart
i,j = min

(
{ αT

i,j }Y Bi,j

)
The sum of executions times of task instances running in a busy windows
is given by

bwlength
i,j = ∑

(`,k)PAi,j

(
εT
`,k ´ σT

`,k ´ ιT`,k

)
(4.4.2)

with

Ai,j =
{
(`, k)|` P T|h ÞÑcore(h)=core(i), k P J` ^ σT

`,k ě bwstart
i,j ^ εT

`,k ď σT
i,j

}
(4.4.3)

Using this additional constraints showed, that the current constraints
on σ can be satisfied by a solution in which a task is started too late
although its resource was idling in the mean time. Again, this is an
overestimation leading to additional results we do not want to consider for
tight estimations. This imprecision can be resolved by adding additional
constraints. A straight forward idea is utilizing the busy window for this
problem. However, this introduces two variables for each task instance
holding discrete time values and depending on many parameters. This
results in a massive increase of complexity, increasing the size of the
problem for both, constraint compiler and constraint solver. Therefore, we
propose a formalization where no additional discrete time variables are
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introduced. For this purpose let

hplbi,j,p =D` P T|h ÞÑcore(h)=core(i) : Dk P { 1, . . . , m` } :

prio(`) ą p^ σT
`,k ă σT

i,j ^ εT
`,k ě σT

i,j

_

D` P T|h ÞÑcore(h)=core(i) : Dk P { 1, . . . , m` } : Dr P rnbls(`) :

preemptable(r) = false^σR
`,k,r ă αT

i,j ^ εR
`,k,r ě σT

i,j

(4.4.4)

be a decision variable for all i P T, j P Ti, and p P {min ({prio(i) | i P T }) ,
. . . , max ({prio(i) | i P T })}. This is, hplbi,j,p holds true if the processing
unit of task i is busy processing a task instance having a higher priority
than p or which is not preemptable, before instance j of task i is started.

Thus, adding the constraint

(σT
i,j ą αT

i,j)Ñ @` P T|h ÞÑcore(h)=core(i) : @k P { 1, . . . , mi } :

(σT
`,k ď σT

i,j ^ αT
`,k ą αT

i,j)Ñ (prio(`) ą prio(i)^ hplb`,k,prio(i))

(4.4.5)

for all i P T and j P Ji prevents a task being delayed by a task which was
started after the processing unit was idle while it was already activated.

Another problem we observed while debugging is, that the model allows
for an unintended priority inversion. This means, that a task instance
is being processed despite another task instance with higher priority
was activated but not started. Since both scenarios are accepted by the
constraints, this is another imprecision leading to less tight estimations. To
prevent this, the constraints

@` P T|h ÞÑcore(h)=core(i) : @k P { 1, . . . , mi } :

(σT
`,k ě αT

i,j ^ σT
`,k ď σT

i,j)Ñ (prio(`) ą prio(k))
(4.4.6)

and

@` P T|h ÞÑcore(h)=core(i) : @k P { 1, . . . , mi } : @r P rnbls(`) :

(εR
`,k,r ą αT

i,j ^ εT
`,k,r ď σT

i,j)Ñ

(prio(`) ą prio(k)_ (preemptable(r) = f^ σR
`,k,r ă αT

i,j))

(4.4.7)
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are added f.a. i P T and j P Ji. Constraint 4.4.6 ensures that, if a task is
started between the activation and the start of another task, it needs to
have a higher priority. Constraint 4.4.7 ensures that, if a runnable finishes
between the activation and the start of a task, either its task has a higher
priority or it is not preemptable.

4.5 Solving

To encode our model, we use the high-level constraint language MiniZinc2

Using MiniZinc has two main advantages. Firstly, the language has a lot
of pre-defined structures which allow a direct modeling of mathematical
formulations, e.g. the Example 2.5.8 can easily be encoded in MiniZinc
as shown in Listing 4.1. Secondly, a MiniZinc-model is data and solver
independent. Only when it comes to the compilation to the low-level
constraint language FlatZinc, the model parameters and the constraint
model are brought together. FlatZinc is then supported by a wide range of
solver-backends. To show the advantage of a high-level modeling language,
the FlatZinc for Example 2.5.8 is shown in Listing 4.2.

var { 1, 2 } : x1;

var { 2, 3 } : x2;

var { 1, 2 } : x3;

constraint ( x1 < x2 \/ x1 > x3 );

constraint ( x2 > x3 );

constraint ( x3 = 4 \/ x3 > x1 );

Listing 4.1. MiniZinc Example

array [1..2] of int: X_INTRODUCED_0_ = [-1,1];

array [1..2] of int: X_INTRODUCED_2_ = [1,-1];

var 1..2: x1:: output_var;

var 2..3: x2:: output_var;

var 1..2: x3:: output_var;

2https://www.minizinc.org/
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var bool: X_INTRODUCED_1_ ::var_is_introduced :: is_defined_var;

var bool: X_INTRODUCED_3_ ::var_is_introduced :: is_defined_var;

constraint array_bool_or([X_INTRODUCED_1_,X_INTRODUCED_3_],true);

constraint int_lin_le(X_INTRODUCED_0_,[x2,x3],-1);

constraint int_lin_le(X_INTRODUCED_0_,[x3,x1],-1);

constraint int_lin_le_reif(X_INTRODUCED_0_,[x1,x3],-1,

X_INTRODUCED_1_):: defines_var(X_INTRODUCED_1_);

constraint int_lin_le_reif(X_INTRODUCED_2_,[x1,x2],-1,

X_INTRODUCED_3_):: defines_var(X_INTRODUCED_3_);

solve satisfy;

Listing 4.2. FlatZinc for MiniZinc Example

4.5.1 MiniZinc Model

In this section we take a look at how to translate the constraint model in-
troduced in Section 4.2 and Section 4.3 into MiniZinc. The most important
aspect of the MiniZinc model are explained and the MiniZinc represen-
tation for the core of the constraint model is presented. All constraints
are based on the parameters and variables of tasks and their instances.
Listing 4.3 shows the variables for a task instance in MiniZinc.

% variables for each task instance

array[i_Task,Min_Inst..Max_Inst] of var Timepoint : alphaT;

array[i_Task,Min_Inst..Max_Inst] of var Timepoint : sigmaT;

array[i_Task,Min_Inst..Max_Inst] of var Timepoint : epsilonT;

array[i_Task,Min_Inst..Max_Inst] of var 0..Time_Dom_Max : iotaT;

array[i_Task,Min_Inst..Max_Inst] of var 0..Time_Dom_Max :

runningTime;

Listing 4.3. Variables of a task instance in MiniZinc

All constraints listed above can be directly translated into MiniZinc,
however, some modeling principles must be taken into account in order
to create scalable FlatZinc models. An example of a constraint which can
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directly be translated into MiniZinc is the WCRT constraint on ε as shown
in Listing 4.4

constraint forall (i in i_Task, j in InstMin[i]..InstMax[i] where

isRelevant[i]) (

epsilonT[i,j] >= sigmaT[i,j] + iotaT[i,j] + Bcet[i] /\

epsilonT[i,j] <= sigmaT[i,j] + iotaT[i,j] + Wcet[i] /\

epsilonT[i,j] <= alphaT[i,j] + Deadline[i]

);

Listing 4.4. Constraints on ε in MiniZinc

The constraints on α are formulated with a case distinction for the
different types of activation models. Within the different cases the MiniZinc
representation of the constraints again is directly translated from the
mathematical formulation as shown in Listing 4.5.

constraint forall (i in i_Task, j in InstMin[i]..InstMax[i] where

isRelevant[i]) (

if (ActType[i] = 0) then % periodic

alphaT[i,j] = Offset[ActModel[i]] + ((j) * Period[ActModel[i]])

elseif (ActType[i] = 1) then % chaining

assert(length ([p | p in i_Task where Name[p] = Predecessor[

ActModel[i]]]) = 1, "exactly one predecessor! ") /\

let { var int: predI = min([p | p in i_Task where Name[p] =

Predecessor[ActModel[i]]]) } in

alphaT[i,j] = epsilonT[predI,j]

elseif (ActType[i] = 2) then % intervall

if (j == InstMin[i]) then

alphaT[i,j] >= Min_Time /\

alphaT[i,j] <= Min_Time + BoundMaxDt[ActModel[i]]

else

alphaT[i,j] >= alphaT[i,j-1] + BoundMinDt[ActModel[i]] /\

alphaT[i,j] <= alphaT[i,j-1] + BoundMaxDt[ActModel[i]]

endif

else % ActType[i] = 3
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if (j == InstMin[i]) then

alphaT[i,j] >= Min_Time

else

alphaT[i,j] >= alphaT[i,j-1] + MinDeltaT[ActModel[i]]

endif

endif

);

Listing 4.5. Constraints on α in MiniZinc

The constraints on σ can also be almost directly translated as shown in
Listing 4.6. The maximum_int predicate constrains the first argument to be
the maximum value of the second argument which needs to be a collection
of values. Here we see an additional condition for other task instances
to be counted in: a function called TimeFrameOverlap. This functions only
returns true of the processing of instance j of task i is possibly affected by
instance k of task ` through a delay or an interrupt. The same function is
also used in the constraints for ι which are shown in Listing 4.7. It is used
to massively reduce the amount of constraints generated, as interference
constraints for tasks instances which do not possible interfere are omitted.
An estimation for this can be done before translating into FlatZinc. This is
further discussed in Section 4.5.2. The summation an the conditions for ι
can be translated directly again.

constraint forall (i in i_Task, j in InstMin[i]..InstMax[i] where

isRelevant[i]) (

maximum_int(sigmaT[i, j],

% activation time

[alphaT[i, j]]

% Non-preemptive

++ [ if (sigmaT[l, k] < alphaT[i, j]) then epsilonT[l, k]

else 0 endif |

l in i_Task , k in InstMin[l]..InstMax[l] where

(i!=l /\ Core[i] = Core[l] /\ Prmptbl[l] = 0) /\

TimeFrameOverlap(i,j,l,k)]
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% Higher prio

++ [ if (sigmaT[l, k] <= sigmaT[i, j]) then epsilonT[l, k]

else 0 endif |

l in i_Task , k in InstMin[l]..InstMax[l] where

(i!=l /\ Core[i] = Core[l] /\ Prio[l] > Prio[i]) /\

TimeFrameOverlap(i,j,l,k)]

)

);

Listing 4.6. Constraints on σ in MiniZinc

constraint forall (i in i_Task, j in InstMin[i]..InstMax[i] where

isRelevant[i]) (

if (Prmptbl[i] = true) then

iotaT[i,j] =

sum(l in i_Task where i != l /\ Core[l] = Core[i] /\ Prio[l]

> Prio[i] /\ isRelevant[l]) (

sum(k in InstMin[l]..InstMax[l] where TimeFrameOverlap(i,j,

l,k)) (

if (sigmaT[l, k] >= sigmaT[i, j] /\ epsilonT[l, k] <=

epsilonT[i, j]) then

epsilonT[l, k] - sigmaT[l, k] - iotaT[l, k]

else

0

endif

)

)

else

iotaT[i,j] = 0

endif

);

Listing 4.7. Constraints on ι in MiniZinc

For the runnable-level MiniZinc model, constraints on start of runnables
have to added. Furthermore, the representation of ι constraints is now
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based on runnables instead of tasks. The constraints are shown in List-
ing 4.8 and Listing 4.9.

constraint forall (i in i_Task, j in InstMin[i]..InstMax[i], r in

1..card(Runnables[i]) where isRelevant[i]) (

iotaR[i,j,r] =

sum(l in i_Task where i != l /\ Core[l] = Core[i] /\

Prio[l] > Prio[i] /\ Prmptbl[i] = true) (

sum(k in InstMin[l]..InstMax[l] where TimeFrameOverlap(i,j,l,

k)) (

if (sigmaT[l, k] >= sigmaT[i, j] /\ epsilonT[l, k] <=

epsilonT[i, j]) then

if (sigmaT[l, k] >= sigmaR[i, j, r] /\ epsilonT[l, k] <=

epsilonR[i, j, r]) then

cetT[l,k]

else

0

endif

else

0

endif

)

)

);

Listing 4.8. Runnable-level Constraints on σ in MiniZinc

constraint forall (i in i_Task, j in InstMin[i]..InstMax[i], r in

1..card(Runnables[i]) where isRelevant[i]) (

sigmaR[i,j,r] =

max([sigmaT[i,j]] ++ [epsilonR[i,j,o] | o in 1..card(Runnables[

i]) where o < r])

);

Listing 4.9. Runnable-level Constraints on ι in MiniZinc
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Finally, we come to the encoding of chains. Since the translation is direct
and straight forward, we only consider one case here: the runnable-level
encoding for the response time latency semantics is shown in Listing 4.10.

constraint forall (p in 2..len_Path) (

let { int: i = T_Path[p] } in

if (CommMode[i] = "explicit") then

minimum_int (n[p],

[ if (min([sigmaR[i,j,R_Nr[r]] | r in R_Path[p]]) >= x[p-1])

then j else Max_Inst + 1 endif |

j in InstMin[i]..InstMax[i]])

elseif (CommMode[i] = "implicit_runnable") then

minimum_int (n[p],

[ if (min([alphaR[i,j,R_Nr[r]] | r in R_Path[p]]) >= x[p-1])

then j else Max_Inst + 1 endif |

j in InstMin[i]..InstMax[i]])

elseif (CommMode[i] = "implicit_task") then

minimum_int (n[p],

[ if (alphaT[i,j] >= x[p-1]) then j else Max_Inst + 1 endif |

j in InstMin[i]..InstMax[i]])

elseif (CommMode[i] = "deterministic") then

minimum_int (n[p],

[ if (alphaT[i,j] >= x[p-1]) then j else Max_Inst + 1 endif |

j in InstMin[i]..InstMax[i]])

else

assert(false, "unkown communication mode: " ++ CommMode[i])

endif

);

Listing 4.10. Runnable-level Chain Encoding for Response Time in
MiniZinc
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4.5.2 DataZinc Generation

Almost all parameters used in the constraint model for task- and runnable-
level can be extracted from the model defined in Chapter 3. Only the
minimum and maximum instance and some derived parameters for the
optimizations described in Section 4.6 need to be calculated. In this section
we present the algorithms to do this.

For solving we consider a finite amount of task and runnable instances
within a finite time span with discrete points of time. The first step to
generate a data file for the MiniZinc model is to determine the length
of this time span. It must be long enough to safely cover all possible
relative offsets between tasks but if it is too long, the time needed for
compiling and solving will sharply increase. It is a well-known fact that
the relative offsets for task instances of a periodic task set repeat after the
hyper period or the least common multiple of all periods. As described in
the previous sections, the constraints on α assure that all relative offsets
for sporadic tasks are observed during an instance of the chain. Therefore,
the worst-case occurrence of the chain will start at some point of time
within the hyper period of all tasks participating in the chain. Furthermore,
tasks which might influence a task on the chain need to be considered as
they possibly influence the relative offsets between two tasks on the chain.
We therefore calculate the set of possibly influencing tasks as formally
described in Algorithm 1. The hyper period of the union of all sets of
relevant tasks for the tasks participating in the chain makes up the first
part of the time span for analysis. The second part is a rough upper bound
on the length of the chain. The time span for analysis must be large enough
such that an instance of the chain completely fits into it, independent of its
starting time. For response time, such a bound can for example be derived
by summing up trivial upper bounds on the time between two arrivals
and the worst case response time of every task on the chain.

For tasks with a sporadic activation pattern the estimation gets more
imprecise with time, since the occurrence of the next instance depends
on the occurrence of the current instance. If the time span for activation
is varying within a range, the time span of the next activation is varying
even more. Therefore, in order to obtain safe estimations, the minimum
and maximum amount of instances considered has to be chosen carefully
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Algorithm 1: Set of Influencing Tasks

1 RelevantPeriod Task T, Tasks T
2 RÐ { T }
3 f Ð false
4 while f = false do
5 Rnew Ð {O | O P T ^ Task.Preemtable(O) = false }
6 Rnew Ð RY

{O | O P T ^ Task.Priority(O) ě Task.Priority(T) }
7 f Ð Rnew Ď R
8 RÐ RYRnew

9 return R

because huge discrete time domains massively impact the performance of
the solver.

Using the GpTimeFrame-array as shown in Listing 4.11 and generated as
formally described in Algorithm 3, the constraints given in Listing 4.12 are
added to the model to implement the model tweak described Section 4.6.

GPTimeFrame = array3d(i_Task,Min_Inst..Max_Inst,1..2, [

%...

]);

Listing 4.11. GPTimeFrame Array in MiniZinc

constraint forall (i in i_Task, j in InstMin[i]..InstMax[i]) (

GPTimeFrame[i,j,1] <= alphaT[i,j] /\ alphaT[i,j] <= GPTimeFrame[i

,j,2] /\

GPTimeFrame[i,j,1] <= sigmaT[i,j] /\ sigmaT[i,j] <= GPTimeFrame[i

,j,2] /\

GPTimeFrame[i,j,1] <= epsilonT[i,j] /\ epsilonT[i,j] <=

GPTimeFrame[i,j,2] /\

forall (r in 1..Max_Rnbl)(

if (r <= card(Runnables[i])) then
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Algorithm 2: Calculate First and Last Occurrence

1 InstMinMax Time tmin, Time tmax, Task T, Tasks T
2 a Ð Task.ActivationModel(T)
3 (imin, imax) = (0, 0)
4 if a P PeriodicActivationModel then
5 p Ð PeriodicActivationModel.Period(a)
6 o Ð PeriodicActivationModel.Offset(a)

7 (imin, imax)Ð
(⌈

tmin´o
p

⌉
,
⌈

tmax´o
p

⌉)
8 else if a P ChainedActivationModel then
9 id Ð ChainedActivationModel.Predecessor(a)

10 P Ð find task with id id in T
11 (imin, imax)Ð InstMinMax(tmin, tmax, P, T )
12 else
13 l Ð8

14 if a P BoundActivationModel then
15 l Ð BoundActivationModel.MinDt(a)
16 else if a P SporadicActivationModel then
17 l Ð SporadicActivationModel.MinDt(a)

18 (imin, imax)Ð
(⌈

tmin
l

⌉
,
⌈

tmax
l

⌉)
19 return (imin, imax)

GPTimeFrame[i,j,1] <= sigmaR[i,j,r] /\ sigmaR[i,j,r] <=

GPTimeFrame[i,j,2] /\

GPTimeFrame[i,j,1] <= epsilonR[i,j,r] /\ epsilonR[i,j,r] <=

GPTimeFrame[i,j,2] /\

cetR[i,j,r] = epsilonR[i,j,r] - sigmaR[i,j,r] - iotaR[i,j,r]

else

sigmaR[i,j,r] = -1 /\

cetR[i,j,r] = 0 /\

iotaR[i,j,r] = 0 /\

epsilonR[i,j,r] = -1

endif)

);

Listing 4.12. GPTimeFrame Array in MiniZinc
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4.5.3 FlatZinc Solving and Results

For solving, the MiniZinc model is linked with the DataZinc generated for
the problem instance and compiled to the low-level constraint language
FlatZinc. The specification of FlatZinc is given in [21] and the compilation
process is described in [96]. We use the compiler available at the MiniZinc
githup page3. As the solver back-end we chose the parallel version of the
lazy-clause generation solver Chuffed as presented in [43].

From Definition 2.5.6 we know, that a solution for the CSP formed by
the constraints stated above is an assignment which maps each variable to
a value while satisfying all constraints on that variable. In our case this
means that the situation modeled by the result can be reconstructed from
the solution of the CSP. As depicted in Figure 4.2 and Figure 4.3 different
points of time describing the task instances contributing to the worst-case
latency are available. They can be used to visualize the result for further
analysis in a representation of the temporal sequence like Figure 4.1.

Since we search for the solutions yielding a maximal end-to-end latency,
the CSP we formulated actually is a constraint optimization problem. As
we know from its definition, sols(Pmax) only contains solutions where
no result exists which yields a higher objective function. This means that
a safe upper bound for the end-to-end latency is estimated under the
assumptions of the constraint model.

4.6 Model Optimization

In this section we revisit the constraint model defined above to add some
additional tweaks for faster solving. The first optimization targets the
number of generated constraints. When generated naively, the number of
constraints for, e.g. Equation 4.3.3 shows quadratic growth when adding
new task instances. To preserve scalability, we add a preprocessing step.
For each task instance we estimate the maximal time span in which it is
possibly active. Constraints modeling interference with other task instances
only need to be generated for task instances where this time span overlaps.
We add the function shown in Listing 4.13 and use it to instruct the

3https://github.com/MiniZinc/libminizinc
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FlatZinc-compiler omit the generation of constraints for two task instances
j and k of tasks i and ` where this function does not return true. The
GPTimeFrame-array contains the maximum active time span for each task
instance. Its generation is described in Section 4.5.2.

function bool: TimeFrameOverlap(int: i, int: j, int: l, int: k) =

GPTimeFrame[l, k, 2] >= GPTimeFrame[i, j, 1] /\

GPTimeFrame[i, j, 2] >= GPTimeFrame[l, k, 1] ;

Listing 4.13. TimeFrameOverlap Function in MiniZinc

Another factor for the number of constraints in Equation 4.3.3 is the
amount of runnables per task. To reduce this number, we aggregate mul-
tiple runnables to a single runnable where it has no impact, i.e. where
no signals for the chain are consumed or produced but only core execu-
tion time happens. For tasks which are not participating in the chain, all
runnables can be aggregated to one runnable modeling the same load with
small impacts on the precision. The impacts are only relevant in the case
of runnables with can not be preempted. Since a task instance might be
preempted between two runnable entities, the aggregated runnable needs
to be preemptable. This adds new possibilities for preemption where the
individual runnables where not preemptable in the first place. However, if
the precision is needed for targeted analyses, a more fine-grained aggrega-
tion is possible, e.g. aggregating several runnables to three ones where one
is still non-preemptable. The BCET of the synthesized runnables is the sum
of the BCETs of the individual runnables. Analogously, the WCET is the sum
of the WCETs. For task participating in the chain, the first possible read and
the last possible write access on the signals consumed or produced in the
course of the chain are relevant. Therefore, the runnables of a participating
task can be divided in three categories: runnables processed before the first
possible read, runnables processed in between, and runnables processed
after the last possible write. Each category of runnables can be aggregated
as described above, resulting in at least three synthetic runnables for a
task on the chain.

A second optimization is also concerned with the number of constraints
being generated but tackles the problem at a higher level. Assume a cause-
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4. Latencies of Cause-effect Chains

effect chain spanning over three resources: R1, R2, R3. If the run of the
chain starts at R1, then has a transition to R2 and finally a transition to
R3, then task instances at R1 do not need to be considered anymore given
that no task on R3 is activated by a task on R1. Continuing in the same
vein, task instances on R1 also do not need to be considered if the further
course of the chain only takes place on R2. Therefore, the last task instance
considered on R1 can be lowered such that an overlap of instances is only
given at all points of time where a transition from R1 to R2 is possible
since considering more instances of any task on R1 does not possibly
influence the result under our assumptions. With the same argument, a
higher number for the first instance of any task on R2 and R3 can be
chosen.

A third optimization we developed is concerned with the search strat-
egy of the solver. Searching in the wrong area of the set of satisfying
assignments can be very time consuming. Therefore, in order to decrease
the time to find an optimal solution, we instruct the solver to start its
search assuming a large value for the objective. This strategy fails if the
upper bound on the objective is too far away from the optimal solution.
Therefore, we add different constraints to help the solver infer an upper
bound on the objective fast. The main reason why it is hard to infer such
a bound a priori is that it is hard to estimate the possible inferences for
tasks instances. This is why adding constraints for the maximal delay and
the maximal pause time were added to support the fast estimation of a
upper bound for the objective. For this purpose, the task instances possibly
delaying and the task instances possibly causing a pause of a task instance
are needed. These are for instance j of task i the tasks which have a higher
priority

IHP
i,j =

{
(`, k) | εT

`,k ě σT
i,j ^ σT

`,k ď εT
i,j ^ prio(`) ą prio(i)

}
(4.6.1)

and the tasks which possibly have a runnable that is not preemptable

INP
i,j =

{
(`, k) | εT

`,k ě σT
i,j ^ σT

`,k ď εT
i,j ^ preemptable(`) = f

}
(4.6.2)

which are possibly running in the same time interval.

Then, the delay of instance j of task i can be bound with the help of
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the WCETs of these tasks:(
σT

i,j ´ αT
i,j

)
ď ∑

(l,k)PIHP
i,j

wcet(l) + ∑
(l,k)PINP

i,j

wcet(l) . (4.6.3)

Additionally, the worst-case response time of the same task instance,
i.e. the time the task needs to react to an input, can be bound by:

εT
i,j ď αT

i,j + wcet(i) + ∑
(l,k)PIHP

i,j

wcet(l) + ∑
(l,k)PINP

i,j

wcet(l).
(4.6.4)

4.7 Model Application

In this section we prove the practical applicability by carrying out different
evaluations. We use three different sources for task sets: (1) the task set
published in [50], (2) the task set published in [60], and (3) task sets
generated with the parameters described in [78].

4.7.1 Case Studies

In this section we test the MiniZinc model with two different industrial-
scale task sets in three experiments. In the first experiment we compare
the results obtained with our CP approach with the CPA implementation
pyCPA4. In the second experiment we analyze the potential impact of
sporadic task occurrences. The third experiment is considered with the
question how much precision is gained on runnable level and draw a
conclusion for the applicability in automated system optimization.

The experiments were carried out on a desktop computer with an
Intel(R) Core(TM) i9-7940X CPU @ 3.10GHz and 128GB of DDR4 memory.

The first and the second experiment are based on the task set shown in
Table 4.8 and Table 4.9. The results for both alternatives for the activation
models are listed in Table 4.6. The results of the first experiment show the
superior precision of the holistic constraint approach. The results of the
second experiment show the importance of the support of bonded and

4https://bitbucket.org/pycpa/
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sporadic activation models. Even if they are not included in the chain, non-
periodic task possibly impact the estimation. As expected our experiment
shows that modeling such tasks with a periodic activation model does not
yield safe bounds for the end-to-end estimation of the chain.

The third experiment is based on a task set with runnable-level details
originally published in [60]. In [112] Schlatow et al. propose different
priority assignments and core mappings in order to optimize data ages
for two of the three chains specified for the data set. This is the only other
analysis with this level of detail currently known to us. For comparison,
we carried out an estimation on runnable-level and on task-level. The main
question is, how the results with the different levels of detail differ. The
results are shown in Table 4.7. They allow to draw important conclusions
regarding the need of precision in the context of optimization. Fortunately,
Schlatow et al. published an interim result of the optimization process. The
mapping and priority assignment Eπφ yields, according to the results of
Schlatow et al., a slightly worse data age for both chains. The improvement
from variant Eπφ to EπφA for Chain 2 is confirmed by our estimations.
However, in the case of Chain 3 the estimations using a task-level data
flow disagree with the results obtained using a runnable-level data flow
regarding an improvement. This shows the importance highly precise esti-
mations in the context of optimization. An actual improvement might not
be achieved if the margin of the optimization lies within the imprecision of
the estimation method. Consequently, an optimization might not actually
improve the performance of the system if the estimation method is not
precise.

4.7.2 Precision and Performance Evaluation

Since we only tested the approach on industrial use-cases so far, a more
general claim about the scalability of the approach can not be made. Fur-
thermore, we want to investigate the impact of context losses for analysis
precision. Therefore, we carry out another experiment with generated task
sets in this section. The task sets were generated as follows:

Ź A system consists of { 2, . . . , 6 } resources with synchronized clocks.

Ź On each resource either periodic BET or LET tasks with implicit deadlines
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Chain 0 C0T2 C0T3 C0T4 C0T2

Chain 1 C0T0 C0T2 C0T3 C0T5

Chain 2 C1T5 C0T3 C0T2 C0T0

Chain 3 C0T0 C0T2 C0T3 C1T5 C0T3 C0T2 C0T0

Chain 4 C1T5 C0T3 C0T2 C0T0 C0T2 C0T3 C1T5

Chain 5 C0I0 C1T0 C2T1 C3T3

Chain 6 C3T3 C2T1 C1T0 C0I0

Chain 7 C0I0 C0T0 C0I0

Figure 4.4. Test Chains

are scheduled. The probability that a resource schedules BET tasks is
0.5 in the case of mixed chains. The number of tasks per resource is 20.
Priorities are assigned rate-monotonic.

Ź Task periods are selected from the set of periods proposed in a generic
automotive benchmark published [78]. The angle-synchronous tasks
were randomly assigned periods between one and five milliseconds.
This is done in order to obtain WCRTs from the generated WCETs more
easily.

Ź WCETs of BET tasks are generated with the UUnifast-algorithm [24]
where the resource utilization is set to 0.69.

Ź The WCET of a LET task with period pT is randomly selected from the
set { 250µs, 300µs, . . . , pT }.

Ź Finally, one cause-effect chain spanning over all resources in the system
and including { 2, 4, 8 } tasks on each resource is generated. We only
use the periods from 1ms to 20ms for the chains since these make up
almost all time-critical chains. Although time-critical cause-effect chains
through task with a lower frequency exist, they usually have, according
to the slower processing frequency, relatively weak requirements.
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of Tasks per Segment

Figure 4.5. Precision

Ź All tasks are generated without an offset in order to obtain WCRTs from
the generated WCETs more easily. This also makes the problem instances
harder for the solver as more interference within the task instances
occurs.

We carried out the experiments to investigate on the following ques-
tions:

1. How does the resource-need for compilation and solving increase when
the length of the chain is increased by either adding more tasks on one
resource or adding additional resources.
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(c) Memory Needed for Solving
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(d) Time Needed for Solving

Figure 4.6. Resource Consumption for Compilation and Solving
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Figure 4.7. Total Analysis Time - BET vs. LET Chains
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2. How does a context-loss affect the tightness of the estimations.

3. What is the difference between the analysis of chains consisting of only
LET, only BET or mixed LET and BET task regarding performance and
precision of the presented approach.

The experiments were carried out on a desktop computer equipped
with two Intel(R) Xeon(R) Gold 6242 CPUs and 256GB of memory.

To analyze the resource need for the analysis of the complete chain
and compare it to the resource need for the split chain, we analyzed each
resource individually in the latter case and summed up the results plus
an bound on the transition latencies between the resources. Since we have
no offsets for any task instance, this is the period the task in the case
of LET and the period plus the difference between the WCRT and BCRT of
a task instance otherwise. Different conclusions can be drawn from the
results. First of all, we see that both, compilation of the constraint model
and solving of the FlatZinc model, scale a little worse than linearly but
significantly better than quadratic with respect to the number of segments
as depicted in Figure 4.6. The time and memory consumption for analysis
rises significantly slower in the case of divided analysis, however we also
see a sharp rise in the absolute and relative overestimation when compared
to the precise results of the holistic analysis. The trend is depicted in
Figure 4.5. With an increasing number of segments analyzed, the number
of context losses increases. The overestimation decreases if more tasks are
taking part on the chain on each segment. From a practical application
perspective, the outliers to the maximal relative over-estimation especially
for a small amount of context losses is problematic. Potentially having
an overestimation of over 50% for any context loss does not justify the
savings in computational effort, especially if the approach can be adjusted
for specific cases as proven in the previous section.

Regarding the third question for this experiment we generated two
additional task sets following the same procedure as before but one con-
taining only BET tasks and one only containing LET tasks. The difference
in the total analysis time is depicted in Figure 4.7. It shows a little less
distribution in the time needed for analysis, but more importantly that the
total analysis time is greatly reduced in the case of LET-only chains. Ta-
ble 4.10 also reflects this. Here we observe a drop from about 7% timeouts
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at compilation and about 9% timeouts at solving of BET-only chains to 0%
in total for LET chains.

4.8 Summary and Conclusion

In this chapter, we have added a new layer to the formal model defined
in the previous chapter. The encoding in a constraint program allows
us to deploy a CP solver to directly obtain worst-case estimations with
an example of the situation they occurred in. Several measures to check
validity and improve performance have been presented and we have shown
that this approach is unmatched in precision. Although the approach does
not scale for arbitrary system sizes we have shown that it scales for task
set sizes relevant to analyze cause-effect chains in the software current and
next generation of automotive CPS.
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Algorithm 3: Calculate Time Frame of possible Interaction

1 GPTimeFrame Time tmin, Time tmax, Task T, Tasks T
2 (imin, imax)Ð InstMinMax(tmin, tmax, P, T )
3 t f s Ð nil
4 a Ð Task.ActivationModel(T)
5 if a P ChainedActivationModel then
6 id Ð ChainedActivationModel.Predecessor(a)
7 P Ð find task with id id in T
8 ((p fimin,1, p fimin,2), . . . , (p fimax,1, p fimax,2))Ð

GPTimeFrame(tmin, tmax, P, T )

9 for i P (imin, . . . , imax) do
10 (t fmin, t fmax) = (tmin, tmax)
11 d Ð Task.Deadline(T)
12 if a P PeriodicActivationModel then
13 p Ð PeriodicActivationModel.Period(a)
14 o Ð PeriodicActivationModel.Offset(a)
15 l Ð o + (i ¨ p)
16 (t fmin, t fmax)Ð (l, l + d)
17 else if a P ChainedActivationModel then
18 (t fmin, t fmax)Ð (p fi,1, p fi,2 + d)
19 else
20 l Ð tdommax
21 if a P BoundActivationModel then
22 l Ð BoundActivationModel.MinDt(a)
23 else if a P SporadicActivationModel then
24 l Ð SporadicActivationModel.MinDt(a)
25 a Ð i´ imin
26 b Ð (imax ´ imin)´ i
27 mi Ð tmin + (a ¨ l)
28 ma Ð tmax ´ (b ¨ l) + d
29 (t fmin, t fmax)Ð (mi, ma)
30 t f s Ð cons(t f s, (t fmin, t fmax))

31 return t f s
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Table 4.6. Results for Experiment 1 and Experiment 2

Chain Response time (µs) Data age (µs)
pyCPA task-

level1
task-
level2

pyCPA task-
level1

task-
level2

Chain 0 22160 10650 10650 20910 10650 10650
Chain 1 21420 10740 10800 15170 6740 6800
Chain 2 15410 4750 4750 19930 8660 8720
Chain 3 34620 15250 15250 32890 15160 15220
Chain 4 36110 15240 15300 34380 15240 15300
Chain 5 27685 15780 15780 7685 5780 10549
Chain 6 16520 10015 11748 31520 25015 25734
Chain 7 5265 5015 6355 5265 5015 6355

task-level1 : Task set listed in Table 4.8 with activation model A05
task-level2 : Task set listed in Table 4.8 with activation models A14/A15

Table 4.7. Results for Experiment 3

Experiment Chain Data age (µs)
results
from [112]

task-level runnable-
level

default Chain 2 - 148283 120101
Eπφ Chain 2 160415 148283 120101
EπφA Chain 2 134207 128283 110101
default Chain 3 - 4927 3148
Eπφ Chain 3 5249 4200 3148
EπφA Chain 3 4683 4981 2422
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Table 4.8. Task set for benchmark

Name Core Prio Bcet Wcet Deadline Act.
Model

Preemptive

C0T0 0 20 100 160 250 A13 false
C0T1 0 19 100 240 1000 A09 false
C0T2 0 18 100 700 1250 A05 false
C0T3 0 17 200 250 3500 A12 false
C0T4 0 16 100 250 2000 A08 true
C0I0 0 30 10 15 500 A05/A14 false
C0I1 0 29 10 15 500 A05/A15 false
C0I2 0 28 10 15 500 A05/A15 false
C0I3 0 27 10 15 500 A05/A15 false

C1T0 1 20 100 160 250 A13 false
C1T1 1 19 100 180 1000 A09 false
C1T2 1 18 100 190 1000 A06 false
C1T3 1 17 100 220 1000 A05 false
C1T4 1 16 175 250 2750 A11 false
C1T5 1 15 100 240 2500 A07 true
C1T6 1 14 125 250 5000 A10 true
C1T7 1 13 130 250 10000 A04 true
C1I0 1 30 10 15 500 A05/A15 false
C1I1 1 29 10 15 500 A05/A15 false
C1I2 1 28 10 15 500 A05/A15 false
C1I3 1 27 10 15 500 A05/A15 false

C2T0 2 20 100 160 500 A09 false
C2T1 2 19 100 180 5000 A05 true
C2T2 2 18 125 150 10000 A03 true
C2T3 2 17 150 200 100000 A00 true
C2I0 2 30 10 15 500 A05/A15 false
C2I1 2 29 10 15 500 A05/A15 false
C2I2 2 28 10 15 500 A05/A15 false
C2I3 2 27 10 15 500 A05/A15 false

C3T0 3 20 100 160 500 A09 false
C3T1 3 19 100 180 5000 A05 true
C3T2 3 18 125 290 10000 A04 true
C3T3 3 17 200 250 20000 A02 true
C3T4 3 16 210 300 100000 A01 true
C3T5 3 15 250 300 100000 A01 true
C3I0 3 30 10 15 500 A05/A15 false
C3I1 3 29 10 15 500 A05/A15 false
C3I2 3 28 10 15 500 A05/A15 false
C3I3 3 27 10 15 500 A05/A15 false

116



4.8. Summary and Conclusion

Table 4.9. Activation models for task set in Table 4.8

(a) Periodic Activation Models

Name
Period (ms) Offset (ms)

A00 1000.0 2.5
A01 100.0 0.0
A02 20.0 5.0
A03 10.0 5.0
A04 10.0 7.5
A05 5.0 0.0
A06 5.0 0.5
A07 5.0 1.0
A08 5.0 1.5
A09 5.0 2.0
A10 5.0 2.5
A11 5.0 3.5
A12 5.0 4.0
A13 1.0 0.5

(b) Sporadic/Bound Activation Models

Name
min. dt (ms) max. dt (ms)

A14 5.0 6.0
A15 5.0 ´

Table 4.10. Timeouts BET vs. LET vs. mixed Chains

Approach Chains Timeout Rate (%) #Task Set

Compiler Solver

Hol
LET 0.00 0.00 280
BET 7.14 9.29 140
Mixed 1.07 3.57 140

TL
LET 0.00 0.00 280
BET 0.00 5.00 140
Mixed 0.00 1.07 140
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Chapter 5

Latencies of Distributed
Cause-effect Chains

Recalling Definition 3.2.46 and Definition 3.2.49, one part of the estimation
is still missing, the time to transmit a signal s when send from commu-
nication port a to communication port b: Trans (a, s, b). In this chapter we
therefore discuss the problem of estimating the time needed to communi-
cate a change in a signal value from one ECU to the next. The scenario is
depicted in Figure 5.1. A distributed cause-effect chain runs through dif-
ferent task instances until it reaches the border of ECU A. The information
about the cause having happened is then transmitted to ECU B. In Chap-
ter 3 a hierarchy of different communication artifacts has been defined
to model the network communication in a distributed automotive CPS.
This hierarchy is often neglected in state-of-the-art analyses on network
transmission latencies. A lot of approaches have been presented to estimate
the transmission time on the physical layer. While this is an important
part of the total time needed for transmission, a second, equally important
source of delay is not taken into account. PDUs are not necessarily sent
directly when the signal changes. They have different so-called trigger
conditions. The actual mapping of signals to PDUs and PDUs to PDUs of a
lower layer is determined at run time and depends on different packing
mechanisms. The combination of event-based packing, immediate sending,
and dynamic mapping leads to complex situations where it is not directly
evident whether an updated value is sent with the very next encapsulating
PDU. In Figure 5.1 this might lead to the situation that the change in the
signal value is not transmitted with the third but with the fourth instance
of Frame 1. As a consequence, it might not be received by the third but
the fourth instance of Task 5. Although it does not have an impact in this
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Sequence: Task 1 Ñ Task 4 Ñ Frame 1 Ñ Task 5 Ñ Task 7 Ñ Task 5 Ñ
Frame 2 Ñ Task 4

Task 1
Task 2
Task 3
Task 4
Frame 1
Frame 2
Task 5
Task 6
Task 7
Task 8EC

U
B

Core 2

Core 1

Bus A

EC
U

A

Core 2

Core 1

Figure 5.1. Example of a cause-effect chain with one possible instance-level flow

particular example, this can lead to longer end-to-end latencies in general
and therefore must be addressed by end-to-end analyses.

5.1 Related work

Since software and network communication latencies need to be con-
sidered to obtain end-to-end lantencies, related work comes from two
categories. Approaches to estimate software latencies are discussed in
Chapter 4. The other category of related work is formed by approaches to
estimate the latency due to network communication, i.e. the delay between
a network controller of one ECU and the network controller of the next
ECU in the chain. Respective analyses have been presented for different
automotive field busses [36, 97]. so-called holistic approaches are addition-
ally concerned with parts of the ECU’s software [81]. However, currently
they rely on single-core analyses [82]. To reduce complexity and there-
fore make analysis applicable, compositional approaches were developed.
In compositional performance analysis (CPA) different local scheduling
analyses are combined to obtain end-to-end estimations [106]. CPA got a
lot of research attention, and was used e.g. for the end-to-end response
time analysis in automotive systems [113]. In its basic form however, CPA
suffers from the problem that multiple worst-cases are possibly considered
simultaneously although they can not occur at the same time. Recent work
in the area underlines applicability for industrial-scale use cases [56, 128]
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and improves, i.e. reduces, pessimism on the estimations [76].

5.2 Network Analysis

In this section we analyze the temporal behavior of network communica-
tion artifacts on different levels.

5.2.1 Combining Activation Models

Similar to the arrival curves introduced in [33] we use timing models to
describe the nature of how different events occur. However, unlike the
cumulative function of Network Calculus [27] or the interval bound functions of
Real-time Calculus [129] we do not use them to derive request and response
counts but use them to bound the interval of time in which an event might
occur.

5.2.1 Definition (Timing Model). A timing model is a function m : N Ñ

NˆN which maps the ith occurence of to the first and the last possible
point of time the event might occur.

For elements of the codomain of timing models we use the projection
functions π1 and π2 to access the respective element, e.g. let p = (a, b) P
NˆN, then π1(p) = a and π2(p) = b.

With an eye on CP encoding, it is important that a finite representation
of the timing models is available. That being said, we distinguish two
types of timing models: (1) Periodic Timing Models and (2) Sporadic Timing
Models. Periodic models are used to describe events triggered by periodic
clocks. The time in which these events might occur does not vary. Sporadic
models allow the specification of temporally less predetermined events.
Here, the possible point of time for an occurrence of the event can only
be be narrowed down to a time span. Note, that sporadic events with no
upper bound on the time between two occurrences are not considered
here.

5.2.2 Definition (Periodic Timing Models). A periodic timing model tP
o,p,n :

N Ñ N ˆN is a timing model parameterized with three arguments
offset o P N and period and number of occurrences p, n P Ną0 with
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tP
o,p,n(i) = (ai, ai) where ai = o +

⌈
i
n

⌉
¨ p for all i P N. The family of

periodic timing models is defined by TMP = { tP
o,p,n | o P N, p, n P Ną0 }.

5.2.3 Definition (Sporadic Timing Models). A sporadic timing model
tS
l,u,n : N Ñ NˆN is a timing model parameterized with three arguments

minimum inter-arrival time and number of occurrences l, n P Ną0 and
maximum inter-arrival time u P Nąl with tS

l,u,o(i) = (li, ui) where

li =
⌈

i
n

⌉
¨ l and ui =

(⌈
i
n

⌉
+ 1
)
¨ u

for all i P N. The family sporadic timing models is defined by TMS =
{ tS

l,u,n | l, n P Ną0, u P Nąl }

Let TM = TMP
Y TMS be the set of timing models.

To enable a cut of the analysis, it is necessary to be able to combine
different timing models for an event, e.g. when we want to describe the
timing of signal changes when the is signal value is written from different
runnables. To combine multiple possible time intervals for an event, we
define the \-operator for timing models.

5.2.4 Definition (Union of Timing Models). Let t0, t1 P TM be timing
models. We distinguish three cases:

Case 1 t0 = tP
o0,p0,n0

is a periodic timing model and t1 = tP
o1,p1,n1

is a
periodic timing model.

t0 \ t1 =

{
tP
o,p1,n1 if o0 = o1 ^ mod (pmax, pmin) = 0

tS
l,u,n1 else

with pmin = min { p0, p1 }, pmax = max { p0, p1 }, l = min { p0, p1 } , u =
max { o0, o1 }+ pmax, n1 = n0 + n1, and p1 = pmin.

Case 2 t0 = tS
l,u,n0

is a sporadic timing model and t1 = tP
o,p,n1

is a periodic
timing model.

t0 \ t1 = t1 \ t0 = tS
l1,u1,n1

with l1 = min { l, p }, u1 = max { o + p, u }, and n1 = n0 + n1.
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Case 3 t0 = tS
l0,u0,n0

is a sporadic timing model and t1 = tS
l1,u1,n1

is a
sporadic timing model.

t0 \ t1 = tS
l1,u1,n1

with l1 = min({ l0, l1, |l0 ´ l1| }), u1 = max({ u0, u1 }), and n1 = n0 + n1.

Since we are interested in safe bounds for the end-to-end latencies,
it needs to be assured that the union of two timing models contains all
possible periods of time from both timing models. For this we define the
order relation for containment in Definition 5.2.5 and show that the union
of two timing models A and B contains all occurrences from A and B in
terms of the possible points of time in Theorem 5.2.7.

5.2.5 Definition (Order Relation for Timing Models). We define an order
wĎ TMˆ TM Let t0, t1 P TM be timing models,

t0 w t1 ô @i P N : Dj P N : π1 (t0(i)) ě π1 (t1(j))^

π2 (t0(i)) ď π2 (t1(j)) .

5.2.6 Lemma (Commutativity of \). Let t0, t1 P TM be timing models. Then,
the following holds: t0 \ t1 = t1 \ t0 .

Proof. The cases 1 and 3 of Definition 5.2.4 are build solely on commutative
functions. Case 2 is commutative by definition.

5.2.7 Theorem (Monoticity of \). Let t0, t1 P TM be timing models. It holds
t0 w t0 \ t1 and t1 w t0 \ t1.

Proof. We prove t0 w t0 \ t1. The same cases as in the definition of \ are
distinguished:

Case 1 t0 = tP
o0,p0,n0

is a periodic timing model and t1 = tP
o1,p1,n1

is a
periodic timing model. Let pmin = min { p0, p1 }, pmax = max { p0, p1 },
p1 = pmin, and n1 = n0 + n1. This case has two subcases:

Case 1.1 Assume o0 = o1 and mod (pmax, pmin) = 0. The claim in this
case is:

@i P N : Dj P N : π1

(
tP
o0,p0,n0

(i)
)
ě π1

(
tP
o,p1,n1(j)

)
^
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π2

(
tP
o0,p0,,n0

(i)
)
ď π2

(
tP
o,p1,n1(j)

)
.

For an arbitrary i P N, this means that j P N needs to be found such that⌈
i

n0

⌉
¨ p0 ď

⌈
j

n1

⌉
¨ p1 and

⌈
i

n0

⌉
¨ p0 ě

⌈
j

n1

⌉
¨ p1

If p1 = p0, the two inequations can be satisfied by setting j =
⌈

i
n0

⌉
¨ n1.

Otherwise, p1 = p1 and due to the assumptions of Case 1.1, there must be
a d P N such that p1

p0
= d. Therefore, setting j =

⌈
i

n0

⌉
¨ n1 ¨ d satisfies both

inequations.

Case 1.2 Assume o0 ‰ o1 or mod (pmax, pmin) ‰ 0. Let l = min { p0, p1 }
and u = max { o0, o1 }+ pmax, then the claim in this case is:

@i P N : Dj P N : π1

(
tP
o0,p0,n0

(i)
)
ě π1

(
tS
l,u,n1(j)

)
^

π2

(
tP
o0,p0,n0

(i)
)
ď π2

(
tS
l,u,n1(j)

)
.

For an arbitrary i P N, this means that j P N needs to be found such that⌈
i

n0

⌉
¨ p0 ě

⌈
j

n1

⌉
¨ l and

⌈
i

n0

⌉
¨ p0 ď

(⌈
j

n1

⌉
+ 1
)
¨ u.

Setting j =
⌈

i
n0

⌉
¨ n1 will satisfy this equation because

ď o0 + p0 ě `ñ @n P N : n ¨ p0 ě n ¨ `

ñ @n P N : o0 + (n ¨ p0) ě n ¨ `

and

o0 + p0 ď u ñ @n P N : (n ¨ (p0 + o0)) ď n ¨ u

ñ @n P N : o0 + (n ¨ p0) ď n ¨ u.

Case 2 Let tS
l,u,n0

be a sporadic and t1 = tP
o,p,n1

be a periodic timing model.
Furthermore, let l1 = min { l, o }, u1 = max { o + p, u }, and n1 = n0 + n1.
In this case we have to prove two sub-cases.

Case 2.1 t0 w t0 \ t1. In this case, the claim is

@i P N : Dj P N : π1

(
tS
l,u,n0

(i)
)
ě π1

(
tS
l1,u1,n1(j)

)
^
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π2

(
tS
l,u,n0

(i)
)
ď π2

(
tS
l1,u1,n1(j)

)
.

For an arbitrary i P N, this means that j P N needs to be found such that⌈
i

n0

⌉
¨ l0 ě

⌈
j

n1

⌉
¨ l1 ^(⌈

i
n0

⌉
+ 1
)
¨ u0 ď

(⌈
j

n1

⌉
+ 1
)
¨ u1.

Setting j =
⌈

i
n0

⌉
¨ n1 will satisfy both inequations since l1 ď l and u1 ě u

as per definition of l1 and u1.

Case 2.1 t1 w t0 \ t1. In this case, the claim is

@i P N : Dj P N : π1

(
tP
o,p,n0

(i)
)
ě π1

(
tS
l1,u1,n1(j)

)
^

π2

(
tP
o,p,n0

(i)
)
ď π2

(
tS
l1,u1,n1(j)

)
.

For an arbitrary i P N, this means that j P N needs to be found such that⌈
i

n0

⌉
¨ p0 ď

⌈
j

n1

⌉
¨ l1 ^⌈

i
n0

⌉
¨ p0 ď

(⌈
j

n1

⌉
+ 1
)
¨ u1.

Since again l1 ď o + p and u1 ě o + p this case follows analogously to
Case 1.2.

Case 3 t0 = tS
l0,u0,n0

is a sporadic timing model and t1 = tS
l1,u1,n1

is a
sporadic timing model. Let l1 = min { l0, l1 }, u1 = max { u0, u1 }, and
n1 = n0 + n1. Then, the claim is:

@i P N : Dj P N : π1

(
tS
l0,u0,n0

(i)
)
ě π1

(
tS
l1,u1,n1(j)

)
^

π2

(
tS
l0,u0,n0

(i)
)
ď π2

(
tS
l1,u1,n1(j)

)
.

This case follows analogously to Case 2.1.

Commutativity of \ also provides t1 w t0 \ t1 for all three cases.

Theorem 5.2.7 allows us to combine arbitrary timing models for events.
In the next section we use this to describe the complex temporal behavior
of different PDU triggers.
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5. Latencies of Distributed Cause-effect Chains

Based on the system model described in Chapter 3 our formal model to
describe the temporal behavior of the communication artifacts comprises
four types of elements: (1) signals, (2) PDUs, (3) frames and (4) communica-
tion tasks. For each element type we distinguish two types of variables:
(1) input parameter, and (2) modeling variables. The input parameter
of a task include a timing model for its activation and a deadline. Any
frame which is in triggered state when the task is activated is copied
from global memory to the buffer of the communication controller. We do
not analyze the time needed for copying buffers and calculating message
authentication codes here. Although the model can be extended to be used
for such analyses, the processing time of messages in the communication
task is just assumed to meet all deadlines here. Finally, we assume that
the communication controller immediately tries to put the frame on the
physical medium. The input parameter for a signal consists of a single
timing model and a reference to a PDU. Signal changes are generated by the
runnables of the transmitting ECU. For each producing runnable, a timing
model describing the points of time the signal value possibly changes is
derived from the activation model of the task. These timing models are
summed up with the help of the \-operation. The resulting timing model
is the aforementioned input. The input parameters of a PDU are more
diverse. First of all, the different triggering options have to be considered.
Besides a direct triggering by contained signals, this can be a threshold
for the filling level, and a timeout. Furthermore, for PDUs which are en-
capsulated in dynamically filled container PDUs, the collection semantics are
needed to describe possible behaviors. The collection semantics can either
be last-is-best or queued. Queued collection semantics guarantee that every
instance of the contained PDU is visible on the wire (cf. [12]). Thirdly, the
maximum length and the size of the threshold for triggering need to be
known to determine a triggering due to the filling level. Finally, a reference
to the encapsulating frame is included in the set of input parameters for a
PDU. The input parameters of a frame comprise its priority for arbitration,
its length and a reference to the communication task responsible for its
transmission. These parameters are specific for CAN-FD and might need to
be adjusted for other physical layer protocols.

Besides its input parameters, each model element has different types
of modeling variables subjected to the modeling constraints. Firstly, there
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Table 5.1. Time Variables of Network Model Elements

Element Variable Event description
Signal ϕS

i,j The time span for the jth change of signal i
PDU αP

i,j The time span in which the jth instance of PDU i is triggered
PDU σP

i,j The time span in which the jth instance of PDU i is moved to the lower
level buffer

Frame αF
i,j The time span in which the jth instance of frame i is triggered

Frame σF
i,j The time span in which the jth instance of frame i is tried to be sent

by its sending communication task
Frame εF

i,j The time span in which the jth instance of frame i is fully received by
its receiving communication task

Task αP
i,j The time span for the activation of the jth instance of task i

Task εP
i,j The time span for the completion of the jth instance of task i

are the time related variables listed in Table 5.1. Secondly, each instance
of any element is encapsulated in an instance of a lower-layer element.
This is modeled in the parameter n for the types signal (nS), PDU (nP) and
frame (nF). It contains a reference to the instance of the container for each
occurrence of the respective element. For frames the semantic is slightly
different as n contains the instance of the transmitting communication task
in this case. Thirdly, in order to obtain safe estimations, a minimum amount
of occurrences of each element needs to be considered. Therefore, assume
that T covers a sufficient period of time in which all combinations of
relative offsets between occurrences of the timing models appear. Bounds
on the length of this period are discussed below. Furthermore, set Tsup =
sup (T) a value to indicate invalid points of time. The maximum number
of occurrences can be computed for most model elements, if this time
interval is fixed. For all the remaining elements, i.e. the container PDUs,
the number of occurrences has to be derived from the occurrences of the
contained elements. Let ΩS

i = { occ_minS
i , . . . , occ_maxS

i } be the index set
for the occurrences of signal i. Let ΩP, ΩF, and ΩT hold the index set of
occurrences for PDUs, frames, and tasks respectively.

The update of a signal value is modeled with the help of a timing
model as described above. Let tS

i be the timing model of signal i. Note that
tS
i can be sporadic or periodic. The S indicates that it belongs to a signal

here. The following constraint is added to the model for all j P ΩS
i :

ϕS
i,j ě π1

(
tS
i (j)

)
^ ϕS

i,j ď π2

(
tS
i (j)

)
(5.2.8)
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When a signal value was updated, the so-called update bit is set. The
update of the value then eventually triggers the sending of a PDU. However,
since we are interested in the transmission time for the changed value, we
also need to model in which occurrence of its designated container (PDUS)
the update is transmitted. This is done by adding the following constraints
for all signals i and their occurrences j P ΩS

i :

@k P ΩP
` : (ϕS

i,j ą σP
`,k´1 ^ ϕS

i,j ď σP
`,k)Ñ (nS

i,j = k) . (5.2.9)

As described above two different events have to be considered for
the triggering of PDUs : triggering due to timeout modeled by αP´T , and
triggering due to transmission request by containees modeled by αP´E. If
no clock triggering is configured, αP´T is set to Tsup. Analogously, if a PDU

is not triggered by any containee, αP´E is set to Tsup. The containees of a
non-container PDU i are signals. Accordingly, the following constraint is
added for all j P ΩP

i :

αP´E
i,j = min { ϕS

`,k | ` P sigsP
i , k P ΩS

` ^ nS
`,k = j } . (5.2.10)

For container PDUs, possibilities for triggering are more complex. The
following points of time are considered conditionally: the point of time the
first containee was triggered αP´C1

i,j , the point of time the first containee

was triggered plus the timeout of the container αP´CT
i,j , and the point

of time the length of the contained PDUs exceeds the threshold of the
container αP´Cn

i,j . To detect a triggering of a container PDU due to exceeding
of the threshold, the filling level needs to be determined. To this end, we
introduce an additional variable foreach instance j of a PDU i, lenP

i,j, which
contains the total length of the PDU. Additionally, for a pair of PDUs i and
j and each instance j of i and k of ` we add an auxiliary variable cP

i,j,`,k
which holds 1 if k is contained in j and 0 otherwise, i.e.

cP
i,j,`,k =

{
1 if ` P PDUP

i ^nP
`,k = j

0 else
(5.2.11)

for all PDUs i, ` and j P ΩP
i , k P ΩL

i .
Depending on the collection semantics, an instance of a PDU might be
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overwritten if its container is not send between two updates. This means,
that cP is 1 for two instances of the contained PDU. To model the fact that
an instance k of a PDU ` might be overwritten by a subsequent instance in
the instance j of its container PDU i, we add an additional variable oP

i,j,`,k
with

oP
i,j,`,k =

{
1 if cP

i,j,`,k = 1^ Dk1 P ΩP
` : k1 ą k^ nP

`,k1 = j

0 else
(5.2.12)

for all PDUs i, ` and j P ΩP
i , k P ΩP

` .
The length of a non-container PDU is fixed, based on the contained

signals and a fixed-size header. The length of a container PDU depends
on its PDU layout. If it has a static layout, the length is fixed. Otherwise,
if it has a dynamic layout, the collection semantics of the contained PDUs
is the crucial factor. If the collection semantic is last-is-best the content in
the container can be overwritten. Otherwise, if the collection semantic
is queued, multiple instances of the same PDU can be transmitted in one
container. Note, that we assume that containers cannot be nested. The
actual length of a container can therefore finally be calculated by summing
the length of all not-overwritten containee instances, i.e.

lenP
i,j = lengthP´H

i + ∑
`PPDUP

i ,
kPΩP

`

(1´ oP
i,j,`,k) ¨ c

P
i,j,`,k ¨ lenP

i,j (5.2.13)

for all PDUs i, ` and j P ΩP
i , k P ΩP

` where lengthP´H
i is the length of the

header. In order to ensure correct modeling of the collection semantics,
the following constraints are added conditionally:

ni,j ď ni,j+1 if i is collected last-is-best (5.2.14)

ni,j ă ni,j+1 if i is collected queued (5.2.15)

To determine the possible point of time for the triggering of a container
PDU, the minimum of the values is used:

αP
i,j = min { αP´C1

i,j , αP´CT
i,j , αP´Cn

i,j } . (5.2.16)

If one of the triggers is not applicable, the respective value is set to Tsup.
This means, if αP

i,j = Tsup the instance of the container PDU has not been
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triggered and must not be considered further if not triggered due to a
timeout. Finally, the triggering of an instance j of an PDU i happens at the
first point of time it is possibly triggered by any of the described triggers,
i.e.

αP
i,j = min { αP´E

i,j , αP´T
i,j } (5.2.17)

for all PDUs i and PDU occurrences j P ΩP
i .

Given αP
i,j it can be described in which occurrences of the encapsulating

PDU (PDUP) j is possibly transmitted. However, since we are considering
container PDUs with dynamic layouts decided at runtime, a PDU is not
necessarily sent within the next instance of a container. In other words, if
the container PDU is already filled to capacity, the containee has to wait
until the next instance is sent. To model this, we constrain all instances of
the container which are sent between the instance encapsulating the an
instance j of an PDU i and the point of time j was triggered to be too full
to contain j. The variable nP

i,j holds index of the encapsulating instance

for all PDUs i and j P ΩP
i . The variable fnP

i,j holds the index of the first
instance which is a candidate for encapsulation, i.e. for all PDUs i and PDU

occurrences j P ΩP
i which are mapped to a container PDU `,

fnP
i,j = min

(
{ occ_maxP

` }Y { k | k P ΩP
` ^ αP

`,k ě αP
i,j }
)

. (5.2.18)

If the collection semantic of the PDU i into the container PDU ` is queued,
the following constraint is added for each occurrence j in j P ΩP

i :

@k P ΩP
` : (k ě fnP

i,j ^ k ą nP
i,j´1 ^ k ă nP

i,j])Ñ (lenP
`,k + lenP

i,j ą lengthP
` ).

(5.2.19)

Otherwise, if the collection semantic of the PDU i into the container PDU

` is last-is-best, the constraints for j in j P ΩP
i are depending on whether

an instance of the same PDU is already part of the container. If this is the
case, the content would simply be overwritten. Otherwise, if there exists
no j1 P ΩP

i z { j } such that nP
i,j1 = k, the following constraint needs to be

added:

@k P ΩP
` : (k ě fnP

i,j ^ k ă nP
i,j)Ñ (lenP

`,k + lenP
i,j ą lengthP

` ). (5.2.20)
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It is important to note that in this case, instances of PDU i must be excluded
when computing the length of ` as previously contained instances would
be overwritten.

Together with the constraint for the length of a container PDU, the
Constraints 5.2.19 and 5.2.20 assure that no non-full container can be sent
if one of its contained PDU is queued for sending and could fit into the
container instance lengthwise.

Once triggered, the frame is queued for transmission on the bus. There-
upon, the frame data is copied from global memory to the buffer of the
communication controller by the next instance of the responsible com-
munication task. Therefore, in order to get the relative temporal distance
between sending and receiving communication task, the possible point of
time it was queued for transmission needs to be tracked for an instance
of a frame. The following constraint is added for all frames i and their
instances j P ΩF

i :

αF
i,j = min { αP

`,k | ` P PDUF
i , k P ΩP

` ^ nP
`,k = j } . (5.2.21)

In the following, we describe the constraints needed to model CAN
FD networks. They can easily be plugged in by adding the corresponding
constraints. The constraints listed up to this point can consequently be
reused for other bus types. Let iTx be the communication task for frame i
and jTx be the first instance of this iTx after occurrence j of i was queued
for transmission. Furthermore, let αT

iTx,jTx be the activation time of this

task and frameHP
i the set of frames which have a higher priority than i.

The following constraint is added to model the start of transmission:

σF
i,j = max { αT

iTx,jTx }Y { εF
`,k | ` P frameHP

i , k P ΩF
` ^ σF

`,k ď σF
i,j } .

(5.2.22)

For CAN FD, the transmission time of a frame is resulting from an
arbitration phase and the time the bits are transmitted on the physical
medium. In the arbitration phase, all nodes of the network agree on the
node allowed to transmit next. The node trying to transmit the frame with
the highest priority is allowed to continue sending after arbitration. From
Constraint 5.2.22 it can be inferred that the occurrence j of frame i has the
highest priority at point of time σF

i,j. Therefore, the end of transmission εF
i,j
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can be calculated in the following way:⌊
tarb + (lenF

i,j ¨ tbit)
⌋
ď εF

i,j ď
⌈

tarb + (lenF
i,j ¨ tbit)

⌉
(5.2.23)

where tarb worst-case time needed for arbitration and tbit is the time
needed to transfer one bit of data. The length of the instance j of frame
i, lenF

i,j, can be computed analogously to the PDUs (cf. Constraint 5.2.13).

With the help of εF
i,j the instance of the communication task at the receiving

ECU can be determined. The time between the initial change of the signal
and the deadline of this task is the time needed for a value change of this
signal to be transferred from the global memory of one ECU to the next.
Note, that we do not analyze the behavior of the communication tasks
here. Although details about their internal behavior can be added to the
model, we currently just assume that all processing is done within the
respective deadlines.

Given all constraints for a set of network artifacts, a constraint solver is
deployed to obtain the worst-case transmission time. The solver searches
all satisfying assignments for the one modeling the longest transmission
time. This emulates an exhaustive search if all situations are covered. To
guarantee this, all possible relative offset between the PDU containing the
objective signal and all PDUs possibly causing a delay of this PDU needs
to be covered. If all relevant PDUs are triggered by periodic timers or
periodically changing signals, the least common multiple of these periods
covers all relative offsets. If sporadic events are included, a lot more relative
offsets are possible. However, in this case the solver freely chooses values
between the first and last possible point of time for the event to happen
(cf. Constraint 5.2.8). For practical application, it is furthermore important
that T covers a sufficiently large time interval such that it is possible
that all PDUs which are triggered can also be sent, i.e. an instance of the
communication task responsible for sending must be added for each frame
possibly in queue.
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5.3 Solving

An introduction to the solving process is given in Section 4.5. Again,
most of the constraints can directly be translated. Nevertheless, some
particularities apply for the network model. They are are described in
Section 5.3.1. How the DataZinc is generated for a cause-effect chain from
our formal data model is described in Section 5.3.1.

5.3.1 MiniZinc Model

The constraints modeling the temporal behavior of signal changes and
the resulting PDU triggerings are again implemented in a MiniZinc model.
The constraints on the timing models of the signals can be implemented
analogously to the timing models of tasks as presented in Listing 4.5. All
other constraints have a rather longish representation in MiniZinc. Due
to their length we can not discuss all constraints in detail here. A version
of the full model including the case study data used in Section 5.3.3 is
available online [29]. To include a small example at least, two of the core
constraints are discussed in this section and can be found in Appendix 6.6

The constraints to model which occurrence of an PDU is used to transfer
a change in a signal value are listed in Listing 7. We can see that the
different rules have a direct and speaking representation in MiniZinc.

The constraints to model the triggering of a PDU are given in Listing 7
and Listing 8. Here we see even more complex rules. In the author’s
opinion, the MiniZinc representation is now at the limits of what can be
called easy comprehensible at first glance. Nevertheless, the different cases
and rules for triggering can be identified on a closer look.

5.3.2 DataZinc Generation

The generation of DataZinc is based on the information stored in the
TimingAttributes-relationships (see Appendix 6.6). The only information
additionally needed is the timing model of each signals. They can be
derived using Algorithm 4. Note, that this algorithm does not support
sporadic activation models as they have no upper bound on the time be-
tween two changes. This potentially leads to huge overestimation, however,
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Algorithm 4: Generate Timing Model for a Signal

1 TimingModel Signal S, Task T, Tasks T
2 m ÐH

3 a Ð Task.ActivationModel(T)
4 d Ð Task.Deadline(T)
5 for R P SoftwareTask.Runnables(T) do
6 if NetworkSignal.SignalName P RunnableEntity.Output

then
7 n ÐH

8 if a P PeriodicActivationModel then
9 n Ð PeriodicActivationModel.Period(a)

10 o Ð PeriodicActivationModel.Offset(a)
11 n Ð i ÞÑ ((i ¨ n) + o, (i ¨ n) + o + d)
12 else if a P ChainedActivationModel then
13 id Ð ChainedActivationModel.Predecessor(a)
14 P Ð find task with id id in T
15 n Ð TimingModel(S, P, T )
16 else if a P BoundActivationModel then
17 l Ð BoundActivationModel.MinDt(a)
18 u Ð BoundActivationModel.MaxDt(a)
19 n Ð i ÞÑ ((i ¨ n) + o, (i ¨ n) + o + d)
20 if m = H then
21 m Ð n
22 else
23 m Ð m\ n

24 return m

signals generated by interrupts with no upper bound a usually sampled
in periodic tasks before they are send via a network.

5.3.3 FlatZinc Solving and Results

FlatZinc solving is performed in the same way as described in Section 4.5.
Again the solution provided by the CP-solver allows to draw conclu-

sions on the situation resulting in the worst-case latency. In this case, the
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temporal order of the sending trigger on different layers can be tracked.
It can be visualized which PDU is encapsulated in which lower-layer PDU

and at which point of time the PDUs are processed, e.g. in a representation
like depicted in Figure 3.3.

Following the same argumentation as in the previous chapter, an upper
bound on for the end-to-end latency under the assumptions we made is
estimated, if the constraint model is correct.

5.4 Model Application

In this section we want to prove the practical applicability by carrying out
different evaluations.

ECM CPCM TCM

ECM CAN TCM CAN

Figure 5.2. Case-Study: Topology and Chain

We analyzed the worst-case time for the transmission of eight different
signals, four contained in dynamic container PDUs, four being part of
the cause-effect chain depicted in Figure 5.2. The first-mentioned signals
represent status updates sent from the ECM and TCM to the CPCM. The
cause-effect chain on the other hand is a control loop and has two parts.
The first part of the chain describes the data flow when the TCM sends
a request for torque to the ECM. The CPCM checks the requests before
forwarding it to the ECM. After providing torque to the extend possible,
the ECM reports to the CPCM. The answer of the ECM is directly routed from
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Table 5.2. Resource Usage for Compiling and Solving the Model

Sender Receiver Signal Compiler Solver Result
s kbyte s kbyte µs

ECM CPC Status A 2:29 4,435,568 2:30 57,462,088 ˚ 15500
ECM CPC Status B 2:28 4,441,504 2:16 60,797,024 ˚ 20500
TCM CPC Status C 0:55 1,723,920 0:46 8,772,148 15500
TCM CPC Status D 0:52 1,723,896 1:03 9,863,388 15500
TCM CPC Request 1 0:52 1,723,808 0:41 8,499,072 11250
CPC ECM Request 2 2:24 4,432,880 3:02 19,298,896 12500
ECM CPC Response 1 2:27 4,466,500 2:45 91,870,500 5500
CPC TCM Response 2 0:56 1,734,188 0:49 9,050,628 6000

˚Running instances of the solver were interrupted after the optimum was found.

the ECM CAN to the TCM CAN for fast reception at the TCM.
The experiments were carried out on a desktop computer equipped

with an Intel(R) Core(TM) i9-7940X CPU and 128GB of memory. The time
and memory needed to compile the MiniZinc model as well as the time
and memory needed for solving the FlatZinc model by 16 instances of
Chuffed working in parallel are shown in Table 5.2. The amount of memory
needed for the verification of the transmission time of Response 1 suggest
that the model needs further investigation on scalability regarding memory
usage. Unfortunately, a generic benchmark to generate configurations for
CAN to carry out more general tests is currently not available.

5.5 System-level End-to-end Analysis

Recalling Definition 3.2.46 and Definition 3.2.49, only part of the esti-
mations is missing which is mentioned briefly in Definition 3.2.39. The
scheduling on each ECUs is based on an oscillator having a nominal clock
speed. These clocks possibly do not meet their exact frequencies which
leads a drift between the clocks. Depending on whether synchronization
mechanism are used to put a bound on the maximum possible drift or
not, the differences in the speeds of the ECUs have to be considered in the
estimation. The model presented in this chapter therefore uses one ECU as
the current time base and allows to specify a drift between the communi-
cation tasks. This drift is bound by the maximum of the frequencies of the
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involved communication tasks.
An end-to-end estimation is finally achieved by deploying the software

model and the network model alternatingly to estimate the latency of soft-
ware chains and the time to transmit the changes in signal values between
ECUs. Since the start and end of the analyzed sub-problems overlap at
the communication tasks, the context loss in this is minimal: the software
chain on the next ECU surely starts with the receiving communication task
and from here on, all relative offsets between the other tasks of the ECU

have to be considered either way.

5.6 Summary and Conclusion

In this chapter we closed the gap in the present methodology for end-to-
end latency estimation by developing an approach allowing to estimate
the time needed to transmit a change in a signal value from one ECU

to another. We discussed how end-to-end latencies can be obtained in
in synchronized and un-synchronized CAN-FD communication clusters.
Future work may be conducted in the direction of the included software
shares in the communication tasks, e.g. due to message authentication and
further investigation on the trade-off between precision and computational
effort when comparative figures from other approaches are available.

137





Chapter 6

Measurement Data Analysis

In this chapter we approach the problem of latency analysis from a dif-
ferent perspective. While Chapter 4 and Chapter 5 are concerned with
techniques for the formal analysis of end-to-end latencies, in this chapter a
method to analyze the systems performance based on measurement data
is presented. It is based on the specification language EC.Lang which is
used to specify searches for cause-effect chain instances in measurement
data, i.e. in a set of system runs. The search is based on the changes in
signal values which occur in the course of the chain. For a clear distinction
between the formal analysis of the previous chapter and the data based
analysis in this chapter, we refer to these changes as events in the following.
The result of the analysis is a set of latencies, collected and aggregated for
all event chain instances found.

6.1 Related work

EC.Lang closes the gap existing between well-studied temporal logic
and an easy-to-use language for the specification of measurement data
evaluations tailored for event chains.

Approaches to meet the demand for using time within a formal spec-
ification of sequential programs exist for a long time, e.g. [85, 59, 23].
More recent approaches for combining control and data-flow with time are
concerned with the formal specification of distributed systems [37, 65].

At about the same time timing-aware programming languages were
first introduced, temporal logic was used the first time as a basis for the
formal verification of the correct behavior of time-constraint systems [44,
77, 2]. Note that quantative here refers to the assertions being quantita-
tive. Recent advantages in this area include the combination of signal
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temporal logic (STL) with timed regular expressions (TRE) [98] and time-
stamp temporal logic [93]. Furthermore, real-time regular expressions with
event-support have been presented in [63]. The approach described in [63]
supports a discrete-time and real-time goto operation and event concatena-
tion. Event concatenation can be used to connect events to chains and the
goto-operation allows to move back and forth in evaluation-time. However,
it does not allow to use the value of a signal at the time of a first event
to be retrieved when a second event is matched. For the extended signal
temporal logic a quantitative semantic was presented in [46]. It allows
to collect numerical performance measures such as the average response
time. The collected results are collected in a match set with start and end
point of time in which the signals match the timed regular expression.
However, this does not allow for the different parts of the chain to be
tracked individually. In Section 6.3.3 we discuss why more differentiated
semantics in the context of evaluations for event chain is needed.

Based on different dialects of diverse temporal logics, tools have been
implemented to support formal verification of MATLAB/Simulink models,
e.g. Breach [40] and S-TaLiRo [5]. Furthermore, tools allowing for the
general analysis of measurement data based on timed regular expressions
have been presented. Montre [135] is a tool supporting TRE pattern match-
ing with no graphical user interface (GUI). AMT 2.0 is a Java-based GUI

tool supporting offline monitoring of TRE and STL with several features
like, e.g. parameterized property templates [98].

Our work addresses the formal specification of offline analyses. Closely
related to this are languages used for the formal specification of run
time monitoring, e.g. [18, 34]. Furthermore, the temporal stream-based
specification language (TeSSLa) [90, 30] needs to be mentioned. TeSSLa is a
specification language for monitoring signal streams with a strong focus
on online monitoring. It includes a last-operator which allows to query the
last value of an so-called event stream after a certain point of time.

Although solutions which allow to analyze the context between two
events have been proposed earlier, EC.Lang is the first approach dedicated
to complex chains with quantitative semantics. In Section 6.3.3 we discuss
the particular need of a chain context for response-time evaluation of event
chains. With chain context we mean that, in order to check whether a
response matches a request, the quantity of the request at request-time
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needs to be known when possible responses are evaluated.

6.2 Measurement Data Acquisition

As discussed in Chapter 1, an important prerequisite for dependable
results is that the system runs analyzed cover a significant part of systems
stimuli. This is a general problem of measurement-based approaches
which is not further addressed here. However, one consequence is that

EC.Lang is designed to be independent from the source of measure-
ment data. Nevertheless, the following assumptions must hold: (1) the time
values of all measurement points are synchronized and (2) the reading is
complete when the analysis starts.

Measurement data can consequently be acquired by software in the
loop (SIL), hardware in the loop (HIL), and in-car experiments or even simu-
lations. A plethora of commercial tools is available to obtain measurement
data at different stages of the development process, like e.g.

Ź Silver a SIL software by QTronic Gmbh

Ź TA Tool Suite a simulation tool suite by Vector Informatik GmbH

Ź T1 a tool for software instrumentation by GLIWA GmbH

Ź CANOE a measurement and simulation tool Vector Informatik GmbH

Ź ControlDesk a HIL software by dSPACE GmbH

Ź INCA a measurement and calibration tool by ETAS GmbH

6.3 EC.Lang

In this section EC.Lang is presented. It was first published in [53].

6.3.1 Syntax

In this section we define the syntax of EC.Lang. The syntax comprises three
types of expressions: Signal Expressions, Propositional Signal Expressions, and
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Chain Segment Expression. Signal Expressions are used to combine signals and
constants arithmetically to define additional, derived signals. Propositional
Signal Expressions map signals values to a truth value at points of time
in T. They are used to specify the occurrence of events in course of an
event chain. Finally, these events are combined to chains in Chain Segment
Expressions.

Signal Expressions are recursively defined based on signals, constants,
and a fixed unary operator Delta which operates on signals only. The Delta-
operator is used to obtain the change in value of a signal with respect to
an interval of time. This is needed to identify jumps in signals which are
the cause of almost every event. Signal Expressions can be connected via
arithmetic operators.

6.3.1 Definition (Signal Expression). The set of signal expressions EXPS
of type k P T is recursively defined as:

1. (Signals)
The identifier of a signal can be used as a placeholder for the signal
value at some point of time. More precisely, for (id, D) PM a signal of
type k, id is a signal expression of type k.

2. (Constants)
Every constant c P Dk is a signal expression of type k.

3. (Binary Arithmetic Expression)
Let ˝ P {+,´, ¨,˜ } and op0, op1 P EXPS. Then,

op0 ˝ op1 P EXPS

if the type of op0 equals the type of op1.

4. (Delta Expression)
Let op P EXPS and dt P Qą0. Then,

delta (op, dt) P EXPS .

Signal Propositional Expressions are recursively defined based on simple
propositions, e.g. relational expressions. Signal Propositional Expressions can
be connecteted via logical connectives.
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6.3.2 Definition (Propositional Signal Expression). Let EXPS be a set of
signal expressions. The set of propositional expressions EXPP over EXPS
is recursively defined as:

1. (True and False)
false P EXPP and true P EXPP.

2. (Negation)
Let op P EXPP. Then,  (op) P EXPP.

3. (Binary Propositional Signal Expression)
Let ˝ P {^,_ } and op0, op1 P EXPP. Then,

op0 ˝ op1 P EXPP .

4. (Relational Expression)
Let ˝ P {=,ď,ă,ą } and op0, op1 P EXPS of type k. Then,

op0 ˝ op1 P EXPP .

Signal Expressions and Propositional Signal Expressions are the basis for
the core of EC.Lang: Chain Segment Expression (CSE). A CSE either denotes
a start of a chain or a hop to the next segment. The start of a chain is given
when the signals show a specific, well-defined behavior, e.g. the signal
value changes by a certain amount within a certain amount of time. We
say, an instance of a chain is triggered, the behavior defined in a start-
expression is observed. EC.Lang now allows to keep track of the value
of an arithmetic expression at the point of time the chain was triggered.
This value is subsequently available to determine whether the request
was answered appropriately at following hops. Since part of the correct
response might also include the time needed to answer, additionally, a
predicate to check whether the response meets timing constraints can be
specified. The end of a chain is implicitly given if an expression does not
have a successor.

6.3.3 Definition (Chain Segment Expression). Let EXPP be a set of propo-
sitional expressions over a set of signal expressions EXPS. The set of chain
segment expressions EXPC is recursively defined as:
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1. (Start of Chain)
Let X P S be an identifier, e P EXPS be a signal expression, and c P EXPP
be a propositional expression. Then,

(X Ð e if c) P EXPC .

We call X the identifier of the expression.

2. (Hop)
Let X, Y P S be identifiers, e P EXPS be a signal expression, c P EXPP
be a propositional expression. λv be a predicate with λv : (Γˆ Γ) Ñ
{ false, true }, and λt be a predicate with λt : (QˆQ)Ñ { false, true }.

Then,
(X Ð Yd e if c where λt and λv) P EXPC .

X is called the identifier of the expression and the expression identified
by Y is called its predecessor.

6.3.2 Semantic

Each type of EC.Lang expression introduced in the previous section has
different semantics. The semantics of a signal expression are functions
mapping discrete points of time to valuations of a type. To obtain a
valuation between two sampling points, we rely on the last valid value
measured. Accordingly, for a signal, the valuation at point of time t is the
last valid value before t.

6.3.4 Definition (Semantic of Signal Expressions).

The semantic function J ¨ KEXPS
: EXPS Ñ (T Ñ Ω) maps every E P

EXPS to a function returning valuations for points of time. It is recursively
defined as:

1. (Signals)
J(id) KEXPS

= v with (id, D) PM the signal id of type k and

v(t) =

{
Kk if t ă min (T(D))

vi otherwise

where i = min
(
{ |D| }Y

{
j | tj P T(D)^ tj ě t

})
.
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2. (Constants)
J c KEXPS

= v with v(t) = c.

3. (Binary Arithmetic Expression)
J op0 ˝ op1 KEXPS

= t ÞÑ J op0 KEXPS
(t) ˝ J op1 KEXPS

(t)

Note, that syntactic restrictions assure that only expressions of the same
type might be operands of an arithmetic expression.

4. (Delta expression)

J delta (op, dt) KEXPS
= t ÞÑ (J op KEXPS

(t)´ J op KEXPS
(t´ dt))

Based on the semantic of Signal Expressions the semantic function of
Propositional Signal Expressions determines whether a predicate over one or
multiple signals holds true at some point of time t P T.

6.3.5 Definition. Semantic of Propositional Signal Expression
The semantic function J ¨ KEXPP

: EXPP Ñ (T Ñ { false, true }) maps every
E P EXPP to a function which evaluates whether the proposition holds at
a point of time. It is recursively defined as:

(True and False)
J false KEXPP

= t ÞÑ false and J true KEXPP
= t ÞÑ true.

(Negation)

J (op) KEXPP
= t ÞÑ

{
true if J op KEXPP

= false
false otherwise

(6.3.6)

(Binary Propositional Signal Expression)
Let ˝ P {^,_ } be a logical connective. The semantic of the binary propo-
sitional expression using operator ˝ is:

J op0 ˝ op1 KEXPP
= t ÞÑ J op0 KEXPP

(t) ˝Bool J op1 KEXPP
(t) (6.3.7)

where ˝Bool stands for the corresponding Boolean operation.
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(Relational Expression)
Let ˝ P {=,ď,ă,ą } be a relational operator. The semantic of the relational
expression using operator ˝ is:

J op0 ˝ op1 KEXPP
= t ÞÑ J op0 KEXPS

(t) ˝k J op1 KEXPS
(t) (6.3.8)

where ˝k is the corresponding relational operator for type op0 and op1.
Note that syntactic restrictions assure, that only expressions of the same
type get compared.

Finally, based on Signal Expression and Propositional Signal Expression
we define the semantics of CSEs. The semantic function for CSEs makes use
of nested lists. Therefore, let

D` =
{
((t1, v1), . . . , (t`, v`))

∣∣ tj P Q, vj P ΩY {K }
f.a. j P { 1, . . . , ` }

}
denote set of lists of trace data points of length ` for all ` P N. Furthermore,
let

T =
{
(d1, . . . , dm)

∣∣ m P N, di P D`

f.a. i P { 1, . . . , m } and ` P Ně1
}

denote the set of lists of lists of trace data points where the inner lists have
equal lengths. Since the codomain of the semantic function is a set of lists
of lists, the author wants to recall that the definitions related to lists are
given in Chapter 2.

To evaluate a CSE, i.e. calculate its semantic, a set of further CSEs is
needed to calculate the semantics of potential predecessors. The semantic
of the successor is then appended as defined in Definition 6.3.9. In that,
P (EXPC) denotes the power set of the set of CSEs. We assume that each set
of CSEs E is well-formed in the sense that f.a. E P E , if E is a Hop Expression,
the predecessor of E is also contained in E and that all identifiers of CSEs
are unique.

6.3.9 Definition (Semantic of CSEs).
The semantic function J ¨ KEXPC

: P (EXPC)ˆ EXPC Ñ T maps a set of CSEs
and a single CSE E to a list of lists where each inner list is the semantic of
the predecessor of E extended by the chain segment described in E. It is
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recursively defined as:

1. (Start of Chain)
Let E = X Ð e if c. Then,

J(E , E) KEXPC
= (Ti)

`
i=1 (6.3.10)

with a sequence Ti = ((t, v)) where

v = J e KEXPS
(t) (6.3.11)

for every t P T with

J c KEXPP
= true^ J e KEXPS

(t) ‰ Kk . (6.3.12)

2. (Hop)
Let E = X Ð Yd e if c where λt and λv and

Pred = J y KEXPC
, y P E and y identified with X (6.3.13)

Then,

J(E , E) KEXPC
= (Ti)

`
i=1 (6.3.14)

with a sequence of the form

Ti = ((t0, v0), . . . , (tm, vm), (t, v)) (6.3.15)

where

((t0, v0), . . . , (tm, vm)) = elemi (Pred) (6.3.16)

and

tprev =

{
´8 if i = 1
π1 (elemm (elemi´1 (Pred))) else

. (6.3.17)

and

R =
{

t P T | t ě tm ^ t ě tprev ^

J e KEXPS
(t) ‰ Kk^

λv(vm, v) = true ^

λt(tm, t) = true
} (6.3.18)
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and

v = J e KEXPS
(t) (6.3.19)

t =

{
min (R) if R ‰ H
K otherwise

(6.3.20)

f.a. i P { 1, . . . , ` }, ` = len(Pred) + 1 and m = len(elem1(Pred)).

6.3.3 Advantage of EC.LANG

For the analysis of a non-trivial event chain it is desirable to be able to
track the different segments of the chain regarding the individual response
times. When looking at longer chains, specifications based on logical
operations Globally (�) and Eventually (♦) can result in some considerable
overhead if evaluated naively. Furthermore, a specification using a timed
temporal logical does not allow to keep track of the number of currently
open requests. Let’s take a chain incorporating three signals as an example.
Assume it originates in a request in a signal A and propagates to a request
in signal B which finally leads to a change in a response-signal C. In
the following we will refer to requests and responses as events. Assume
the availability of predicates which describe the occurrence of the above-
mentioned events. More precisely, let ϕX be terms to check whether an
occurrence of the respective event X P { A, B, C } happened at some point
of time. To check whether two occurrences are related, let ψ(Y,Z) be a term
to check whether an occurrence of an event in Y matches an event in Z for
all (Y, Z) P { (A, B), (B, C) }. To express the constraint that an event in A
is followed by a matching event in B within an Interval IA,B can then be
expressed as:

�
(

ϕA Ñ ♦IA,B

(
ϕB ^ ψ(A,B)︸ ︷︷ ︸

=ς

))
. (6.3.21)

Further, the following formula expresses the expected continuation of
the chain in signal C within an interval of IB,C:

�
(

ς Ñ ♦IB,C

(
ϕC ^ ψ(B,C)

))
. (6.3.22)
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Now, if it is observed that Formula 6.3.22 does not hold at some point
of time, it is not directly evident whether Formula 6.3.21 already failed or
not. In other words, it is not clear whether the transition from signal A to
signal B caused the response time miss or the transition from signal B to
signal C. To keep track of this, both formulas need to be evaluated. If this
is done naively, it can lead to some considerable overhead. The advantage
of EC.Lang’s semantics is, that they allow for a detailed breakdown of the
individual shares of the chain segments to the end-to-end response time.
Moreover, classically, the semantics of a formula of timed temporal logic is
used to express qualitative constraints. The result is either true, meaning
all requirements are met or false, meaning an assertion for a requirement
failed. However, besides hard real-time demands, real-life systems addi-
tionally feature more vague requirements, like "the customer should not
encounter a noticeable delay". Here, should not encounter means, that in
a majority of cases the delay should be below some threshold. To track
these kinds of requirements, quantitative semantics are more suitable. For
timed temporal logics this is realized with the help of so-called match-sets
which contain the start and the end of the interval time where the formula
evaluates to true. Therefore, it is necessary to evaluate the individual
formulas completely for an analysis of the individual chain segments.
However, a more severe drawback of the specification in Formula 6.3.21
and Formula 6.3.22 is, that it does not allow to use the value of A at the
point of time where ϕA evaluates to true in ψ(B,C). It is only possible to
use the value of signal A at the point of time ϕB is evaluated. Thus, a
specifying

If the value of A changes, after some time, the value of B equals the value of A

is possible but

If the value of A changes, after some time, the value of B equals the value of A
at the point of time of the initial change

is not. To keep track of event chains, it is necessary to specify the second
requirement since the value of A might change the time between its initial
change and the time B reacts. In the following section we describe how
this can be achieved with EC.Lang by means of an example.
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6.4 Example

The example we consider here is part of the torque request and deliver
functionality of an communication cluster like the one presented in the
end of Chapter 3. Figure 6.1 depicts the data flow of the chain. First,
the TCM sends a request to change torque to the CPCM, e.g. for a gear
change. The CPCM splits the request into three individual torque requests
for the ECM, and the controllers of the electrical motors (INV0, INV1).
All motors try to adjust the torque to the possible extent and send a
response with the delivered torque accordingly. In our example, a change
to a lower value in TrqReq reflects the request for reduced torque. If
such a request arrives at the CPCM, an according jump is expected to be
observed. This change then propagates to the values of TrqReqC, TrqReqE0
and TrqReqE1

. Eventually, after some time, the sum of the three signal
values equals TrqReq. The allocation of the torque requests inside the CPCM

can be tracked further with the help of ECU-internal variables. To keep
things readily comprehensible, we stay at network-level here. The variation
in the reaction time of a combustion engine is greater than the one of an
electrical motor. Therefore, the full amount of torque demanded does not
always have an exact equal counterpart in the deliver signal and response
times might vary. For measurement data analysis this means, that equality
of requested and delivered values includes a small margin. If the deviation
gets too large, i.e. it extends the margin, the missing values need to be
identified correctly. If no reaction occurs, the request might have been
dropped and the reason has to be tracked down. However, in the majority
of cases the response signal eventually equals the request signal after some
time. In some cases, due to the different physical properties of the motors,
the sum of TrqC, TrqE0

, and TrqE1
does not directly jump to the amount

of torque requested in TrqReq. The difference in time between the final
response and the initial request is the time required for the system to react
to a torque demand of the transmission.

6.4.1 Example (Evaluation of Example encoded in EC.Lang).

Start Ð TrqReq if abs(delta(TrqReq, 0.001)) ą 5

150



6.4. Example

Start Hop 0 Hop 1 Hop 2

TCM PCM

ECM

INV0

INV1

PCM TCM
TrqReq

TrqReqC

TrqReqE0

TrqReqE1

TrqC

TrqE0

TrqE1

Trq∑

Figure 6.1. Torque Request and Deliver

Hop1 Ð Startd TrqReqC + TrqReqE0
+ TrqReqE1

if abs(delta(TrqReqC, 0.001)) ą 1

^ abs(delta(TrqReqE0
, 0.001)) ą 1

^ abs(delta(TrqReqE1
, 0.001)) ą 1

where (v0, v1) ÞÑ (v0 = v1)

and (t0, t1) ÞÑ (t1 ´ t0 ě 0.005^ t1 ´ t0 ď 0.010)

Hop2 Ð Hop1 d TrqC + TrqE0
+ TrqE1

if abs(delta(TrqC, 0.001)) ą 1

^ abs(delta(TrqE0
, 0.001)) ą 1

^ abs(delta(TrqE1
, 0.001)) ą 1

where (v0, v1) ÞÑ (abs(v0 ´ v1) ď 2.0)

and (t0, t1) ÞÑ (t1 ´ t0 ě 0.010^ t1 ´ t0 ď 0.015)

Hop3 Ð Hop2 d Trq∑

if abs(delta(Trq∑, 0.001)) ą 1

where (v0, v1) ÞÑ (v0 = v1)

and (t0, t1) ÞÑ (t1 ´ t0 ě 0.005^ t1 ´ t0 ď 0.010)
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Algorithm 5: Build Dependency Graph for Expressions

1 BuildDependencyGraph EC.Lang-String S
2 E Ð Translate(S); E ÐH, V ÐH;
3 forall Expression E in E do
4 if E is Start-Expression then
5 V Ð V Y { e };
6 else if E is Hop-Expression then
7 p Ð Predecessor(e); V Ð V Y { e }; E Ð EY { (p, e) };

8 return G = (E, V)

6.5 Implementation

Our implementation of an EC.Lang-compiler is based on the ANTLR
parser generator1. On top of the compiler we further implemented an
evaluation engine and a GUI tool called Measurement Analyzer 2.

6.5.1 EC.LANG Compiler

The compilation is divided into two steps. First, all relevant signals loaded,
and secondly, a dependency graph for the chain expressions is built.

We implemented two extensions of Antlr4’s TreeVisitor-class. The first
links the signal names of the CSEs with the respective signals from the
measurement data file. The second one compiles a string of EC.Lang to
the respective dependency graph G. Each node in G is labeled with a
CSE. An edge in G connects two vertices, if the expression of the target
node depends on the expression of the source node. The generation of
the dependency graph is shown in Algorithm 5. A node in the generated
graph has in-degree 0 if and only if it is representing a Start Expression.
Otherwise, it has an incoming edge, namely the expression describing the
preceding chain segment.

1https://github.com/antlr/antlr4
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6.5. Implementation

6.5.2 Evaluation Engine

The algorithm which is used to evaluate a dependency graph describing
an EC.Lang-specification is shown in Algorithm 6. The evaluation again
consists of two steps. First, all nodes with in-degree 0 are collected. As
described above, all of these nodes must be labeled with a Start Expression.
The semantics of expressions can be evaluated in parallel since they are
guaranteed to have no mutual dependencies. The evaluated expressions
are stored in the set of reachable expressions (R).

Algorithm 6: Compute Evaluations for Dependency Graph

1 VisitDependencyGraph Dependency Graph G = (V, E)
2 E ÐH; Rstart Ð { n | n P V where n has indegree 0 };
3 forall Start-Expression SE in R do
4 E Ð EY { (SE, JSEK) };

5 c Ð false;
6 while c = false do
7 Rnew Ð { n | n P V ^ Dp P R : (p, n) P E };
8 forall Hop-Expression HE in Rnew do
9 E Ð EY { (HE, JHEK) };

10 c Ð Rnew Ď R; R Ð RY Rnew;

11 return E

Subsequently, all Hop Expressions that are reachable via some edge
originating at a node in R are visited iteratively. For each visiting step,
evaluation of the newly reachable nodes can also be done in parallel. The
evaluation stops if no new nodes are reachable. In our implementation
the semantics of each expression is put in a map with its identifier as the
key. For subsequent analyses each section of the chain can be examined in
detail, e.g. to obtain an average response time between the start of a chain
and a succeeding segment.
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6. Measurement Data Analysis

6.5.3 Performance of the Evaluation Engine

We created five files with randomly generated trace data for 20, 40, 60, 80,
and 100 minutes. Each file comprises four signals: Request, ResponseA-0,
ResponseA-1, and Response-B. The signals can have a value in { 0, . . . , 255 }.
The request signal randomly increases and decreases over time. If the
request reaches the value 255, it drops to 0. Additionally, it drops to 0
with a low probability. The first response comes in two responses which
need to be added to detect the randomly delivered response. The reaction
time is at least thirty milliseconds. The divided response is summed up in
ResponseB after some additional twenty milliseconds. With a decreasing
probability reaction times are exceeded. Listing 6.1 shows the EC.Lang

specification tested on the data.

Start <- ’Request’

if abs(delta(’Request’, 0.011)) >= 0.2 /\

abs(delta(’Request’, 0.011)) <= 2.0;

Split <- Start & ’ResponseA-0’ + ’ResponseA-1’

if abs(delta(’ResponseA-0’, 0.011)) > 0.0 \/

abs(delta(’ResponseA-1’, 0.011)) > 0.0

where (t0, t1) |-> t1-t0 > 0.01 /\

t1-t0 <= 0.06

and (v0, v1) |-> v0 < v1 * 1.10 /\

v0 > v1 * 0.90;

Join <- Split & ’ResponseB’

if abs(delta(’ResponseB’, 0.011)) > 0.0

where (t0, t1) |-> t1-t0 > 0.01 /\

t1-t0 < 0.04

and (v0, v1) |-> abs(v0 - v1) < 0.01;

Listing 6.1. EC.Lang Specification used for Evaluation

Table 6.1 shows the evaluation speed achieved on a laptop computer
with an Intel i7-8850H CPU and 32GB of memory. The columns show
the time needed to evaluate the corresponding part of the chain. The
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6.6. Summary and Conclusion

Table 6.1. Performance of the evaluation engine

Data set Number of
requests

Evaluation time (seconds)

Start Split Join Sum

20m 50774 0.21 4.34 3.34 7.88
40m 105958 0.42 16.74 14.10 31.25
60m 153758 0.76 37.29 30.46 68.52
80m 212187 0.88 68.39 55.91 125.17

100m 258707 1.22 102.20 83.91 187.34

higher evaluation time of the expression labeled Split is due to the higher
range of accepted reaction times and the fact that values are summed up
deterministically in ResponseB. Although the ratio between measurement
duration and time needed for analysis does show a linear increase, the
experiment shows that the evaluation engine offers sufficient performance
for the practical use. For experiments on measurement data obtained from
long-term test however, the data files should be split into multiple smaller
files for evaluation. This also allows a parallel processing on multiple
machines. The current restrictions on performance can be overcome, if an
upper bound for the time in which a potential response to a request should
be search for can is specified. Since the evaluation engine in the current
implementation always search to the end of the file if no corresponding
response was found for a request, the length of trace in combination with
the amount of errors potentially impacts performance.

6.6 Summary and Conclusion

With EC.Lang we developed a language which allows its user to specify
the evaluation of distributed cause-effect chains based on measurement
data. We discussed the need for an approach with dedicated chain support.
The syntax of EC.Lang is designed to be simple so that they can be used
after short induction phase. EC.Lang has quantitative semantics which
allow to track down the segment of the chain with the largest contribution
to the latency.

155





Appendix A - Database Script

create table ProjectInfo (

prj_id varchar( 64),

prj_name varchar(255),

prj_creator varchar( 64),

prj_creationDate datetime ,

prj_description varchar(255)

primary key (prj_id)

);

create table NCDRelease (

prj_id varchar( 64),

ncd_id varchar( 64),

ncd_publicationWeek smallint,

primary key(prj_id, ncd_id),

foreign key(prj_id) references ProjectInfo(prj_id)

)

create table SWRelease (

prj_id varchar( 64),

ecu_id varchar( 64),

release_id varchar( 64),

sprint_id varchar( 64),

realase_date datetime ,

primary key(prj_id, ecu_id, release_id, sprint_id),

foreign key(prj_id, ecu_id) references ECU(prj_id, ecu_id)

)

Listing 1. T-SQL Script to Create Project Relationships

create table Network (

prj_id varchar( 64),
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nw_id varchar( 64),

nw_name varchar(255),

nw_type varchar( 64)

primary key(prj_id, nw_id),

foreign key(prj_id) references ProjectInfo(prj_id)

);

create table NWChannel (

prj_id varchar( 64),

nw_id varchar( 64),

ch_id varchar( 64),

ch_name varchar(255),

ch_nr smallint ,

ch_type varchar( 64),

primary key(prj_id, nw_id, ch_id),

foreign key(prj_id, nw_id) references Network(prj_id, nw_id)

);

create table NWResource (

prj_id varchar( 64),

ncd_id varchar( 64),

nw_id varchar( 64),

ch_id varchar( 64),

res_id varchar( 64),

isSocket bit,

isFrame bit,

primary key(prj_id, ncd_id, nw_id, ch_id, res_id),

foreign key(prj_id, nw_id, ch_id) references NWChannel(prj_id,

nw_id, ch_id),

foreign key(prj_id, ncd_id) references NCDRelease(prj_id,

ncd_id),

constraint Frame_Service_XOR check (isSocket ^ isFrame is NOT

NULL )

);

create table NWResource_TimingAttributes (

prj_id varchar( 64),

ncd_id varchar( 64),
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nw_id varchar( 64),

ch_id varchar( 64),

res_id varchar( 64),

attr_id varchar( 64),

attr_parent varchar( 64),

attr_value varchar( 64),

attr_value_type varchar( 64),

primary key(prj_id, ncd_id, nw_id, ch_id, res_id, attr_id,

attr_value),

foreign key(prj_id, ncd_id, nw_id, ch_id, res_id) references

NWResource(prj_id, ncd_id, nw_id, ch_id, res_id)

);

create table NWFrame (

prj_id varchar( 64),

ncd_id varchar( 64),

nw_id varchar( 64),

ch_id varchar( 64),

res_id varchar( 64),

frame_name varchar(255),

primary key(prj_id, ncd_id, nw_id, ch_id, res_id),

foreign key(prj_id, ncd_id, nw_id, ch_id, res_id) references

NWResource(prj_id, ncd_id, nw_id, ch_id, res_id)

);

create table NWSocket (

prj_id varchar( 64),

ncd_id varchar( 64),

nw_id varchar( 64),

ch_id varchar( 64),

res_id varchar( 64),

socket_name varchar(255),

primary key(prj_id, ncd_id, nw_id, ch_id, res_id),

foreign key(prj_id, ncd_id, nw_id, ch_id, res_id) references

NWResource(prj_id, ncd_id, nw_id, ch_id, res_id)

);

create table NWPDU (

prj_id varchar( 64),
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ncd_id varchar( 64),

nw_id varchar( 64),

ch_id varchar( 64),

res_id varchar( 64),

pdu_id varchar( 64),

pdu_name varchar(255),

pdu_length int,

pdu_type varchar( 64),

pdu_isContainer bit,

primary key(prj_id, ncd_id, nw_id, ch_id, res_id, pdu_id),

foreign key(prj_id, ncd_id, nw_id, ch_id, res_id) references

NWResource(prj_id, ncd_id, nw_id, ch_id, res_id)

);

create table NWPDU_Container (

prj_id varchar( 64),

ncd_id varchar( 64),

nw_id varchar( 64),

ch_id varchar( 64),

res_id varchar( 64),

pdu_id_container varchar( 64),

pdu_id_contained varchar( 64),

primary key(prj_id, ncd_id, nw_id, ch_id, res_id,

pdu_id_container, pdu_id_contained),

foreign key(prj_id, ncd_id, nw_id, ch_id, res_id,

pdu_id_container) references NWPDU(prj_id, ncd_id, nw_id, ch_id

, res_id, pdu_id),

foreign key(prj_id, ncd_id, nw_id, ch_id, res_id,

pdu_id_contained) references NWPDU(prj_id, ncd_id, nw_id, ch_id

, res_id, pdu_id)

);

create table NWPDU_TimingAttributes (

prj_id varchar( 64),

ncd_id varchar( 64),

nw_id varchar( 64),

ch_id varchar( 64),

res_id varchar( 64),

pdu_id varchar( 64),
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attr_id varchar( 64),

attr_parent varchar( 64),

attr_value varchar( 64),

attr_value_type varchar( 64),

primary key(prj_id, ncd_id, nw_id, ch_id, res_id, pdu_id,

attr_id, attr_value),

foreign key(prj_id, ncd_id, nw_id, ch_id, res_id, pdu_id)

references NWPDU(prj_id, ncd_id, nw_id, ch_id, res_id, pdu_id)

);

create table NWSignal (

prj_id varchar( 64),

ncd_id varchar( 64),

nw_id varchar( 64),

ch_id varchar( 64),

res_id varchar( 64),

pdu_id varchar( 64),

signal_id varchar( 64),

signal_name varchar(255),

primary key(prj_id, ncd_id, nw_id, ch_id, res_id, pdu_id,

signal_id),

foreign key(prj_id, ncd_id, nw_id, ch_id, res_id, pdu_id)

references NWPDU(prj_id, ncd_id, nw_id, ch_id, res_id, pdu_id)

);

create table NWSignal_TimingAttributes (

prj_id varchar( 64),

ncd_id varchar( 64),

nw_id varchar( 64),

ch_id varchar( 64),

res_id varchar( 64),

pdu_id varchar( 64),

signal_id varchar( 64),

attr_id varchar( 64),

attr_parent varchar( 64),

attr_value varchar( 64),

attr_value_type varchar( 64),

primary key(prj_id, ncd_id, nw_id, ch_id, res_id, pdu_id,

signal_id, attr_id, attr_value),
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foreign key(prj_id, ncd_id, nw_id, ch_id, res_id, pdu_id,

signal_id) references NWSignal(prj_id, ncd_id, nw_id, ch_id,

res_id, pdu_id, signal_id)

);

create table NWSignalGroup (

prj_id varchar( 64),

ncd_id varchar( 64),

nw_id varchar( 64),

ch_id varchar( 64),

res_id varchar( 64),

pdu_id varchar( 64),

group_id varchar( 64),

group_name varchar(255),

primary key(prj_id, ncd_id, nw_id, ch_id, res_id, pdu_id,

group_id),

foreign key(prj_id, ncd_id, nw_id, ch_id, res_id, pdu_id)

references NWPDU(prj_id, ncd_id, nw_id, ch_id, res_id, pdu_id)

);

create table NWSignal_NWSignalGroup_Map (

prj_id varchar( 64),

ncd_id varchar( 64),

group_id varchar( 64),

nw_id varchar( 64),

ch_id varchar( 64),

res_id varchar( 64),

pdu_id varchar( 64),

signal_id varchar( 64),

primary key(prj_id, ncd_id, group_id, signal_id),

foreign key(prj_id, ncd_id) references NCDRelease(prj_id,

ncd_id),

foreign key(prj_id, ncd_id, nw_id, ch_id, res_id, pdu_id,

group_id)

references NWSignalGroup(prj_id, ncd_id, nw_id, ch_id, res_id,

pdu_id, group_id),

foreign key(prj_id, ncd_id, nw_id, ch_id, res_id, pdu_id,

signal_id)

references NWSignal(prj_id, ncd_id, nw_id, ch_id, res_id,
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pdu_id, signal_id)

);

create table NWSignal_SWSignal_Map (

prj_id varchar( 64),

/* SW signal identifier */

ecu_id varchar( 64),

release_id varchar( 64),

sprint_id varchar( 64),

sw_signal_id varchar( 64),

/* NW signal identifier */

nw_id varchar( 64),

ch_id varchar( 64),

ncd_id varchar( 64),

res_id varchar( 64),

pdu_id varchar( 64),

nw_signal_id varchar( 64),

direction varchar( 2),

primary key(prj_id, ecu_id, sw_signal_id, nw_id, ch_id, res_id,

pdu_id),

foreign key(prj_id, ecu_id, release_id, sprint_id) references

SWRelease(prj_id, ecu_id, release_id, sprint_id),

foreign key(prj_id, ecu_id, release_id, sprint_id, sw_signal_id

) references SWSignal(prj_id, ecu_id, release_id, sprint_id,

signal_id) on delete cascade,

foreign key(prj_id, ncd_id, nw_id, ch_id, res_id, pdu_id,

nw_signal_id) references NWSignal(prj_id, ncd_id, nw_id, ch_id,

res_id, pdu_id, signal_id) on delete cascade,

constraint valid_direction_swsignal_nwsignal_map check (

direction in (’TX’,’RX’))

);

Listing 2. T-SQL Script to Create Network Relationships

create table ECU (

prj_id varchar( 64),

ecu_id varchar( 64),
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ecu_name varchar(255),

primary key (prj_id, ecu_id)

);

create table CommunicationConnector (

prj_id varchar( 64),

ecu_id varchar( 64),

nw_id varchar( 64),

ch_id varchar( 64),

comm_task_name varchar(255),

primary key(prj_id, ecu_id, nw_id, ch_id),

foreign key(prj_id, ecu_id) references ECU(prj_id, ecu_id),

foreign key(prj_id, nw_id, ch_id) references NWChannel(prj_id,

nw_id, ch_id)

);

create table CommunicationConnector_TimingAttributes (

prj_id varchar( 64),

ecu_id varchar( 64),

nw_id varchar( 64),

ch_id varchar( 64),

attr_id varchar( 64),

attr_parent varchar( 64),

attr_value varchar( 64),

attr_value_type varchar( 64),

primary key(prj_id, ecu_id, nw_id, ch_id, attr_id, attr_value),

foreign key(prj_id, ecu_id, nw_id, ch_id) references

CommunicationConnector(prj_id, ecu_id, nw_id, ch_id)

);

create table CommunicationPort (

prj_id varchar( 64),

ecu_id varchar( 64),

ncd_id varchar( 64),

nw_id varchar( 64),

ch_id varchar( 64),

res_id varchar( 64),

port_name varchar(255),

direction varchar( 6),
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primary key (prj_id, ecu_id, ncd_id, nw_id, ch_id, res_id,

direction),

foreign key(prj_id, ncd_id) references NCDRelease(prj_id,

ncd_id),

foreign key(prj_id, ecu_id, nw_id, ch_id) references

CommunicationConnector(prj_id, ecu_id, nw_id, ch_id),

constraint valid_direction_port check (direction in (’IN’,’OUT’

))

);

create table ECU_Core (

prj_id varchar( 64),

ecu_id varchar( 64),

core_nr smallint,

primary key(prj_id, ecu_id, core_nr),

foreign key(prj_id, ecu_id) references ECU(prj_id, ecu_id)

);

Listing 3. T-SQL Script to Create ECU Relationships

create table SWTask (

prj_id varchar( 64),

ecu_id varchar( 64),

core_nr smallint,

release_id varchar( 64),

sprint_id varchar( 64),

task_id varchar( 64),

task_name varchar(255),

priority smallint,

deadline_mus int,

preemptable bit,

primary key(prj_id, ecu_id, core_nr, release_id, sprint_id,

task_id),

foreign key(prj_id, ecu_id, release_id, sprint_id) references

SWRelease(prj_id, ecu_id, release_id, sprint_id),

foreign key(prj_id, ecu_id, core_nr) references ECU_Core(prj_id

, ecu_id, core_nr)
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);

create table SWSignal (

prj_id varchar( 64),

ecu_id varchar( 64),

release_id varchar( 64),

sprint_id varchar( 64),

signal_id varchar( 64),

signal_name varchar(255),

foreign key(prj_id, ecu_id) references ECU(prj_id, ecu_id),

foreign key(prj_id, ecu_id, release_id, sprint_id) references

SWRelease(prj_id, ecu_id, release_id, sprint_id),

primary key(prj_id, ecu_id, release_id, sprint_id, signal_id)

);

create table SWRunnable (

prj_id varchar( 64),

ecu_id varchar( 64),

core_nr smallint,

release_id varchar( 64),

sprint_id varchar( 64),

task_id varchar( 64),

runnable_id varchar( 64),

runnable_name varchar(255),

runnable_nr int not null,

runnable_bcet_mus int,

runnable_wcet_mus int,

primary key (prj_id, ecu_id, core_nr, release_id, sprint_id,

task_id, runnable_id),

constraint swrunnable_unambiguous_order unique (prj_id, ecu_id,

core_nr, release_id, sprint_id, task_id, runnable_nr),

foreign key(prj_id, ecu_id) references ECU(prj_id, ecu_id),

foreign key(prj_id, ecu_id, release_id, sprint_id) references

SWRelease(prj_id, ecu_id, release_id, sprint_id),

foreign key (prj_id, ecu_id, core_nr, release_id, sprint_id,

task_id) references SWTask(prj_id, ecu_id, core_nr, release_id,

sprint_id, task_id),

);
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create table SWRunnable_SWSignal_Map (

prj_id varchar( 64),

ecu_id varchar( 64),

core_nr smallint,

release_id varchar( 64),

sprint_id varchar( 64),

task_id varchar( 64),

runnable_id varchar( 64),

signal_id varchar( 64),

direction varchar( 6),

primary key(prj_id, ecu_id, runnable_id, signal_id, direction),

foreign key(prj_id, ecu_id, release_id, sprint_id) references

SWRelease(prj_id, ecu_id, release_id, sprint_id),

foreign key(prj_id, ecu_id, core_nr, release_id, sprint_id,

task_id, runnable_id)

references SWRunnable(prj_id, ecu_id, core_nr, release_id,

sprint_id, task_id, runnable_id) on delete cascade,

foreign key(prj_id, ecu_id, release_id, sprint_id, signal_id)

references SWSignal(prj_id, ecu_id, release_id, sprint_id,

signal_id) on delete cascade,

constraint valid_direction_swsignal check (direction in (’IN’,’

OUT’,’LOCAL’))

);

Listing 4. T-SQL Script to Create Software Relationships

create table TimingModel_Periodic(

prj_id varchar( 64),

tm_id int,

tm_name varchar(255),

offset_mus int,

period_mus int,

primary key(prj_id, tm_id) ,

constraint TimingModel_Periodic_non_zero_id check (tm_id > 0)

);

create table TimingModel_Sporadic(
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prj_id varchar( 64),

tm_id int,

tm_name varchar(255),

delta_t_min_mus int,

delta_t_max_mus int,

primary key(prj_id, tm_id) ,

constraint TimingModel_Sporadic_non_zero_id check (tm_id > 0)

);

create table TimingModel_Chained(

prj_id varchar( 64),

tm_id int,

tm_name varchar(255),

ecu_id_ref varchar( 64),

core_nr_ref smallint,

release_id_ref varchar( 64),

sprint_id_ref varchar( 64),

task_id_ref varchar( 64),

runnable_id_ref varchar( 64),

primary key(prj_id, tm_id),

/* reference to runnable */

foreign key(prj_id, ecu_id_ref, core_nr_ref, release_id_ref,

sprint_id_ref, task_id_ref, runnable_id_ref)

references SWRunnable(prj_id, ecu_id, core_nr, release_id,

sprint_id, task_id, runnable_id) on delete cascade,

constraint TimingModel_Chained_non_zero_id check (tm_id > 0)

);

create table TaskActivationMap (

prj_id varchar( 64),

ecu_id varchar( 64),

core_nr smallint,

release_id varchar( 64),

sprint_id varchar( 64),

task_id varchar( 64),

tm_chain_ref int DEFAULT 0,

tm_periodic_ref int DEFAULT 0,

tm_sporadic_ref int DEFAULT 0,

foreign key (prj_id,ecu_id, core_nr, release_id, sprint_id,
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task_id) references SWTask(prj_id, ecu_id, core_nr, release_id,

sprint_id, task_id),

primary key (prj_id, ecu_id, release_id, sprint_id, core_nr,

task_id),

constraint XOR1 check ((tm_chain_ref + tm_periodic_ref +

tm_sporadic_ref) > 0) ,

constraint XOR2 check ((tm_chain_ref * tm_periodic_ref) = 0)

,

constraint XOR3 check ((tm_periodic_ref * tm_sporadic_ref) = 0)

,

constraint XOR4 check ((tm_sporadic_ref * tm_chain_ref) = 0)

);

create table NWPDUSendingTrigger (

prj_id varchar( 64),

ncd_id varchar( 64),

nw_id varchar( 64),

ch_id varchar( 64),

res_id varchar( 64),

pdu_id varchar( 64),

trigger_variant varchar( 64),

tm_periodic_ref int DEFAULT 0,

tm_sporadic_ref int DEFAULT 0,

foreign key (prj_id, tm_periodic_ref) references

TimingModel_Periodic(prj_id, tm_id),

foreign key (prj_id, tm_sporadic_ref) references

TimingModel_Sporadic(prj_id, tm_id),

foreign key (prj_id, ncd_id, nw_id, ch_id, res_id, pdu_id)

references NWPDU(prj_id, ncd_id, nw_id, ch_id, res_id, pdu_id),

primary key (prj_id, pdu_id, ncd_id, nw_id, ch_id, res_id,

trigger_variant)

);

Listing 5. T-SQL Script to Create Timing Relationships

create table EffectChain (

prj_id varchar( 64),
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ec_id varchar( 64),

ec_name varchar(255),

ec_description varchar( 64),

primary key (prj_id, ec_id)

);

create table EC_Segment (

prj_id varchar( 64),

ec_id varchar( 64),

part_nr smallint,

ecu_id varchar( 64),

primary key (prj_id, ec_id, part_nr, ecu_id),

foreign key (prj_id, ecu_id) references ECU(prj_id, ecu_id)

);

create table EC_Connection (

prj_id varchar( 64),

ec_id varchar( 64),

/* connections are ordered */

conn_nr smallint,

/* reference to sending ECU segment */

part_tx_nr smallint,

ecu_tx_id varchar( 64),

/* reference to receiving ECU segment */

part_rx_nr smallint,

ecu_rx_id varchar( 64),

/* reference to network by id (unique) */

nw_id varchar( 64),

/* Reference to signal by name (possibly multiple signals) */

signal_name varchar(255),

primary key (prj_id, ec_id, conn_nr),

foreign key (prj_id, nw_id) references Network(prj_id, nw_id),

foreign key (prj_id, ec_id, part_tx_nr, ecu_tx_id) references

EC_Segment(prj_id, ec_id, part_nr, ecu_id),

foreign key (prj_id, ec_id, part_rx_nr, ecu_rx_id) references

EC_Segment(prj_id, ec_id, part_nr, ecu_id)

);

create table SWGraphNode (
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prj_id varchar( 64),

ec_id varchar( 64),

part_nr smallint,

ecu_id varchar( 64),

node_nr smallint,

/* reference to runnable */

runnable_ref varchar(255),

primary key (prj_id, ec_id, part_nr, ecu_id, node_nr),

foreign key (prj_id, ec_id, part_nr, ecu_id) references

EC_Segment(prj_id, ec_id, part_nr, ecu_id)

);

create table SWGraphEdge (

prj_id varchar( 64),

ec_id varchar( 64),

part_nr smallint,

ecu_id varchar( 64),

node_nr_a smallint,

node_nr_b smallint,

/* reference to connecting signal */

signal_ref varchar(255),

primary key (prj_id, ec_id, part_nr, ecu_id, node_nr_a,

node_nr_b),

foreign key (prj_id, ec_id, part_nr, ecu_id) references

EC_Segment(prj_id, ec_id, part_nr, ecu_id)

);

Listing 6. T-SQL Script to Create Effect Chain Relationships
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constraint forall (i in i_Signals, j in Signal_OccMin[i]..

Signal_OccMax[i]) (

let { int: l = Signal_PDU[i]; } in

if (Signal_TriggersPDU[i] = "ALWAYS") then

if (Signal_Updated[i, j] <= PDU_InTxBuffer[l, PDU_OccMin[l]])

then

Signal_PDU_Contained[i, j] = PDU_OccMin[l]

else

Signal_PDU_Contained[i, j] > PDU_OccMin[l]

endif

/\

forall (k in PDU_OccMin[l]+1..PDU_OccMax[l]) (

if (Signal_Updated[i, j] > PDU_InTxBuffer[l, k-1] /\

Signal_Updated[i, j] <= PDU_InTxBuffer[l, k]) then

Signal_PDU_Contained[i, j] = k

else

true

endif)

else % On-Change or Pending

if (Signal_PDU_Contained[i, j] != -1) then

Signal_PDU_Contained[i, j] >= PDU_OccMin[l] /\

Signal_PDU_Contained[i, j] <= PDU_OccMax[l] /\

if (Signal_Updated[i, j] <= PDU_InTxBuffer[l, PDU_OccMin[l]])

then

Signal_PDU_Contained[i, j] = PDU_OccMin[l]

else

Signal_PDU_Contained[i, j] > PDU_OccMin[l]

endif

/\

forall (k in PDU_OccMin[l]+1..PDU_OccMax[l]) (
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if (Signal_Updated[i, j] > PDU_InTxBuffer[l, k-1] /\

Signal_Updated[i, j] <= PDU_InTxBuffer[l, k]) then

Signal_PDU_Contained[i, j] = k

else

true

endif)

else

true

endif

endif

);

Listing 7. Constraints on nS in MiniZinc

constraint forall (i in i_PDUs, j in Min_Occ_PDU..Max_Occ_PDU) (

if (PDU_Type[i] == "IPDU" /\ j >= PDU_OccMin[i] /\ j <=

PDU_OccMax[i]) then

minimum_int(PDU_Triggered[i,j], [ PDU_Triggered_Time[i,j],

PDU_Triggered_Signal[i,j] ] ) % ,

elseif (PDU_Type[i] = "SECPDU" /\ j >= PDU_OccMin[i] /\ j <=

PDU_OccMax[i]) then

minimum_int(PDU_Triggered[i,j], [Time_Dom_Sup] ++

[ if (PDU_Parent_Contained[l, k] = j) then PDU_Triggered[l, k]

else Time_Dom_Sup endif

| l in i_PDUs, k in PDU_OccMin[l]..PDU_OccMax[l] where

PDU_Parent[l] = i])

elseif (PDU_Type[i] = "CONTAINER" /\ j >= PDU_OccMin[i] /\ j <=

PDU_OccMax[i]) then

let {

var int: direct_trigger = min([Time_Dom_Sup] ++ [

if (PDU_Parent_Contained[l, k] = j) then PDU_Triggered[l,k]

else Time_Dom_Sup endif
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| l in i_PDUs, k in PDU_OccMin[l]..PDU_OccMax[l]

where PDU_Parent[l] = i /\ PDU_Parent_TriggerType[l] = "

ALWAYS"]);

var int: trigger_first_pdu = min([Time_Dom_Sup] ++ [

if (PDU_Parent_Contained[l, k] = j) then PDU_Triggered[l,k]

else Time_Dom_Sup endif

| l in i_PDUs, k in PDU_OccMin[l]..PDU_OccMax[l] where

PDU_Parent[l] = i]);

var int: trigger_last_pdu = max([Time_Dom_Inf] ++ [

if (PDU_Parent_Contained[l, k] = j) then PDU_Triggered[l,k]

else Time_Dom_Inf endif

| l in i_PDUs, k in PDU_OccMin[l]..PDU_OccMax[l] where

PDU_Parent[l] = i]);

} in

minimum_int(PDU_Triggered[i,j],

[ Time_Dom_Sup ] ++ [ PDU_Triggered_Time[i,j] ] ++ [

direct_trigger ]

++

% immediate transmission

[ if (PDU_Container_TriggerType[i] = "FIRST" /\

trigger_first_pdu < Time_Dom_Sup) then

trigger_first_pdu

else

Time_Dom_Sup

endif ]

++

% container timeout

[ if (PDU_Container_TriggerType[i] = "DEFAULT" /\

trigger_first_pdu < Time_Dom_Sup) then

175



Appendix

trigger_first_pdu + PDU_Container_Timeout[i]

else

Time_Dom_Sup

endif ]

++

[ if ((PDU_Container_ThresholdSize[i] > 0 /\ PDU_ActualLength[i

,j] >= PDU_Container_ThresholdSize[i]) \/ PDU_ActualLength[i,j]

= PDU_Length[i]) then

trigger_last_pdu

else

Time_Dom_Sup

endif ]

)

else

if (j >= PDU_OccMin[i] /\ j <= PDU_OccMax[i]) then

assert(false, "Invalid PDU type: ’" ++ PDU_Type[i] ++ "’")

else

PDU_Triggered[i,j] = Time_Dom_Sup

endif

endif

);

Listing 8. Constraints on nS in MiniZinc
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