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Abstract

Multi-core devices are envisioned to support the development of next-generation safety-critical systems, enabling the
on-chip integration of functions of different criticality. This integration provides multiple system-level potential benefits
such as cost, size, power, and weight reduction. However, safety certification becomes a challenge and several fundamental
safety technical requirements must be addressed, such as temporal and spatial independence, reliability, and diagnostic
coverage. This survey provides a categorization and overview at different device abstraction levels (nanoscale, component,
and device) of selected key research contributions that support the compliance with these fundamental safety requirements.

1 Introduction

Over the past decades, embedded systems have enabled tremendous improvements with respect to functionality, dependability
and performance in many application domains such as transportation and industrial control systems. In these domains, the
embedded systems often play a crucial role in guaranteeing the overall safety of the system. These systems are referred to as
safety-critical systems as their failure can derive into catastrophic consequences such as the loss of lives or severe environmental
damage [1] (e.g., automotive cruise control [2], railway signalling [3], wind turbine integrity protection [4], pacemaker [5]).
With the aim of reducing the risk of causing such fatalities, safety-critical systems must follow strict certification processes
according to domain specific safety standards. This process usually involves high development efforts and costs. As a general
rule, the higher the safety integrity level, the higher the cost of safety certification [6, 7].

In addition, with the increasing digitization trend, where an increasing number of functionalities are implemented by
software, the embedded systems often include functions with different safety criticalities that must also co-exist with non-
critical software, conforming mixed-criticality systems. In the past, the mixed-criticality architecture has generally followed a
federated architecture approach in which each major functionality is deployed on a dedicated computing node. The growing
demand for additional functionality, leads to an increase in the number of computing nodes, wires and connectors. As a
consequence, this leads to an increase in the overall cost, complexity, Size, Weight, and Power (SWaP) that in several cases
limits the future scalability of this approach [7, 4, 6, 8, 9, 10]. For example, in the automotive domain, premium cars have
more than 20 million lines of code deployed in around 100 computing nodes [11, 8] and electronic components added value
ranges between 40% for traditional vehicles up to 75% for electric vehicles [12]. The current automotive evolution targets the
development of intelligent Advanced Driver-Assistance Systems (ADAS) and autonomous driving solutions that will further
increase the number of functionalities to be integrated [8].

One possible solution is the shift towards an integrated architectural approach [7, 4, 6, 8, 9, 10], where functions of different
safety criticality are integrated in a reduced number of centralized computing nodes and processing devices. In this approach,
safety certification becomes a challenge because the integration of mixed-criticality functions requires justifying sufficient
independence of implementation and sufficiently low probability of dependent failure between functions [13, 14, 6, 7, 15].
Moreover, this approach requires an increase in the overall computational performance of devices, which could potentially
be achieved by means of multi-core devices and mono-core devices with higher frequency. The usage of mono-core devices
with higher frequency is considered not competitive in several domains due to increased sensibility to Electromagnetic
Interference (EMI) [16], low reliability of thermal dissipation fans [8, 4] and cooling systems volume and weight [17]. On the
other hand, Commercial Off-The-Shelf (COTS) multi-core devices are becoming dominant in silicon manufacturer roadmaps
[18, 19, 20, 12, 21, 22, 10] and provide a cross-domain potential solution, e.g., automotive [23, 15, 2], avionics [24, 10], railway
[3, 25], industrial control [6, 26], medical applications [5].

In this scenario, safety-critical system developers of multi-core device based mixed-criticality systems, need to comply
with two sometimes conflicting and contradictory constraints. On the one hand, conservative functional safety standards
based on the best safety industrial practices of the last decades, with none or limited consideration of multi-core devices (see
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advances in ISO 26262-11 [14]). On the other hand, a rapidly evolving and highly innovative semiconductor industry that
produces multi-core devices with shrinking technologies and higher integration of cores [27].

This publication is a survey on multi-core devices for safety-critical systems. The bulk of the research in multi-core
devices for dependable systems focuses on specific challenges such as device and component architectures, reliability, time
predictability and safety certification strategies [7, 5]. This survey however, aims to provide a categorization and end-to-end
view of safety implications on multi-core devices, starting from nanoscale level and up to device level, by bringing together
and summarizing the most relevant research contributions that support the compliance with fundamental safety technical
requirements. This survey is aimed at researchers, with the aim of offering a panoramic view (survey of surveys) of the set
of fundamental technical challenges that need to be addressed at different abstraction levels. This survey is also aimed at
multi-core device and safety system developers. It provides an updated categorized research state-of-the-art, which provides
a starting point to go through the (complex) design decision process required in the development of safety-critical systems,
as required by diligence and liability requirements when the applicable safety standard has none or limited consideration of
multi-core devices [28].

The reminder of the survey is organized as follows. Section 2 summarizes basic concepts and terminology. Section 3
analyzes, categorizes and summarizes the state-of-the-art with selected key research contributions that support the compliance
with fundamental safety technical requirements at different device abstraction levels (nanoscale, component and device).
Then, Section 4 summarizes avionics and space domain specific safety technical considerations, and summarizes relevant
example case-studies from several domains. Finally, Section 5 provides links to related research topics, overall conclusion and
future research directions.

2 Basic Concepts and Terminology

This survey uses the basic concepts, taxonomy and terminology defined by Avižienis et al. [1] for dependable and secure
computing. In addition to this, this survey integrates various research fields with specific detailed concepts and termi-
nology described by referenced major survey publications of each specific research field (e.g., nanoscale multi-core device
dependability [5]).

The term multi-core device, or device for short, is used within this survey to refer to multi-core processors, System-on-
a-Chip (SoC), Multi-Processor System-on-a-Chip (MPSoCs), FPGA with soft-cores and combinations of the previous. And
the term computing node is used within this survey to refer to domain specific terms such as Electronic Control Unit (ECU)
for automotive and Line Replaceable Unit (LRU) for avionics.

2.1 Safety certification and standards

Safety is defined as the “absence of catastrophic consequences on the user(s) and the environment” [1]. In several cases, safety-
critical systems must be approved by an independent certification agency as part of a certification process. IEC 61508 [13]
is a generic international safety standard considered a reference for other domain specific standards such as automotive
(ISO 26262 [14]) and railway (EN 5012X [29]). For further details see the survey [30] that describes safety (and security)
qualification and certification state-of-the-art and challenges for automotive, railway, space and avionics domains. Taking
into consideration the variability of domain specific terms and requirements, this survey uses IEC 61508 as the reference
safety standard. Section 4 provides a simplified survey of solutions specific for other additional domains such as avionics and
space.

In IEC 61508, “Safety Integrity Level (SIL) is a discrete level corresponding to a range of safety integrity values where
4 is the highest and 1 is the lowest” [4]. The most stringent safety systems such as railway signaling systems (SIL4) are
implemented with programmable electronics with a probability of dangerous failure in the range of 10−9 hours of operation
(≈ 114.155 years). This requires stringent technical solutions to reduce to such low level the probability of catastrophe due
to systematic faults (e.g., method to reduce the probability of human, process and tool errors) and random faults (e.g., safety
mechanism with a given Diagnostic Coverage (DC)).

A safety function is either fail-safe, if a safe state can be reached either by the safety function or by the diagnosis reaction
(e.g., wind turbine stop [4], train stop [3]), or fail-operational if the system must guarantee full or degraded operation of the
given function even in the presence of a failure (e.g., automotive autonomous driving system, avionics flight control system).

2.2 Fundamental safety technical requirements

The development of safety-critical systems that must comply with safety standards such as IEC 61508, requires an appropriate
safety methodology to mitigate systematic errors and compliance with at least two fundamental safety technical requirements
(reliability and diagnostic coverage (DC)). The development of safety-critical systems based on multi-core devices extends
the previous with spatial and temporal independence requirements [13, 14] (see IEC 61508-3 Annex F). Thus, compliance
with at least these four fundamental safety technical requirements is required.
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• The reliability of a device at time t is the probability that the device will operate correctly during the period of time
[0, t]. Reliability is measured as the failure rate of the device (λ) and expressed in Failures In Time (FIT), the number of
failures expected in 109 hours of operation. For a given error, the effect can either be safe (not dangerous) or dangerous
with respect to the associated safety function. Thus, as described in Equation 1, device failure rate is made up of
the addition of components safe failure rates (λs) and dangerous failure rates (λd). The reliability of a device can be
improved by techniques such as fault-tolerance.

• Diagnostic Coverage (DC) denotes the effectiveness of diagnosis techniques to detect dangerous errors, expressed in
coverage percentage with respect to all possible dangerous errors. The DC is classified as low (60%− < 90%), medium
(90%− < 99%) and high (>= 99%) [13]. As shown in Equation 2, DC is calculated as the ratio between dangerous
detected failure rate (λdd) and dangerous failure rate (λd), which includes both dangerous detected (λdd) and dangerous
undetected failure rates (λdu). The diagnostic coverage of digital circuits can be calculated and measured using methods
such as Failure Mode and Effects Analysis (FMEA) and fault injection [31]. Dangerous detected errors usually require
the definition of an associated reaction (e.g., activate safe state, error correction).

• Temporal independence is required to ensure that “one element shall not cause another element to function incorrectly
by taking too high a share of the available processor execution time, or by blocking execution of the other element by
locking a shared resource of some kind” [13], so “that elements will not adversely interfere with each other’s execution
behaviour such that a dangerous failure would occur” in the time domain [13]. For this purpose, as recommended
by the standard [13, 14], temporal predictability (e.g., Worst Case Execution Time (WCET) analysis, scheduling) and
temporal diagnosis shall at least be considered.

• Spatial independence is required to ensure that “data used by one element shall not be changed by another element” so
“that elements will not adversely interfere with each other’s execution behaviour such that a dangerous failure would
occur” [13]. For example, exclusive access to resources is a common technique used to achieve this purpose.

The probability of dangerous failure per hour (PFH) depends directly on both the DC and the reliability (λ) of the device.
PFH is lower with higher diagnostic coverage and lower λ (higher reliability). For a given safety function SIL, the standard
[13] defines a system level average probability of failure range and the device is allocated a portion of this range (e.g., high
demand SIL4: 10 FIT > PFH >= 1 FIT). Equation 3 shows the simplest procedure to calculate PFH, for a safety system
that puts the system in safe state on detection of any failure [13]. As a general rule, for complex components such as COTS
multi-core devices, it is assumed that the probability ratios of dangerous and safe failures are 50% each (λs = λd = 0.5 × λ).

λ =
∑

λs +
∑

λd (1)

DC =

∑
λdd∑

(λdd + λdu)
=

∑
λdd∑
λd

(2)

PFH =
∑

λdu =
∑

((1 −DC) ×
∑

λd) ≈
∑

((1 −DC) × 0.5 × λ) (3)

2.3 Reliability degradation threats

The latest manufacturing processes are already producing 7 nm devices thanks to the advances in CMOS downscaling
technology, manufacturing processes and electronic design automation tools [5, 18]. Nevertheless, this CMOS technology
downscaling leads to several threats that contribute to reliability degradation such as [32, 33, 34, 5, 35, 36]:

• Process, Voltage and Temperature (PVT) variability : As the technology continues to shrink, manufacturing process
variability introduces higher variability of transistor / gates properties with respect to design time properties [32, 37, 38].
Runtime variability due to PVT and aging, can also lead to transistor / gates variability but at different locations and
operational lifetime points of the device [32, 37]. This variability can lead to timing failure of circuits if design time
margins are exceeded and therefore reduce the device reliability.

• Transient faults and soft errors: Soft-errors are caused by environmental conditions (e.g., α-particles, cosmic rays,
ionizing radiation, EMI, cross-talk) leading to a transient perturbation that can be manifested as memory bit-flip in
memory cells or combinatorial logic result error [32, 33, 39]. If the perturbation affects a single cell the event is called
Single Event Upset (SEU), and if it affects more than one the event is called Multiple Bit Upset (MBU).

• Permanent faults: Permanent faults are those whose presence is persistent and permanently affect the correct functional
behavior of the system [1, 33]. As the technology continues to shrink and device complexity continues to increase, the
probability of physical defects in the hardware (e.g., short-circuit) during lifetime of a system continues to increase,
from rare improbable events to probable events, and therefore error tolerance and diagnosis becomes also important to
ensure the reliable and safe operation of the device [33].
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• Aging (degradation): The temporal degradation of the device can lead to timing degradation and permanent errors.
As explained in [36] several factors contribute to this degradation, where negative bias temperature instability and
temperature are prominent factors.

2.4 Semiconductor industry trend

As described by Corradi [18], the semiconductor industry is facing a technology and economic challenge, where fewer chip
makers can afford the investments required for 16 nm and below technology. At industry level, the consequence is a reduction
in the number of leading semiconductor companies and a general trend towards the mass-production of heterogeneous multi-
core SoCs optimized for maximum average performance that target multiple domains with a single SoC solution [18]. Except
for the automotive domain, safety-related semiconductor market niche is too small for semiconductor companies to provide
economically competitive safety specific solutions compliant with previously defined certification standards. The automotive
domain safety microprocessor solutions market is approximately $5 billion dollars [40, 19], approximately one percent of the
global market estimated at $412 billion in 2017 [41].

Therefore, it is expected that multi-core devices used in the development of safety-related systems will have a higher
dependency on fewer manufacturers with devices that tend to be either safety device, generic device or hybrid device. Table 1
provides a selection of mass-produced COTS generic, safety and hybrid devices provided by major embedded domain silicon
manufacturers.

• Generic device: General purpose heterogeneous multi-core device optimized for cross-domain maximum average per-
formance. As shown in Table 1, an average COTS generic device is designed for maximum average performance
and organized in a shared resources architecture based on components such as [15]: cores, interconnect bus(es) and
memory controllers, private and shared caches, Uniform Memory Architecture (UMA) / Non-Uniform Memory Archi-
tecture (NUMA) and addressable peripherals [20, 42, 43, 12, 44, 17, 18].

• Safety device: Multi-core safety device generally designed for the automotive domain that might also support industrial
safety standards such as IEC 61508 [19, 12]. As shown in Table 1, an average COTS safety device is designed to
comply with safety standard(s) and provide maximum average performance in a shared resources architecture based on
components such as [15]: cores, shared buses, private caches, UMA / NUMA and addressable peripherals.

• Hybrid device: Multi-core device that combines previous options, e.g., generic device with a certifiable ’safety island’
(e.g., Zynq UltraScale+), generic device with integrated FPGA that enables the integration of custom safety designs
(e.g., Zynq with ARM and MicroBlaze [7]).

Device
Type

Core Fam-
ily

Device Family Manufacturer

Generic
devices

ARM Zynq 7000 Xilinx

Jacinto, Sitara,
C6000

Texas Instru-
ments

R-Car V3H, RZ Renesas
Power Arch. iMX8, QorIQ NXP
x86 Xeon, Atom C3000 Intel

Safety de-
vices

ARM Hercules (TMS570) Texas Instru-
ments

R-Car H3 Renesas
Power Arch. MPC57xx NXP

SPC5 STMicroelectronics
R850 RH850 Renesas
Tricore AURIX Infineon

Hybrid de-
vices

ARM Zynq UltraScale+ Xilinx

Table 1: Summary of selected mass-produced COTS devices from major silicon manufacturers
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3 Multi-core Device Architectures

3.1 Summary

As explained by Furano et al. [45], taking into consideration the limitations of available ASIC technology, the overall compu-
tational performance of devices can be increased by means of mono-core devices with higher frequencies, new architectures,
Deep Submicron (DSM) and multi-core technologies. The scope of this survey are new architectures, DSM and multi-core
technologies.

The developer of a safety-critical system based on multi-core device(s) needs to understand all relevant safety techniques
provided by the given device and define required additional complementary measures to comply with applicable safety
standards. However, due to the different nature of threats and challenges that must be addressed at different levels of
abstraction (e.g., nanoscale manufacturing process variability, cache time predictability, cache coherence) there is a high
research fragmentation and a great variability in terminology that makes this analysis difficult. This section contributes
with a categorization of a wide and highly fragmented research area in the field of multi-core device architectures for
dependable systems, based on three device abstraction levels (nanoscale, component and device) and a set of fundamental
safety requirements that safety-critical system developers must at least address (see Section 2.2). Figure 1 shows the survey
structure, mapping survey sections with device abstraction levels and fundamental safety requirements. Table 2 classifies
selected research contributions described in this survey with respect to device abstraction levels and fundamental technical
safety requirements.

Reliability
Diagnostic

Coverage

Spatial

Independence

Temporal

Independence

Fundamental Safety Requirements

Nanoscale

Component

Device

Spec. Spatial Ind.

Shared Bus, Inter., NoC

Scratchpad Memory

Cache

Memory

Core

D
e
v
ic

e
A

b
stra

c
tio

n
L

e
v
e
ls

3.4.1

N/A

3.3.5a

3.3.4a

3.3.3a

3.3.2a

3.3.1a

3.2.1

3.4.2

N/A

3.3.5b

3.3.4b

3.3.3b

3.3.2b

3.3.1b

3.2.2

3.4.3

3.3.6

N/A

N/A

N/A

N/A

N/A

3.2.3

3.4.4

N/A

3.3.5c

3.3.4c

3.3.3c

3.3.2c

3.3.1c

3.2.4

Figure 1: Structure of the survey

With respect to reliability and DC, several research surveys [5, 46, 39] and contributions [47, 36, 48, 49, 35] provide
a comprehensive state-of-the-art of reliability threats and mitigation techniques, DC and fault-tolerance by means of error
detection and correction techniques. Even within this specific topic, which focuses on reliability and DC techniques, there is a
wide and partially fragmented research area that leads to terminology [5], taxonomy and classification variability. Nonetheless,
selected representative techniques have been categorized with the previously described approach and this categorization can
be used as a reference for the categorization of the additional techniques described in these contributions. Qualitative and
quantitative comparison of techniques are also described in previously referenced contributions using similar (e.g., fault
coverage, error coverage) but not always equivalent concepts with respect to IEC 61508 requirements for DC, thus not
enabling a direct quantitative comparison of described techniques. Finally, an equivalent approach has been taken with
respect to FPGA technology, where several research surveys [50, 51, 52] provide a comprehensive state-of-the-art of mitigation
techniques, design standards and fault-tolerant methodologies for FPGAs.

Concerning temporal independence, Maiza et al. [15] provide a survey of timing verification techniques and time pre-
dictability challenges and solutions where selected component and architectural contributions have been categorized at com-
ponent and device level. At nanoscale level, timing fluctuations are due to physical properties such as temperature and
require different techniques. The development of time predictable components provides a solid foundation to achieve device
level temporal independence, simplify WCET analysis and software time composability [53]. However, with respect to time
predictability and WCET, most of the research contributions can be classified as either “how things should be done” (e.g.,
time predictable components) or “how things can be done” (e.g., how to achieve temporal independence with generic devices).

Regarding spatial independence, this is generally supported by specialized architectures (e.g., NUMA) and / or components
(e.g., MMU, cache coherency) commonly available in COTS devices that can be used and configured by system designers.
However, a major challenge is to ensure the correct configuration (e.g., multiple hardware data paths), reliability and DC
(e.g., cache coherency diagnosis) of these components based on which spatial independence justification is based.

Finally, the current research fragmentation leads to a need to address a holistic cross-level and cross safety technical
requirement approach as required to develop and certify safety-critical systems. This is observable in the development
of domain specific case-studies described in Section 4.3, where fundamental safety requirements are addressed at different
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Level Requirement Technical Contribution Section
Device Temporal In-

dependence
- Software [59, 60, 7, 6, 4, 61, 62], WCET [63, 64,
65, 66, 67, 15, 68, 69, 58, 70, 71, 72, 42, 73, 74],
scheduling [4, 59, 75, 74, 76]
- Device architecture [77, 7, 78, 53, 79, 80, 72, 81, 82,
83, 84, 85, 62]

3.4.4

Spatial Inde-
pendence

- Software [59, 86, 7, 60, 54, 87, 88]
- Device architecture: memory [74, 4], shared bus [7],
cache [84, 88, 7], security [89, 90]
- SRAM FPGA [91, 92, 93]

3.4.3

Diagnostic
Cover-
age (DC)

- Software [7, 4, 6, 94, 95, 89, 88, 7, 96]
- Device architecture [7, 4, 6, 94, 89, 88, 49]

3.4.2

Reliability - Device architecture [97, 98] 3.4.1
Component Temporal In-

dependence
- Device components: core [85, 99, 100, 53, 101, 102,
103], memory [104, 105, 106, 107, 108, 109, 110, 111,
112, 113, 114, 47, 53, 115], cache [65, 67, 116, 117,
64, 118], NoC [119, 120, 121, 122, 123, 124, 125, 126,
127, 128, 129, 130], SPM [131]

3.3.6
3.3.5
3.3.4
3.3.3

Spatial Inde-
pendence

See device level spatial independence 3.3.2
3.3.1

Diagnostic
Cover-
age (DC)

- Software [35, 46, 4, 6]
- Device components: core [35, 39, 132, 48, 133, 37,
49], memory [46, 47], cache [46, 47], SPM [46, 47],
shared bus [3, 7, 134], NoC [120]

Reliability - Software: redundancy (e.g., spatial, temporal)
- Device components: core [135, 136, 35, 49, 39]

Nanoscale Temporal In-
dependence

- Software, device components and hardware: ther-
mal and power management [137]

3.2.4

Spatial Inde-
pendence

- See component and device level reliability and DC
- Mass-produced COTS device design process [13]

3.2.3

Diagnostic
Cover-
age (DC)

- Software [46, 4, 6, 35]
- Device hardware [46, 35, 48, 36]

3.2.2

Reliability - Software [46, 4, 6, 56, 36, 137, 138]
- Device hardware: [47, 38, 48, 36, 46, 35, 97, 98, 49]
- SRAM FPGA [50, 51, 52]

3.2.1

Table 2: Selected research contributions classification by device abstraction level and fundamental safety technical requirement

abstraction levels using different application specific and ad hoc combinations of research contributions (e.g., wind turbine
[7, 54, 6, 4, 55]). For example, a cross-level approach is required to achieve the DC required by safety standards because,
as the complexity continues to increase for device architectures, components and interconnections, meeting the required DC
at software application level becomes a challenge if sufficient hardware diagnostic support is not provided [7, 36, 6]. But,
the addition of these diagnosis techniques in the hardware, can also have an impact on silicon die and lead to cost increase,
power overheads and reduced performance. So, the combination of hardware and software techniques combined at different
abstraction levels are usually required to detect complex hardware faults such as MBU and transient faults, as supported
hardware techniques alone might not be sufficient [34, 39, 56, 48, 36]. However, cross-requirements research contributions
that aim at reconciling reliability, DC and time predictability are still scarce (e.g., [57, 58]).

3.2 Nanoscale Level

At nanoscale level, selected key research contributions focus on the definition of techniques for reliability, diagnostic coverage,
circuit spatial independence and circuit time predictability.

3.2.1 Reliability

Reliability laboratory testing data such as [139, 140] provide FIT rates and wear-out period estimations and measurements.
Several surveys [36, 48] provide additional FIT rate data sources and analysis. Intuitively, as CMOS technology downscales
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and supply voltage decreases, raw reliability should decrease (FIT increase) due to higher probability of random soft errors
and transient faults because less energy is required for a cell upset event. In addition to this, reliability should also decrease
due to increasing PVT variability, permanent faults and aging factors.

However, in multiple cases this trend is mitigated and even reverted as the technology downscales [36, 48]. For example,
Xilinx provides reliability laboratory measurements where FIT rates for technologies between 350 nm and 16 nm vary between
2 and 12 FIT, with better values for 90 nm than for 350 nm [140]. This is due to several reasons such as to physical properties
(e.g., sensitive deployment area decrease leads to memory soft error rate decrease [36, 48]), fabrication process improvements
that mitigate PVT variability (e.g., lithographic process) and fault-tolerance techniques deployed in the device such as:

• Design time fault-tolerance that provides hardware level mitigation support without the run-time execution of additional
external circuitry. For example, hardening (e.g., radiation hardening, resilient transistors against faults), design margin-
based mitigation techniques (e.g., operating at higher supply voltages, gate sizing, body biasing, circuit guard banding)
and diversity [47, 38, 48, 36, 49].

• Run-time fault-tolerance that requires the execution of additional circuitry. For example, redundancy (space, time,
information), pipeline protection with shadow latches, tunable replica circuits [46, 35, 48, 36, 49]

For aging effect mitigation, thermal management (e.g., Dynamic Voltage and Frequency Scaling (DVFS), specific tech-
niques to reduce temperature spatial and temporal gradients) and previously described circuit level mitigation techniques
(e.g., guard banding) are common methods [36].

With respect to wear-out period, as explained in [138] and reliability laboratory testing data [139], device FIT rates fall
sharply at the end of the chip lifetime. This wear-out period is reduced as the technology downscales [47] and imposes a
relevant restriction in systems life-time, e.g., the typical wear-out period for 180 nm technology is higher than 100 years and
for 65 nm it is expected to be lower than 5 years [138, 139].

Software Techniques As described in [35], previously described fault-tolerance techniques have an impact on silicon die
and can lead to cost increase, power overheads and reduced performance. Therefore, devices targeting industrial markets
with high reliability requirements are prone to include such features as oppose to high volume markets that have lower
reliability requirements [38]. Because of this, application specific or generic software fault-tolerance techniques can be used in
order to improve hardware reliability, e.g., multithreading for soft error fault-tolerance [56], algorithmic based fault tolerance
[46], software redundant execution (e.g., software application, replicated instructions and check inserted by the compiler)
[46], combination of software and hardware techniques with WCET guarantees [138], software level thermal co-management
[36, 137], application specific techniques (e.g., [4, 6]).

Hardware Fault Tolerance of One (HFT = 1) IEC 61508-2 (Annex E) [13] defines common minimum requirements for
the development of on-chip redundancy with hardware fault-tolerance greater than zero (HFT=1) using integrated circuits
with one common substrate [13]. This solution enables the development of devices with on-chip redundancy (e.g., 1oo2)
such as HICore1 [97, 98] and Zynq-7000 [141]. For that purpose, at least the following safety technical considerations shall
be fulfilled at nanoscale and common substrate level [13]: separate physical blocks on substratum, common cause failure
avoidance and mitigation (e.g., temperature, power supply), minimum distance between boundaries of physical blocks (e.g.,
50µm [97]), short circuit and cross talk mitigation [13].

FPGAs SRAM FPGAs use a configuration memory that defines the operations of the electronic circuit implemented
by the FPGA. Different hardening techniques can be used to tolerate and mitigate soft and transient errors that could
lead to a modification of the intended circuit implementation, e.g., redundancy, scrubbing, partial dynamic reconfiguration,
combinations of the previous techniques [50, 51, 52]. On the other hand, antifuse based FPGAs provide higher reliability than
SRAM FPGAs, but their higher cost and lack of reprogrammability limits their application outside the aerospace domain.

3.2.2 Diagnostic Coverage (DC)

The run-time diagnosis of soft errors and aging errors is a challenge due to the random nature of the error, location and time
distribution [32, 142, 7]. Multiple industrial and research grade techniques can be used to provide required circuit diagnostic
coverage, e.g., monitoring circuits, self-tests and diagnostics, transition detector with time-borrowing, code-based techniques
[46, 35, 48, 36]. Example techniques are described at core and memory component level in Sections 3.3.1 and 3.3.2.

3.2.3 Spatial Independence

Non intended electromagnetic interference between nanoscale level elements such as signals, clocks and power-supplies due
to common cause failures such as cross talk can lead to component and device level errors. These faults are mitigated by
state-of-the-art mass-produced COTS device design processes [13], reliability and DC techniques described at component and
device level (see Section 3.4.3).
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3.2.4 Temporal Independence

Device voltage and temperature fluctuations can lead to circuit timing fluctuations. For example, in specific designs 10%
supply voltage variation can lead to up to 20% circuit delay and 10 ◦C temperature increase can lead to approximately 5%
interconnect delay [35]. While temporal diagnosis techniques can detect and react / recover to circuit timing errors, this
is a potential temporal interference source among integrated functions. For example, the computation and resource usage
of a non-safety function could potentially generate a temperature increase that leads to minor timing fluctuations in the
computation of a safety function. In addition to this, as described in [137], device built-in mechanisms for thermal and power
management (e.g., DVFS) that could lead to temporal interference among integrated mixed-criticality functions should be
analyzed during design time and safely managed during run-time.

3.3 Component Level

At component level, key research contributions focus on the definition of techniques for reliability, diagnostic coverage
and time predictability for all common device components such as core, memory, cache, scratchpad memory, shared bus,
interconnection networks (e.g., Network-on-a-Chip (NoC)) and specialized components for spatial isolation (e.g., Memory
Management Unit (MMU)).

3.3.1 Core

A core is a program processing unit that reads and executes program instructions (software application) and reads / writes
data in associated memories.

Reliability The survey [39] and overviews [35, 49, 36] describe and provide quantitative comparisons of processor core
fault-tolerant architectures based on techniques such hardening and redundancy. For the given examples and compared
techniques [39, 35, 36], hardware replication can generally provide the highest reliability increase and generally it has a
higher hardware overhead (e.g., >= 300% for triplication) than hardening techniques (e.g., < 15% for LEON3FT).

• Hardening : LEON3FT and LEON4FT are 32-bit SPARC-V8 RISC architecture soft-cores designed specifically for
space domain fault-tolerance, based on an extensive usage of error detection and correction codes such as ECC for
memory blocks [135].

• Redundancy (triplication): ARM Cortex-R5 based triple core lock-step architecture provides a triple modular on-chip
redundancy solution with an error propagation unit that includes majority voter, error detection logic and synchro-
nization logic [136]. With respect to software, software triplication schemes with voting can also be deployed among
on-chip redundant cores (e.g., on-chip redundancy with HFT = 1 [4]) to tolerate soft errors but might not be valid to
tolerate permanent errors.

Diagnostic Coverage (DC) The survey [39] and overviews [35, 49] describe and provide quantitative comparisons of
several online error detection and recovery techniques based on techniques such as ’redundancy’, ’dynamic verification’,
’anomaly detection’ and ’temporal diagnosis’ for which selected contributions are summarized:

• Lockstep redundant execution provides a safety standards compliant (e.g., ISO 26262, IEC 61508) medium to high DC
with a high hardware overhead cost (e.g., >= 200%) and minimum performance overhead [35, 49]. This is a cost-
competitive and common technique used in COTS safety devices listed in Table 1 (e.g., AURIX TC3xx). However,
dual-core devices that operate in locked-step, in order to increase the core DC are considered single-core devices.

• Dynamic verification uses dedicated run-time hardware checkers, which are not redundant execution units, to validate
specific execution invariants that are assumed to be true in the absence of errors [35]. Analyzed hardware based
techniques have low hardware overhead (e.g., 6%− 17%), low detection latency and low performance overhead [35, 39].
Argus [132, 35] is an example hardware technique that can potentially achieve medium DC with low hardware area
overhead (< 17%) [35]. It performs core diagnosis by means of run-time checking of four invariants : the control
flow and data-flow are executed as specified in the program binary, correct computations are performed, and memory
is not corrupted. It does not perform low level checking of core components nor provide redundancy of cores for
diagnostic purposed. Generic software techniques such as control flow checking [13, 49] can be used to diagnose that
the expected control flow is executed (the invariant). Specialized software-based redundant solutions can provide
medium potential DC with no hardware overhead cost, low latency but high performance overhead [35]. For example,
software implemented fault tolerance is a soft error diagnosis solution that integrates control flow checking with compiler-
based transformation of the software that duplicates program instructions and inserts checkpoints to diagnose incorrect
computations. Arithmetic codes [49] are also specialized software redundant solutions that add data redundancy in
order to generate codewords that if correctly processed by the associated arithmetic operations will also generate a
codeword (the invariant).
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• Anomaly detection techniques use dedicated or modified circuits to detect errors. For example, periodic Built-In
Self Test (BIST) can potentially achieve low to medium DC with low hardware overhead (5%) [35]. Software based
techniques do not require hardware overhead but require a relevant software overhead to perform periodic tests. For
example, a periodic software-based self-test may require 5%−25% of system execution time [35]. Other example software
techniques are assertion and sanity-based fault-tolerance [46] and application specific techniques (e.g., [4, 6]).

• Temporal diagnosis techniques use dedicated or modified circuit to detect timing errors. For example, Razor provides
circuit-level error detection and correction of timing errors with low hardware overhead (e.g., < 3%) [133, 37]. It targets
the development of power reduction processors where the error rate during operation is monitored to tune the supply
voltage.

Temporal Independence Table 1 provides a summary of selected COTS core families for generic, safety and hybrid
devices. In this summary, it is possible to conclude that a limited set of core families are predominately used by major
device manufacturers (e.g., ARM, Power Architecture, x86). These generic purpose complex cores provide high average-case
performance but time predictability and WCET estimation becomes a technical challenge as described in Section 3.4.4.

On the other hand, as described by Schoeberl et al. [85], a relevant research activity targets the development of time
predictable cores that potentially simplifies the WCET estimation and provides lower bounds. The publication [85] provides
an overview of time predictable cores, from which most relevant time predictable cores with respect to the scope of the survey
are summarized and extended with additional research contributions of interest:

• Patmos [85] is an open-source RISC processor core designed for time predictability and low WCET bounds. The design
includes a dual-issue pipeline, specially designed caches for WCET analysis, support for scratchpad memories and NoC
interface.

• FlexPRET [99, 100] is a multithreaded RISC-V [143] processor designed for the integration of hard and soft real-time
threads, which includes a hardware thread scheduler to schedule hard real-time threads and soft real-time threads.
It is an extension of the Precision Timed (PRET) processor [101, 102, 85] that implements ARM ISA with a RISC
pipeline, chip-level multithreading, Time-Division Multiplexing (TDM) to access shared main memory and scratch
memory instead of caches.

• Hard real-time SMT core [53] implements Tricore instruction set [21] with two in-order super-scalar processor pipelines
(integer and address) with multithreading support. This core is designed to ensure task level bounded maximum delay
due to inter-task interference, between hard real-time and non-hard real-time tasks.

• SPEAR [103] is a constant-time instruction set processor with minimum interrupt jitter and delay support. It is based
on a custom instruction set with fixed and constant execution time.

• PTARM [101] is a soft-core that implements a subset of the ARMv4 ISA with a thread-interleaved pipeline and provides
a time predictable DRAM controller.

3.3.2 Memory

The execution of software applications in cores requires program and data memory storage. As explained in [144, 12], in
multi-core devices two basic memory architectures are used: Non-Uniform Memory Architecture (NUMA) and Uniform
Memory Architecture (UMA). In NUMA each core has a dedicated physical memory with exclusive access privileges and
UMA is a shared memory architecture where the physical memory is uniformly shared among cores and additional peripherals
such as Direct Memory Accesses (DMAs).

Reliability As explained in [36, 47], memory capacity continuously increases with an associated increase in the amount
of occupied silicon area and overall device reliability weight. While memory soft error rate decreases due to downscaling
because the sensitive deployment area decreases, the integrated memory sizes continue to increase at a greater pace [36, 48].
In order to improve memory reliability several new technologies have emerged such as phase change memories [47].

Diagnostic Coverage (DC) As described by [46, 47] and supported by COTS devices described in Table 1, error detection
in memory is generally performed by information redundancy techniques such as parity bit (low DC) and Error-Correcting
Codes (ECCs) that can provide medium DC.

Temporal Independence Conventional memory controllers are not designed to support temporal independence for mixed-
criticality software applications and this leads to potential temporal interference between applications that share the same
memory controller. A conservative solution to bound the temporal interference and WCET, is to consider the worst-case
latency for all possible memory transactions. However, this solution focuses on the WCET scenario, ignores application and
device specific solutions to improve overall efficiency (e.g., software applications scheduling, bandwidth utilization) and the
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unpredictability of applications dense memory access patterns. Furthermore, it is more difficult to provide a tight WCET
for multi-core devices compared to single-core devices, due to inter-application interference accessing shared resources. As
a consequence, the execution time of a given software application depends on other simultaneously executing applications
[145]. In order to support time predictability, specialized memory controllers and management strategies can be used, for
example:

• In order to enhance efficiency, a dynamic command scheduling based back-end real-time memory controller architecture
was proposed [109]. A conservative open-page policy is proposed by [115] that improves average-case performance (e.g.,
bandwidth, latency) of a firm real-time controller while supporting real-time guarantees.

• [107] offers an interference-free memory for critical applications with a memory controller that supports the integration
of applications of different time criticality. In this approach, memory is treated as a set of independent virtual devices
that are mapped to mixed critical workloads by a partitioning strategy.

• [108] proposes a memory controller that supports dual-criticality by means of virtual division of memory banks. In this
approach, each virtual memory bank type is managed with a specific request scheduler policy.

• MemGuard [104, 106, 146] provides an algorithm to perform memory bandwidth management at core level by using
hardware performance counters to monitor the number of last-level cache misses, or accesses via the memory intercon-
nect. [147] introduces a bandwidth regulation module that adapts and extends the MemGuard Linux kernel module
algorithm [105] (known as MemGuardXt) for hardware implementation and supports specific operating modes and
options, with guarantees for rate-constrained flows and bandwidth rates.

Transactional Memory (TM) controller is a concurrency control mechanism for shared resources. It has been introduced
to simplify the concurrency management in multi-core systems, by supporting the atomic execution of sets of load and store
instructions. They suit safety-critical systems as they support time predictability and fault isolation. The temporal and
spatial partitioning approach is commonly used to establish the required determinism in the implementation of transactional
memories. A transactional memory controller can be implemented as software (STM), hardware (HTM) or combination
of both. The following selected contributions focus on the WCET pre-estimation for the schedulability of a given software
application(s) task set:

• [110] introduces an STM algorithm that prevents starvation by means of update transactions conflicts management.
The selection of the conflict detection policy (lazy or eager type), has a significant effect on the temporal schedulability
because it determines when conflicting transactions are aborted. [111] presents a real-time scheduling perspective
analysis of STM conflict detection policies. [112] presents an STM concurrency control for multi-core devices with
real-time software applications. It also presents transactional conflicts contention manager.

• [53] describes a dynamically partitioned cache interface solution that handles memory transactions with bounded
maximum delay guarantees for high criticality software tasks (e.g., hard real-time tasks). This solution, executes on top
of the memory controller. In [114] an analysis of conflicts and aborts for different criticality transactions is provided (e.g.,
hard real-time, best-effort). Moreover, [113] describes a Software Transactional Memory (STM) contention manager
that supports priority-based transactions.

• [148] describes a priority-based HTM controller designed specifically for mixed-criticality systems, with support for
timing analysis, selection of conflict resolution algorithms and techniques for fault propagation avoidance.

Previously described approaches address the resolution of memory transaction conflicts. However, they do not avoid or
address temporal interference in other components such as the interconnect (see Section 3.3.5).

3.3.3 Cache

Cache components [149, 150, 151, 152] reduce memory access time of computing cores, bridging the frequency gap between
cores that operate at higher frequencies than memory components. A multi-core device might integrate private caches
assigned exclusively to given cores (e.g., L1 cache) and public caches shared by several components such as cores (e.g., L2
cache).

As explained in Section 2.4, an average COTS generic device integrates a hierarchy of private and shared caches: one
or several private caches per core connected to interconnect(s) and shared caches between the interconnect(s) and shared
memories. An average COTS safety device integrates a private cache per core connected with the shared bus where memory
and addressable peripherals are connected. Few exceptions (e.g., NGMP space multi-core device [153]) have shared caches
that can be configured to operate partitioned across cores so that each partition effectively becomes a private cache. On the
other hand, research devices that target the development of time predictable devices tend to use different approaches (e.g.,
T-CREST [77, 85]) and NoC based solutions with private caches (see Section 3.3.5).
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Reliability Most of the area in computing devices is devoted to SRAM storage in the form of cache memories. Hence,
their reliability is of prominent importance. Increased integration has led to increased susceptibility to transient faults,
which are mostly addressed with parity and ECC [46, 47]. The particular solution to use depends on whether data is stored
redundantly, so that parity suffices for error correction, or data is unique and ECC is needed for recovery. The existing
options are discussed by Benedicte et al. [154].

Diagnostic Coverage (DC) DC in caches often builds on parity and ECC [46, 47], already deployed for reliability purposes
as discussed before, since they allow testing contents correctness on each access at speed. On the other hand, cache coherency
diagnosis is described at device level (see Section 3.4.2)

Temporal Independence Although caches improve average performance and WCET, it is hard to prove in general
whether cache accesses will be guaranteed to hit, either with abstract interpretation or in a test campaign [65, 67]. Hence,
time guarantees are hard to obtain in general, and so caches defeat either WCET estimates tightness or trustworthiness.
Moreover, speculation and priority inversion effects in computing devices may make cache hits – whose latency is lower than
that of misses – lead to longer execution times than cache misses, thus further challenging time predictability [116].

A thorough survey on cache designs and time predictability can be found in [117]. Details on the pros and cons of cache
memories for probabilistic timing analysis is further developed by Cazorla et al. [64]. In this context, Valsan et al. [118]
analyze the impact on time predictability of resources surrounding cache memories, such as queues and buffers, and noticing
that, if not managed properly, cache (space) partitioning may not suffice to achieve time predictability.

3.3.4 Scratchpad Memory (SPM)

SPMs are software-managed memories, thus being interesting alternatives to traditional, hardware-managed, caches [131, 155].
SPMs are usually small and high-speed SRAM. SPMs reduce design complexity, and thus improve power and performance,
w.r.t. cache memories, and improve time predictability by granting users and compilers with explicit control of their con-
tents [131]. SPMs disadvantages relate to the burden of explicitly controlling their contents, which increases software devel-
opment costs and may jeopardize software portability, and thus the ability to reuse legacy software. Multi-core safety devices
like the AURIX TriCore-based architecture include private both program and data SPMs for each core in combination with
instruction and data caches [21]. Hybrid devices such as the Zynq UltraScale+ also include an SPM, named on-chip memory,
shared across the different processor cores in the platform [22].

Reliability As in the case of caches, SPMs are equally vulnerable to transient faults, and hence, solutions such as coding
(in the form of parity or ECC [46, 47]) are highly popular for SPMs.

Diagnostic Coverage (DC) As in the case of caches, parity and ECC already provide means to reach required low to
medium DC [46, 47]. Moreover, differently to caches, coherence is not a concern for SPMs since their contents are explicitly
managed by software [131, 155].

Temporal Independence Time predictability is a key factor that eases WCET estimation and therefore temporal inde-
pendence, and a key feature of SPMs is that they provide predictable access times. In multi-core architectures with SPMs
like the AURIX and Zynq UltraScale+ [21, 22], the SPMs allow achieving higher levels of temporal independence than with
cache based solutions, as they remove the impact of cache hit/misses and the cache coherence problem.

3.3.5 Shared Bus and Interconnection Network

The integration of multiple cores and shared peripherals in a single device requires the integration of inter-core communication
mechanisms and shared access to peripherals with ideally low latency and high bandwidth. Different architectural patterns
with specific on-chip communication solutions are applicable depending on the device type and number of cores: shared
bus, interconnect (or switch) and NoC. Each architectural pattern has different reliability, DC and time predictability
characteristics.

Reliability Interconnect and switch components are proprietary solutions with none or limited detailed documentation
provided by silicon manufacturers [24]. Thus, component reliability measurements are provided by the manufacturer and
limited information is known about internal fault-tolerance mechanisms. However, error detection and correction for data
transmitted is possible by building on end-to-end ECC protection, i.e., codes are sent along with the data. However, such a
solution does not provide by itself support to detect deadlocks, livelocks, lost message detection and the like. With respect
to NoCs, the survey [156] provides a summary and quantitative comparisons (e.g., bandwidth) of relevant contributions for
reliability and fault-tolerance in real-time NoCs.
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Diagnostic Coverage (DC) A shared-bus provides a simple solution already considered by current safety standards, with
known failure modes and associated diagnosis techniques [13]. Interconnects, on contrast, are complex solutions with none or
limited detailed documentation [24] and consideration by safety standards. Due to this, direct diagnosis becomes a challenge
and several related research contributions consider it a ’black channel’ on top of which a Safe Communication Layer (SCL)
can be deployed to support the safe communication among software tasks running in different cores [3, 7, 134]. A SCL can
be used to provide a high DC of all possible communication errors that can occur in a ’black channel’, the interconnect or
switch. With respect to NoCs, the survey [156] provides a summary of relevant contributions for fault detection in real-time
NoCs.

Time Predictability Generally, a shared-bus based on a round-robin scheduling policy has a a moderated impact on WCET
variability and analysis complexity [157, 158]. But due to latency and bandwidth limitations, a shared-bus is generally used
to interconnect a reduced set of cores. As shown in Table 1, a generic COTS safety device integrates 2 - 3 cores with a shared
bus.

Interconnects integrated in COTS devices (e.g., P4080 CoreNet [3]), on contrast, have a considerable potential impact on
WCET variability and not possible to limit due to the complexity and limited information available for analysis [24, 159].
As shown in Table 1, a generic COTS device integrates 2 - 8 cores with interconnect and switch solutions. The survey [15]
describes relevant contributions for temporal predictability and WCET based on interconnect components.

On the other hand, as explained in the survey [120], a relevant research activity targets the development of real-time
and time predictable NoC solutions for which a generic survey and quantitative comparison is provided by [120, 156]. With
respect to NoC communication traffic temporal predictability, two major technical approaches can be defined: full and virtual
traffic separation.

Full traffic separation is the most conservative approach to establish time predictability for safety-critical subsystems
by completely separating the safety-critical and low-critical traffics. In this approach, the separation of traffics is done in
the spatial domain. A subset of resources is reserved for the safety-critical subsystems and no requests from low-critical
subsystems will be handled by this subset. However, this approach introduces a low-efficient usage of the network resources,
as some resources are blocked for safety-critical subsystems. For example:

• Fully Disjoint Routes: Hermes [123] is an example, which introduces a distributed fault-tolerant routing algorithm
and utilizes load-balancing routing. This routing algorithm provides pre-configured alternative path selection for fault-
tolerance and bypasses faulty network path / region / areas [123]. However, the performance degrades with the number
of faulty links.

• Circuit Switching : Programmable NoC (PNoC) [124] is a lightweight flexible circuit-switched NoC, which supports
a high communication data-path width, dynamic insertion / removal of nodes and guaranteed throughput with low
communication jitter. However, although the authors tried to minimize the circuit establishment latency using simple
communication protocols, this delay is not deterministic because it depends on the availability of the resource.

• Multiple Overlay Networks: TilePro64 [125] is a complete SoC that offers distributed shared resources (e.g., memo-
ries, network controllers) using a packet-switched, wormhole-routed, point-to-point network. The on-chip interconnect
network [130] establishes tile-to-memory, tile-to-tile and tile-to-IO communication by transmitting packets across the
network.

In virtual traffic separation, temporal partitioning is used to virtually establish the separation between the safety-critical
messages and low-critical traffic. The aim of this separation is to eliminate interference between applications and to achieve
composable services. This approach can be implemented by defining scheduled injection times (e.g., Time-Triggered solutions)
or subdividing the bandwidth between the mentioned traffic types using TDM approach (e.g., Ætherial). In addition, rate
controlling (e.g., Nostrum) and prioritized virtual channels (e.g., QNoC) can be used to enhance the interference between
two traffic types. The first two approaches (i.e., scheduled injection time and TDM) rely strongly on a notion of global
synchronicity. For example:

• Time-Triggered Network-on-a-Chip (TTNoC): In time-triggered solutions, the transmission of messages is performed
according to a predefined communication schedule in a periodic manner with a constant period and at a defined instant
within the period (the phase) [122]. TTNoC [126, 122] introduces an on-chip time-triggered interconnect that supports
the required time predictability and fault-tolerance for mixed-criticality systems. However it lacks support for the
integration of legacy hardware and transmission of event-triggered messages.

• Fixed TDM Traffic Slotting : The Ætherial [127] NoC supports two distinct traffic classes of communication, Best-Effort
Services (BES) and Guaranteed Services (GS). The GS offers uncorrupted, loss less, bounded latency, guaranteed
throughput and ordered data delivery through resource (wires and buffers) reservation. This reservation is however
according to the worst-case. The BES does not reserve any resources and uses unallocated and unused capacity and
operates based packet-switching flow control. In this context, GS establishes a time predictable communication infras-
tructure for safety-critical subsystems, while BES increases the resource efficiency and suits low-critical subsystems.
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• Priority-Arbitrated Virtual Channels: The Quality-of-Service NoC (QNoC) [129] offers multiple levels of services (Qual-
ity of Service (QoS)) and uses simple architecture by a credit-based back-pressure flow-control. Packets associated to
different classes of service (GS, BES) are delivered in an interleaved manner with associated QoS definition priori-
ties such as throughput, relative priority and end-to-end delays. Although packets of high priority incur a low delay,
low-priority flows suffer interference from higher priority flows [121].

• Rate Controlling : Rate controlling, or bandwidth management, is the process of measuring and regulating the commu-
nication (traffic, packets) on a network link to avoid overloading the link, which leads to network congestion or poor
performance. This technique obviously cannot eliminate the interference but minimizes it. Nostrum [128] defines a
packet-switched 2D mesh topology, which offers GS as well as BES using deflecting routing algorithm. It supports
design time bandwidth guarantees on a path by means of prioritized looped containers.

3.3.6 Specialized Components for Spatial Independence

In order to achieve multi-core device level spatial independence in compliance with IEC 61508, several specialized components
for spatial independence can be used, e.g., MMU. These components are described in Section 3.4.3.

3.4 Device Level

This section describes selected key research contributions towards device level reliability, diagnostic coverage, spatial inde-
pendence and temporal independence.

3.4.1 Reliability

As explained in Section 2.2 and Equation 1, the device failure rate is composed by the addition of safe and dangerous failure
rates of all components, or at least the components that take part in the execution of safety functions. Thus, device level
reliability is defined by the device architecture and building components reliability (e.g., Reliability Block Diagram (RBD)
with serial / parallel composition of components).

Specialized device architectures such as HFT=1 (see Section 3.2.1) support on-chip redundancy with hardware fault-
tolerance of one (e.g., 1oo2) [97, 98, 141], with a potential reliability improvement with respect to standard multi-core devices
(e.g., 1oo1 (single channel)).

3.4.2 Diagnostic Coverage (DC)

This section describes several diagnosis techniques specific to multi-core devices: temporal diagnosis, spatial diagnosis and
safe start-up / shut-down.

• Temporal diagnosis is required to diagnose that safety related time constraints of interest are met and safely react /
recover in case of error. For example, in safety devices it is required to detect unexpected errors due to systematic
and random errors, and in generic devices for detecting rare event situations not considered in the design phase. For
this purpose, several common application specific techniques can be used (e.g., time constraint monitoring, trapping
unexpected interrupts, watchdog [7, 4, 6]) and run-time monitoring diagnosis (e.g., device performance counters [94],
software framework [95]).

• Spatial diagnosis is required to ensure that data of a given function is not modified by another element or function. In
a multi-core device, the parallel execution of software tasks that perform read and write operations in memory require
a coherency management, to ensure that a write operation of a given data value is consistently updated for read(s)
operation by tasks in other core(s) within a given time frame. Cache coherency management is generally performed by
dedicated built-in components (e.g., Snoop Control Unit [88]) that ensure the coherency of distributed and hierarchical
caches (e.g., L1 / L2). Device built-in cache and memory coherency management are subject to systematic and random
faults, thus, diagnosis is required to ensure spatial independence. Cache and memory coherency diagnosis can be
performed by built-in hardware diagnosis [49], generic software techniques (e.g., [88, 7]) or a combination of both.
In addition to this, device built-in spatial protection components (e.g., MMU) and error detection and correction
techniques (e.g., ECC) require periodic diagnosis to detect random or systematic faults in these components and
techniques [4, 89, 96]. Finally, application specific software techniques based on information redundancy for application
safety data areas might be used to increase the spatial diagnostic coverage (e.g., CRC, memory duplication, memory
duplication with bit inversion [13]).

• Safe start-up and shut-down diagnosis is required to ensure that the device is started-up and shut-down in a safe, design
time defined and repeatable manner [4, 89], using internal and / or external hardware and software,
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3.4.3 Spatial Independence

Key contributions with respect to device level spatial independence can be classified in two major groups: achieving spatial
independence with shared resources and specialized architectures and components that support spatial independence. Spatial
diagnosis techniques and associated components are also required to detect errors, must be considered in reliability analysis
and temporal independence analysis (see Sections 3.4.2 and 3.4.4).

Spatial Independence with Shared Resources Ensuring exclusive access to addressable resources is a common basic
technique to ensure spatial independence avoiding the threats associated to shared resources. In UMA and NUMA memory
architectures where addressable resources are shared resources, the usage of MMU and Memory Protection Unit (MPU)
components is a common technique to support the exclusive access to shared resources such as addressable peripherals and
memories [74, 4]. Both components are common in state-of-the-art multi-core devices (see Table 1). Moreover, in generic
devices shared components might be accessible by means of different buses and networks, thus, possible combinations shall
also be analyzed and restricted [7]. In an UMA memory architecture with shared memories and local cache per core, coherency
threats need to be mitigated managing the device level coherency of shared data read and write transactions. When a shared
data is locally updated, this change needs to be timely updated at device level by means of device specific cache coherency
support [88, 7].

In addition to this, modern multi-core devices provide built-in security technology that in some cases can be used to support
spatial independence. For example, TrustZone technology provides device level hardware isolation for trusted software, which
can be used to define a trusted execution environment for the safety software with exclusive access to assigned resources
[89, 90].

Specialized Architectures and Components for Spatial Independence In a NUMA memory architecture, where
each core has a dedicated physical memory with exclusive access privileges, spatial independence of local memory can be
potentially achieved by design [12]. This is a common approach used in NoC architectures such as specialized time independent
architectures described in Section 3.4.4. This approach is also used in HFT of 1 solutions (e.g., [97, 98, 160]).

Device virtualization features enable the development of software level solutions that support spatial independence among
software partitions and tasks. For example:

• A hypervisor is a layer of software that uses device virtualization support in order to provide independent execution
environments to software partitions (e.g., XtratuM, Linux-KVM, PikeOS, Jailhouse [59]). Hypervisor virtualization
in combination with multi-core devices can be used for the development of mixed-criticality systems combining safety
and non-safety partitions, including safety partitions of different criticality. The development of hypervisor solutions
for mixed-criticality applications is an active field of research [59, 54, 7, 60] in combination with the usage of such
technology with multi-core devices for the development of mixed-criticality safety systems [161, 4, 6, 3, 2, 162]. Gu [60]
provides a survey of hypervisor virtualization solutions for real-time and safety-critical systems. Domain specific safety
certified COTS hypervisors are already commercially available (e.g., PikeOS, XtratuM).

• With respect to real-time operating systems, several research initiatives are analyzing container-based mechanisms,
which are well-known in the security domain, to provide software isolation mechanisms similar to previously defined
software partitions that can also be deployed in multi-core device architectures (e.g., [87]). For example, several
initiatives aim to pave the way towards safety certification of Linux (e.g., SIL2LinuxMP [86, 87]).

In addition, and based on this, specialized software strategies can be defined to handle specific spatial independence
challenges such as shared addressable registers used to manage input, output and communication peripherals. If more than
one function requires the shared usage of such peripheral registers, previous strategies to support exclusive access to memory
addressable resources might not be valid. For example, digital input / output and communication servers describe software
solution patterns based on partitions that exclusively manage device registers and provide read / write services to other
software partitions [7, 88, 84].

With respect to FPGAs, modern SRAM FPGAs provide different logical and spatial isolation mechanisms and supporting
tools. FPGAs with multiple dies on a substrate can support the route and placement of redundant channels in different silicon
die blocks [93]. In addition to this, isolation fences for spatial independence can be defined in order to provide logical and
spatial isolation between logical blocks using specialized qualified tools such as Isolation Design Flow (IDF) [91, 89].

3.4.4 Temporal Independence

Key contributions with respect to device level temporal independence can also be classified in two major groups: achieving
temporal independence with shared resources and development of specialized architectures that provide or support temporal
independence. In both cases, WCET estimation is required for timing verification [15] and temporal diagnosis to detect errors
(see Section 3.4.2).
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Temporal Independence with Shared Resources As explained by Maiza et al. [15], Mitra et al. [72] and in Section
2.4, an average COTS device is based on a shared resources architecture. The concurrent access to shared resources and
components that optimize average performance at the cost of time predictability, leads to potential temporal interference
among executing software tasks that could jeopardize the required temporal independence [42, 43, 163, 116, 4, 17, 15, 72, 10]
and WCET estimation with low bounds becomes a challenge [67, 15, 72].

Nonetheless, as explained in [4, 6, 7], it is feasible to define application and device specific time independent solutions,
using COTS generic devices with shared resources and associated intrinsic time interference sources [42, 72]. In order to
achieve temporal independence, at least a design systematic approach and diagnostic coverage to detect temporal constraint
violations are required. If an unexpected dangerous violation occurs, the diagnosis error reaction should lead to safe-sate,
which does not jeopardy safety but availability. The design systematic approach should at least consider analysis of device
and components temporal characteristics such as WCET estimation, partitions scheduling, partition time slot assignment
and interrupt sources management. The temporal diagnosis strategy should consider techniques such as monitoring of time
constraints and trap unexpected interrupts. As summarized in Table 3, this approach has been extended in several domain
and application specific safety concepts, e.g., railway [3], automotive [2].

But, this approach considers a simplistic scenario where a single fail-safe safety function is integrated. As explained by
Paulitsch [74], when several fail-safe functions are integrated the requirement for function integrity and availability needs to be
analyzed to ensure safe operation. A safety function might not be allowed to sacrifice the operation of another safety function
due to the unforeseen consequences of the effect (e.g., cascading effects to other functions that could lead to dangerous pilot
cognitive overload) [74]. Thus, these scenarios require also application and device specific solutions to achieve the required
temporal independence.

Specialized Architectures for Temporal Independence Several research contributions define specialized architectures
and devices that provide rules, patterns and building-blocks that can be used in combination with application software to
achieve temporal independence:

• The Composable and Predictable Multi-Processor System on Chip (CoMPSoC) architecture [78] supports resources
between applications on the same multi-core system-on-a-chip, while avoiding mutual interference. The temporal
behavior of an application does not depend on other applications despite the sharing of on-chip resources. CoMPSoC
employs the Ætherial NoC to ensure predictability for the communication. This NoC [82] uses time-division multiple-
access and static resource allocation for the network interfaces, where time-slots remain empty in case no data needs
to be transmitted by a network interface.

• The DREAMS architecture [7] provides structuring rules according to several integration levels. At the chip-level, a
multi-core chip is decomposed into tiles that are interconnected by a NoC, where each tile is composed by several cores
with associated caches, memories and I/O resources. The architecture defines generic platform services as a baseline
for the development of applications including a integrated resource management and fault-tolerant global time base,
based on which secure communication and execution of services are deployed. The architecture avoids interference of
shared memory resources using MemGuard with a dynamic reclaim mechanism [147]. Each tile is allocated a certain
bandwidth for each period and unused bandwidth is assigned to a global repository, which can be exploited by other
cores.

• T-CREST is a time predictable multi-core architecture based on Patmos time predictable processor core, specially
designed cache for WCET, scratchpad memory and time predictable TDM based NoC [77, 83, 81, 85].

• The Multi-Core Execution of Parallelised Hard Real-Time Applications Supporting Analysability (parMERASA) archi-
tecture [79] provides an execution environment for hard real-time applications on a scalable multi-core processor. The
parMERASA multi-core processor contains scalable timing analyzable NoCs. Processor cores are organized into clusters
that are connected with a dedicated NoC [62]. It includes an extended on-demand coherent cache controller [84] that
enables tight static WCET analysis [73]. This cache prevents unintended interference between cores by distinguishing
between private and shared cache lines.

• The LEON-based Probabilistically Analyzable pRocessor Design (LEOPARD) architecture [80], implemented in a
commercial LEON3-based multi-core for the space domain – although applicable to any domain – provides specific
timing properties needed for probabilistic timing analysis. In particular, LEOPARD randomizes shared bus arbitration
and cache placement and replacement policies. It also upper bounds the latency of some input dependent floating-point
operations such as division and square root. This facilitates probabilistic timing analysis [64] and relieves developers
from having to control design details such as memory placement and how tasks in different cores share hardware
resources.

Worst Case Execution Time (WCET) The WCET estimation challenge can be viewed from different angles, each one
with different paradigms to address the challenge:

15



• Static vs measurement-based timing analysis. Static timing analysis builds upon a timing model of the device where
real-time applications should be executed, and performs abstract interpretation of the execution of the software on
the device. This way, static timing analysis determines or, quite often, upper bounds the latency of the instructions,
basic blocks and functions of the application under analysis on such a device. Static timing analysis reliability and
tightness strongly depend on the accuracy and reliability of the timing model of the device, as well as on the amount of
– detailed – information obtained from the application under analysis, mostly related to memory placement and timing
of the events. Conversely, measurement-based timing analysis relies on actual execution time measurements of the
application running on the actual device, thus avoiding any reliability and tightness issue due to models and detailed
information for abstract interpretation. However, measurement-based timing analysis reliability strongly depends on
the representativeness of the tests executed w.r.t. the WCET, as well as on the control exercised on the initial conditions
of the device.

• Deterministic vs probabilistic timing analysis. Deterministic timing analysis aims at providing an absolute WCET
bound that cannot be exceeded under any circumstance. However, the residual risk of exceeding that bound is unknown
and not null by construction. Conversely, probabilistic timing analysis aims at delivering a probabilistic distribution
intended to upper bound the real execution time distribution so that for any given exceedance threshold (e.g. 10−12

per run) a probabilistic WCET bound is obtained. In general, the latter, probabilistic timing analysis, offers a more
convenient and flexible trade-off to obtain WCET estimates, but relies on some timing characteristics of the device
and/or the application that may not hold unless appropriate hardware or software support is provided.

A plethora of works have analyzed and reviewed the different WCET estimation paradigms. The seminal work by Wilhelm
et al. [65] compares static and measurement-based approaches, and hybrids thereof. An updated taxonomy of the state-of-
the-art with focus on multi-core aspects for timing analysis can be found in [66]. A comparative perspective of all paradigms
above with specific discussion for multi-core devices has been given by Abella et al. [67], whereas a deeper analysis for
multi-core aspects can be found in [15]. Puschner [68], instead, considers the multi-core problem with particular focus on the
management of mixed criticalities. Finally, tooling aspects for the different paradigms have also been specifically addressed
[65, 71].

Measurement-based (deterministic) timing analysis has been object of significant attention with the development of
multiple methods applied to specific safety regulations and domains such as automotive [69], avionics [58] and industrial
control [55] domains. It is also a common industrial practice. The hardware and software support needed to facilitate
deterministic timing analysis [70, 63] as well as probabilistic timing analysis [64] has also been object of deep analysis.

Note that quantitative comparisons across devices are not provided since WCET estimates are only partially dependent
on the device used, its components and the nanoscale implementation aspects. Instead, WCET estimate trustworthiness and
tightness strongly depend on how the device is configured for use (e.g., number of cores active, cache replacement policies
used) and how the software is deployed – which limits potential interference, and, more importantly, on the particular timing
analysis method used, where the cost to apply it, and the amount and type of input needed to apply it, vary dramatically
across methods [67]. Overall, to the best of our knowledge, relevant quantitative comparisons across devices on the same
ground (i.e. comparable configuration settings, same application, same timing analysis method) with realistic assumptions
do not exist, and any conclusion for such a comparison could only be extremely dependent on the settings, applications and
timing analysis method used, thus precluding from obtaining a general conclusion for devices compared. Instead, only deep
– but qualitative – comparisons exist for few devices (e.g., [24]).

Software Scheduling Generally, safety standards demand simple, static and design-time defined scheduling solutions.
For example, industrial safety standards such as IEC 61508-3 recommend the usage of design time deterministic scheduling
methods (e.g., cycling scheduling with pre-assigned time slots) and strict priority scheduling by means of priority inversion
avoidance [13, 4]. Hypervisors, such as XtratuM, support design time cyclic scheduling policies for partitions [59].

In order to improve the efficiency of resource sharing, and therefore the overall system average performance, several
scheduling solutions have been proposed for mixed-criticality systems as summarized in the survey [75]. This is an active
research topic in the scheduling research community that combines functions of different criticality to be scheduled with
multi-core devices. However, as explained by Paulitsch et al. [74], with respect to industrial safety systems the contribution
of this research is closer to the concepts of ’survivability’ and ’graceful degradation’ [76] rather than criticality and safety
compliance (with respect to safety standards such as IEC 61508).

4 Domain Specific Approaches

This section extends the survey with other domains that do not use IEC 61508 as reference safety standard, avionics and
aerospace domain. It also provides a summary of selected domain specific relevant example case-studies.
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4.1 Avionics Domain

Avionic systems are subject to very strict certification processes that need to be approved by specific certification authorities.
Thus, certification of safety-related systems based on multi-core devices in avionics is often more challenging than for other
domains and, moreover, the avionic industry is even more reluctant than other industries to redesign already certified software.

The Integrated Modular Avionics (IMA) architecture, used by most avionic systems in the last decade, has enabled
the integration of more functions in fewer computers, thus a reduction of computer systems SWaP. However, increasing
performance demands in avionics (e.g., Airbus A-380 has 80 Mbytes code size [138]) cannot longer be satisfied with single
core processors [164], and multi-core devices become mandatory to increase performance without increasing the number of
on-board computers [164, 165, 17, 7, 10].

However, the multi-core integration (multi-IMA) of legacy single-core IMA systems is a certification challenge, because
legacy partitions temporal and spatial isolation must be guaranteed without incurring in huge re-certification costs [165, 166,
167, 24, 168, 169, 170, 171]. The updated ARINC 653 supports the usage of multi-core devices but restricting the execution
of safety partitions to a single core at a time with the remaining cores disabled, which is against SWaP reduction.

CAST-32A position paper [172], developed by avionics certification authorities, provides some guidance on how to use
multi-core devices for safety-critical systems, allowing multiple cores to be used while running at least one safety partition,
but there is still a significant gap between those guidelines and what COTS multi-core devices offer in terms of partition and
control of interference channels. This gap relates to the abstract objectives provided in the CAST-32A position paper, which
are hard to match – if at all possible – with the actual characteristics of COTS multi-core devices offering the performance
level needed by avionic systems. Agirre et al. [173] analyze qualitatively and quantitatively such gap for the particular case
of the NXP P4080 multi-core device, showing that COTS multi-core device design in general, and for the NXP P4080 device
in particular, is at odds with the objectives imposed by CAST-32A position paper.

Efforts towards easing the adoption of multi-core devices in avionics safety-related systems have been abundant. Paulitsch
et al. [74, 10] provide a research state-of-the-art description of mixed-criticality systems, with insights into real avionics
systems. Some authors aim at characterizing the timing characteristics of shared hardware resources in COTS multi-core
devices, either from a hardware perspective [170] or from an application perspective [174]. The required hypervisor support
needed to limit interference due to contention in shared resources has also been evaluated and multiple alternatives provided
[161, 175] as well as IMA compliant solutions for timing analysis of legacy code [176]. Agrawal et al. [177] provide a
specific solution to manage memory bandwidth dynamically on COTS multi-core devices while still preserving a sufficient
degree of time predictability. The impact of fault-tolerance mechanisms on time predictability for multi-core devices has also
received some attention [58] since this aspect is too often overlooked. Finally, some authors consider the use of probabilistic
timing analysis as a way of relieving end users from the cumbersome task of mastering execution time variability in complex
multi-core devices [64, 178, 179].

4.2 Space Domain

Similarly to the avionics domain, the space domain has started building its systems on the IMA for Space (IMA-SP) archi-
tecture to facilitate the consolidation of multiple functions onto a single computer for SWaP reduction. However, as for the
avionics domain, IMA-SP does not provide explicit solutions for the integration of multiple safety partitions on multi-core
devices.

Space systems are subject to a number of specific requirements far different from those of terrestrial ones [180]. For
example, legacy code is relatively scarce since each mission is basically unique and they require higher levels of fault tolerance
support because they are generally exposed to much higher levels of radiation than terrestrial systems. However, as in many
other safety-related domains, performance demands grow sustainedly, with code size scaling by a factor of 10x every 10 years,
with missions in 2010 already reaching few millions of lines of code [180].

These characteristics impose the use of high-performance radiation-hardened hardware devices for spacecraft control and
process data retrieved through instruments, as well as the consideration of approaches for system verification and validation
such as timing aspects of multi-core devices. Such radiation-hardened devices, either in the form of ASIC processors or
FPGA implementations, have been developed for several space missions (e.g., dual-core LEON3-FT [23]). In this context,
multi-core devices are becoming dominant, with space industry considering increasingly parallel hardware devices such as the
Next-Generation Microprocessor (NGMP) [153]. The landscape of future computing devices for space for on-board processing
is analyzed in [45]. Apart from the aforementioned NGMP device, authors also identify the RAD5500 processor family, a
radiation-hardened processor based on the e5500 core of the QorIQ Power Architecture processor. For instance, the RAD5545
processor employs four RAD5500 cores and uses 45 nm technology [45].

A detailed survey of the available (in 2012) space processors for space missions is given in [181], including radiation
and non-radiation hardened processors, as well as those with no redundancy, dual-modular redundancy and triple-modular
redundancy for fault tolerance. From a different perspective, other works aim at reconciling safety and security concerns for
Integrated Modular Avionics for Space (IMA-SP) systems, but still without considering multi-core devices [182].
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4.3 Example Case Studies

Table 3 provides a summary of selected domain specific relevant example case-studies based on a variety of multi-core devices
and covering several fundamental safety technical requirements.

Domain Device Description
Automotive AURIX

(TC27x)
A safety concept example for ISO 26262 ASILD compliant
automotive cruise-control safety system based on an automo-
tive safety device and virtualization technology (hypervisor)
[2]

AURIX
(TC2xx)

Powertrain control example based on a safety device using the
proposed software development and test environment [183].

Hercules
(TMS570)

Example safety Anti-Lock Braking System (ABS) implemen-
tation in a single-core (TMS470) and dual-core safety device
(TMS570). Both implementations are compared with respect
to safety, task scheduling, real-time performance and power
consumption [184].

Generic Simplified state of the art of automotive COTS multi-core
devices, operating systems and timing analysis tools. It pro-
poses a legacy code migration pattern for automotive multi-
core devices taking into consideration associated safety stan-
dards [185].

Avionics QorIQ
(T4240)

Design and time analysis of a mixed-criticality system that
integrates safety and non-safety software applications based
on a generic device and virtualization technology (hypervi-
sor) [7].

QorIQ
(P4080),
ARM A15,
Cyclone V,
C6000

Selection criteria and assessment of multiple COTS devices
against avionics requirements, together with suggestions for
their appropriate use and modifications to EASA guidelines
[24].

QorIQ
(P4080)

Qualitative and quantitative assessments of the use of this
COTS multi-core device for avionic systems, with emphasis
on timing analysis [170] and compliance against CAST-32A
guidance [173].

MPPA-256
Bostan

Assessment of software (PikeOS) and MPPA-256 device
against avionics requirements in the context of multi-core
devices [17].

LEON3+ Part of the flight control system is evaluated on a 4-core
LEON3 design implemented on a FPGA, together with AR-
INC 653 compliant PikeOS in the context of probabilistic
timing analysis [186].

Railway QorIQ
(P4080)

A safety concept example for EN 5012x SIL4 compliant on-
board railway signalling safety system based on a generic
device and hypervisor technology [3].

Industrial
Control

Core 2 Duo
Processor

Industrial robot controller that integrates mixed-criticality
functions such as real-time control and IEC 61508 SIL2 safety
soft-PLC in a dual core processor [26].

Intel Atom
(x86) and
LEON3FT

Safety certification strategy and safety concept examples for
IEC 61508 SIL3 compliant wind-turbine safety system based
on hybrid safety devices and hypervisor technology [54, 6, 4,
55].

Zynq-7000
(ARM, Mi-
croBlaze)

Safety concept for IEC 61508 SIL3 compliant wind-turbine
safety system based on generic device and hypervisor tech-
nology [54, 6, 4], extended with certification strategy that
supports variability, product line and modular safety cases
[7].

Medical
Systems

Zynq-7000 Real-time assessment of dependable health-care case study
that integrates Linux-KVM with Memguard, on-chip com-
munication and security services [7].
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Several Overview of processor fault-tolerant techniques and solutions
that target medical applications [5]

Table 3: Summary of selected example case-studies

5 Conclusion and Future Research Directions

This section describes links to other related research topics, overall conclusion and future research directions.

5.1 Links to other research topics

When several software applications of different criticality are integrated in a multi-core device, multiple challenges need to
be addressed and managed, in order to support the cost-effective safety certification of the given integrated solution. This
section explores the links between the surveyed research scope and some additional research challenges to be considered.

5.1.1 Parallel Application Software

The development of software applications for multi-core devices needs to consider the parallel / concurrent execution of
multiple software applications on a single device with shared resources.

• Software development: Previously described hypervisor virtualization and operating system extensions that support
partitioning provide a foundation for the integration of software partitions with parallel / concurrent execution [4].

• Software re-usability: The re-usability of sequential legacy code (mono-core) becomes a challenge because it needs
to consider both the parallel execution of software applications and the usage of shared resources [42, 12, 187]. For
example, Macher [12] describes generic steps that can be used to migrate legacy software to multi-core devices.

• Software integration: The integration of multiple mixed-criticality parallel application software partitions on multi-core
devices is another field of research with the development of technical solutions (e.g., hypervisor and partitions) and
strategies at system (e.g., [6]) and on-chip level (e.g., performance and run-time monitors [94]).

5.1.2 Parallel Programming Models

The definition of heterogeneous and parallel programming languages [188] with support for mixed-criticality safety systems
is a challenge to be addressed [189], which could help exploit the performance delivered by multi-core devices enabling
the execution of parallel software applications, rather than only multiple sequential applications in parallel. In this context,
OpenMP has been regarded as a potentially appropriate solution, enabling functional verification, and being already supported
by Keystone II and MPPA multi-core devices [189]. Regarding timing verification for real-time systems, two different OpenMP
models have been considered so far in the literature, namely fork-join [190] and tasking [191] models, being the latter the one
gaining more popularity due to its ability to materialize parallelism even at fine granularity, and not being restricted to only
structured parallelism. Irregular task graphs can also be parallelized with the tasking model, and research initiatives aim at
leveraging support for heterogeneous and asynchronous parallelism to deliver time predictability [192].

5.1.3 Heterogeneous Computing Platforms

In addition to multi-core devices, heterogeneous computing platforms including GPUs and application specific architectures
(e.g., tensor cores) can potentially be used for the development of mixed-criticality systems. For example, GPUs provide
high performance computing platforms for application domains such autonomous driving solutions [193, 194] (e.g., NVIDIA
Xavier ASILC)). Mittal et. al [194] provide a survey of GPU based heterogeneous computing techniques and Alcaide et al.
[193] an analysis and techniques for the usage of GPUs in high-integrity autonomous driving solutions with respect to ISO
26262 standard.

Besides, the development of artificial intelligence based autonomous systems is leading to open research problems such
as the distribution of learning and inference activities over heterogeneous computing platforms. Upcoming SoC-FPGAs
platforms (e.g., Xilinx Versal) combine these heterogeneous resources, but challenges remain with respect to hardware sup-
port for safety-critical systems such as predictable interconnects, avoidance of temporal interference in memory and safety
monitors. For example, while the portability to different GPU architectures and programming interfaces was addressed in
prior work [195], portability to other resource types and the simultaneous usage of heterogeneous computing resources is also
considered a challenge, with few works currently addressing this challenge [196].
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5.1.4 Product Line and Modular Certification Strategies

During the product lifetime different aspects needs to be considered in order to support complexity management [197] and
support the incremental certification of systems [7], e.g., product line and variability management [7], periodic updates of
hardware that require re-certification (e.g., 10-15 years in automotive [8]), modular safety cases and modular certification
approaches [89, 96, 7].

5.1.5 Security / Cybersecurity

Safety and security requirements are common in multiple domains (“no safety without security”) such as avionics [74, 10, 30],
control systems [198], automotive [8] and railway [25, 30]. In addition to this, the industrial trend towards Industry 4.0 and
digitalization, and the automotive trend towards autonomous vehicles, further exacerbates the need to comply with safety
and security requirements. The definition of security standards compatible with safety standards development processes (e.g.,
IEC 62443 [199] and IEC 61508) and the definition of cross-domain verification and validation methods [30], paves the way
towards safety and security systems certification. From a technical perspective this is an active field of research [198]. For
example, the Multiple Independent Levels of Security / Safety (MILS) architectural approach combines safety and security
requirements in different domains [74] and it is supported by several hypervisor solutions (e.g., XtratuM). In addition to this,
several COTS generic and safety devices already provide support for the development of safe and secure applications.

Other important aspect is related to software updates. From a security point of view, it is essential to keep the system
up-to-date with the latest security patches, what requires regular software updates. On the contrary, the service life of
safety-critical systems is rather static, where operation time modifications involve a well established procedure that can not
be trivially applied to frequent updates. Accordingly, a safety and security co-engineering is essential for the development
and maintenance of such systems with over-the-air software updates [200].

5.1.6 Energy, Power and Thermal Management

As CMOS technology downscales, potentially more transistors can fit on the same silicon die area. However, power, thermal
and energy-efficiency constraints limit this potential transistor density increase [37]. This design paradox is referred to as
“dark silicon” [201]. In other to overcome these constraints, different approaches are considered such as thermally aware
chiplets [202] and balance between fault-tolerance and power consumption [203]. Energy and power consumption is a critical
factor for diverse safety-critical systems such as portable medical devices [5] and railway signalling autonomous remote
object controllers [137]. In this context, Fakih et al. [137] describe techniques and approaches for energy, power and thermal
management in the development of multi-core device based mixed-criticality systems, where described low power techniques
must not jeopardize integrated safety functions.

5.1.7 Integrated Development Environments (IDEs) and tools

The development of multi-core device based mixed-criticality systems require the development or extension of IDEs and tools
in order to support the complexity management derived from the integration of software functions of different criticality
allocated to one or several cores (e.g., partition allocation) taking into consideration several technical constraints such as het-
erogeneous computing platforms, hypervisor configuration and partition scheduling, real-time guarantees, safety constraints,
diagnosis, WCET, parallel programming models, product line variability and design space exploration [7]. For example,
several research projects (e.g., ARAMiS II, EMC2, DREAMS) have addressed this challenge. A tool platform with common
technical interfaces and seamless work-flows was defined in the ARAMiS II project, with a focus on development environments
supporting partitioning, allocation, binding, scheduling and design space exploration for software components on multi-core
devices [204]. Application models and design tools for multi-core device based mixed-criticality systems were defined in the
EMC2 project [205]. For example, the developed tools support the optimized allocation of a system’s functionality to a
target hardware architecture, while ensuring bounded interference between different components in mixed-criticality settings.
Development process and tools for mixed-criticality systems with networked multi-core devices were defined in the DREAMS
project [7]. The tools support model-transformations, scheduling and design space exploration for mixed-criticality systems
based on multi-core devices and virtualization technology.

5.2 Conclusions and Future Research Directions

The integration of functions of different safety criticality (e.g., safety and non-safety) in a multi-core device leads to safety
certification challenges. This survey has categorized and summarized at different device abstraction levels (nanoscale, com-
ponent and device) the state-of-the-art of selected key research contributions that support the compliance with fundamental
safety technical requirements (reliability, diagnostic coverage, spatial and temporal independence). Most of the surveyed
research state-of-the-art can be classified as either “how things should be done” (e.g., temporal independence with T-CREST
time predictable device) or “how things can be done” (e.g., how to achieve temporal independence with current COTS
generic devices). Taking into consideration the business oriented and innovative nature of the semiconductor industry and
the required conservative nature of safety standards, in the future this divergent trend is expected to even increase.
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With respect to safety certification, as described by the research state-of-the-art and example case-studies summarized
in this survey, it is technically feasible to develop multi-core device based mixed-criticality safety systems. However, the
techniques and strategies described in the case-studies have a high dependency with the integrated multi-core device and
software applications (ad hoc solutions). Therefore, there is a need to consider cross-level and cross fundamental techni-
cal safety requirements research contributions. Although re-certification costs are also high, periodic system updates are
commonly required due to hardware obsolescence, software updates and security patches. This leads to a need to manage
either device stocks for the product life period [116] and / or techniques to decouple the dependency among the multi-core
device and software applications, by means of techniques such as software partitioning and virtualization, safety and security
co-engineering, safety product lines, modular safety cases and overall complexity management.

In addition to this, compliance with time independence requirement and supporting time predictability in multi-core
devices is a technical and research challenge. The availability and development of novel architectures and components
that provide time predictability (e.g., T-CREST) can simplify the WCET estimation and overall safety argumentation with
respect to temporal independence. However, shared-resources based COTS multi-core devices are not generally designed with
a focus on hard real-time applications and time predictability. Thus, there is a need for the definition of novel WCET analysis
techniques, temporal diagnosis techniques and temporal independence strategies. In addition to this, parallel programming
languages and parallel software application techniques that consider the parallel / concurrent execution of software are
required for new software development, software re-usability and software integration.

Finally, as described by the International Technology Roadmap for Semiconductors (ITRS) [27], multi-core devices compu-
tational performance will continue increasing with further innovation and research in several fields such as DSM technologies,
thermal management and device architectures. This will further require the development of novel hardware and software
fault-tolerance, diagnosis techniques and strategies, which will also need to consider device energy-power-thermal management
requirements and temporal predictability restrictions.

And this innovation is required for the development of next generation industrial and transportation systems that integrate
autonomous systems, intelligent ADAS, machine learning and Industry 4.0 solutions, which will further accelerate the ever-
increasing demand for additional functions to be integrated in a reduced number of computing nodes and processing devices
with higher computational and on-chip communication performance. And this integration trend will further exacerbate
current system integration engineering challenges such as off-chip communication capabilities, distribution of applications
and services, distributed resource management, system level global-time and scheduling, IDEs and tools, system level safety
and security engineering [7].
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ing confidence on measurement-based contention bounds for real-time round-robin buses. In 52nd Design Automation
Conf. (DAC), pages 125:1–125:6. ACM, 2015.

[158] D. Dasari and V. Nelis. An analysis of the impact of bus contention on the WCET in multicores. In IEEE 14th Int.
Conf. on High Performance Comput. and Commun. (HPCC), pages 1450–1457, 2012.

[159] J. Bin. Controlling Execution Time Variability Using COTS for Safety Critical Systems. Thesis, 2014.

[160] Paul S. Levy. WP495 - Using Zynq-7000 SoC IEC 61508 Artifacts to Achieve ISO 13849 Compliance. Report, Xilinx,
2017.

[161] X. Jean. Hypervisor Control of COTS Multi-Cores Processors in Order to Enforce Determinism for Future Avionics
Equipment. PhD thesis, Telecom ParisTech, 2015.

28



[162] J. Perez, M. Coppola, M. Faugère, D. Gracia Perez, M. Grammatikakis, A. Larrucea Ortube, A. Mouzakitis, A. Papa-
grigoriou, P. Petrakis, V. Piperaki, I. Sarasola, and G. Tsamis. Evaluation. CRC Press, 2018.

[163] R. Pellizzoni, A. Schranzhofer, Chen Jian-Jia, M. Caccamo, and L. Thiele. Worst case delay analysis for memory
interference in multicore systems. In Design, Automation and Test in Europe (DATE), pages 741–746, 2010.

[164] O. Sander, F. Bapp, L. Dieudonne, T. Sandmann, and J. Becker. The promised future of multi-core processors in
avionics systems. CEAS Aeronautical Journal, 8(1):143–155, 2017.

[165] MULCORS - use of multicore processors in airborne systems (EASA project.2011/6). Report, EASA, 2012.

[166] EASA. Certification memorandum - software aspects of certification - EASA. Report, 2013.

[167] EASA. Development assurance of airborne electronic hardware, 2011.

[168] L. M. Kinnan. Use of multicore processors in avionics and its potential impact on implementation and certification.
SAE Tech. Papers, 2009.

[169] P. Huyck. ARINC 653 and multi-core microprocessors - considerations and potential impacts. In IEEE/AIAA 31st
Digital Avionics Syst. Conf. (DASC), pages 6B41–6B47, 2012.

[170] J. Nowotsch and M. Paulitsch. Leveraging multi-core computing architectures in avionics. In 9th Eur. Dependable
Comput. Conf. (EDCC), pages 132–143, 2012.

[171] S. Fisher. Certifying applications in a multi-core environment: a new approach gains success. Report, SYSGO AG,
2013.

[172] CAST. Multi-core Processors - Position Paper CAST-32A. Report, 2016.

[173] I. Agirre, J. Abella, M. Azkarate-Askasua, and F. J. Cazorla. On the tailoring of CAST-32A certification guidance to
real COTS multicore architectures. In 12th IEEE Int. Symp. on Ind. Embedded Syst. (SIES), pages 1–8, 2017.
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[189] S. Royuela, A. Duran, M. A. Serrano, E. Quiñones, and X. Martorell. A Functional Safety OpenMP* for Critical
Real-Time Embedded Systems, book section 16. Springer Int. Publishing, 2017.

[190] K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel real-time tasks on multi-core processors. In 31st IEEE
Real-Time Syst. Symp., pages 259–268, 2010.
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