195 research outputs found

    Introducing Accountability to Anonymity Networks

    Full text link
    Many anonymous communication (AC) networks rely on routing traffic through proxy nodes to obfuscate the originator of the traffic. Without an accountability mechanism, exit proxy nodes risk sanctions by law enforcement if users commit illegal actions through the AC network. We present BackRef, a generic mechanism for AC networks that provides practical repudiation for the proxy nodes by tracing back the selected outbound traffic to the predecessor node (but not in the forward direction) through a cryptographically verifiable chain. It also provides an option for full (or partial) traceability back to the entry node or even to the corresponding user when all intermediate nodes are cooperating. Moreover, to maintain a good balance between anonymity and accountability, the protocol incorporates whitelist directories at exit proxy nodes. BackRef offers improved deployability over the related work, and introduces a novel concept of pseudonymous signatures that may be of independent interest. We exemplify the utility of BackRef by integrating it into the onion routing (OR) protocol, and examine its deployability by considering several system-level aspects. We also present the security definitions for the BackRef system (namely, anonymity, backward traceability, no forward traceability, and no false accusation) and conduct a formal security analysis of the OR protocol with BackRef using ProVerif, an automated cryptographic protocol verifier, establishing the aforementioned security properties against a strong adversarial model

    Towards secure message systems

    Get PDF
    Message systems, which transfer information from sender to recipient via communication networks, are indispensable to our modern society. The enormous user base of message systems and their critical role in information delivery make it the top priority to secure message systems. This dissertation focuses on securing the two most representative and dominant messages systems---e-mail and instant messaging (IM)---from two complementary aspects: defending against unwanted messages and ensuring reliable delivery of wanted messages.;To curtail unwanted messages and protect e-mail and instant messaging users, this dissertation proposes two mechanisms DBSpam and HoneyIM, which can effectively thwart e-mail spam laundering and foil malicious instant message spreading, respectively. DBSpam exploits the distinct characteristics of connection correlation and packet symmetry embedded in the behavior of spam laundering and utilizes a simple statistical method, Sequential Probability Ratio Test, to detect and break spam laundering activities inside a customer network in a timely manner. The experimental results demonstrate that DBSpam is effective in quickly and accurately capturing and suppressing e-mail spam laundering activities and is capable of coping with high speed network traffic. HoneyIM leverages the inherent characteristic of spreading of IM malware and applies the honey-pot technology to the detection of malicious instant messages. More specifically, HoneyIM uses decoy accounts in normal users\u27 contact lists as honey-pots to capture malicious messages sent by IM malware and suppresses the spread of malicious instant messages by performing network-wide blocking. The efficacy of HoneyIM has been validated through both simulations and real experiments.;To improve e-mail reliability, that is, prevent losses of wanted e-mail, this dissertation proposes a collaboration-based autonomous e-mail reputation system called CARE. CARE introduces inter-domain collaboration without central authority or third party and enables each e-mail service provider to independently build its reputation database, including frequently contacted and unacquainted sending domains, based on the local e-mail history and the information exchanged with other collaborating domains. The effectiveness of CARE on improving e-mail reliability has been validated through a number of experiments, including a comparison of two large e-mail log traces from two universities, a real experiment of DNS snooping on more than 36,000 domains, and extensive simulation experiments in a large-scale environment

    Mobile Technology Risk Management

    Get PDF
    Mobile technology is fast becoming an indispensable part of consumers’ lives and an essential business tool in improving productivity, streamlining business processes and remaining competitive. The mobile revolution is transforming business operations, but the pervasive nature of mobile technology also introduces new and significant risks into all areas of the businesses.  In most businesses, however, the governance of mobile technology and its related risks is often disjointed and implemented in an ad hoc manner, resulting in all risks not being addressed. This lack of appropriate governance policies and procedures is a direct consequence of a lack of understanding of the technology and the speed at which new technologies are developed and adopted. If the risks are not addressed in a comprehensive manner, it could have severe consequences for a business. The objective of this research is to address this problem by using an appropriate control framework, Control Objectives for Information Technology (COBIT), to identify a comprehensive set of internal controls to address mobile technology risks at a governance, management and operational level. The research proposes a comprehensive set of internal controls which can be used by those charged with governance to manage each significant risk arising from the implementation of mobile technology.

    Security attacks taxonomy on bring your own devices (BYOD) model

    Get PDF
    Mobile devices, specifically smartphones, have become ubiquitous. For this reason, businesses are starting to develop “Bring Your Own Device” policies to allow their employees to use their owned devices in the workplace. BYOD offers many potential advantages: enhanced productivity, increased revenues, reduced mobile costs and IT efficiencies. However, due to emerging attacks and limitations on device resources, it is difficult to trust these devices with access to critical proprietary information. Therefore, in this paper, the potential attacks of BYOD and taxonomy of BYOD attacks are presented. Advanced persistent threat (APT) and malware attack are discussed in depth in this paper. Next, the proposed solution to mitigate the attacks of BYOD is discussed. Lastly, the evaluations of the proposed solutions based on the X. 800 security architecture are presented

    Detection of DoS Attacks Using ARFIMA Modeling of GOOSE Communication in IEC 61850 Substations

    Get PDF
    Integration of Information and Communication Technology (ICT) in modern smart grids (SGs) offers many advantages including the use of renewables and an effective way to protect, control and monitor the energy transmission and distribution. To reach an optimal operation of future energy systems, availability, integrity and confidentiality of data should be guaranteed. Research on the cyber-physical security of electrical substations based on IEC 61850 is still at an early stage. In the present work, we first model the network traffic data in electrical substations, then, we present a statistical Anomaly Detection (AD) method to detect Denial of Service (DoS) attacks against the Generic Object Oriented Substation Event (GOOSE) network communication. According to interpretations on the self-similarity and the Long-Range Dependency (LRD) of the data, an Auto-Regressive Fractionally Integrated Moving Average (ARFIMA) model was shown to describe well the GOOSE communication in the substation process network. Based on this ARFIMA-model and in view of cyber-physical security, an effective model-based AD method is developed and analyzed. Two variants of the statistical AD considering statistical hypothesis testing based on the Generalized Likelihood Ratio Test (GLRT) and the cumulative sum (CUSUM) are presented to detect flooding attacks that might affect the availability of the data. Our work presents a novel AD method, with two different variants, tailored to the specific features of the GOOSE traffic in IEC 61850 substations. The statistical AD is capable of detecting anomalies at unknown change times under the realistic assumption of unknown model parameters. The performance of both variants of the AD method is validated and assessed using data collected from a simulation case study. We perform several Monte-Carlo simulations under different noise variances. The detection delay is provided for each detector and it represents the number of discrete time samples after which an anomaly is detected. In fact, our statistical AD method with both variants (CUSUM and GLRT) has around half the false positive rate and a smaller detection delay when compared with two of the closest works found in the literature. Our AD approach based on the GLRT detector has the smallest false positive rate among all considered approaches. Whereas, our AD approach based on the CUSUM test has the lowest false negative rate thus the best detection rate. Depending on the requirements as well as the costs of false alarms or missed anomalies, both variants of our statistical detection method can be used and are further analyzed using composite detection metrics

    Discovering “unknown known” security requirements

    Get PDF
    Security is one of the biggest challenges facing organisations in the modern hyper-connected world. A number of theoretical security models are available that provide best practice security guidelines and are widely utilised as a basis to identify and operationalise security requirements. Such models often capture high-level security concepts (e.g., whitelisting, secure configurations, wireless access control, data recovery, etc.), strategies for operationalising such concepts through specific security controls, and relationships between the various concepts and controls. The threat landscape, however, evolves leading to new tacit knowledge that is embedded in or across a variety of security incidents. These unknown knowns alter, or at least demand reconsideration of the theoretical security models underpinning security requirements. In this paper, we present an approach to discover such unknown knowns through multi-incident analysis. The approach is based on a novel combination of grounded theory and incident fault trees. We demonstrate the effectiveness of the approach through its application to identify revisions to a theoretical security model widely used in industry
    corecore