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ABSTRACT PAGE 

Message systems, which transfer information from sender to recipient via communication net­
works, are indispensable to our modern society. The enormous user base of message systems and 
their critical role in information delivery make it the top priority to secure message systems. This 
dissertation focuses on securing the two most representative and dominant messages systems-e­
mail and instant messaging (IM)--from two complementary aspects: defending against unwanted 
messages and ensuring reliable delivery of wanted messages. 

To curtail unwanted messages and protect e-mail and instant messaging users, this dissertation 
proposes two mechanisms DBSpam and Honey IM, which can effectively thwart e-mail spam laun­
dering and foil malicious instant message spreading, respectively. DBSpam exploits the distinct 
characteristics of connection correlation and packet symmetry embedded in the behavior of spam 
laundering and utilizes a simple statistical method, Sequential Probability Ratio Test, to detect and 
break spam laundering activities inside a customer network in a timely manner. The experimental 
results demonstrate that DBSpam is effective in quickly and accurately capturing and suppress­
ing e-mail spam laundering activities and is capable of coping with high speed network traffic. 
HoneyiM leverages the inherent characteristic of spreading ofiM malware and applies the honey­
pot technology to the detection of malicious instant messages. More specifically, Honey 1M uses 
decoy accounts in normal users' contact lists as honeypots to capture malicious messages sent 
by IM malware and suppresses the spread of malicious instant messages by performing network­
wide blocking. The efficacy of Honey 1M has been validated through both simulations and real 
experiments. 

To improve e-mail reliability, that is, prevent losses of wanted e-mail, this dissertation pro­
poses a collaboration-based autonomous e-mail reputation system called CARE. CARE introduces 
inter-domain collaboration without central authority or third party and enables each e-mail service 
provider to independently build its reputation database, including frequently contacted and unac­
quainted sending domains, based on the local e-mail history and the information exchanged with 
other collaborating domains. The effectiveness of CARE on improving e-mail reliability has been 
validated through a number of experiments, including a comparison of two large e-mail log traces 
from two universities, a real experiment of DNS snooping on more than 36,000 domains, and 
extensive simulation experiments in a large-scale environment. 
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Chapter 1 

Introduction 

Message systems, which transfer information from sender to recipient via communication net­

works, are indispensable to our modem society. E-mail, the most representative message system, 

is regarded as one ofthe core and most successful Internet applications. According to the survey 

done in April 2009 by Pew Internet and American Life Project [12], 90% of U.S. Internet users 

have the experience of sending or reading e-mail. An e-mail statistics report published in May 

2009 [II] estimates that the number of worldwide e-mail users in 2009 is over 1.4 billion and 

that around 247 billion messages are delivered worldwide every day in 2009. Message systems 

are used in every sector of our society (e.g., business, education, government) and messages are 

accessed from anywhere (e.g., PC, laptop, cell phone, PDA, and TV) at anytime. 

In general, there are two types of message systems in terms of message transfer synchrony: 

online message systems and off! ine message systems. Online message systems usually require 

message sender and receiver to stay online, that is, keep synchronous, during a message transfer, 

while offline message systems do not. E-mail is a typical example of the former and instant mes­

saging (IM) is a representative system of the latter. Because e-mail and IMperfectly complement 

2 
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each other in usage, interoperation and intercommunication between e-mail and IM systems have 

been attained, which blurs the boundary between e-mail and IM from the perspective of end users. 

For example, most of major e-mail service providers (ESPs) such as Yahoo! mail, Hotmail, and 

Gmail have already integrated the instant messaging functionality into their Web-based e-mail 

services and have added e-mail functionality in their IM client programs. Due to their represen­

tativeness and dominance among message systems in practice, we focus on e-mail and instant 

messaging in this dissertation. 

The enormous user base of message systems and their critical role in information delivery 

make it the top priority to secure message systems. Since the commercialization of Internet, net­

work environments are no longer friendly. Networked applications are constantly subjected to 

various types of attacks, and there is no exception to Internet-based message systems. The pre­

vailing type of attacks against both e-mail and IM is unwanted messages, which range from bogus 

commercial advertisements, crafted scam and phishing messages, to virus. In this dissertation, 

we term unwanted messages in general as spam. Recent years have seen steady growth of e­

mail spam volume [ 1, 76] and frequent outbreaks of mal ware spread via e-mail and IM [9, 1 0]. 

Unwanted messages severely endanger the usability and security of e-mail and IM. 

Thanks to spam filters, flood of unwanted messages is effectively dammed before the front 

door of the inboxes of end users. However, another significant problem-loss of e-mail-has 

emerged along with spam filters. Aggressive spam filters may cause loss of e-mail. A recent study 

on e-mail loss [13] reveals that the e-mail accounts with spam filtering lost significantly more 

legitimate messages than the e-mail accounts without spam filtering 1• Many anecdotal reports 

including the loss of e-mail submissions discussed in the "end2end" mail-list [1 06] also indicate 

1 The messages are neither in the in box nor in the spam folder. 

3 
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the existence of e-mail loss due to spam filtering. In addition, as system overloading can cause 

loss of e-mail [7], being computationally intensive, spam filtering could overload e-mail systems 

when an influx of e-mail messages occurs and therefore result in loss of legitimate messages. 

Therefore, securing message systems requires (1) defending against unwanted messages and 

(2) ensuring reliable delivery of wanted messages. These two tasks are the two sides of one coin; 

together, they comprise the main theme of this dissertation: secure message systems. Next, we 

consider the challenges in each of these two tasks and highlight the basic ideas of our correspond­

ing solutions. 

1) Defending against unwanted messages 

Content-based spam filters and IP address-based blacklists are the two most popular mecha­

nisms that protect e-mail users from unwanted e-mail messages in practice. Content-based spam 

filters distinguish e-mail spam from legitimate e-mail by exploiting distinctive content features of 

spam messages [35, 90]. A number of classification techniques ranging from statistics to machine 

learning have been applied to capture content features of e-mail spam [ 19, 112]. IP address-based 

blacklists record IP addresses of the identified hosts that sent spam. In practice, these blacklists 

are often called DNS blackhole lists (DNSBLs) as they are mostly distributed through DNS. Spam 

filtering is applied after receiving a new message while IP address-based blacklisting is applied 

before message content is received. 

Although spam filters are widely deployed and effective in keeping e-mail spam out ofinbox, 

they lack the ability of suppressing spam in the first place. Therefore, spam still wastes a lot of 

resources on the Internet and at receiving servers even if they are filtered away from inboxes of end 

users. DNSBLs can block spamming promptly. However, they suffer from insufficient coverage 

and responsiveness [27, 71-73]. As spammers frequently change spamming hosts and manage to 

4 
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keep spamming activities stealthy, many spamming hosts are missed by DNSBLs. To stem the 

tide ofspam that keeps growing [1], new anti-spam mechanisms that can quickly and accurately 

identify and suppress spamming activities are highly demanded. 

Different from e-mail systems, instant messaging systems have built-in authentication and au­

thorization mechanisms, effectively preventing spamming from unknown sources. Unfortunately, 

spamming approaches have also evolved. Social engineering tricks have been largely employed 

in sending unwanted messages in IM systems. Even worse, IM spamming (usually called "spim") 

is mostly done by IM malware, which often results in breach of system security and causes much 

more damage to IM users. Detection of malicious instant messages is hard due to the legitimacy 

of message sources and camouflage of message contents. Previously proposed mechanisms for 

countering malicious instant messages mainly focus on delaying the spread of malicious mes­

sages by throttling message sending on all IM users [54, 100, 1 08]. However, it is ideal to quickly 

and accurately detect and stop the spread of IM malware at the beginning. 

Therefore, mechanisms that can foil spamming activities are in urgent need to curtail un­

wanted messages and protect e-mail and IM users. This dissertation presents two mechanisms­

DBSpam and Honey 1M-to effectively thwart e-mail spam laundering and malicious instant mes­

sage spreading, respectively. Since spamming activities are abnormal compared to legitimate mes­

sage sending, our general approach is distilling the distinct behaviors that are embedded in spam­

ming activities and exploiting them to detect occurrences of spamming in real-time. For example, 

DBSpam exploits the characteristic of packet symmetry in e-mail spam laundering and HoneyiM 

leverages the characteristic of message sending in IM malware propagating. Both DBSpam and 

HoneyiM can achieve high detection accuracy and short detection time. More importantly, they 

do not require any change to the protocols used in e-mail and IM and are fully compatible with 

5 
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existing protection techniques. 

2) Ensuring delivery of wanted messages 

Whitelisting legitimate e-mail addresses to bypass spam filtering is a simple yet widely­

adopted approach to preventing loss of wanted messages. E-mail address white lists usually work 

with e-mail authentication mechanisms such as SPF [109] and DKIM [14] to prevent attacks of 

forged e-mail addresses. A significant problem of e-mail address whitelists is that they cannot 

provide protection for legitimate messages originated from "newly-appeared" addresses, that is, 

the addresses not in the whitelists. Although approaches such as [21 ,24,30] that propagate address 

whitelists among friends can alleviate the coverage problem, whitelisting at e-mail address level 

is not scalable in general. 

A domain-level e-mail reputation system is a more general and scalable solution to preventing 

e-mail loss. E-mail from reputable domains can be directly accepted. However, as indicated 

in [98, 101] and confirmed by our measurement study (see Section 5.2), newly-appeared sending 

domains are common and significant to average e-mail service providers; thus local information is 

insufficient and collaboration is needed for building a high-quality reputation system. One way to 

achieve collaboration is using a centralized server to collect information and derive reputation, as 

proposed by Singaraju and Kang [81]. However, this approach involves the complication oftrust 

management. 

In contrast, this dissertation explores a different dimension in the design space. To ease system 

deployment and maintenance, we propose an autonomous reputation system named CARE that 

involves no central server or third party. Within the framework of CARE, each domain indepen­

dently builds its reputation database based on the local e-mail history and information exchanged 

with other collaborating domains; each domain also has full control of choosing their collaboration 

6 
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domains. By doing so, CARE achieves both effectiveness and flexibility. 

1.1 Contributions 

The contributions ofthis dissertation are summarized as follows. 

1.1.1 Thwarting E-mail Spam Laundering 

• We have thoroughly studied the mechanisms of e-mail spam laundering, an important spam­

ming method in which spam proxies are employed to disguise the identities ofspam origins. 

We have distilled the unique characteristics of connection correlation and packet symmetry 

from the behavior of spam laundering by analyzing the protocol semantics of SMTP and 

timing causality in spam laundering. To our best knowledge, our study is the first to reveal 

the distinct characteristic of e-mail spam laundering, that is, packet symmetry. 

• Based on the packet symmetry exhibited in spam laundering, we have developed a simple 

yet effective technique, DBSpam, to detect and break spam laundering activities inside a 

customer network in a timely manner. DBSpam is designed to be deployed at a network 

vantage point such as an edge router or gateway that connects the network to the Internet. 

Monitoring the bidirectional traffic passing through a network gateway, DBSpam exploits 

the packet symmetry characteristic and utilizes a simple statistical method, Sequential Prob­

ability Ratio Test, to capture the TCP connections involved in spam laundering, single out 

the spam proxies, and uncover the spam sources behind them in a timely manner. To bal­

ance the goals of promptness and accuracy, we introduce a noise-reduction technique into 

DBSpam, after which the laundering path can be identified more accurately. DBSpam pro-

7 
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vides two spam suppressing methods: rate-limit throttling and blocking, and activates the 

user-selected suppressing method immediately after a laundering activity is detected. 

• DBSpam pushes the defense line towards spam source. DBSpam is the first system that 

foils e-mail spam laundering without the cooperation at e-mail receiving side. Therefore, 

DBSpam greatly benefits not only e-mail users but also victim Internet Service Providers 

(ISPs). DBSpam enables an ISP to accurately detect spam laundering activities and spam 

proxies inside its customer networks. The quick responsiveness of DBSpam offers the ISP 

an opportunity to suppress laundering activities and quarantine identified spam proxies in 

real-time. Being a stand-alone system, DBSpam is incrementally deployable over the Inter-

net. 

• Distinctive from content-based spam filtering techniques, DBSpam is lightweight in that its 

detection technique does not need to scan message contents. Moreover, DBSpam has very 

few assumptions about the connections between a spammer and its proxies. DBSpam works 

even if (1) these connections are encrypted and the message contents are compressed; and 

(2) a spammer uses proxy chains inside the monitored network. 

• DBSpam complements existing anti-spam techniques. Furthermore, DBSpam can facilitate 

spam filtering. This is because once spam laundering is detected, fingerprinting spam mes­

sages at the sender side is viable and spam signatures may be distributed to spam filters 

elsewhere. 

• We have implemented a prototype of DBSpam using libpcap on Linux and extensively 

evaluated its effectiveness and performance on both detecting and suppressing spam laun­

dering through trace-based experiments. We collected a set of traces from a real network 

8 
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consisting of over 7,000 users and the traces are significant (30+ gigabytes and 7+ hours). 

Our experiments show that (1) DBSpam achieves user-expected accuracy; (2) Detections of 

spam laundering are no more than ten seconds and 95% of them are within five seconds; (3) 

DBSpam is lightweight in terms of CPU and memory consumption and therefore is capable 

of working at high-speed networks. 

1.1.2 Countering Malicious Instant Messages 

• We have developed a generic framework, HoneyiM, to automatically detect and suppress 

the spread of malicious instant messages in an enterprise-like network. HoneyiM is the 

first system that exploits the inherent characteristic of IM malware spreading and applies 

the honeypot technology to the detection of malicious instant messages. Honey 1M uses de­

coy accounts in normal users' contact lists as sensors (i.e., honeypots) to capture malicious 

messages sent by IM malware. By doing so, HoneyiM can achieve almost zero false posi­

tive. With accurate detection, Honey 1M suppresses the spread of malicious instant messages 

by performing network-wide blocking. HoneyiM can also notify network administrators of 

attack information in real-time for system quarantine and recovery. The core design of Hon­

ey 1M is generic and can be applied to a network that uses either private (enterprise) or public 

IM services, which is difficult to achieve for previously proposed IM protection approaches. 

• We have implemented a prototype ofHoneyiM for public IM services, based on open-source 

IM client Pidgin [8] and client honeypot Capture [93]. We have validated the efficacy of 

HoneyiM through both simulations and real experiments. The simulations show that even 

only a small portion, e.g., 5%, of IM users in the network have decoys in their contact 

lists, Honey 1M can detect the spread of malicious instant messages as early as after 0.4% of 

9 
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IM users are infected on average. The experimental results demonstrate that the prototype 

system succeeds in detection, suppression, and notification of IM malware within seconds. 

1.1.3 Improving E-mail Reliability 

• We have conducted a measurement study on the dynamics of e-mail sending servers and 

sending domains to investigate whether local e-mail history information is sufficient for 

average e-mail service providers to build a reputation system with good performance. After 

studying 151-day e-mail logs collected from our campus e-mail servers, we find that the 

number of newly-appeared sending parties, in terms of both sending servers and sending 

domains, is significant. Therefore, our study indicates that only local information may not 

suffice for building a high-quality reputation system. Meanwhile, our study also confirms 

that rating e-mail sending parties by their long-term behaviors is feasible and beneficial. 

• We have designed a collaboration-based autonomous e-mail reputation system called CARE 

that aims to significantly improve e-mail reliability. CARE works at domain level and rates 

both spam domains and nonspam domains. Within the framework of CARE, each e-mail 

service provider independently builds its reputation database, including both frequently con­

tacted and unacquainted sending domains, based on the local e-mail history and the infor­

mation exchanged with other collaborating domains. CARE examines the trustworthiness 

of the e-mail histories obtained from collaborators by correlating them with the local his­

tory, and integrates both local and remote information to derive the reputation of remote 

domains. As there is no hierarchical dependence in system architecture and no requirement 

ofthird party, CARE is friendly to incremental deployment. 

• We have conducted a number of experiments to validate the effectiveness of CARE on im-

10 
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proving e-mail reliability. By comparing two large e-mail log traces from two universities 

and conducting a real experiment ofDNS snooping on more than 36,000 domains, we show 

that the use of collaboration among different domains in CARE can largely increase the cov­

erage of reputation system. By performing extensive simulation experiments in a large-scale 

environment, we further demonstrate that CARE is effective in improving the reliability and 

quality of e-mail service by accepting more nonspam messages and rejecting more spam 

messages. 

1.2 Organization 

This dissertation is organized as follows: We present the background information of e-mail and 

instant messaging spamming in Chapter 2. In Chapter 3, we first delineate the behavior of e-mail 

spam laundering and then detail the working mechanism of DBSpam followed by the evaluation 

of DBSpam. We also discuss the robustness of DBSpam against potential evasions and survey 

related anti-spam techniques in Chapter 3. We present the design, implementation, and evaluation 

of HoneyiM in Chapter 4. In Chapter 5, we first present a measurement study that motivates the 

CARE system and then detail the design and evaluation of the CARE system. Finally, we conclude 

this dissertation and outline our future work in Chapter 6. 

II 
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Chapter 2 

Background 

In this chapter, we present the background information about e-mail spamming mechanisms and 

instant messaging malware. 

2.1 E-mail Spamming Mechanisms 

In this section, we first present the spam laundering mechanisms, and then briefly describe other 

commonly-used spamming approaches. 

2.1.1 Spam Laundering Mechanisms 

Spam laundering refers to the spamming process, in which only proxies are involved in origin 

disguise. The proxy refers to the application such as SOCKS [49] that simply performs "protocol 

translation" (i.e., rewrite IP addresses and port numbers) and forwards packets. Different from an 

e-mail relay, which first receives the whole message and then forwards it to the next mail server, 

an e-mail proxy requires that the connections on both sides of the proxy synchronize during the 

message transferring. More importantly, unlike an e-mail relay which inserts the information-
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"Received From" that records the IP address of sender and the timestamp when the message is 

received-in front of the message header before relaying the message, an e-mail proxy does not 

record such trace information during protocol transformation. Thus, from a recipient's perspective, 

the e-mail proxy, instead of the original sender, becomes the source of the message. It is this 

identity replacement that makes e-mail proxy a favorite choice for spammers. 

Initially, spammers just seek open proxies on the Internet, which usually are misconfigured 

proxies allowing anyone to access their services. There are many Web sites and free software pro­

viding open proxy search function. However, once such misconfigurations are corrected by system 

administrators, spammers have to find other available "open" proxies. It is ideal for a spammer 

to own many "private" and stable proxies. Unsecured home PCs with broadband connections are 

good candidates for this purpose. Malicious software including specially-designed worms and 

viruses, such as SoBig and Bagle, has been used to hijack home PCs. Equipped with Trojan horse 

or backdoor programs, these compromised machines are available zombies. After proxy programs 

such as SOCKS or Wingate are installed, these zombies are ready to be used as spam proxies to 

pump out e-mail spam. Without serious performance degradation, most nonprofessional Windows 

users are not aware of the ongoing spamming. Recent research on the network-level behavior of 

spammers [72] also confirms that most sinked spam is originated from compromised Windows 

hosts. 

To counter the soaring growth ofspam volume, many ISPs have adopted the policy of blocking 

port 25 (SMTP [47] port), in which outbound e-mail from a subscriber must be relayed by the ISP­

designated e-mail server. In other words, the ISP's edge routers only forward the SMTP traffic 

from some designated IP addresses to the outside. However, spammers have easily evaded such 

simple SMTP port blocking mechanisms. The spam laundry is simple: having zombies send spam 
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messages to their ISP e-mail servers first. In February 2005, Spamhaus [91] reported that over the 

past few months a number of major ISPs had witnessed far more spam messages coming directly 

from the e-mail servers of other ISPs. This change in proxy-based spamming activity is mainly 

caused by the use of new stealthy spamware, which instructs the hijacked proxy (i.e., zombie) to 

send spam messages via the legitimate e-mail server of the proxy's ISP. 

2.1.2 Other Spamming Approaches 

The other commonly-used spamming approaches vary from dummy ISP spamming to more recent 

botnet spamming. We briefly summarize them as follows. 

Act as a dummy ISP: Some professional spammers play this trick with ISPs to extend the du­

ration oftheir spamming business. By purchasing a large amount ofbandwidth from commercial 

ISPs and setting up a dummy ISP, these professional spammers pretend to have "users", which 

seemingly need Internet access but in fact are used for spamming. If they are tracked for spam­

ming, those spammers claim to their ISPs that the spam is sent by their nonexistent "customers". 

A spammer achieves an extended spamming time by lying to one ISP, and later moving to another 

ISP. To evade anti-spam tracking and lawsuit, many professional spammers operate "offshore" by 

using servers in Asia and South America. 

Spam through open-relay: To provide high reliability for e-mail delivery, SMTP [47] was 

designed to allow relaying. It means that some MTAs (Mail Transfer Agents) may help the orig­

inator MTA to transmit e-mail messages to the destination MTA, when the direct transmission 

from the originator to the destination is broken. Such a relaying service is unnecessary in current 

Internet environment and most MTAs have disabled the relay service for untrustworthy sources. 

However, due to misconfiguration or lack of experience, there are still many open-relays available 
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in the Internet [89]. 

Exploit CGI security flaws: Some insecure Web CGI (Common Gateway Interface) services, 

such as notorious FormMail.pl [80] that allows Internet users to send e-mail feedback from an 

HTML form, have been exploited by spammers to redirect e-mail to arbitrary addresses. This 

CGI-based e-mail redirection is appealing to spammers, since it can conceal the spam origin. 

Hijack BGP routes and steal IP blocks: Some spammers are also Internet hackers. They 

hijack insecure BGP (Border Gateway Protocol) routers, pirate or fraudulently obtain some IP 

address allocations from an IP address assignment agency such as ARIN (American Registry for 

Internet Numbers), and use routing tricks to simulate faked networks, deceiving real ISPs into 

serving them connectivity for spamming. This spamming trick is also called "BGP spectrum 

agility" [72]. 

Spam through botnet: Recent studies have witnessed the wide use of botnets in spam­

ming [17, 72] and phishing [1 05]. Using IRC (Internet Relay Chat) channels or other commu­

nication protocols, a bot controller (also a spammer) first distributes the spam address list and 

message content to all controlled bots. Then he sends a single command to bots, triggering the 

mailing engine installed on bots to pump spam. For a bot controller that is not directly involved 

in spamming, he may install spam proxies on bots and then lease his botnet to spammers for spam 

laundering. 

2.2 Instant Messaging Malware 

An instant messaging (IM) system is a real-time message delivery system that has dedicated 

servers for account management and message relay. IM systems can be categorized into either 

public IM systems or private IM systems (also called enterprise IM systems) by their targeted 
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users and usage environment. Public IM systems are open to everybody over the Internet while 

private IM systems are only accessible to a certain group of people (e.g., enterprise employees) 

inside a specific network. AOL Instant Messenger (AIM) and Windows Messenger series (MSN) 

illustrate the former while Reuters Messaging (RM) exemplifies the latter. 

The IM malware studied in this dissertation refers to any malicious code that spreads through 

either public IM systems or private IM systems. For example, Opanki [46] (attacking AIM), 

Bropia [45] (attacking MSN), and Sohana [88] (attacking YIM) are typical examples of such mal­

ware. Although most of known IM malware spreads on popular public IM networks, enterprise 

IM systems such as Microsoft Office Live Communications Server [59] and IBM Lotus Same­

time [ 41] can also be penetrated as these corporate IM services usually provide connectivity and 

interoperability with public IM services. In 2005, the outbreak of a variant of Kelvir worm even 

forced Reuters to shut down its IM service [38]. 

IM malware propagates mainly through two ways: malicious file transfer and malicious URL­

embedded message. Malware infection is usually triggered by the victim's action such as clicking 

the accepted fi Je or the received URL. IM mal ware could also spread without victim's involvement, 

for instance, by exploiting the vulnerabilities in IM clients. However, this type of spreading is rare. 

The file transfer mechanism has been used since early 2000s. In this mechanism, IM malware 

propagates by initiating malicious file transfers to remote contacts. Malicious files are usually 

renamed to attract victims or to evade network filters. Once an unwary contact clicks the file, 

the malware is invoked and will attempt to infect more victims in the contact list (also called 

buddy list). To counter this type of malware spreading, some IM systems such as MSN forbid 

IM clients to transfer certain types of files such as .pif files. While the actual file transfer is 

normally carried out directly between two IM clients, the messages for transfer establishment 
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still go through IM server. Therefore, IM servers can easily detect the messages for establishing 

malicious file transfers and silently drop them to block malware propagation. 

Nowadays malicious URL-embedded messages become much more popular than malicious 

file transfers for IM malware propagation. Instead of sending a file, IM malware sends a crafted 

text message containing a malicious URL to remote contacts. As soon as a victim clicks the link, 

either a malware binary is downloaded and executed or some malicious Web scripts run to exploit 

the vulnerabilities of the Web browser or other related applications. Compared to malicious file 

transfers, malicious URL messages have several advantages in propagation. First, malicious URL 

messages have more means to compromise a system. File downloading is just one of its attacking 

vectors. Second, malicious URLs can be used to collect victims' information by exploiting Web 

functionality. For instance, the URL sent by Kelvir.k [77] points to a php script and contains the 

contact's e-mail address. The e-mail address is harvested as soon as the URL is clicked. Last but 

not least, IM malware can play more social engineering tricks on URLs. For example, a malicious 

URL can be crafted to mimic the link on a reputable Web site [34]. The IM clients supporting 

HTML scripts also provide a playground for IM malware to fake URLs at their will. Those forged 

URLs appear normal but in fact point to malicious Web pages. 

After infection, IM malware may take different actions for propagation. Many types of mal­

ware start spreading immediately after they compromise IM clients, while others wait until they 

receive instructions to spread. The latter usually install certain bot programs on compromised 

machines, through which the malware is controlled by the remote bot herder. IM malware might 

choose different targets in spreading. Some types of IM malware only hit online contacts, while 

other types also try offline users. 

Although the threat of IM mal ware, especially the outbreak of zero-day IM mal ware, is on the 
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rise, network administrators still lack effective solutions to protect enterprise-like networks such as 

campus networks and corporate networks. Conventional protections using firewalls and anti-virus 

products are insufficient to defend against IM mal ware. Most of popular IM protocols are able to 

circumvent firewalls if their default ports are blocked. Signature-based anti-virus products cannot 

detect zero-day IM malware. Meanwhile, anomaly detection techniques, such as Norman Sandbox 

technology [64], may also be ineffective in catching evasive malware which behaves differently 

in the sandbox environment. Compared to malicious file transfers, malicious URL-embedded IM 

messages are even harder to be identified by anti-virus programs. 

IM providers may take quick responses, for example, releasing patches and mandating client 

upgrade, to newly discovered vulnerabilities in their products. They may even proactively block 

potentially malicious file transfers. However, these filtering mechanisms still could be bypassed 

[78, 79]. Moreover, it is extremely hard for IM providers to protect against malicious URLs that 

exploit the vulnerabilities of Web browsers or other related applications [70]. While some protec­

tion schemes, such as CAPTCHA [57] and IM virus throttling [108], can enhance IM security, the 

incurred overhead and usability degradation could be significant, and thus prohibit IM providers 

from using them in near future. 
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Chapter 3 

Thwarting E-mail Spam Laundering 

E-mail spam proxies such as off-the-shelf SOCKS [ 49] and HTTP [29] proxies play an important 

role in the spam epidemic. Spammers launder e-mail spam through spam proxies to conceal their 

real identities and reduce spamming cost. The popularity of proxy-based spamming is mainly due 

to the anonymous characteristic of a proxy and the availability of a large number of spam proxies. 

The IP address of a spammer is obfuscated by a spam proxy during the protocol transformation, 

which hinders the tracking of real spam origins. According to Composite Blocking List (CBL) 

[23], which is a highly-trusted spam blacklist, the number of available spam proxies and bots in 

October 2009 was more than seven million. These numerous spam proxies facilitate the formation 

of e-mail spam laundering, by which a spammer has great flexibility to change spam paths and 

bypass anti-spam barriers. However, there is very little research done in detecting spam proxies. 

Probing is a common method used to verity the existence of spam proxies in practice. Probing 

works by scanning open ports on the spam hosts and examining whether or not e-mail can be sent 

through the open ports. Due to the wide deployment of firewalls and the use of scanning, both 

accuracy and efficiency of probing are poor. 
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In this chapter, we present a simple and effective mechanism, called DBSpam, which detects 

and blocks spam proxies' activities inside a customer network in a timely manner, and further 

traces the corresponding spam sources outside the network. DBSpam is designed to be placed 

at a network vantage point such as the edge router or gateway that connects a customer network 

to the Internet. The customer network could be a regional broadband (cable or DSL) customer 

network, a regional dialup network, or a campus network. DBSpam detects ongoing proxy-based 

spamming by monitoring bidirectional traffic. Due to the protocol semantics of SMTP (Simple 

Mail Transfer Protocol) [47] and timing causality, the behavior of proxy-based spamming demon­

strates the unique characteristics of connection correlation and packet symmetry. Utilizing this 

distinctive spam laundering behavior, DBSpam can easily identity the suspicious TCP connec­

tions involved in spam laundering. Then, DBSpam can quickly single out the spam proxies, trace 

the spam sources behind them, and block the spam traffic. 

This chapter is organized as follows. First, we present the unique behavior of proxy-based 

spamm ing and reveal the salient characteristic of packet symmetry in Section 3 .1. Then, we detail 

the working mechanism of DBSpam in Section 3.2. We evaluate the effectiveness of DBSpam 

through the trace-based experiments in Section 3.3. We further discuss the robustness of DBSpam 

against potential evasions in Section 3.4. We survey related anti-spam techniques in Section 3.5. 

Finally, we summerize the contributions of this chapter in Section 3.6. 

3.1 Proxy-based Spam Behavior 

In this section, we delineate the distinct behavior of proxy-based spamming, which directly in­

spires the design of our detecting algorithm. Figure 3.1 depicts a typical scenario of proxy-based 

spamming in a customer network such as a Cox regional residential network. Although spammers 
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can conceal their real identities from destination MTAs by exploiting spam proxies, they cannot 

make the connection between a spam source and its proxy invisible to the edge router or gateway 

that sits in between. Here we assume that there is a network vantage point where we can monitor 

all the bidirectional traffic passing through the customer network, and the location of the gateway 

(or firewall) of the customer network (e.g. edge router R in Figure 3.1) that connects to the Internet 

is such a point. 

3.1.1 Laundry Path of Proxy-based Spamming 

As shown in Figure 3.1, there is a customer network N, in which spam proxies reside. Both 

spammer Sand receiving MTA Mare connected to customer network N via edge router R. S may 

be the original spam source or just another spam proxy (but it must be closer to the real spam 

source). M is the outside MTA. 

proxy a proxy z 

NetworkN 

--- ~ I. Inbound command packet 
2. Outbound command packet 

3. Inbound reply packet 
4. Outbound repy packet 

Figure 3.1: Scenario of proxy-based spamming 
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Note that for the customer network that has its own mail server(s) such as a campus (or an en­

terprise) network, the monitored network N may not be the whole network, but one of its protected 

sub-networks. Usually such campus/enterprise networks are divided into multiple sub-networks 

for security and management concerns. Their mail servers are placed in DMZ (DeMilitarized 

Zone) or a special sub-network that is separated from other sub-networks such as wireless, dormi­

tory, or employee sub-networks. It is one of these loosely-managed sub-networks that becomes the 

monitored network Nand the router/gateway connecting the sub-network N becomes the vantage 

point R. Thus, the assumption of exterior MTA M is valid even when the MTA is under the same 

administration domain as network N. 

Inside monitored network N, S may use a single or multiple spam proxies. If multiple proxies 

are employed, they may either launder spam messages individually or be organized into one or 

multiple proxy chains, depending on the spammer's strategy. Without loss of generality, only 

one chain is shown in Figure 3.1. Spammer S usually communicates with spam proxies through 

SOCKS or HTTP. The spam message sent from S to a may even be encrypted. If it is a proxy chain, 

the spam message can be conveyed by different proxy protocols at different hops. For instance, 

SOCKS 4 is used between Sand a, while HTTP is employed between a and z. However, none of 

these protocol variations and message content encryptions can change the fact: it is last-hop proxy 

z 1 that does the protocol transformation and forwards the spam message to the MTA via SMTP. 

We define the connection between spammer Sand first-hop proxy a as the upstream connec­

tion, and define the connection between last-hop proxy z and MTA Mas the downstream connec­

tion. The upstream and downstream connections plus the proxy chain form the spam laundry path, 

which is shown in Figure 3 .1. 

1 proxy z and proxy a are the same in the single proxy scenario. 
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3.1.2 Connection Correlation 

There is a one-to-one mapping between the upstream and downstream connections along the spam 

laundry path. While this kind of connection mapping is common for proxy-based spamming, 

it is very unusual for normal e-mail transmission. In normal e-mail delivery, there is only one 

connection, that is, the connection between sender and receiving MTA. The existence of such 

connection correlation is a strong indication of spam laundering and provides valuable clue for 

spammer tracking. Here we assume that the downstream connection is an SMTP connection. For 

the upstream connection we have no restriction except that it should be a TCP connection. The 

packets in the upstream connection may be encrypted and even compressed. 

The detection of such spam-proxy-related connection correlation is challenging due to the 

following three reasons. First, content-based approaches could be ineffective as spammers may 

use encryption to evade content examination. Second, because such a detection mechanism is 

usually deployed at network vantage points, the induced overhead should be affordable, which is 

critical to the success of its deployment. Third, since spam traffic is machine-driven and could be 

delayed by proxy at will, those timing-based correlation detection algorithms such as [113] may 

not work well in this environment. 

3.1.3 Packet Symmetry 

Figure 3.2 illustrates the detailed communication processes of spam laundering for both single 

proxy and proxy chain cases at the application layer, in which the message format is "PROTOCOL 

[content]". For simplicity, P/P1/P2 stands for different application protocols, including SOCKS 

(v4 or v5), HTTP, etc. For SMTP, its packet content is in plain-text. But for application protocols 

P/P1/P2, their packet contents may be encrypted. Since the small delays induced by message pro-
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cessing at end hosts and intermediate proxies have little effect upon the communication processes, 

for ease of presentation, we ignore them in Figure 3.2. The initial proxy handshaking process is 

also omitted as it has no effect on e-mail transactions. Without losing any generality, here we 

only show the shortest SMTP transaction process for the single-proxy case and parts of SMTP 

transaction process for the proxy-chain case. 

Spammer S Proxy \1TA M Spammer S Proxy a MTAM 

Figure 3.2: Time-line of spamming processes for single proxy (left) and proxy chain (right) 

Due to protocol semantics, the process of proxy-based spamming is similar to that of an 

interactive communication. The appearance of one inbound SOCKS-encapsulated (or HTTP­

encapsulatedi SMTP command message on the upstream connection wiii trigger the occurrence 

2 For the ease of presentation, we only use SOCKS in the rest of chapter, although HTTP can be used as well. 

24 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

of one outbound SMTP command message on the downstream connection later. Similarly, for 

each inbound SMTP reply message on the downstream connection, later on there will be one 

corresponding outbound SOCKS-encapsulated reply message carried by TCP on the upstream 

connection. We term this communication pattern as message symmetry. 

This message symmetry leads to the packet symmetry at the network layer with a few ex-

ceptions, in which the one-to-one packet3 mapping between the upstream and downstream con-

nections may be violated. The exceptions can be caused by (I) packet fragmentation, (2) packet 

compression, (3) packet retransmission occurring along the laundry path. However, due to the fact 

that SMTP reply messages are very short (usually less than 300 bytes including packet header) 

and Path MTUs for most customer networks are above 500 bytes, the occurrence of (I) and (2) is 

very rare. Moreover, the packet retransmission problem can be easily resolved by checking TCP 

sequence numbers. In general, the packet symmetry between the inbound and outbound reply 

packets holds most of time. 

AI I I A I I I I A I A lA I I A I . 
A ~ ~ 

. 
A ~ ~ . : ~ 

. 
~: A A :~ . 

I I 
I I I '\ II' I I '\ II' I I I I I I II .. 

I I 14th round I 1 time 
... 

lst round 2nd round 3rdround 5th round 6th round 

Inbound SMTP reply packet 1 A I I 
Outbound TCP packet I 

A ~ (e.g. HTTP/SOCKS) 
I 

connection X connection Y connection Z 

Figure 3.3: Example of reply round and TCP correlation 

Such packet symmetry is exemplified in Figure 3.3, where the arrow with long solid line stands 

for the arrival of an inbound SMTP reply packet of the suspicious SMTP connection. In addition to 

3TCP control packets such as SYN, ACK are not counted here. 
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the inbound SMTP connection, there are three outbound TCP connections X, Y, and Z, as shown in 

Figure 3.3. Three kinds of arrows with different dotted lines stand for the arrivals of outbound TCP 

packets belonging to these outbound TCP connections, respectively. The upward arrow indicates 

that the packet is leaving the monitored network, while the downward arrow indicates the packet 

is entering the network. 

All of the inbound SMTP reply packets shown in Figure 3.3 belong to the same suspicious 

SMTP connection. We define a reply round as the time interval between the arrivals of two con­

secutive reply packets on an SMTP connection. Thus, the nth reply round is the time interval 

between the arrival of the nth reply packet and that of the (n + I )th reply packet. Even for the 

simplified SMTP transaction, it has six reply rounds as shown in Figure 3.3. Within one reply 

around, the number of arrows with a specific dotted line indicates the number of outbound TCP 

packets of the corresponding TCP connection. 

According to the one-to-one mapping of packet symmetry, each SMTP reply packet observed 

on the downstream SMTP connection should cause one and only one TCP packet appeared on the 

upstream connection. As Figure 3.3 shows, if one connection among X, Y, and Z is the suspicious 

upstream connection, one and only one outbound TCP packet must be observed from that connec­

tion in every reply round. Based on this rule, only TCP connection X meets this "one and only 

one" requirement and can be classified as the suspicious upstream connection with high probabil­

ity. In the second reply round, more than one packets appear on connection Z; and in the fourth 

round, no packet occurs on connection Y. Thus, we can easily fi Iter out TCP connections Y and 

Z as normal background traffic. Note that the order of packet arrivals in a reply round does not 

affect the checking result of packet symmetry. 

This packet symmetry is the key to distinguish the suspicious upstream and downstream con-
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nections along the spam laundry path from normal background traffic. It simply captures the fun­

damental feature of chained interactive communications, and does not assume any specific time 

distribution of packet arrivals. We use this simple rule to detect the laundry path of proxy-based 

spamming, and the detection scheme is robust against any possible time perturbation induced by 

spammers. Note that the one and only one mapping of packet symmetry can be relaxed, which we 

will discuss in Section 3.4. 

3.2 Working Mechanism of DBSpam 

DBSpam consists of two major components: spam detection module and spam suppression mod­

ule, in which the detection module is the core of DBSpam. To the best of our knowledge, so far 

there is no effective technique which can online detect both spam proxies and the corresponding 

spammers behind them. We envisage that DBSpam may achieve the following goals: (1) fast 

detection of spam laundering with high accuracy; (2) breaking spam laundering via throttling or 

blocking after detection; (3) support for spammer tracking and law enforcement; ( 4) support for 

spam message fingerprinting; and (5) support for global forensic analysis. 

In essence, the detection module of DBSpam is a simple and efficient connection correlation 

detection algorithm to identify the laundry path of spam messages (i.e., the suspicious downstream 

and upstream connections) and the spam source4 that drives spamming behind the proxies. 

3.2.1 Deployment of DBSpam 

Like other network intrusion detection systems, DBSpam needs to be placed at a network vantage 

point that connects a customer network to the Internet, where it can monitor the bidirectional traffic 

40r just another spam proxy that is outside the customer network but at least one more step closer to the real source. 
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of the customer network. For a single-homed network, it is easy to locate such a network vantage 

point (an edge router or a firewall) and deploy DBSpam on it. For a multi-homed network, it may 

not be possible to locate a single network vantage point that can monitor all the bidirectional traffic 

passing through the customer network. 

However, on one hand, many customer networks use multi-homing not for load-balance, but 

for reliability and fault-tolerance. Therefore, in case of the backup multi-homing, DBSpam works 

well if deployed at the primary ISP edge router. On the other hand, even in the load-balance 

multi-homing scenario, as long as the packets that belong to the same proxy chain go through the 

same ISP edge router or firewall, DBSpam still can work at different ISP edge routers or firewalls 

without coordination. Moreover, there are special network devices (e.g., Top Layer [6]) which 

can passively aggregate traffic from multiple network segments. By hooking up to such devices, 

DBSpam can still have the complete view of network traffic. 

3.2.2 Design Choices and Overview 

Our goal is to detect the spam laundry path promptly and accurately, once a proxy-based spam­

ming activity occurs on the monitored network. We show in the previous section that packet 

symmetry is the inherent characteristic of proxy-based spamming behavior. Since legitimate mes­

sages are rarely delivered along the path illustrated in Figure 3 .I, the possibility of a normal SMTP 

connection being consistently correlated with an unrelated TCP connection is very small in terms 

of packet symmetry. Hence, frequent observations of connection correlation is a strong indication 

of occurrence of spam laundering. 

According to the packet symmetry rule, for th~: upstream TCP connection along a spam laun-
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dry path, its outbound packet5 number in each reply round of the downstream SMTP connection 

is always one. For a normal TCP connection, however, this rule can only be satisfied with a very 

small probability. Thus, a simple and intuitive correlation detection method is to count the num­

ber of outbound packets observed on suspicious TCP connections in sequential reply rounds of an 

SMTP connection. Given the characteristic of successive arrival of observations, this correlation 

detection problem is well suited for the statistical method of Sequential Probability Ratio Test 

(SPRT) developed by Wald [102]. 

As a simple and powerful mathematical tool, SPRT has been used in many areas such as 

portscan detection [43] and wireless MAC protocol misbehavior detection [69]. Basically, an 

SPRT can be viewed as a one-dimensional random walk. The walk starts from a point between 

two boundaries and can go either upward or downward with different probabilities. With each 

arrival of observation, the walk makes one step in the direction determined by the result of ob­

servation. Once the walk first hits or crosses either the upper boundary or the lower boundary, 

it terminates and the corresponding hypothesis is selected. For SPRT, its actual false positive 

probability and false negative probability are bounded by predefined values. It has been proved 

that SPRT minimizes the average number of required observations to reach a decision among all 

sequential and nonsequential tests, which do not have larger error probabilities than SPRT. 

We utilize the packet symmetry of SMTP reply packets to detect proxy-based spamming activ­

ity. Basically, we monitor the inbound SMTP traffic first, then apply the rule of packet symmetry 

for detecting the spam laundry path inside the customer network. In other words, DBSpam fo­

cuses on the clockwise reply packet flow as shown in Figure 3.1, instead ofthe counter-clockwise 

command packet flow, for connection correlation detection. The arrivals of inbound SMTP reply 

5Here packets refer to nonretransmitted, nonzero-payload TCP packets. 
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packets, which delimit the reply rounds and drive the progress of connection correlation detec­

tion, become a self-setting clock of the detection algorithm. SPRT terminates by either selecting 

the hypothesis that upstream connection Ctcp is correlated with downstream connection Csmtp or 

choosing the opposite hypothesis. 

There are two benefits of using SMTP reply messages to drive SPRT. First, as mentioned 

earlier, SMTP reply messages are very small, which minimizes the occurrence of packet frag­

mentation; and we can significantly increase the processing capacity of DBSpam by monitoring 

small packets only. Second, being either the spam target or the relay, the remote SMTP servers 

are usually very reliable; and the implementation and listening port of these servers strictly follow 

the SMTP protocol semantics. Thus, the packet symmetry rule always holds, and SMTP packets 

can be easily identified based on the port number ofTCP header. 

In the rest part of the section, we first briefly describe the basic concept of SPRT, then present 

the detection module ofDBSpam, which include two phases: SPRT detection and noise reduction. 

3.2.3 Sequential Probability Ratio Testing 

Let Xi, i = 1, 2, ... , be random variables representing the events observed sequentially. The SPRT 

for a simple hypothesis Ho against a simple alternative H1 has the following form: 

An~ B ===? accept H1 and terminate test, 

An :::; A ===? accept Ho and terminate test, 

A < An < B ===? conduct another observation, 
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where two constants or boundaries A and B satisfy 0 <A < B < oo, and An is the Jog-likelihood 

ratio defined as follows: 

1 ) Pr(XI, ... ,XniHI) 
An = A- (XI, ... ,Xn = In P (X X IR ) . 

r 1, .. ·, n 0 
(3.2) 

Assume X1, ... ,Xn are independent and identically distributed (i.i.d.) Bernoulli random vari-

abies with 

Pr(Xi = 118) = 1- Pr(Xj = 018) = 8, i = 1, ... ,n. (3.3) 

Then 

_ l fli Pr(XiiHI) _~I Pr(XiiHI) _ ~z. 
An-n -Ln -L 1 

TI!Pr(XiiHo) 1 Pr(XiiHo) 1 ' 
(3.4) 

where Zi =In ~~~~~Z~\. An can be viewed as a random walk (or more properly a family of random 

walks6 ) with steps Zi which proceeds until it first hits or crosses boundary A or B. Suppose the 

distributions for H1 and H0 are 81 and 80, respectively. An moves up with step length In~ when 

Xi= 1, and goes down with step length In :::::~~ when Xi= 0. 

In SPRT, we define two types of error 

f3 = Pr(SoiHI), 

where Pr(SdH;) denotes the probability of selecting Hi but in fact H1 is true. If we call the selection 

of H1 detection and the selection of Ho normality, the event of S11Ho can be viewed as a false 

positive. So, a represents the false positive probability. Likewise, the event of So IH1 can be 

termed a false negative and f3 represents false negative probability. 

6 It is a family of random walks, since the distribution of the steps depends on which hypothesis is true. 
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Let a* and {3* be user-desired false positive and false negative probabilities, respectively. 

According to (3.1), we can derive7 the Wald boundaries as follows: 

A = In ___!!:___ 
1- a*' 

B =In I- {3* 
a* , (3.5) 

and the derived relationships between actual error probabilities and user-desired error probabilities 

are: 

a* 
a<-­

- 1 - {3*' 
{3* 

{3 <--
- 1- a*' 

a+f3:::; a*+f3*. 

(3.6) 

(3.7) 

Inequality (3.6) suggests that the actual error probabilities a and f3 can only be slightly larger than 

their expected values a* and {3*. For example, if the desired a* and {3* are both 0.01, then their 

actual values a and f3 will be no greater than 0.0101. Inequality (3.7) can be interpreted as that 

the sum of actual error probabilities is bounded by the sum of their desired values. 

According to Wald 's theory, E [N] = E [AN]/ E [Zi]· Here N denotes the number of observations 

when SPRT terminates. Suppose hypothesis H 1 is true and Bernoulli variable ){j has distribution 

81 which implies that An steps up with probability 81 or goes down with probability 1 - 81, we 

have 

(3.8) 

If the user-desired false negative probability of the test is {3*, then the true positive probability is 

1- {3* and 

E[AN/HI] =f3*A + (1 - {3*)B 

={3* In___!!:___+ (I- {3*) In I- {3*. 
1- a* a* 

(3.9) 

7The derivations of (3.5), (3.6), and (3.7) are omitted here. See [43, I 02] for details. 
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With (3.8) and (3.9), we have 

EN H _ /3*Inb+(1-/3*)1n~ 
[ I I] - f) In ~ + ( 1 - f) ) In I- 91 · 

I Bo I 1-Bo 

(3.10) 

Likewise, we can derive 

(1 *)I fJ' + *I !=£ EN R - -a; n 1-a• a; n a• 

[lol- ain~+(l-fJ)Jnl=!b. 
0 Bo 0 1-Bo 

(3 .11) 

Apparently the average observation number E[N] of SPRT is determined by four parameters: pre-

defined error probabilities a:*, /3* and distribution parameters fJo and fJ1. The determination of 

these values and their effects on E[N] will be discussed with our correlation detection algorithm 

in the following. 

3.2.4 SPRT Detection Algorithm 

According to the principle of packet symmetry, within each reply round, there must be one and 

only one outbound TCP packet appearing on the corresponding upstream connection. By contrast, 

those connections that have none or more than one TCP packet can be classified as innocent 

connections. Within the framework of SPRT, this correlation detection problem can be easily 

transformed into an SPRT, in which we test the hypothesis H1 that Ctcp is correlated with Csmtp 

against the hypothesis H0 that the two connections are uncorrelated by counting the number of 

TCP packets appearing on Ctcp in each reply round ofCsmtp· 

If we use a Bernoulli random variable x; to represent the observation result on Ctcp in the i-th 

reply round of Csmtp and assume that these variables in different rounds are i.i.d., we have the 

following distribution: 

if one outbound TCP packet observed 
otherwise 
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Pr(X.IHo) = { eo if one ~utbound TCP packet observed 
I ) - eo OtherWISe 

Algorithm 1 describes the procedure of detecting connection correlation based on SPRT. The 

values of four parameters A, B, eo, e1 are specified beforehand. To identity if Ct cp and C smtp are 

correlated, at the end of each reply round of Csmtp• the number of the outbound packets observed 

on Ctcp is counted. If the number is 1, A is incremented by In~; otherwise, it is incremented by 

In::::~~· Then, the updated A is compared with A and B. If A is either no greater than A or no 

smaller than B, the detection terminates and the corresponding hypothesis is selected. Otherwise, 

the test continues. However, the detection still terminates if either Ctcp or Csmtp is closed before a 

hypothesis is derived. In this case, Ctcp and Csmtp are deemed uncorrelated. 

For proxy-based spamming, given that packet symmetry holds most of time, the major reason 

that correlation cannot be detected is mainly attributed to the packet misses by the monitoring 

system. For example, when the traffic volume exceeds the capacity that the monitoring system 

can handle, packets may be dropped by the monitoring system. If the packet conveying an SMTP 

reply message is dropped on either the downstream connection or the upstream connection, the 

correlation detection will fail in this reply round. So we can use packet miss rate to estimate 

the probability of a proxy connection being correlated when spamming occurs, that is, e1• From 

the conservative perspective, we take 0.01 as the packet miss rate which in fact is fairly high8 

considering only small packets (say less than 300 bytes) need attention and only packet header 

information is required for detection algorithm. So e1 is 0.99 in this case. 

To estimate eo, we employ the mathematical model given in [20]. We assume that the unidirec-

tiona! packet arrivals of a normal TCP connection can be modeled as a nonhomogeneous Poisson 

process, which can be approximated by a sequence of Poisson processes with varying rates, and 

8In practice, the miss rate is usually below 0.005 in our campus network. 
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Algorithm 1 Detect-Correlation 

1: Input: Ctcp, Csmtp 

2: Parameters: A,B, tlo, 81 

3: Output: Ctcp is correlated with Csmtp or not 

4: repeat 

5: for each reply round ofCsmtp do 

6: if# of outbound packets on Ctcp is 1 then 

7: An +---- An-I + In ~ 

8: else 

A A I J-e~ 
9: n +---- n-1 + n J-eo 

10: end if 

II : if An ;:: B then 

12: Ctcp is correlated with Csmtp and the test stops 

13: else if An :S. A then 

14: Ctcp is not correlated with Csmtp and the test stops 

15: else 

16: wait for observation in next reply round 

17: end if 

18: end for 

19: until either Ctcp or Csmtp is closed 

over varying time periods that could be arbitrarily small. For example, Jet M(t) denote the number 

of packets sent in an outbound TCP connection during time interval t. Process {M(t),t;:: 0} can be 

represented by a sequence of Poisson processes (/t1, &1 ), (ltz,Mz), ···,where t = & 1 + tlt2 + · · ·. 
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The advantage of this model is that it can approximate almost any distribution. More importantly, 

the number of packets observed during any given time interval T, can be represented by a Poisson 

process M with a single rate ~T· Here ~T is the weighted mean of the rates of all the Poisson 

processes during T. 

With this model, we can easily compute the probability of one and only one packet sent in a 

reply round if T denotes the duration of a reply round. From 

we have 

Pr(M = i) = e-(ArT) (~TT)i ., , 
l. 

(3.12) 

(3.13) 

In (3.13) Pr(M = 1) reaches its maximum value e- 1 when ~TT = 1. Although this is a theoretical 

derivative, we find that it is valid on almost all of the evaluated traces. Thus, we set eo = e- 1• 

If we choose 0.005 for false positive probability a* and 0.01 for false negative probability 

{3*, with e0 = e- 1 and e1 = 0.99, E[NIHJ] is 5.5 and E[NIHo] is 2.02, respectively. Figure 3.4 

shows how E [NIHJ] varies with the changes of a* and e0 , when {3 * and e1 are fixed. In general, 

E[NIH1] increases when e0 gets bigger or a* gets smaller. Intuitively, this prolonged random walk 

is a natural result of smaller step length In ~ or enlarged distance In 1 ~t for the walk towards the 

upper threshold. 

From the perspective of anomaly detection, it is desirable that error probabilities, especially 

the false positive probability, can be as low as possible. In the framework of SPRT, this implies 

that E[NIHI] goes up, that is, the average detection time is prolonged. However, given that not 

all SMTP transactions (the shortest one has only 6 reply rounds) can be longer enough to make 

the SPRT reach a decision when a is too small, a tradeoff between lowering false positive and 
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Figure 3.4: E[NIHI] vs. eo and a* (el = 0.99,{3* = 0.01) 

false negative has to be made. In DBSpam, we set a* = 0.005 so that even the shortest spam 

transactions can be captured. 

3.2.5 Noise Reduction 

To further lower the false positives of SPRT, we introduce a simple and effective noise reduction 

technique in DBSpam. In a series of correlation tests, we define the active spam sources and 

proxies that are prone to be identified many times as signals, and define those innocent IP addresses 

that may be accidentally captured as noises. We utilize the dichotomy between signal and noise 

to distinguish spam sources and proxies from innocent end hosts. We call this procedure noise 

reduction. The noise reduction are executed in two steps: first, we maintain a set Si of external IP 

addresses that appear in the correlation results for each time window~; second, in the consecutive 

M time windows, we single out the external IP addresses, which appear no fewer than K times, as 
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the spam sources and the corresponding proxy addresses as the spam proxies. 
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Figure 3.5: Pr(X 2: K) vs. p and (M, K) 
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The time window~ is determined by the lower-bound of spamming rate v (in replies/s) and 

the number of reply rounds N: 

~?_Njv. (3.14) 

Hence, a spammer sending spam faster than v must appear in Si at least once in each time window 

~. Assume that the appearance of an IP address in Si is independent, with a constant probability p. 

Then, the number of occurrences of the IP address among M time windows follows the binomial 

distribution. 

(3.15) 

The probability of having no fewer thanK occurrences in the binomial distribution is: 

(3.16) 
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Figure 3.5 illustrates the dynamics ofPr(X 2:: K) with the variation of probability p for several 

predetermined tuples of(M,K). The diagonal line shows the case of tuple (M = 1 ,K = 1 ), in which 

Pr(X 2:: K) is equal top. Clearly, if p is smaller than 0.2, all other curves are below this diagonal 

line, indicating that their values of Pr(X 2:: K) are smaller than that of tuple (M = 1, K = 1 ). In 

contrast, if pis larger than 0.8, these curves are above the diagonal line, indicating that their values 

of Pr(X 2:: K) are larger than that of tuple ( M = 1, K = 1). 

The value of p for an innocent address depends on the false positive rate of the correlation 

detection, which should be closer to zero than one. The left part of Figure 3.5 illustrates the 

noise reduction can further lower the chance of an innocent address being misclassified as a spam 

source. On the other hand, the value of p for a spam source is related to the complementary of the 

false negative rate of the correlation detection, which should be closer to one than zero as shown in 

the right part of Figure 3.5. This indicates that noise reduction increases the probability of a spam 

source being identified as well. Therefore, both false positives and false negatives are reduced after 

noise reduction. Figure 3.5 shows that when M is fixed, the probability Pr(X 2:: K) goes smaller 

with bigger K. For example, Pr(X 2:: 3lM = 4) is much smaller than Pr(X 2:: 21M= 4). Moreover, 

the noise reduction algorithm works very well even with very small M and K. For example, with 

(M = 4,K = 3), pre-noise-reduction false positive rate, which is 0.1, can be significantly lowered 

to 0.0037 after noise reduction. These two rules of thumb may guide the selection of (M,K) 

in practice. We will further discuss the parameter setup of Ll, M and K, and demonstrate the 

effectiveness of the noise reduction technique in Section 3.3.3. 
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3.3 System Evaluation 

We implemented a prototype of DBSpam using libpcap on Linux. Due to access limitation, we 

cannot deploy our prototype in an ISP network environment to evaluate its online performance. 

Alternatively, we collected traces from a middle-sized campus network and conducted a series of 

trace-based experiments to validate the efficacy of DBSpam. 

By replaying the collected traces with our prototype, we attempt to answer the following 

questions: (1) how fast DBSpam can detect spam laundering; (2) how accurate the detection result 

ofDBSpam is; (3) how many system resources DBSpam consumes. 

3.3.1 Data Collection 

The campus network is connected to the Internet via an OC-3 data link. A Snort-based NIDS [75] 

is deployed on the edge router of the campus network to block any suspicious proxy traffic (e.g. 

SOCKS and HTTP) via signature checking. All outgoing e-mail messages must go through the 

main e-mail server and secure authentication is enforced. 

This well-protected campus network provides an ideal platform to assess the false positive ra­

tio ofDBSpam on normal network traffic. According to the IT department, proxy-based spamming 

activities on this campus network are very rare. To evaluate the detection time and accuracy of 

DBSpam on spam laundering, we generate "spam" traffic, including both plain-text and encrypted 

proxy traffic, with the cooperation of the IT department. Although the monitoring systems of IT 

can detect plain-text proxy traffic by checking content, our encrypted proxy traffic successfully 

evades their detection. 

The generated spamming scenario is similar to the one shown in Figure 3.1. The campus 

network plays the role of network N. We use two home PCs outside the campus network, which 
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are located in two different ISP broadband networks, to emulate two spam sources. The spam sink 

(MTA Min Figure 3.1) is located in the dark net of the campus network. The dark net is a special 

subnet that directly links to the edge router and is used to dump all malicious traffic. One SOCKS 

proxy and one HTTP proxy running in two different subnets ofthe campus network form a proxy 

chain. We use a common spamming tool and sockschain9 to emulate proxy-chain spamming. The 

spam messages are sent from the two home PCs, through the proxy chain and destined to the spam 

sink. The data collection point is just before the edge router and can see all the traffic passing 

through the edge router. We use tcpdump to capture all small bidirectional TCP packets with the 

snaplen set to 75 bytes. 

Table 3.1: Trace information 

trace duration packets average size pkt miss threads/ 

(second) pkt/sec (MB) rate spammer 

S-I-A 770 3,872,550 5,029 295 < O.OOI I 

S-1-B 674 4,I78,567 6,200 3I8 < O.OOI 3 

S-I-C 756 4,509,336 5,965 343 < O.OOI I 

S-2-A 654 I2,036,4I3 I8,404 93I 0.008 I 

S-2-B I ,385 26,422,563 I9,078 2,044 0.005 3 

S-2-C I,398 26,I72,898 I8,722 2,0I8 0.005 I 

N-1 5, II6 24,434,5I8 4,776 I,85I <O.OOI -

N-2 I4,944 297,733,228 I9,923 22,950 0.006 -

We collected multiple traces of normal and spam traffic in two different months. The detailed 

9Both are binary Windows programs so that we cannot modify any code. 
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information ofthe traces is listed in Table 3.1, and additional explanations are given below. First, 

we only captured small TCP packets with packet length less than 300 bytes as DBSpam only 

utilizes the SMTP reply messages for detection, which are usually conveyed by TCP packets with 

length less than 300 bytes. Second, we collected two kinds of traces to evaluate the performance of 

DBSpam, one with generated spam traffic and the other without generated spam traffic. All traces 

include the normal background SMTP traffic passing through the campus network. The name of 

a trace follows the format "{SIN}-{112}-{AIBIC}". S (N) indicates that the trace has Spam (No 

spam) traffic. I (2) refers to the different month of trace collection. A (B, C) is only for spam 

traces and stands for different spam scenario. Third, in order to validate DBSpam for detecting 

both plain-text and encrypted spam traffic, we injected encrypted and compressed spam traffic 

through SSH tunneling into traces S-*-C (* is either I or 2), and injected plain-text spam traffic 

into S-*-A and S-*-B. Fourth, a multi-threaded spamming technique was used in S-*-B to validate 

the efficacy ofDBSpam in a multi-threaded spamming scenario. TheN-threaded spamming means 

uptoN upstream connections may be issued simultaneously from the spam source to a proxy for 

spam laundering. 

3.3.2 Detection Time 

The overall detection time ofDBSpam is determined by SPRT detection time, the noise-reduction 

time window ~. and the number of consecutive windows M. Among these three factors, SPRT 

detection time is the fundamental one, which bounds the value of time window~. In the following, 

we focus on the estimation of SPRT detection time. 

We evaluate SPRT detection time from two perspectives: the number of observations needed 

to reach a decision and the actual time spent by SPRT. 
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Table 3.2: Distribution of NIH1 

Trace N=6 N= 11 N>= 16 

S-1-A 970 (100%) 0 0 

S-1-B 5019 (96.9%) 139 (2.7%) 21 (0.4%) 

S-1-C 2245 (92.8%) 169 (7.0%) 6 (0.2%) 

S-2-A 433 (99.1 %) 3 (0.7%) 1 (0.2%) 

S-2-B 4298 (94.7%) 198 (4.4%) 40 (0.9%) 

S-2-C 1758 (98.9%) 16 (1.0%) 3(0.1%) 

Number of Observations N: The theoretical average number of observations under spam hy­

pothesis (E[NIHJ]) and nonspam hypothesis (E[NIHo]) can be easily computed based on Equations 

(3 .1 0) and (3 .11 ). In our evaluation, they are rounded to 6 and 3, respectively, with a* = 0.005, 

/3* = 0.01, eo= e- 1' and el = 0.99. Table 3.2 shows the distribution of NIHI in six spam traces. 

The results clearly demonstrate the dominance of (N = 6) in all traces. The comparatively low 

percentage of (N = 6) in trace S-1-C is mainly caused by the abnormally high packet-miss-rate of 

the spam traffic but not the whole traffic. Note that due to the characteristics of SPRT, the detection 

of connection correlation (H1) can only be reached after certain number of observations, such as 

6 and II. 

Figure 3.6 shows the distribution of NIHo for nonspam traces N-1 and N-2. The curves indi­

cate that SPRT can filter out at least 95% of normal connections within four observations. The 

distributions of NIHo for spam traces are similar to those for nonspam traces. 

Actual Detection Time of SPRT: After recording the start and end points for each SPRT on 

six spam traces, we derive all the detection time in these traces and draw the CDFs (cumulative 
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Figure 3.6: Distribution of NIHo 

distribution functions) in Figure 3.7. The detection time is approximated by ceiling for CDF 

drawing, e.g., 1.2s is ceiled to 2s. We classify the results from six traces into two groups: "S-1" 

and "S-2", since the results in each group are very similar. As shown in Figure 3. 7, 95% detections 

are made within 5 seconds. Note that the actual detection time is roughly the duration of 6 reply 

rounds of SMTP connection, since the computation overhead of SPRT is negligible. The curve 

difference between "S-1" and "S-2" is due to the inferior link quality in "S-2" experiments. 

3.3.3 Detection Accuracy 

Since the detection module ofDBSpam has two phases-SPRT detection and noise reduction, we 

first evaluate the false positive and false negative of SPRT detection, and then present the overall 

detection accuracy of DBSpam after noise reduction. 

(I) Accuracy ofSPRT 

False Positives: The left part of Table 3.3 shows the false positives of SPRT in different traces. 
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Figure 3. 7: CDF of detection time for SPRT 

The "detection" column is the total number of correlations reported by SPRT, and "True Positives 

(TP)" and "False Positives (FP)" columns list the outcome of detections. The "True Negatives 

(TN)" column lists the number of tests on normal connections that are correctly identified. Ac-

cording to the definition of false positive probability a= FP~:~Ns' the probabilities in all traces 

are well below 0.0002, indicating that the false positive probability of SPRT is fairly small in 

practice. 

False Negatives: We estimate the false negatives by counting the number of proxy connections 

that are missed by SPRT, and compute the ratio of missed spam connections, which are shown in 

the right part of Table 3.3. The false negatives of SPRT are attributed to the missed packets in 

the spam traces. The three spam traces S-2-A/B/C contain both long SMTP connections (no less 

than ten reply rounds) and short SMTP connections (six reply rounds). More than half of the total 

connections are short SMTP connections. For those short spam connections with only six reply 
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Table 3.3: False positives and false negatives of SPRT 

Trace Detection TPs FPs TNs FPs/ Spam Missed Miss 

(FPs+TNs) Conns Conns Ratio 

S-1-A 970 966 4 290,889 1.4e-5 958 8 0.008 

S-1-B 5,179 5,108 71 1,156,085 6.1e-5 570 2 0.004 

S-1-C 2,420 2,369 51 596,979 8.5e-5 324 0 0 

S-2-A 437 320 117 1,634,307 7.2e-5 329 6 0.018 

S-2-B 4,536 3,510 1,026 8,895,993 1.2e-4 1,351 27 0.020 

S-2-C 1,777 1,558 219 4,266,100 S.le-5 969 13 0.013 

N-1 66 - 66 687,390 9.6e-5 - - -

N-2 2,368 - 2,368 15,941,150 1.5e-4 - - -
. . .. 

*TP: True Positive, FP: False Positive, TN: True Negative 

rounds, if any packet on either the upstream connection or the downstream connection is missed 

in the trace, SPRT cannot reach a decision, leading to a false negative. A simple estimation shows 

the feasibility of the missing ratio ofspam connections. For simplicity, we assume that the packet 

miss rate p is constant through the trace. Then, the probability of one packet missing in six reply 

rounds is C~)p( 1 - p) 11 . If p = 0.005 (the packet miss rate of traces S-2-B/C), the probability is 

around 0.057, which is more than the miss ratio as shown in Table 3.3. 

(2) DBSpam Accuracy after Noise Reduction 

To investigate the efficacy of noise-reduction, we first need to determine the value of time win-

dow~. Figure 3. 7 shows that over 80% of all SPRTs on spam traces terminate within 2 seconds. 

So, we set the time window~ to 2 seconds. For (M,K), we test several combinations and the final 
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detection results are shown in Table 3.4, where the data format is "number ofFP/number of over­

all detections". From the table, we can see that noise reduction eliminates the majority of false 

positives of SPRT, due to the fact that most of wrongly-classified correlations only occur sporad­

ically. The false positive number of DBSpam approaches zero, when ( 1) M and K are relatively 

large and (2) the gap between M and K is small. Such dynamics of false positive reduction fits 

well with the analysis in Section 3.2.5. For our traces, any combination with 4/5 forM and 3/4 for 

K can achieve fairly high accuracy. Of course, the high detection accuracy is achieved at the cost 

of lowering detection sensitivity. It always exists a tradeoff between accuracy and sensitivity in 

network anomaly detection. However, even when the time window .1 is set to 2 seconds and M is 

set to 5, the overall delay of DBSpam detection is just 10 seconds but with much higher accuracy. 

Currently most false positives of DBSpam are induced by P2P applications. The capacity 

of spawning thousands of connections in a second and the behavior of periodic PING/PONG 

communications make P2P applications have a much higher probability of being correlated than 

any other applications. Due to the hog overwhelming proportion in bandwidth consumption, many 

ISPs and university networks in US have restricted the maximal connections that P2P applications 

can establish, which helps reduce the false positives ofDBSpam. 

3.3.4 Resource Consumption 

According to Table 3.1, the arrival rate of small TCP packets at the edge router can reach around 

20,000 packets per second (pps), at which DBSpam must be able to handle. Current high-end 

PCs can meet this requirement without much difficulty. Using a Dell Precision 360 machine 

with Pentium-4 3GHz CPU and 512MB memory, we run the prototype ofDBSpam on each trace 

multiple times. We use time and ps to measure the CPU and memory usage. The results are listed 
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Table 3.4: Overall false positives ofDBSpam (L\ = 2s) 

(M, K) 

Trace (3, 2) (4, 3) (5, 3) (5, 4) 

S-1-A 0/188 0/138 0/124 0/110 

S-1-B 0/162 0/126 01103 0/103 

S-1-C 0/194 0/150 0/124 0/123 

S-2-A 0/65 0/36 0/52 0/27 

S-2-B 13/335 3/243 4/216 0/186 

S-2-C 0/193 01124 0/135 0/94 

N-1 010 0/0 010 0/0 

N-2 717 111 2/2 0/0 
.. 

*Data Format: # of false positives I# of total detections 

in Table 3.5. The average packet processing rate of DBSpam is computed by dividing the total 

packet number of the trace over the processing time ("CPU Time"). The processing rates clearly 

demonstrate the capability of DBSpam working at high-speed networks. Even in the worst case, 

DBSpam still can handle 241,965 pps, which is over 10 times more than the required processing 

speed. 

Memory consumption of DBSpam is mainly determined by two factors: the number of active 

SMTP connections and the number of outbound TCP connections during each SMTP reply round. 

So, the peak memory consumption is not necessarily determined by the network traffic volume. 

As DBSpam only needs to maintain very few states, and only a very small portion (false positive 

probability) of connections need to maintain states for relatively long time (lifespan of SMTP con-
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Table 3.5: Resource consumption 

Trace CPU Uti! CPU Time pps Peak Mem 

S-1-A 36.3% 9.0s 430,283 2.2MB 

S-1-B 37.7% 9.8s 426,384 1.6MB 

S-1-C 24.0% 9.3s 484,875 1.2MB 

S-2-A 58.0% 36.8s 327,076 11.9MB 

S-2-B 84.3% I 09.2s 241,965 10.5MB 

S-2-C 57.1% 78.6s 332,989 2.8MB 

N-1 21.7% 51.1s 478,171 5.6MB 

N-2 32.1% 789.9s 376,925 8.4MB 

nections), the overall memory consumption should not be a problem. Also note that the memory 

management of our prototype is quite naive since our focus is mainly on the correctness, not on 

the performance. 

3.3.5 Suppressing Spam Activities 

Once the spam proxies and the spam sources behind them are identified, it is straightforward to 

suppress the spam activities inside the customer network. Two commonly-used approaches to 

suppressing proxy-based spam activities are rate-limit throttling and blocking. 

We suggest blocking the inbound TCP traffic from the spam source to its abused proxies. 

In general, the spam source is highly likely a compromised machine or the end host where a 

spammer resides. It is rare that frequent innocent communications exist between a spam source 

and its proxies. Therefore, the collateral damage of blocking traffic from these identified spam 

49 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

sources should be minor. 

On the other hand, there may exist legitimate e-mail traffic between a spam proxy and the 

MTA as a legitimate user residing in the proxy machine may also send e-mail. To minimize 

the collateral damage, we conduct rate-limit throttling on the outbound SMTP traffic from spam 

proxies, instead of simple blocking. The setting of rate-limit is based on the normal e-mail traffic 

behavior between a nonspam client and the MTA, and can be tuned by network administrators. 

To evaluate the efficacy ofDBSpam on spam suppression, we activate the suppression module 

ofDBSpam and simulate the spam suppression based on the collected traces. We use two machines 

for evaluating spam suppression, one for traffic generator and the other for traffic sink. We use 

tcpreplay [97] to inject traffic on the wire by replaying traces on the traffic generator, and then 

have DBSpam to detect and suppress spam activities on the traffic sink. The traffic sink simulates 

the edge gateway in a real environment. 

300 

(a) 

9,-----~----~-,==~==~ 

!
-Throttle 
- - - No Throttle 

200 
Time (second) 

(b) 

300 

Figure 3.8: Comparison of number of messages sent out before and after throttling 

We first examine DBSpam in spam throttling. We set the maximal mail sending rate as one 

message per second and throttling duration as 30 seconds. The suppression module silently drops 
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the excessive messages. Here we record message numbers by counting the number of "RCPT" 

commands appeared between "MAIL" and "DATA" commands in a transferring transaction. The 

mail transactions with multiple "RCPT" commands are delayed to meet the threshold of maximal 

sending rate. The parameters L\, M, and K of the detection module are set to 2s, 4, and 3, respec-

tively. After the detection module fires an alarm, the suppression modules is activated to throttle 

the spam proxy in the downstream connection of the laundry path, which lasts for the predefined 

time (i.e., 30s). Figure 3.8 shows the experimental results ofDBSpam in throttling spam activities. 

Figure 3.8(a) shows an excerpt (from lOOs to 300s in trace time) of the throttling result in trace 

S-1-B, and Figure 3.8(b) shows the corresponding result in trace S-2-C. The dynamics of spam 

message rates with and without throttling are shown as the red solid line and the blue dashed line, 

respectively. It is evident that as suppression is turned on, the spam sending rate is immediately 

dropped and limited to I message/second for next 30 seconds. The alternation of detection phase 

and suppression phase is also clearly shown in Figure 3.8. 
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Figure 3.9: Comparison ofTCP packet numbers before and after blocking 

Then we test DBSpam in blocking TCP traffic from detected spam sources. The blocking 
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technique is quite simple, just dropping TCP packets from the flagged IP addresses. We use the 

same experimental setup for the blocking test as that for the throttling test, that is, the same param­

eter setting for detection module and 30 seconds for blocking duration. Figure 3.9 illustrates the 

dynamics of the TCP traffic from a specific spam source with and without blocking. Figure 3.9(a) 

is for trace S-1-B, and Figure 3 .9(b) is for trace S-2-C. Also, the dynamics of observed TCP pack­

ets with and without block are shown as the red solid line and the blue dashed line, respectively. 

From Figure 3.9, we can see that the TCP traffic from the spam source is totally blocked in the 

suppression phase in both cases. 

3.4 Potential Evasions 

In such an ongoing arms race between spammers and anti-spammers, we envision that sufficiently 

aggressive spammers will seek sophisticated techniques to evade DBSpam. This is especially true 

for a spammer who is able to fully control remote spam proxy machines and deploy arbitrarily 

customized software. It may use non-off-the-shelf proxy programs, which can manipulate the 

traffic between the spam source and the first-hop proxy, to break packet symmetry. One possible 

way is to split a single reply packet from SMTP server into n fragmented packets on the first-hop 

proxy and then to transfer them back to the spam source. 

However, as long as enough observations are collected, DBSpam can still capture such po­

tential evasions. Recall that the effect of this packet splitting on SPRT model is just the change 

of the value of eo, which measures the probability of 1 ton outbound TCP packets observed in a 

reply round. So, instead of eo= Pr(M = I), now e0 = Pr(M = I)+ ... + Pr(M = n). According 

to Equation (3. I 0), without changing other parameters, the augmented value of e0 renders more 

average number of observations needed to detect a spam proxy. On the other hand, not all SMTP 
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transactions have enough reply rounds for detection. Due to extended observations, short-living 

spamming activities may not be detected. 

Table 3.6: False positive comparisons (M = 5, K = 4, ~ = 2s) 

eo a* E[NjHI] S-1-A S-1-B S-1-C S-2-A S-2-B S-2-C N-1 N-2 

e-I 0.005 5.5 0/110 0/103 0/123 0/27 0/186 0/94 010 0/0 

0.5 0.005 8.1 0/0 0/103 0/120 0/0 0/97 0/32 0/0 8/8 

0.5 0.01 7.1 0/110 0/103 0/121 0/21 2/159 0/89 0/0 12/12 

0.5 0.02 6.0 0/110 2/105 0/121 0/27 7/194 1/94 0/0 21121 

To demonstrate the capability ofDBSpam in capturing such evasions, we relax the definition of 

packet symmetry, in which one or two data packets may appear in one reply round, and adjust e0 to 

0.5 10 . Then, we estimate the overall false positives ofDBSpam, which are listed in Table 3.6 under 

the parameter setting of M = 5, K = 4, and~= 2s. For comparison, the results without relaxation 

are listed in the first row, while the results with relaxation are listed in the second row. Clearly, 

the short-living spamming activities are missed by DBSpam, with zero detection for S-*-A traces 

and much fewer detections for S-2-B and S-2-C traces. However, those spamming activities with 

more reply rounds can still be accurately detected. Since parameter a*, the expected false positive 

probability, has the inverse effect on E [NIHI] according to Equation (3 .1 0), we increase its value 

from 0.005 to 0.01 and 0.02, to accommodate short SMTP transactions for DBSpam detection. 

The third and fourth rows of Table 3.6 list the results after this adjustment, showing that DBSpam 

can capture short-living spamming activities by appropriately tuning a*. When a* is set to 0.02, 

DBSpam detects almost all spamming activities as before. In addition, those many more captures 

10Note that 8o never exceeds 0.5 in all our traces with various packet lengths from 150 to 300 bytes. 
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are only at the cost of slightly more false positives, which is the necessary tradeoff in capturing 

evasive spam proxy traffic. 

Moreover, instead of employing off-the-shelf proxy software, any advanced evasion technique 

will inevitably induce the modifications on the current spam methods and degrade the spam laun­

dering efficiency. The customized proxy software also increases the cost of spamming. Overall, 

DBSpam indeed significantly raises the protection bar against e-mail spam, breaking the launder­

ing and tracing out the real spam sources, in the anti-spam-vs-spam arms race. 

3.5 Related Work 

Many anti-spam techniques have been proposed and deployed to counter e-mail spam from dif­

ferent perspectives. Based on the placement of anti-spam mechanisms, these techniques can be 

divided into two categories: recipient-based and sender-based. In terms of fighting spam at the 

source, HoneyS pam [ 16] might be the closest work to ours. In the following, we first briefly de­

scribe recipient-based and sender-based techniques, respectively, and then compare our work with 

HoneyS pam. 

3.5.1 Recipient-based Techniques 

This class of techniques either (I) block/delay e-mail spam from reaching the recipient's mail­

box or (2) remove/mark e-mail spam in the recipient's mailbox. Based on the classification of 

responses to spam given by [99], we further divide the receiver-based anti-spam techniques into 

pre-acceptance and post-acceptance subcategories. The pre-acceptance techniques mainly focus 

on blocking or delaying spam before the recipient's MTA accepts them in its mailbox, while post­

acceptance attempts to weed spam out of received messages. 
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Pre-acceptance Techniques The pre-acceptance techniques usually utilize noncontent spam 

characteristics, such as source IP address, message sending rate, and violation of SMTP standards, 

to detect e-mail spam. Because these techniques are applied during SMTP transactions, they need 

to be deployed on the recipient's MTA. 

DNSBLs: DNSBLs refer to DNS-based Blackhole Lists, which record IP addresses of spam 

sources and are accessed via DNS queries. When an SMTP connection is being established, the 

receiving MTA can verify the sending machine's IP address by querying its subscribed DNSBLs. 

Even DNSBLs have been widely used, their effectiveness [ 44, 72] and responsiveness [71] are still 

under study. 

MARID: MARIO (MTA Authorization Records In DNS) [58] is a class of techniques to 

counter forged e-mail addresses, which are commonly used in spam, by enforcing sender authen­

tication. MARIO is also based on DNS and can be regarded as a distributed white list of authorized 

MTAs. Multiple MARIO drafts have been proposed, in which SPF [109], Sender IO [55] and Do­

mainKeys [26] have been deployed in some places. 

Tempfailing: Tempfailing [99] is based on the fact that legitimate SMTP servers have imple­

mented the retry mechanism as required by SMTP, but a spammer seldom retries if sending fails. 

It usually works with a grey list that records the failed messages and the MTAs failed on their first 

tries. 

Delaying: As a variation of rate limiting, delaying is triggered by an unusually high sending 

rate. Most delaying mechanisms, such as tarpitting [40], throttling [107, 110] and TCP Damping 

[51] are applied at receiving MTAs. 

Sender Behavior Analysis: This technique distinguishes spam from normal e-mail by exam­

ining behavior of incoming SMTP connections. Messages from the machine exhibiting character-
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istics of malicious behavior such as directory harvest are blocked before reaching mailbox [66]. 

Post-acceptance Techniques The post-acceptance techniques detect and filter spam by analyz­

ing the content of the received messages, including both message header and message body. This 

kind oftechniques can be deployed either at MUA (Mail User Agent) level in favor of individual 

preference or at MTA level for unified management. 

E-mail address based filters: There are a variety of e-mail address based filters with differ­

ent complexity. Among them, the traditional whitelists and blacklists are the simplest. Whitelists 

consist of all acceptable e-mail addresses and blacklists are the opposite. Blacklists can be easily 

broken when spammers forge new e-mail addresses, but using white lists alone makes the world en­

closed. [30] developed a new whitelisting system, which can automatically populate whitelists by 

exploiting friend-of-friend relationships among e-mail correspondents. [42] proposed a new spam 

filter based on Single-Purpose Address (SPA), which encodes a security policy that describes the 

acceptable use of the address. Any e-mail that violates the policy can be either marked, bounced, 

or discarded. [31] developed a remailer system, which maps a user's private permanent address to 

multiple public restrictive (e.g. duration) aliases for different correspondents and manages those 

aliases according to the user defined policy. 

Challenge-Response (C-R): C-R [92] is used to keep the merit of whitelist without losing 

important messages. Incoming messages, whose sender e-mail addresses are not in the recipient's 

whitelist, are bounced back with a challenge that needs to be solved by a human being. After a 

proper response is received, the sender's address can be added into the whitelist. 

Heuristic filters: The features that are rare in normal messages but appear frequently in spam, 

such as nonexisting domain names and spam-related keywords, can be used to distinguish spam 

from normal e-mail. [90] is such an exa!llple. Each received message is verified against the heuris-
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tic filtering rules. Compared with a predefined threshold, the verification result decides whether 

the message is spam or not. 

Machine learning based filters: Since spam detection can be converted into the problem 

of text classification, many content-based filters utilize machine-learning algorithms for filtering 

spam. Among them, Bayesian-based approaches [19, 35, 52, 112] have achieved outstanding accu­

racy and have been widely used. [37] studied the effect of combining multiple machine learning 

models on reducing false positives of spam detection. As these filters can adapt their classification 

engines with the change of message content, they outperform heuristic filters. 

Signature-based filters: Similar to the concept of a virus signature, a spam signature is the 

identity of a spam message and is usually derived from certain computation on the spam message. 

For each incoming message, a signature-based filter first derives its signature, then queries the 

registered server for signature test, and takes proper actions based on the response. To be effective, 

signature-based filters usually collaborate and contribute signatures through peer-to-peer networks 

[67, 74, 114]. 

3.5.2 Sender-based Techniques 

Usage Regulation: To effectively throttle spam at the source, ISPs and ESPs (E-mail Service 

Providers) have taken various measures such as blocking port 25, SMTP authentication, to regulate 

the usage of e-mail services. Message submission protocol [32] has been proposed to replace 

SMTP, when a message is submitted from an MUA to its MTA. 

Cost-based approaches: Borrowing the idea of postage from regular mail systems, many 

cost-based anti-spam proposals [ 18, 48, 60, 1 03] attempt to shift the cost of thwarting spam from 

the receiver side to the sender side. All these techniques assume that the average e-mail cost for a 
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normal user is negligible, but the accumulative charge for a spammer will be high enough to drive 

him out of business. Cost concept may have different forms in different proposals. SHRED [48] 

proposes to affix each mail with an electronic stamp and punish spammers by reducing their stamp 

quotas and charging them real money, while Penny Black Project [60] enforces a sender to pay 

e-mail postage by associating a CPU or memory intensive computation with an e-mail sending 

process. The computation result, called "Proof-of-work", is attached with the message and can be 

easily validated by the recipient. 

3.5.3 HoneySpam 

HoneySpam [16] is a specialized honeypot framework based on honeyd [68] to deter e-mail ad­

dress harvesters, poison spam address databases, and intercept or block spam traffic that goes 

through the open relay/proxy decoys set by HoneySpam. With the network virtualization offered 

by honeyd, HoneyS pam can set up multiple fake Web servers, open proxies, and open relays. Fake 

Web servers provide specially crafted Web pages to trap e-mail address harvesting bots. Fake open 

proxies or open relays are used to track spammers exploiting them and block spam going through 

them. 

HoneySpam shares the same motivation of countering spam at the source as DBSpam, and 

both deal with spam proxies. However, the role of proxy and anti-spam approaches in HoneyS pam 

are quite different from those in DBSpam. The proxies ofHoneySpam are intentionally set on end 

hosts, and spam sources are logged by HoneySpam. Thus, spam tracking is very easy. In contrast, 

detecting spam proxies is the major task of DBSpam, and proxy identification and spam tracking 

can only be accomplished through traffic analysis. On the other hand, these two tracing and 

blocking systems are complementary to each other. Moreover, both ofthem can be used for spam 
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signature generation, spam forensic and law enforcement. 

3.6 Summary 

In this chapter, we presented a simple yet effective system, DBSpam, to detect and break proxy­

based e-mail spam laundering activities inside a customer network and to trace out the corre­

sponding spam sources outside the network. Instead of content checking, DBSpam leverages the 

protocol semantics and timing causality of proxy-based spamming to identify spam proxies and 

real spam sources behind them. Based on connection correlation and packet symmetry principles, 

DBSpam monitors the bidirectional traffic passing through a network gateway, and utilizes a sim­

ple statistical method, Sequential Probability Ratio Test, to quickly filter out innocent connections 

and identify the spam laundry path with high probability. To further reduce false positives and 

false negatives, we propose a noise reduction technique to make spammer-tracking more accurate 

after gathering consecutive correlation detection results. We implement a prototype of DBSpam 

using libpcap on Linux, and conduct trace-based experiments to evaluate its effectiveness. Our 

experimental results reveal that DBSpam can be tuned to detect spam proxies and sources with 

low false positives and false negatives in seconds. After detecting spam proxies and related spam 

sources, DBSpam can effectively throttle or block spam traffic. 
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Chapter 4 

Countering Malicious Instant Messages 

Instant messaging (IM) has been one of most frequently used malware attack vectors due to its 

popularity. IM malware usually finds and hits next victim by exploiting current victim's contact 

list and playing social engineering tricks. It is very difficult to detect and suppress the spread of 

IM malware through conventional approaches such as blocking and filtering, because sources of 

the malicious IM messages are legitimate and their contents are in disguise. IM systems including 

public IM systems (e.g., AOL Instant Messenger) and enterprise IM systems (e.g., Reuters Mes­

saging) are widely used by enterprises and organizations for internal communication. However, 

previously proposed protection approaches [54, 57, 100, 1 08] are ineffective to defend against IM 

malware in an enterprise-like network environment, mainly because ofhigh false positive rate and 

the requirement ofthe IM server being inside the protected network. 

In this chapter, we present Honey 1M, a framework for automating the process of IM malware 

detection and suppression in an enterprise-like network. HoneyiM is based on the concept of 

honeypot and detects IM malware by leveraging its inherent spreading characteristics. Specifi­

cally, HoneyiM uses decoy accounts in normal users' contact lists as sensors to capture malicious 
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content sent by IM malware, which achieves almost zero false positive. With accurate detection, 

HoneyiM suppresses malware by performing network-wide blocking. In addition, HoneyiM de­

livers attack information to network administrators for system quarantine and recovery. The core 

design ofHoneyiM is generic and can be applied to a network that uses either private (enterprise) 

or public IM services. 

This chapter is structured as follows. We first overview the related work in securing instant 

messaging systems in Section 4. I. Then, we present the framework of HoneyiM in Section 4.2. 

Next, we detail the implementation and evaluation of HoneyiM in Sections 4.2.5 and 4.3, respec­

tively. We further discuss possible evasion to HoneyiM and the countermeasures in Section 4.4. 

Finally, we summarize the contributions of this chapter in Section 4.5. 

4.1 Related Work 

The security threats posed by IM malware have been studied in [39, 56]. In [39], the spreading 

speed of IM malware is estimated, showing that 500,000 machines could be infected within a 

minute. 

Previous defense schemes against IM malware are closely related to IM network modeling and 

traffic measurement. Based on individual measurement and analysis, [61, 83, 108] all verify that 

IM social networks formed by IM contacts are scale-free, that is, the IM network connectivities 

follow power-law distributions. However, a recent measurement study [1 I I] suggests that Weibull 

distributions may be more appropriate for describing the connectivity of IM social networks. For 

scale-free networks, a small portion of nodes that are highly connected have significant effect on 

mitigating malware spread. Based on this observation, Smith [83] proposed to delay the propaga­

tion of IM malware by disabling the accounts of most connected IM users on the network. This 
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scheme needs to be deployed on IM servers. It only reduces the spread speed and may have sig­

nificant side-effects. Williamson et a!. [I 08] applied their virus throttling mechanism to IM and 

demonstrated its effectiveness by simulation. The throttling to IM is also conducted at servers. 

The throttling becomes blind blocking if its threshold is very restrictive, which degrades the us­

ability. Mannan and van Oorschot [57] proposed two defense methods, namely limited throttling 

and CAPTCHA-based challenge-response. They also provided a usage study on per-user fre­

quency ofiM text messages and file transfers to support the applicability of their second scheme. 

Liu eta!. modeled the spread of IM malware using multicast tree [54] and analogous branching 

process with varied lifetime [53]. Honey 1M is orthogonal to all the schemes mentioned above, and 

can achieve accurate detection and blocking without degrading usability. 

Trivedi et a!. studied the network and content characteristics of spim, the spam messages on 

IM networks, by using a proxy server as honeypot [96]. Their work is different from HoneyiM, 

since [96] is a measurement study and it targets spim but not IM malware. The honeypot used 

in [96] refers to a SOCKS proxy, which is exploited by spimmers to conceal their identities. 

4.2 HoneyiM Framework 

HoneyiM aims to assist network administrators in IM malware defense by automating the process 

of malware detection and suppression in an enterprise-like network. Utilizing the innate spread­

ing characteristics of IM malware and applying the concept of honeypot, Honey 1M can detect 

and block unknown IM malware at its early stage of spreading, which greatly facilitates network 

filtration and system quarantine and recovery. In this section, we first give an overview of Hon­

ey 1M, how and why it can detect IM malware early. Then, we discuss several issues that need to 

be considered when using HoneyiM in practice. After that, we present the design of Honey 1M 
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and the functionalities of its components. Finally, we describe the deployment of Honey 1M in an 

enterprise-like network. 

4.2.1 Overview 

Honey 1M is based on the concept of honeypot. As an effective intrusion detection technology, 

honeypot has been used widely. According to [95], a honeypot is an iriformation system resource 

whose value lies in unauthorized or illicit use of that resource. Not only can a honeypot be a 

physical machine or a specialized program, which is the common case, but it can also be an e-mail 

address, or even an IM decoy user. Since IM malware always attempts to infect other users on 

the victim's contact list, HoneyiM exploits decoy users to detect IM malware. Under normal cir­

cumstances, a client user will not initiate a conversation with a decoy user. Therefore, if the decoy 

user receives a file transfer request or a URL-embedded text message originated from a client user, 

it is highly probable that malware is spreading and the request/message sender is compromised. 

Thanks to decoy users, Honey IM can achieve almost zero false positive in detection. This strong 

guarantee, which is rarely offered by other schemes, relieves network administrators from worry­

ing about possible interruption to normal IM users caused by the protection technique. In addition, 

HoneyiM can block malicious content that has been detected and inform network administrators 

of the attack information, e.g., the IP address of the compromised machine, in real-time. 

Figure 4.1 illustrates the working mechanism of Honey 1M. The IM user with an icon of hon­

eypot is the one whose contact list contains a decoy user. The events happen in the following 

sequence. (I) Some IM malware compromises an IM client and (2) propagates. However, (3) 

when it tries to spread again, it hits a decoy user and (4) is detected by HoneyiM. (5) HoneyiM 

blocks the malicious content in IM traffic (either at the edge gateway or at the IM server if the 
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IM service is provided within the network) and non-1M traffic1 instantly, and notifies the attack 

information to the network administrator. 

AIM user 
MSNuser 

Figure 4.1: Working mechanism ofHoneyiM 

\ 

I 

Honey 1M is designed to be independent, with no restriction on the type and location of IM 

servers. Therefore, the framework of Honey 1M can be flexibly realized under the context of either 

public IM services or private (enterprise) IM services being used in the protected network. The 

core of Honey 1M is the same for either server-enhanced (with private servers) or serverless (with 

public servers) realization. The difference lies in the implementation and deployment, which will 

be discussed in Section 4.2.4. The framework ofHoneyiM consists of several modules and these 

modules can be deployed in a single machine or at different places. 

1 Doing this is to block accesses to malicious contents, e.g., malicious URLs. 
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4.2.2 Design Issues 

The success of Honey 1M largely depends on the use of decoy users. In the following, we discuss 

three issues of Honey IM that are much related to decoy user, including initialization, sensitivity, 

and compatibility. 

The initialization of Honey 1M mainly refers to the creation and addition of decoy user ac­

counts. Strictly speaking, it is a deployment issue. If public IM services are used in the protected 

network, the network administrators need to create decoy accounts and solicit some volunteer IM 

users to add those decoy users into their contact lists. In contrast, if an enterprise IM service is 

employed, the creation and addition of decoy users can be done automatically by the IM server. 

However, the system must notifY volunteer users the purpose and usage of decoy accounts, and 

provide a disable (or opt-out) option. This HoneyiM initialization is fulfilled at one time, and the 

update of decoy accounts could be performed if necessary. In addition to the volunteer policy for 

IM user cooperation, the network administrators might require the IM users who have high con­

nectivity degrees (i.e., the super-nodes in IM networks) to include decoy accounts in their contact 

lists. 

The sensitivity ofHoneyiM is measured by the ratio between the number of infected users and 

that of all IM users in the protected network when the spreading of IM malware is first detected. 

The key factor affecting the sensitivity of Honey 1M is the coverage of HoneyiM-the portion of 

the IM users equipped with decoy user accounts among all IM users within the network. It is 

obvious that HoneyiM cannot detect malware for those users who do not include decoy accounts 

in their contact lists. Moreover, IM malware may intentionally or inadvertently bypass HoneyiM 

by not hitting decoy users in the infected users' contact lists. The word "intentionally" does not 

mean that the IM malware knows the decoys in advance, but reflects its capability of distinguishing 
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decoys from other contacts. Here we assume that the threat comes from the outside of the protected 

network and the inside IM users do not collude with the outside attackers. Given the coverage of 

HoneyiM, which is usually determined by the network administration policy, we will consider 

how to counter evasive IM malware to improve HoneyiM sensitivity in Section 4.4. 

Compatibility is not an issue if Honey 1M is deployed on an enterprise IM server, since the 

server can maintain the compatibility with supported IM clients. However, the compatibility has 

to be taken into account if public IM services are used in the protected network. Under this 

circumstance, various types of public IM systems may coexist. This is especially true on the 

networks with less strict IM usage policies such as campus networks. Thus, HoneyiM should be 

able to talk with different types of IM clients. 

Honey 1M 

messages information 

Figure 4.2: Framework ofHoneyiM 

4.2.3 System Components 

Figure 4.2 shows the general framework of HoneyiM, which comprises four modules each per-

forming a specific functionality. Note that these modules could be deployed either on the same 

machine or on different hosts (or network devices). As displayed, the communication module 

is responsible for handling IM traffic. It parses the IM traffic to decoy users and delivers it to 
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the detection module. The detection module extracts attack vectors and related information from 

IM messages, and then feeds them into the suppression and notification modules. The .suppres­

sion module sifts through network traffic and filters out malicious traffic containing attack vec­

tors. Meanwhile, the notification module informs network administrators ofthe detected malware 

spreading. 

Communication Module 

The communication module is the base of Honey 1M. Decoy accounts use it to join IM net­

works and communicate with normal IM clients. This module realizes all necessary functions of 

a normal IM client, such as signing on/off, setting presence status, receiving messages and files, 

etc. These functions are automatically executed by default and can also be manually operated by 

a network administrator. The module only accepts the messages from the users on the contact list 

for blocking "spim", the spam on IM networks. The communication module should support all 

IM protocols that are used by the protected IM services, and allow multiple accounts to log into 

different IM networks simultaneously if necessary. 

Detection Module 

The detection module serves three purposes: ( 1) detecting compromised IM clients, (2) iden­

tifYing attack vectors, and (3) validating attack vectors. It accomplishes the first two tasks by 

consulting the communication and suppression modules and scrutinizing IM messages delivered 

by the communication module, and attains the last task by conducting deep-inspection. 

The detection module classifies a sending IM client as compromised, when a decoy account 

receives a file transfer request or a text message with URL from the IM client. The reason is that 

it is very rare for a normal user to issue such a request or message to the decoy account2 . The 

2Even if a normal user accidentally sends a message to the decoy account, the message is usually a pure text 
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detection is not affected by client-to-client or client-to-server traffic encryption because the IM 

messages received by a decoy (as a client) must be in plain-text. If IM malware spreads through 

file transfer, the attack source, i.e., the IP address of the compromised machine, is immediately 

known as a file transfer is usually done between two IM clients directly. However, ifiM malware 

spreads through URL message, we cannot identify the sender directly because the message is 

usually relayed through server. Under this circumstance, the attack source is inferred with the 

help of the suppression module, which will be described shortly. The detection module can easily 

generate the attack vector information such as malicious file names and malicious URLs from the 

received IM messages. 

Furthermore, the detection module performs deep-inspection to verify the virulence of there­

ceived file or URL. There are many techniques available to achieve this purpose. For example, 

we can use dynamic taint analysis based techniques such as TaintCheck [63] and Argos [65] to 

examine if a received binary can compromise system and to generate the corresponding signa­

ture if a compromise occurs. We also can adopt the technique used by Honey Monkey [I 04] to 

check received URLs. HoneyMonkey detects Web exploits by browsing URLs inside a virtual 

machine and monitoring the change of system states. In general, any effective and efficient host­

based anomaly detection techniques can be used for deep-inspection. HoneyiM does not contain 

any specific technique for analyzing IM malware, but rather provides a platform to apply existing 

techniques for malware dissection and leave the choice of what technique to use to network ad­

ministrators. The adopted techniques are implemented as plug-ins of the detection module, and 

the deep-inspection is conducted in a contained environment such as a virtual machine to prevent 

HoneyiM itself from being compromised. 

message. 
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The incorporation of deep-inspection is justified by the following considerations. First, deep­

inspection can further reduce false positives. It is possible that innocent URLs or files could be 

sent with malicious content by IM malware to disguise their malice. Second, deep-inspection 

helps discover additional or real attack vectors used by IM malware. For example, file deep­

inspection can generate the signature of malware binary, based on which the filtering is much 

more robust against evasion than based on file name. IM mal ware can also use different URLs in 

its spreading, which in fact are doorway Web pages redirecting traffic to the same Web site that 

hosts real exploits. With URL deep-inspection, the protection can be further enhanced because 

not only doorway URLs but also real exploit URLs can be discovered. Last but not least, deep­

inspection uncovers the IM malware activities, such as the infection mechanism and the infected 

files, for network administrators. 

After attack vector extraction and validation, the detection module supplies the validated attack 

vectors and sources to the suppression module for immediate network traffic filtration. In the 

meantime, the detection module feeds all collected attack information into the the notification 

module, which informs network administrators of the occurrence of an attack in real-time for 

prompt system quarantine and recovery. 

Suppression Module 

The suppression module in essence is a network filter. It takes the attack source and vector 

information from the detection module as input. Then, it blocks any traffic from attack sources 

and filters out network traffic that contains attack vectors. Different from other modules that have 

no requirement for deployment location, the suppression module should be installed at a network 

vantage point, where it can monitor all traffic passing through the protected network. The location 

ofthe suppression module will be further discussed in Section 4.2.4. 
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The suppression module consists of two components: non-1M traffic filter and IM traffic filter. 

These two components are logically independent for flexible implementation and deployment. 

The non-1M traffic filter fulfills two tasks: blocking attack sources and filtering non-1M network 

traffic. For the former, the filter simply drops any packet from the attack sources to terminate 

malware propagation. For the latter, the filter examines contents of inbound and outbound packets 

to identiry if an internal user is attempting to access a malicious Web page or transfer a virulent 

file. Any packet containing a matched attack vector will be discarded. 

The IM traffic filter also provides two functionalities. The first is traffic filtration, which 

weeds out the IM messages that either come from (or go to) the compromised clients or contain 

identified malicious file names or URLs. Although a file is usually transferred between two clients, 

the IM messages for establishing transfer connections are relayed through servers in plain-text 

for mainstream IM products. Therefore, blocking malicious file transfer by dropping connection 

establishment messages is not affected by client-to-client encryption. The second functionality of 

the IM traffic filter is to help identiry malicious URL sending hosts within the protected network. 

Because messages are relayed through server, the detection module cannot identiry the sources of 

malicious URL messages. To track the IP address of the compromised host, the IM traffic filter 

records the URLs and the corresponding IP addresses of their senders. With this information, the 

detection module can easily pinpoint the malicious URL senders. 

Notification Module 

The notification module plays the role of messenger. Its job is to inform network adminis­

trators of the occurrence of IM malware spread upon the detection of an attack. Given the fast 

spread of IM malware, the notification to network administrators should be made in real-time or 

near real-time by means of SMS (Short Messaging Service) or IM. The notification module can 
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also notify the victim about the fact that his machine has been infected with IM malware via IM 

or e-mail. 

4.2.4 Deployment 

As mentioned in the overview section, HoneyiM can be deployed with a private IM server in­

side the protected network (server-enhanced deployment) or with public IM services outside the 

network (serverless deployment). The major differences between the two deployments lie in the 

function location and system initialization of HoneyiM. In serverless deployment, the non-IM 

and IM traffic filters of the suppression module have to be placed on the network edge device. 

However, in server-enhanced deployment, while the non-IM traffic filter still needs to be on the 

network edge device, the best place for the IM traffic filter is the private IM server, where the filter 

can see all IM traffic. Moreover, in practice many IM servers already include the message filtering 

functionality, making IM traffic filtering much easier there. 

The deployment ofHoneyiM also involves system initialization, i.e., the creation and addition 

of decoy accounts. In server less deployment, network administrators need to register accounts for 

decoy users on public IM services before running Honey IM. Due to the maximum size of contact 

list (e.g., 600 for MSN) and the protection consideration, the administrators can create multiple 

decoy accounts and use them for different groups ofiM users. Then, the decoy accounts are added 

into the volunteer IM users' contact lists with their cooperation. By contrast, the server-enhanced 

deployment saves the efforts of network administrators and IM users by automating the creation 

and addition of decoy accounts, just like the use of AIM Bots for shopping and movie guide. 

This can be achieved by adding a decoy account management module to the private IM server. 

The module can also be used to (1) provide IM users with the information of decoy accounts and 
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the option to enable/disable them, and (2) update decoy accounts periodically against potential 

evasion. 

4.2.5 Prototype 

To demonstrate the efficacy of Honey 1M, we have built a prototype of the serverless Honey 1M, 

which can be easily transformed to the server-enhanced Honey 1M prototype with minor changes in 

function location and system initialization. We implement the HoneyiM modules using different 

techniques. We use a full-fledged open-source IM client Pidgin (formerly known as Gaim) [8] to 

build the communication module. The detection module employs Capture [93], a high interaction 

client honeypot on Windows systems, for URL deep-inspection. The detection module extracts 

URLs from the communication module and feeds them into Capture, which decides whether a 

URL is malicious by comparing the system states such as registry and running processes before 

and after the URL is accessed. For any file transfer request HoneyiM does not perform deep­

inspection but immediately fires an alert instead, given that the file transfer method is relatively 

unpopular in IM malware spreading and most IM users and programs are vigilant to this type 

of threat. Honey 1M receives the delivered file and sends it to network administrators via e-mail. 

In the construction of the suppression module, we use Perl IPQueue module for iptables [62] to 

perform URL logging and pattern-matching. We implement the notification module with two com­

munication means: e-mail and SMS. The suppression module communicates with the detection 

module via network socket, and thus can be deployed on a separate machine. 

Because Pidgin supports multi-protocol and multi-account, HoneyiM can log into multiple 

accounts on multiple IM networks simultaneously. Therefore, it can provide protection for mul­

tiple public IM networks. Note that the choice of Pidgin and Capture is mainly due to the 
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availability of their source code. Upon the accessibility of source code, any IM clients or anomaly 

detection systems can be used to construct HoneyiM. 

4.3 Evaluation 

In this section, we first evaluate the detection sensitivity of Honey 1M under different coverages 

via simulation. Then, we validate the applicability ofHoneyiM through real experiments. 

4.3.1 Simulation 

When adding decoy accounts is voluntary for IM users on the protected network, it is very possible 

that Honey 1M does not cover all IM users. Under this circumstance, how effective would Honey 1M 

be? Because we cannot carry out a large-scale experiment in practice, we tum to simulation 

for answering this question. We adopt the simulation model from [115] due to the similarity 

in propagation between IM mal ware and e-mail worms [ 115]. The major metric we use is the 

percentage ofiM users being infected by the time the IM malware is firstly detected by Honey 1M 

(the percentage of infected IM users for short), and we investigate its variation under different 

HoneyiM coverages. 

1) Simulation Model 

The simulation model of IM malware propagation is described as follows. First, when an IM 

user receives an IM message, she may or may not read the message immediately. The reading 

delay for user i, denoted by T;, is a stochastic variable. When the user receives a message with a 

malicious URL 3, she clicks the URL with a clicking probability denoted as Ci. We assume that 

Ci is a constant for user i. If the malicious URL is clicked, the malicious code is downloaded and 

3The situation for malicious file transfer is similar. 
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Figure 4.3: Relations between Honey 1M coverages and infected user percentages 

10 

executed immediately. It infects the current IM client and sends malicious URLs to all the victim's 

contacts with no delay. The malware will not spread again unless the user receives the same URL 

and clicks it again. 

Before we start the simulation, we need to determine the IM network topology and the values 

of each Ci and ~- Here the IM network refers to the virtual network composed by the contact lists 

ofthe IM users on the protected network. According to [83] that studies an IM network containing 

50,158 users, over 80% of the user contacts are bidirectional, indicating that most of users are also 

in the contact lists of their buddies. Thus, we model the IM network topology by an undirected 

graph G = < V, E >. For \fv E V, v denotes a node (IM user), and for \fe = ( u, v) E E, u, v E V, 

e represents an edge that connects two users, u and v, who are in each other's contact list. lVI is 
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the total number of nodes, and D(i) is the degree of node i, i.e., the number of edges connected 

to node i. The size distribution of contact lists has been identified as scale-free by [61,83, 108], 

except that [Ill] claims that Wei bull distribution has a better fit. However, [Ill] does not give the 

parameters of Weibull distribution and the number of their monitored IM users is small compared 

to [61, 83, 108]. Therefore, we model the IM network topology as power law and set the power 

law exponent a to I. 7, based on the measurement results from [ 61] and [83]. The network is 

generated by using GLP power law generator [22] with the given a, the number of nodes JVI, 

and the average node degree E[D]. We generate three IM networks with the number of nodes 

JVI = 1000/6000/6000 and the average node degree E[D] = 8/8/16, respectively. The maximum 

node degrees of the generated networks are all below 600, the maximum size of a contact list for 

MSN. 

Similar to [115], we assume that IM users have independent behaviors. Due to the large 

number of users JVI and independent behaviors, the mean values of user reading delay ~ and 

clicking probability Ci, denoted by E [~] and E [Ci] (i = I, 2, .. · , JVj), can be assumed to follow 

Gaussian distribution. That is, E[~] ""N(Jlr, CJf) and E[Ci] "'N(f.lc, CJ~). We also assume that~ 

follows exponential distribution and Ci is a constant for user i, and the generation of~ and Ci is 

constrained by~ 2': 0 andCi E [0, I]. In simulation, we useN(20, 102 ) andN(0.5,0.32 ) to generate 

E[~J and E[Ci], respectively. 

2) Simulation Results 

Given the network topology, we randomly deploy decoys in the network with different cover­

age 9'\ and run simulation experiments. Each simulation run stops once IM malware hits a decoy 

user (blocking is in effect immediately) or timeout occurs. The number of infected users and de­

tection time are the simulation output. For each coverage 9'\, we vary the decoy deployment I 0 
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times and run simulation 100 times for each deployment, and have the mean and median values 

derived from these 1, 000 simulation experiments. 

With the increase of Honey 1M coverage, the corresponding percentages of infected IM users 

on three different IM networks are shown in Figure 4.3, in which the solid curves are for mean 

values and the dashed curves are for median values. The mean curves are above the median curves 

for very small coverage values, and both types of curves drop sharply and converge to zero with the 

increase of coverage. This clearly demonstrates the effectiveness of Honey 1M. Figure 4.4 further 

zooms in on y-axis and compares the mean curves of the three IM networks. Even with the 5% 

coverage, HoneyiM can detect the spread ofiM malware only after 2% (or 0.4%) of all IM users 

are infected for the network with lVI = 1, 000 (or lVI = 6, 000). Compared to the number of nodes 

lVI, the average node degree E[D] has much less effect on the performance ofHoneyiM. Two mean 

curves, the dashed one for lVI = 6,000,E[D] = 8 and the dotted one for lVI = 6,000,E[D] = 16, 

are almost identical. 

We also compare the performance ofHoneyiM with that ofiM throttling [108]. The throttling 

ofiM malware is usually conducted on an IM server. We use the "no-delay" mode ofiM throttling 

and configure the working set size and threshold to 5 and 2, respectively, as suggested. Since it 

is difficult to simulate the working set for each user at run time, we simplify the propagation 

model by (1) randomly determining a node's working set between 0 and 5 right before the node is 

propagating and (2) blocking the node after its propagation (no matter whether the delay queue is 

overflowed or not). Therefore, the maximum number of the nodes that a compromised node could 

infect is its working set size plus 2 (the threshold). Note that this model is conservative compared 

to the original scheme, as we block an infected node permanently once it starts spreading. 

Figure 4.5 shows the performance comparisons between HoneyiM (coverage 9t = 3%) and 
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Figure 4.4: Comparisons among mean curves 

throttling on the three IM networks. The solid curves represent HoneyiM and the dotted curves 

represent throttling. The dashed curves show the spreading of IM malware with no mitigation. 

Note that the y-axis is logarithmic, and all the results for throttling and no mitigation are the 

mean values for 100 runs. Compared with throttling, HoneyiM can achieve similar performance 

in terms of the number of infected users on a small network (IV I = 1 , 000), and perform much 

better when the network becomes bigger (IV I = 6, 000) and has more edges (£ [D] = 16). More 

importantly, Honey 1M can accurately detect the malware and block its spread right after detection, 

while throttling cannot differentiate malicious traffic from normal traffic, let alone block them in 

an effective manner. 
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4.3.2 Real Experiment 

We set up a small testbed comprising three machines. We use one machine as the IM client and 

the other two as HoneyiM and the network gateway. The suppression module of HoneyiM is 

deployed on the network gateway. Both the IM client and HoneyiM run inside virtual machines 

for security and ease of experimentation. We first use real IM malware binaries we have collected 

to test HoneyiM by running malware on the IM client machine. We test Jitux-A [85], Kelvir-

F [86], Kelvir-M [84], and Kelvir-Q [87], respectively, all of which spread through malicious 

URL messages on MSN platforms. The URLs for Jitux-A and Kelvir-F lead to .exe and .scr file 

downloading, while the URLs for Kelvir-M and Kelvir-Q point to .php scripts which also harvest 

78 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

victim's e-mail addresses. Unfortunately, due to the legal reaction taken by the IM providers and 

security community, the Web pages pointed by these known malicious URLs are either invalid or 

have been removed by the hosting Web sites4 . The URL message sent by Kelvir-F is not even 

received by Honey 1M, because of the filtering in MSN servers. No detailed information about 

IM malware is given by deep-inspection. Thus, we reconfigure the detection module to skip the 

deep-inspection step and rerun the tests. The suppression and notification modules work well as 

expected. 

We also test the prototype using a generic approach which overcomes the difficulty caused by 

the invalidity ofthe known malicious URLs. We mimic IM malware by sending malicious URLs 

collected by ourselves to decoy accounts. The malicious URLs we used, in principle, have no 

difference from those carried by known IM malware in terms of Web exploits. Thus, they should 

have the same effect on normal IM clients and HoneyiM. The URL process time of Honey 1M 

is mainly determined by deep-inspection, which is usually finished within 30 seconds. Overall, 

Honey 1M successfully detects all malicious URLs, updates the URL blacklist, and sends the attack 

information to the designated recipient via SMS and e-mail. For emulated malicious file transfers, 

Honey 1M automatically receives files, reveals file names to the suppression module, and sends file 

payloads to the designated recipient via e-mail. The whole process takes seconds to complete, 

since no deep-inspection is performed for file transfer. 

4.4 Discussion 

In previous sections, we assume that IM malware always attempts to infect all online contacts by 

either initiating a file transfer or sending a malicious URL during its spread. This hit-all propa-

4This situation also applies to other known IM malware. 
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gation strategy, however, might not always be used. For example, "smart" IM malware may send 

malicious URLs or files only to the active online contacts, i.e., those contacts that the infected IM 

client is talking to; or the propagation is activated only after the infected client receives a message. 

Taking the non-hit-all strategy, IM malware might not hit the decoy contact even if the contact list 

of the infected IM user includes the decoy accounts. 

IM malware can realize the non-hit-all propagation strategy by either intentionally or randomly 

selecting a part of all online contacts as targets. To prevent decoys from being easily distinguished, 

we can enhance Honey 1M with interaction functionality. As a countermeasure, HoneyiM uses the 

interaction functionality to mimic human users for decoys by initiating chat sessions with normal 

users, making it much harder for IM malware to tell decoys from others. The chat content can be 

important security notices or other user interested information. We readily agree that IM malware 

can still avoid decoy contacts even with the interaction functionality, for example, by infecting 

the most active contacts. However, the spread of this type of IM malware could be significantly 

reduced. According to a recent IM traffic measurement [ 111 ], IM users only contact a small 

portion of users in their contact lists. On average an AIM user chats with only 1.9 users and an 

MSN user chats with 5.5 users. 

The random selection of infection targets may also help IM malware bypass decoy contacts. 

To study the effect of the random selection on Honey IM, we conduct the following experiments 

based on the previous simulation for HoneyiM. We apply a probabilistic propagation strategy to 

the experiments. That is, when IM malware propagates, it will send malicious content to each 

contact with a probability p. With the probabilistic infection, the number of users that malware 

will contact becomes p x n on average, where n is the total number of the online contacts of the 

infected user. 
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We test and compare the effects of random target selection on Honey 1M with three different 

probabilities p = I, 0.5, 0.25 on the three IM networks, respectively. Here p = I refers to the 

aforementioned deterministic infection. The comparison is displayed in Figure 4.6, in which the 

curve of p = 0.5 is above the curve of p = 1 but below the curve of p = 0.25. It indicates that 

with the decrease of the probability value, the average number of infected users becomes larger. 

However, the difference among three curves quickly becomes negligible with the increase of the 

coverage. In general, the random target selection has little effect on HoneyiM. 
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4.5 Summary 

In this chapter we presented HoneyiM, a novel detection and suppression mechanism to defend 

against IM malware for enterprise-like networks. Distinct from all previous defense schemes, 

HoneyiM introduces decoy users for IM malware detection. It exploits the basic spreading char­

acteristics of IM malware and guarantees almost zero false positive. With accurate detection, the 

suppression of HoneyiM achieves instant network-wide blocking. Moreover, HoneyiM notifies 

network administrators ofthe infected machines and the infection features ofiM malware in real­

time. The generic design ofHoneyiM enables its flexible realization on a network that uses either 

enterprise IM services or public IM services. We have built a prototype of HoneyiM that works 

with public IM services using open-source IM client Pidgin and client honeypot Capture. The 

simulation studies demonstrate that even with a small portion of IM users equipped with decoy 

accounts, Honey 1M can still detect and block IM malware in the early stage of its spread. The 

real experiments on the prototype further demonstrate that HoneyiM is competently capable of 

detecting and suppressing the spread of IM malware. 
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Chapter 5 

Improving E-mail Reliability 

In this chapter we present a Qollaboration-based Autonomous e-mail REputation system (CARE) 

that aims to significantly improve e-mail reliability. CARE works at domain level and rates both 

spam domains and nonspam domains. CARE enables a domain to build its reputation database, 

including both frequently contacted and unacquainted e-mail sending domains, by (I) locally 

recording e-mail sending behavior of remote domains and (2) exchanging the local information 

with other collaborating domains. CARE examines the trustworthiness of e-mail histories ob­

tained from collaborators by correlating them with local e-mail history, and integrates the local 

and remote information to derive the reputation of remote domains. 

This chapter is organized as follows. Section 5.1 surveys the related work. Section 5.2 presents 

the original motivation ofthis work. Section 5.3 details the design of CARE. Section 5.4 validates 

the effectiveness of CARE. Finally, Section 5.5 summarizes this chapter. 
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5.1 Related Work 

E-mail reputation systems rate e-mail sending entities based on the history of their sending behav­

iors. The entity can be e-mail address, IP address, or domain name. Some reputation systems use 

qualitative measures (e.g., good or bad) while others use quantitative measures (e.g., spam score is 

58). Both automatic and manual operations are used in reputation establishment and maintenance. 

A brieftaxonomy of e-mail reputation systems is given in [15]. 

Vipul's razor (later branded as Cloudmark) [67] uses e-mail content as the rating identity. 

It maintains a collaborative network through which the signatures of human-identified spam are 

submitted and distributed. Cloudmark employs a trust evaluation system (TeS) to maintain the 

reputation of each signature contributor and evaluate the trustiness of new signatures. TeS requires 

a certain number of pre-selected trusted contributors for bootstrap and may flag signatures as 

contested if consensus cannot be reached. 

Compared to content-based reputation systems, address-based reputation systems are much 

more popular. Among them, blacklists and whitelists are the simplest. Blacklists only contain the 

identity of spammers, while whitelists only record the identity of legitimate senders. E-mail ad­

dress based whitelists and blacklists, for example, DOEmail [28], are commonly used by individ­

uals. However, countless new spam addresses and spoofed legitimate addresses render blacklists 

almost useless in practice and spam with spoofed whitelisted addresses can avoid filtering and 

contaminate whitelists. To defeat e-mail address spoofing, many sender authentication schemes 

have been proposed, in which SPF (Sender Policy Framework) [ 1 09] and DKIM (DomainKeys 

Identified Mail) [14] are the most noticeable. SPF and DKIM can help identify the sending party 

but cannot determine its legitimacy as spammers also embrace these schemes [82, 94]. As one 
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type ofiP-address-based blacklists, DNSBLs (e.g., [4,5]) disseminate blacklists through DNS and 

are widely used. They only contain the IP addresses of spamming sources on centrally-managed 

servers DNSBLs detect spamming hosts by using either e-mail traps (or called honeypots) or by 

end-user contribution. However, the effectiveness of DNSBLs has been questioned [27, 72, 73]. 

Besides DNSBLs, other types of IP-address-based reputation systems such as [3] and [2] also 

exist. These systems usually are commercial and use proprietary techniques for reputation main­

tenance and dissemination. 

The Gmail reputation system [94] rates domains instead of IP addresses. It uses only local 

information and identifies the sending domain using both heuristics and SPF and DKIM. Singaraju 

et a!. [81] proposed a collaborative e-mail reputation framework called RepuScore, which also 

rates domains. RepuScore relies on a central authority to collect information from collaborative 

domains and manage the reputation database. 

Besides qualitative rating approaches, a few quantitative rating methods have been proposed. 

Leiba et al. [50] presented an algorithm to derive the reputation of e-mail domains and IP addresses 

by analyzing the SMTP sending paths (in the message header) of known legitimate messages and 

spam messages. The reputation score for each IP address is based on the number of spam and 

non-spam messages which contain the address in their sending paths. Each intermediate address 

in a sending path is associated with a credit value to prevent spammers from forging the sending 

path. Within the context of e-mail social networks, Golbeck et al. [33] proposed an algorithm 

to infer the relative reputation ratings (the reputation of a sender may be different in the eyes 

of different recipients) of e-mail contacts based on the exchange of reputation values. Chirita et 

al. [25] developed a reputation scheme called MailRank, which can compute a global reputation 

score as well as a personalized score for each e-mail address. MailRank uses pre-selected e-mail 
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addresses with high reputation in bootstrap, and the rating computation is biased towards the pre­

determined address set to combat spammer attacks. However, both systems mentioned above do 

not cope with address spoofing attacks. Both [33] and [25] assume the existence of global e-mail 

social networks and compute reputation scores in a centralized manner. 

Collaboration has been applied into the spam signature generation and e-mail address whitelist 

population. To expand whitelists in an automatic manner, LOAF [24], FOAF [21], andRE: [30] 

have been developed. These systems leverage the social connections, specifically the friend-of-a­

friend relations among people, to find indirect relations between senders and recipients. 

5.2 Motivation 

As demonstrated by [98] and [1 01 ], local e-mail histories can be used to enhance the quality of e­

mail service. However, they also reveal that it is impossible to cover all incoming e-mail messages 

merely based on local history. In other words, there are always messages from unseen sources. 

Unfortunately, the dynamics of such messages, which directly affect the performance of a local­

history-based reputation system, have not yet been studied. This motivated our following study on 

the dynamics of incoming e-mail. 

We collected 151-day e-mail logs for inbound messages from our campus e-mail servers. The 

logs are daily-based and span from 2007/11/01 to 2008/03/31 with only one daily log missing. 

For each inbound message, we logged the time of message arrival, the IP address and domain 

name (if any) ofthe sending server, and the spamminess score (between 0 and 300, the bigger, the 

more likely to be spam) given by the spam filter. We removed those records without valid fully 

qualified domain names (FQDN), since their corresponding messages are almost certainly spam. 

As original logs do not contain name ofthe domain each sending server resides in, we derived the 

86 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

2500 

1il 
_g 2000 

~ 
.;: 1500 
0 
~ 

1000 

500 

30 

1000 

800 

"' <:: 
iii 
E 600 
0 
"0 
;: 
Q) 
<:: 400 
0 
~ 

200 

60 90 120 150 30 60 90 120 150 
Day Day 

(a) Server (b) Domain 

Figure 5.1: Number of newly-appeared senders per day 

domain information using dig and added it to the log. We observed that a significant number of 

newly-appeared (never recorded by any previous logs) servers and domains consistently show up 

in daily logs, even after 100 days. The average numbers of newly-appeared servers and domains 

per day are 27,733 and 1, 152, respectively. More importantly, this observation also holds for those 

servers and domains that mostly send legitimate e-mail. 

We use metric "good-ratio" to measure sending behavior of a server (and domain). The good-

ratio of a sending server/domain is computed by dividing the number of nonspam messages over 

the number of total messages sent from the server/domain across all logs. Good-ratio "1" means 

always sending nonspam e-mail and good-ratio "0" means always sending spam. To reduce the 

false positives (misclassified nonspam messages) caused by the spam filter, we set spam threshold 

as 10 (the default threshold set by the spam filter is 50) and classifY the messages with spam-

miness scores less than or equal to 10 as nonspam and the rest as spam. This classification 

results in zero false positive and about 1.8% false negatives (uncaught spam) in one of cam-

pus e-mail archives, which contains 1,800 manually verified spam messages. We further reduce 
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false negatives by applying a few well-established heuristics, which identifY sending servers with 

dynamically-allocated IP addresses by their domain names. For example, home PCs with broad­

band connections such as cable modem and DSL mostly have dynamically-allocated IP addresses 

and their domain names usually either contain keywords such as "cable" and "dsl" or have dis­

tinct patterns of number and alphabet combinations such as "ip 1 0-23-45-67". Because hosts with 

dynamically-allocated IP addresses are widely exploited by spammers and the messages from 

those hosts are almost absolutely spam, we mark the messages from dynamically-allocated IP 

addresses as spam and change their spamm iness scores to 1 00. Despite that false positives and 

false negatives may still exist after conservative classification and rectification, we believe the 

misclassification is minor and should not affect our measurement results. 

Figure 5.1 illustrates the dynamics of the numbers of newly-appeared servers and domains 

whose good-ratios are no less than 0.4 in daily logs. The servers (domains) are further divided 

into two groups; one group with good-ratio in [0.4, 0.8) and the other with good-ratio in [0.8, 

1]. In Figure 5.1, we can see that the number of newly-appeared servers (domains) per day is not 

negligible. For example, even after 100 days, newly-appeared servers with good-ratio over 0.8 per 

day are still counted by thousands. Compared to newly-appeared servers per day, newly-appeared 

domains with high good-ratios per day are counted by hundreds, still too many to be ignored. 

These measurement results suggest that using only local history information may not be suf­

ficient for building a high-quality reputation system. Intuitively, the coverage of senders can be 

improved through collaboration, as an e-mail sender that is new to one receiver may be old to 

others. Naturally, the peers that have frequent e-mail communications and behave consistently 

well become candidates of collaboration. As shown in one of recent spam studies [101], there 

exist good e-mail servers from which most of e-mail is nonspam for most of time. HO\yever, that 
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analysis is based on the data from one vantage point and does not study the sender behavior at the 

domain level. Therefore, we use our e-mail logs to veri:t)' if their observation holds here and up to 

the domain level. 

Taking spam (nonspam) messages from the servers with valid domain names in all logs as a 

whole, we examine the proportion of spam (nonspam) contributed by the servers with a specific 

good-ratio. we plot the CDFs (cumulative distribution functions) of good-ratio for spam and 

nonspam at host level in Figure 5.2 (a). The curve in the left top shows the CDF for spam while 

the curve in the right bottom shows the CDF ofnonspam. The CDFs at the domain level are shown 

in Figure 5.2 (b). We also examined the CDFs with different time window (number of days) and 

time range (starting and ending days) and found that those CDFs are very similar to those shown 

in Figure 5.2. In general, our results conform to the findings in [101]. The servers with high good-

ratios send the majority of nonspam e-mail and the servers with low good-ratios send the most 

of spam, which makes the use of reputation system very helpful. For instance, the servers with 

good-ratios no smaller than 0.8 send over 80% of total nons pam e-mail but less than I% of total 
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spam. Hence, whitelisting these servers would save a great deal of filtering resources and improve 

the delivery of legitimate e-mail. Moreover, the server-level observations also apply at the domain 

level. The curve shapes in Figure 5.2 (b) are very similar to those in Figure 5.2 (a), indicating that 

well-behaved domains do exist. 

Based on the measurement results, we conclude that (I) e-mail senders can be rated by their 

long-term behaviors; (2) local observation may not suffice for building a high-quality rating sys­

tem. These two factors are instrumental to the design of CARE. 

5.3 System Design 

CARE is designed to be an autonomous system. Each domain equipped with CARE independently 

determines collaborating domains, exchanges information with collaborating domains, and derives 

the reputation scores of remote domains. Information exchange occurs between two domains that 

mutually agree on collaboration. In case no collaboration is available, the system can continue 

functioning by using only local e-mail history information. The autonomy eases incremental 

deployment of CARE. 

As a reputation system, CARE operates collaboratively with other anti-spam techniques. A 

typical use of CARE is functioning as a preprocessor of a content-based spam filter. Messages 

from domains with sufficiently high reputation scores are directly accepted while messages from 

domains with very low reputation scores are directly rejected. For the rest of e-mail, those mes­

sages from domains with no reputation are directly passed to the filter and all the others are marked 

with their reputation scores before passing. 

The architecture of CARE is shown in Figure 5.3. The local e-mail history module takes the 

log of local e-mail servers as input and derives the local Database of E-mail History (DEH). The 
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Figure 5.3: Architecture of CARE system 

information oflocal DEH is used in both information exchange and reputation derivation. In infor-

mation exchange, the collaborating domains are determined based on their behaviors recorded by 

local DEH. In reputation derivation, the local DEH involves in both calculating reputation scores 

and assessing the trustworthiness of remote information from collaborating domains. Through the 

communication module, a CARE system exchanges information with other collaborating systems 

via Simple E-mail Reputation Protocol (SERP). To provide flexibility in deciding collaborating 

domains, a policy module is incorporated allowing system administrators to apply their admission 

control policies. For example, system administrators may install policies into the policy module 

to forbid local domain to share information with certain remote domains. Using both local DEH 

and remote DEHs, reputation scores of e-mail sending domains are computed and stored into the 

reputation database. 

In this section, we first highlight the rating issues in CARE. Then, we describe how to build 

the local e-mail history and reputation database. After that, we detail the communication module 

and SERP protocol. 
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5.3.1 Rating Issues 

CARE uses domain as the reputation identity, following Gmail reputation service [94] and RepuS­

core [81 ]. Rating domain is preferred to rating server (IP address), due to the following reasons. 

First, domain is easier to be authenticated than IP address, as e-mail authentication schemes (e.g., 

SPF and DKIM) have become popular. Second, e-mail sending policies are usually applied at 

domain level for nonspam domains and rating domain can provide better scalability. Third, an IP 

address can be used by multiple entities simultaneously, while a domain represents only one entity 

at any time. Last but not least, legitimate e-mail servers are usually placed in a separate subdomain 

in a large ISP and can be easily distinguished from the subdomain where a spam botnet resides. 

CARE does not differentiate e-mail relaying servers from e-mail originating servers in rating. 

If an e-mail server not only sends e-mail for its own domain, but also relays e-mail for other 

domains, all relayed messages will be counted onto the relay domain. "No open-relay" has been a 

rule for e-mail server administration and well followed by decent e-mail service providers. 

5.3.2 Local E-mail History 

Local e-mail history contains the information of both inbound and outbound e-mail transmissions 

occurred locally. If multiple e-mail servers are used in the local domain, the local e-mail history 

is the integration of the information recorded by all those servers. Local e-mail history records 

the basic information of e-mail transmissions such as e-mail transfer time, spam or not, source 

and destination at the host and domain levels. This information usually can be directly extracted 

from e-mail log. The domain of a remote host can be easily retrieved, e.g., by using the DNS 

utility "dig". The local e-mail history does not include the messages in e-mail log that have 

no corresponding domains. In general legitimate e-mail servers of an ISP can be distinguished 
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from spam bots residing inside the same ISP by domain name, because legitimate e-mail servers 

are usually placed in a separate domain for management and security reasons. For instance, the 

broadband host "ip70-161-245-78.hr.hr.cox.net" is in domain "hr.cox.net" while the legitimate 

e-mail server "smtp.west.cox.net" is in domain "west.cox.net". E-mail authentication schemes 

such as SPF and DKIM can further enhance the accuracy of domain identification as the binding 

between an e-mail server and its domain is explicitly expressed by special DNS records. The local 

e-mail history can be updated either online or offline. 

A CARE system also maintains a special database called Database of E-mail History (DEH), 

which is derived from the local e-mail history and used in information sharing. Each sending 

domain has a record (X, TM, GM, AD) in the database. A record profiles the e-mail sending 

behavior of a domain in the past W days. W is tunable parameter and decided by the system 

administrator. X is the name of sending domain. T M and GM are the numbers of total messages 

and good (i.e., nons pam) messages from X, respectively. AD is the number of the active days, 

in each of which, at least one message from X is received. The database is updated periodically, 

e.g., twice per day, and the history information beyond W days could be removed to save disk 

space. 

5.3.3 Reputation Database 

We derive a domain's reputation by combining both local DEH and the remote DEHs collected 

from collaborating domains. Initially, we only have local database. Under this circumstance, 

the reputation derivation is simplified into computing the good-ratio of each domain in the local 

database. After exchanging information with collaborating domains, we also use remote databases 

in derivation of domain reputation. However, the information from collaborating domains may not 
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Algorithm 2 Computing Domain Reputation 

1: Input: DEH.;t and all collected remote DEH£ls. 

2: Output: reputation score for every sender in DEH.;t and DEH£ls. 

3: for each remote DEH&? do 

4: compute trustworthiness score e£l. 

5: end for 

6: for each sender .'!C in DEH.;t and those DEH&?s that contain it do 

7: compute the reputation score of .'!C. 

8: end for 

be fully trusted, because the authenticity of information is self-warranted. Therefore, we introduce 

a trustworthiness score for each remote database. In the absence of a central authority, we rely 

on the local database to assess the trustworthiness of a remote database. Specifically, we examine 

the correlation between the local database and a remote database on sending domains in common, 

and use the correlation result to compute the trustworthiness score of that database. The remote 

databases with high trustworthiness scores are deemed reliable. A domain's reputation score is the 

weighted average of good-ratios derived from the local and remote databases, and the weight for 

each remote database is the trustworthiness score of the database. 

Algorithm 2 describes the general process of domain reputation computing. The notations 

used in the algorithm and the rest of the section are summarized in Table 5.1. In general, the 

subscript of a symbol represents a history recording domain; it also can represent the domain's 

DEH when the context is clear. We use !!l for a generic collaborating domain and f for the local 

domain. The superscript of a symbol represents an e-mail sending domain (seen by either local 

domain or a collaborating domain). For clarity, a collaborating domain with which we exchange 
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Table 5.1: Summary of notations 

DEH Database ofE-mail History 

SMD Set of Major Domains, for history correlation 

W History Window 

!Z" Domain !Z" 

KU(!Z") public key of domain !Z" 

Kl( !Z") private key of domain !Z" 

GMf number of good messages from !Z" received by ::g 

T Mf number of total messages from !Z" received by ::g 

AD~ number of active days !Z" sending e-mail to ::g 

dg~ good-ratio of !Z" according to DEH.01 

ds~ domain score of !Z" according to DEH.01 

dr!JC domain reputation of !Z" 

yq supporting factor of DEHq for computing 8q 

roq correlation coefficient of DEHq for computing 8q 

8q trustworthiness score (weight) of DEHq 

f3 threshold used in constructing S MD 

8 threshold used in computing yq 

information is termed as a collaborator, while a domain logged in either local history or a remote 

history is termed as a sender. 

The process of computing domain reputation consists of two steps. In the first step (lines 3-

5) we compute the trustworthiness score of each remote database DEHq, and in the second step 

95 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

(lines 6-8) we compute the reputation score of each sender recorded by either local database or 

remote databases. 

To compute the trustworthiness score of remote database DEH&~:, we first derive the Set of 

Major Domains (SMD) of that database. SMD contains those domains that behave well and stay 

active. Such a well-behaved domain is indicated by a large domain score. The domain score is 

defined as ds = ?~ x Arf. dsfj stands for the domain score of sender &: in database DEH&~: 

and can be easily computed from the record of &: in DEH&~:. Senders with a sufficiently large 

domain score are added into SMD, that is, SMD = {&:: ds.o;: 2: /3}, where~ is the threshold 

decided locally. By setting f3 to an appropriate value, which implies a high good-ratio (we define 

the good-ratio as dg = ?~)and a high ratio of active days ( Arf), we can ensure that the majority 

of domains in SM Dare legitimate. 

Then, we compute the intersection set (denoted by INT) between local SMD (SMD.;r) and 

!!l's SMD (SMD&~:) for remote database DEH&~:. Formally, INT &t' = SMD.;r n SMD&~:. We also 

compute supporting factorY&~: from INT &t'· By definition, 

min(JJINT &~://, 8) 
Y&~: = 8 ' (5.1) 

where J/S// represents the cardinality of setS, and 8 is a pre-defined system parameter. The ratio-

nale behind computing SMD and INTis to find a reliable common base for correlation computing. 

In other words, the sending domains in common for correlation computing (i.e., the set of domains 

represented by I NT) are expected to present consistent sending behaviors to receiving domains in-

eluding the local domain .f and remote domain !%. Legitimate e-mail service providers usually 

present this characteristic. Computing y is to take the size of common base into consideration. 

After that, we compute the correlation coefficient of DEH&~: (denoted by W&~:) from INT &t' 
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based on city block distance (also called Manhattan distance, taxicab distance). For the domains 

in INT fil, we first derive their good-ratio vectors in DEH,_y and DEH!il (denoted as V ,_y and V !il 

Then, the city block distance between V ,_y and V fil, denoted as dist (V ,_y, V !il ), is obtained by sum-

ming up the difference of good-ratios in DEH,_y and DEH!il for each domain in INT fil· Formally, 

n 

dist(V ,_y, V tl) = L ldgii -dg1l (5.2) 
i=l 

We get the correlation coefficient OJfil by normalizing dist(V ,_y, V.'ii') into [0, I], that is, 

(5.3) 

We derive the trustworthiness score of DEH!Jl, efil, by multiplying DEH.'ii''s supporting factor 

Ylil and its correlation coefficient OJfil. Formally, 

e _ . _ min(II1NT£lll,c5) ·( _ dist(V,_y,Vtl)) 
a-Y!ll OJfil- D 1 IIINTall · (5.4) 

We also incorporate a list of trusted collaborators into CARE. Administrators can add their 

trusted collaborating domains into the list or remove any domain from it. The weight of each 

domain in the list, that is, 8, is I. This offsets the potential inaccuracy in computing the trust-

worthiness score, since it is possible that a collaborating domain's view is different from the local 

view on the same sending domain. 

Finally, for each domain .'!£ we derive its reputation score dr!JC by computing the weighted 

average of .'Z''s good-ratios (dg!JC) from the DEHs that record .'!£. We use~ to represent a generic 

domain whose DEH contains a record for.'!£. The weight for remote database DEHq, (}q, is in 

97 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

[0, 1 J and the weight for the local database DEH..;t, 8..;t, is always I. Formally, the reputation score 

of domain !:C is defined as 

(5.5) 

where Q = { ::g: !:C E DEH ::& } • Note that the local good-ratio dg"J can be 0. In this case, sender !:C 

has not been recorded by the local domain. By using the weighted average, the sending domains 

recorded by both the local domain and collaborators are assessed from a broader view, while the 

sending domains recorded only by the local domain are not affected. 

5.3.4 Simple E-mail Reputation Protocol (SERP) 

CARE systems communicate with one another via SERP. Through SERP, a CARE system can 

transfer DEH as well as other messages to its counterpart. SERP adopts a DNS-based authenti-

cation scheme, borrowing the idea of DNS-based e-mail authentication schemes. The DNS-based 

authentication is lightweight, easy to install, and incrementally deployable. SERP requires every 

deployment domain (e.g., example.com) to publish a special TXT resource record 1 in its _care 

DNS subdomain (_care.example.com in this example). The record must specifY the domain name 

(or IP address) ofthe host on which CARE is serviced and the associated public key. By doing so, 

a remote CARE host can be authenticated by first querying the TXT DNS record under the _care 

subdomain of the domain where the host resides, and then checking if the domain name (or IP 

address) ofthe host is listed in that record. 

Among all domains that have direct e-mail communication with the local domain, CARE 

selects those domains that behave consistently well for collaboration. These domains can be easily 

1 In case DNS SRV resource record [36] is chosen to publish CARE service, a separate DNS TXT record is still 

needed for carrying public key and CARE host information. 
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Figure 5.4: Procedure of a successful mutual agreement establishment via SERP 

decided by examining the local e-mail history. Apparently, they also must have a valid TXT 

DNS record for CARE. Each CARE host maintains a list of remote domains satisfying these 

requirements and uses it for selecting collaborating domains. 

To collaborate, two domains are required to reach a mutual agreement on information ex-

change before sharing DEHs. With the agreement, the two domains will play dual roles of service 

requester and provider. 

Figure 5.4 illustrates the procedure of establishing a successful mutual agreement via SERP. 

In the figure, the CARE hosts in domain L.net (L for short) and R.net are X.L.net (X for short) and 

Y.R.net, respectively. Both domains have published their CARE DNS records. Since every CARE 

system keeps a list of collaborating domains, by periodically querying the CARE DNS records of 

those domains, each system can readily know the positions of CARE hosts inside those domains. 

The activity of periodic DNS query is shown as step (0) in Figure 5.4. After X successfully 

resolves the domain name of Y, it sends a request to Y for establishing a TCP connection. When 

Y receives this request, by checking its list of collaborating domains, it can instantly decide how 
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to react: accepting the request if the remote host is in the list or rejecting the request otherwise. In 

this example, Y accepts the request. The TCP handshaking process is marked as step (1) in Figure 

5.4. Semantically, neither step (0) nor step (1) is part ofSERP. However, SERP needs step (0) for 

authentication and step (1) for a reliable data connection and authorization. 

After the TCP connection is established, host Y sends a greeting message to the requesting 

host X (step (2)), indicating its identity. After receiving the greeting message, X issues command 

"HELO" (step (3)), followed by the domain name of X and a certificate (CertL__.R) encrypted by 

the public key of domain R (i.e., KU(R)). The certificate CertL ...... R means that domain L allows 

domain R to access L's DEH. It is composed by concatenating message M and its signature, that 

is, CertL ...... R = MIIEKI(L)[H(M)], where H(M) is the hash value of M and KI(L) is the private 

key of domain L. Message M contains: certificate issuer L and recipient R, certificate starting 

and expiration times, and the updating interval of L's DEH. The communication proceeds if the 

certificate is accepted by Y. Echoing the offer of X, Y responds by sending its certificate CertR ...... L 

back to X (step (4)). After a successful exchange, X sends command "QUIT" (step (5)), indicating 

completion of the mutual agreement. The TCP connection is tom down (step (7)) as soon as Y 

acknowledges the "QUIT" command (step (6)). The above procedure will be repeated once either 

of the certificates expires. 

After mutual agreement, two domains can exchange their DEHs with each other. The data 

exchange procedure is similar to the agreement establishing procedure. The data exchange can 

be optimized since DEH is usually updated gradually. We can make a snapshot of DEH as the 

reference base and generate a difference file for each update to DEH. Then, we just transfer the 

appropriate difference file(s) instead of a whole DEH, reducing the total bytes of data transmission. 
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Figure 5.5: Percentage of newly-appeared IP addresses that have been recorded by the other university 

over all newly-appeared IP addresses in daily logs 

5.4 System Evaluation 

Our evaluation focuses on the potential benefit of using CARE. Specifically, we are interested in 

the increase of coverage brought by collaboration, that is, the reduction of the number of newly-

appeared sending domains thanks to collaboration. We have analyzed real e-mail logs, conducted 

a real-world estimating experiment, and performed extensive simulations to validate the effective-

ness of CARE on improving the coverage. In addition, we apply a set of simulations to demon-

strate the cheating-resistance of CARE. 

5.4.1 Log-based Experiment 

We first collected two-month e-mail logs from two universities recorded in the same time period. 

All e-mail logs are daily based and record the source IP addresses (no domain information) and 
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spam information for inbound messages. 

For newly-appeared IP addresses in the daily logs of each university, we examine how many 

of them have already been recorded by the other university and calculate the percentage. The 

dynamics of the percentage in the daily logs are shown in Figure 5.5, which demonstrates the 

effectiveness of collaboration. The curve for university I shows that about I 6% to 20% of the 

newly-appeared IP addresses in university 1 's daily logs have already been recorded in university 

2's logs. For university 2, the percentage reduces to 5% but is pretty stable. The difference of 

percentage for two universities may be attributed to the difference oftotal IP addresses in their e­

mail logs. On average, university I records 42,850 IP addresses daily, while university 2 observes 

87,815 IP addresses in a day. However, the stability of both curves implies the stable gain from 

collaboration in the long run. 

5.4.2 DNS-based Experiment 

Results from this log comparison are encouraging. However, due to access limits, we cannot 

obtain more e-mail logs for evaluating CARE comprehensively. To estimate the potential benefit 

that could be achieved by multi-domain collaboration, we applied DNS snooping. Due to the 

fact that a DNS MX query is usually made before an SMTP transaction, by exploiting the DNS 

caching mechanism, we can approximately infer whether e-mail has been sent to a given domain 

by snooping (using iterative mode) the DNS cache ofthe sending domain. Ifthe MX record ofthe 

receiving domain can be found in the DNS cache, it is highly likely that e-mail communication 

between the two domains occurred recently. Clearly, the number of cache hits by DNS snooping 

may not accurately reflect real e-mail communications. Nevertheless, DNS snooping provides an 

efficient way of estimating the gain of multi-domain collaboration and the derived result can serve 
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Figure 5.6: Number ofDNS cache hits for 25 .edu domains 

as a lower bound. 

We randomly selected 25 .edu domains from the Jogs used in Section 5.2 as collaborating 

domains, and randomly selected 50,000 inactive domains as DNS snooping target domains. Each 

of these snooped domains sent less than 5 messages in total in the logs, and none of them had sent 

any messages in the past month before snooping. We use these inactive domains as "ongoing" and 

"new" sending domains to study how many of them can be covered by our collaborators. 

Not all inactive domains can be snooped. After DNS probing test, 36,646 out of 50,000 

domains were used as probing targets. Then, we probed the DNS servers of those domains to find 

out how many MX records of the selected 25 .edu domains can be hit. Finally, we group probe 

results by each edu domain and show the number of probed domains that had cache hits for the 

target edu domain in Figure 5.6. From the figure, we can see an obvious diversity on the number 

of probed domains with a cache hit among different edu domains. Some edu domains can be hit 
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in DNS caches of more than 8,000 inactive domains, while some other edu domains have less 

than 1,000 hits. For an edu domain, a hit in the DNS cache of an inactive domain means that the 

edu domain received e-mail from the inactive domain and thus had this domain in its local e-mail 

history. Therefore, we can benefit more by collaborating with the edu domains that have more 

cache hits. Overall, the total number of cache hits for 25 .edu domains is 12,660, indicating that 

the e-mail history from 25 collaborating .edu domains can cover at least 34.6% of newly-appeared 

domains. The gain from multi-domain collaboration could be higher with more collaborators and 

more types (e.g., .com) of collaborators. In addition, we probed all the inactive domains within 

one day. This implies that all 36,646 domains appeared in the same day, which, however, is unlike 

to happen in practice according to our measurement results. Thus, the benefit could be even higher 

in reality. 

5.4.3 Simulation Experiments 

We applied simulation to further study the dynamic characteristics and cheating-resistance of 

CARE. We implemented a CARE simulator with full CARE functionality. The simulator is driven 

by the configuration of e-mail domains (I ,200 nonspam domains and 10,000 spam domains) and 

the daily traces of e-mail communications among those domains (60 days). Both spam and non­

spam domains are dynamically born in the trace. Nonspam domains stay until the end of trace, 

while spam domains only stay for a short random period. Spam domains always send spam to non­

spam domains, while nonspam domains send to one another both nonspam and spam messages. 

We use three types of network topologies (power-law, small world, and random graph) for non­

spam domains. We readily acknowledge that the generated traces may not be representative, since 

there is no a priori knowledge on the topology and dynamics of e-mail domains. However, the em-
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phasis here is on the effectiveness of CARE with no assumption on network and communication 

patterns. 

The simulator first randomly picks a given percentage of nonspam domains as CARE domains 

using the domain configuration, and then starts simulation using the daily traces. In each day, 

the simulator first does the message receiving and history recording driven by the trace records, 

then updates the reputation database of each CARE domain. In simulation, CARE is used as 

the preprocessor of a spam filter. The spam filter has fixed false positive rate and false negative 

rate, 0.01 and 0.05, respectively. Messages from a domain with reputation score 0.8 or higher are 

regarded as nonspam and messages from a domain with reputation score 0.1 or less are regarded 

as spam. If the reputation score cannot ensure acceptance or rejection, CARE tags the message 

with no-drop and passes it to the filter. All processing results are logged into the database of e­

mail history to compute reputation. All CARE domains use the same parameter setting (history 

window W = 30, f3 = 0.3, and 8 = 3). 

We first investigate how CARE improves domain coverage through collaboration. Figure 5. 7 

shows the dynamics of percentage of newly-appeared nonspam domains that are covered after 

using CARE in each day. The results are displayed from day 20 because of history accumulation. 

The "net!", "net2", and "net3" stand for power-law topology, small world topology, and random 

graph topology, respectively. To illustrate the effect of increasing CARE deployment rate on the 

coverage, we set the percentage of the nons pam domains that use CARE as I 0%, 20%, and 30% 

in the simulation, and display their results in Figure 5.7. For each given combination of network 

setting and CARE domain percentage, we run ten trials and use the average as the result. 

Figure 5.7 clearly demonstrates the effectiveness of CARE collaboration on improving the 

coverage of nonspam domains. Moreover, we can see that the increase of percentage of CARE 
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Figure 5.7: Percentage of newly-appeared nonspam domains that are covered after using CARE in each 

day 

deployments renders the growth of percentage of domains being covered. Figure 5.8 shows the 

dynamics of percentage of newly-appeared spam domains that are covered after using CARE 

in each day. The observations from Figure 5.7 also hold in Figure 5.8. Therefore, CARE can 

effectively improve the coverage for both spam domains and nonspam domains. 

Bigger coverage indicates that more nonspam messages may have reputation scores and be 

protected from being dropped by spam filter. We compare the number of the nonspam messages 

that are directly accepted under CARE collaboration to that under no CARE collaboration and 

find that CARE does increase the number of directly accepted nonspam messages. We show the 

percentage of increase in terms ofnonspam messages being directly accepted in each day in Figure 
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Figure 5.8: Percentage of newly-appeared spam domains that are covered after using CARE in each day 

5.9. We can see that the acceptance of more nonspam messages, with all three different network 

topologies, has been achieved and that the percentage of increase keeps growing with time in any 

of the simulation environments. This indicates that the use of CARE can prevent considerably 

more nonspam messages from being lost. It is also notable from Figure 5.9 that more CARE 

deployments (1 0% vs. 20%) result in more nonspam messages being directly accepted. 

Bigger coverage also means that more spam messages may be identified early and directly 

rejected. Our comparison of the the spam messages that are directly rejected under CARE col-

laboration with that under no CARE collaboration reveals the benefit of using CARE on fighting 

spam. The percentage of increase in terms of spam messages being directly rejected in each day 
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Figure 5.9: Percentage of more nonspam messages being directly accepted after using CARE in each day 

is shown in Figure 5.1 0. Clearly, more spam messages can be rejected when more CARE systems 

are deployed and their usage becomes longer. 

We are also interested in the cheating-resistance of CARE. Although it is difficult for a spam-

mer to cheat other domains by mimicking good behavior, it is relatively easy for a nonspam do-

main with high reputation to tamper its own database and cheat its collaborators. To study this 

type of cheating, we randomly pick 10% of CARE domains as cheating domains and rerun the 

simulation. A cheating domain always sends a forged database to its collaborators in information 

exchange. The forged database has the same records as the genuine database except that the value 

of GM is changed to T M- GM, that is, the complement of original GM. We find that CARE can 
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Figure 5.10: Percentage of more spam messages being directly rejected after using CARE in each day 

effectively resist this type of attacks. For those messages being directly rejected, there is no false 

positive no matter the cheating scheme is applied or not; For those messages being directly ac-

cepted, the difference of false negatives with and without cheating is negligible. Cheating causes 

only about 0.1% reduction in the total number of messages being accepted, rejected, or tagged 

by CARE when 30% of nonspam domains use CARE. In general, the simulation shows that the 

studied cheating scheme, when applied at a small scale, has negligible effect on CARE. 
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5.5 Summary 

In this chapter we have presented the motivation, design, and evaluation of CARE, a collaboration­

based autonomous e-mail reputation system. CARE is a generic e-mail reputation system in that 

it rates both spam and nonspam domains in an autonomous manner. Using CARE, each domain 

derives the reputation scores of e-mail sending domains by sharing its local observations with 

those domains that manifest consistently good behavior. In the evaluation of CARE, we used two 

large e-mail log traces from two universities to quantify the benefits of collaboration between two 

domains and conducted a large DNS snooping experiment to estimate the potential gain brought by 

multi-domain collaboration. Moreover, we performed extensive simulations to further reveal the 

dynamics and attack-resistance of CARE in a large-scale environment. Our experimental results 

evidently demonstrate the effectiveness of CARE. 

110 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Chapter 6 

Conclusions and Future Work 

This dissertation focuses on securing Internet-based message systems, a critically important yet 

considerably difficult undertaking for today's modern society. To achieve the goal, we identify that 

the following two complementary tasks must be fulfilled. They are (I) defending against unwanted 

messages and (2) ensuring delivery of wanted messages. For the first task, we have developed the 

DBSpam system to thwart e-mail spam laundering and the Honey 1M system to counter malicious 

instant messages. For the second task, we have designed the CARE e-mail reputation system to 

improve the reliability of e-mail services. 

To fight against e-mail spam laundering, one of major approaches to pumping e-mail spam, 

we have thoroughly studied the laundering mechanisms and distilled the unique characteristics 

of connection correlation and packet symmetry from the behavior of spam laundering. We have 

developed a simple yet effective technique, DBSpam, to online detect and break spam launder­

ing activities inside a customer network based on the packet symmetry. We have implemented a 

prototype of DBSpam using libpcap on Linux and extensively evaluated its effectiveness and per­

formance through trace-based experiments. The experimental results demonstrate that DBSpam 
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is effective in quickly and accurately capturing and suppressing e-mail spam laundering activities 

and is capable of coping with high speed network traffic. 

We have developed a generic framework, Honey 1M, to foil the spread of malicious instant 

messages in an enterprise-like network. We exploit the inherent characteristic of IM malware 

spreading and apply the honeypot technology to the detection of malicious instant messages. 

Specifically, Honey 1M uses decoy accounts in normal users' contact lists as honeypots to capture 

malicious messages sent by IM mal ware and suppresses the spread of malicious instant messages 

by performing network-wide blocking. We have implemented a prototype ofHoneyiM for public 

IM services, based on open-source IM client Pidgin and client honeypot Capture. We have 

validated the efficacy of Honey 1M through both simulations and real experiments. 

To largely improve e-mail reliability, that is, reduce losses ofwanted e-mail, we have designed 

a collaboration-based autonomous e-mail reputation system called CARE. CARE introduces inter­

domain collaboration without central authority or third party and enables each e-mail service 

provider to independently build its reputation database, including both frequently contacted and 

unacquainted sending domains, using the local e-mail history and the information exchanged with 

other collaborating domains. We have conducted a number of experiments to validate the ef­

fectiveness of CARE on improving e-mail reliability, including comparing two large e-mail log 

traces from two universities, conducting a real experiment ofDNS snooping on more than 36,000 

domains, and performing extensive simulation experiments in a large-scale environment. 

6.1 Future Work 

There are a couple of enhancements and extensions of our existing research that we would like to 

explore in the future. First, we would like to incorporate more anomaly detection techniques into 
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HoneyiM for deep inspection purpose and evaluate their accuracy and performance in practice 

more comprehensively. New types of IM malware continuously emerge and some of those may 

be specially designed to evade certain detections. Therefore, different types of deep inspection 

techniques are needed. How to combine different detection results and derive accurate information 

about suspicious instant messages would be an interesting problem for our future research. 

Second, we would like to explore the applicability of HoneyiM to enterprise e-mail systems. 

As the trend of fusing different message systems, especially e-mail and instant messaging, is sur­

facing in enterprises and organizations, it would be natural and desirable to apply a uniform and 

comprehensive protection scheme for both e-mail and instant messaging in the environments that 

have integrated message systems. To that end, Honey 1M is expected to counter not only malicious 

instant messages and e-mail messages, but also unwanted bogus advertisements, scam and phish­

ing messages, etc. Therefore, it would be necessary to transform Honey 1M into a general message 

protection system that incorporate both anti-e-mail-spam techniques and anti-IM-malware tech­

niques. We plan to investigate how to build such a system and make it both effective and efficient. 

We have designed CARE and evaluated its effectiveness using simulations. In the future, we 

plan to implement CARE as the open source plug-ins, which contain statistics report functionality, 

for mainstream spam filters such as SpamAssassin [90]. We aim to distribute them and collect 

practical data to evaluate the effectiveness of CARE in reality. 

Last but not least, we plan to leverage the power of GPU (Graphics Processing Unit) to im­

prove the performance of content-based spam filters. Content-based spam filters are very popular. 

However, they have relatively high computational cost and may not scale well with the increase of 

message volume. To improve the performance of spam filters while keeping their simple single­

threaded architecture, the performance bottleneck of spam filtering should be ofHoaded. As OPUs 
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have been powerful and cost-effective, we plan to employ GPUs in the computationally intensive 

tasks and develop a GPU-based generic message processing engine to support different content­

based filtering systems. 
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