
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2010

Towards secure message systems Towards secure message systems

Mengjun Xie
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Xie, Mengjun, "Towards secure message systems" (2010). Dissertations, Theses, and Masters Projects.
Paper 1539623341.
https://dx.doi.org/doi:10.21220/s2-91s6-5e87

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623341&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623341&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-91s6-5e87
mailto:scholarworks@wm.edu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

NOTE TO USERS

This reproduction is the best copy available.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Towards Secure Message Systems

Mengjun Xie

Lu'an, Anhui Province, China

Master of Engineering, East China Normal University, 2002

Bachelor of Engineering, East China Normal University, 1999

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary
January 2010

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

MengJun Xte

Approved by the Committee, November 2009

-······-~---·---··
-~--
~-,<'

Committee Chair
Associate Professor Haining Wang, Computer Science

The College of William and Mary

~/?__
AssociatePf()fus;or Phil Kearns, Computer Science

The College of William and Mary

Associate Professor Qun Li, Computer Science
The College of William and Mary

Associate Professor Weizhen Mao, Computer Science
The College of William and Mary

Profe~
The College of William and Mary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT PAGE

Message systems, which transfer information from sender to recipient via communication net­
works, are indispensable to our modern society. The enormous user base of message systems and
their critical role in information delivery make it the top priority to secure message systems. This
dissertation focuses on securing the two most representative and dominant messages systems-e­
mail and instant messaging (IM)--from two complementary aspects: defending against unwanted
messages and ensuring reliable delivery of wanted messages.

To curtail unwanted messages and protect e-mail and instant messaging users, this dissertation
proposes two mechanisms DBSpam and Honey IM, which can effectively thwart e-mail spam laun­
dering and foil malicious instant message spreading, respectively. DBSpam exploits the distinct
characteristics of connection correlation and packet symmetry embedded in the behavior of spam
laundering and utilizes a simple statistical method, Sequential Probability Ratio Test, to detect and
break spam laundering activities inside a customer network in a timely manner. The experimental
results demonstrate that DBSpam is effective in quickly and accurately capturing and suppress­
ing e-mail spam laundering activities and is capable of coping with high speed network traffic.
HoneyiM leverages the inherent characteristic of spreading ofiM malware and applies the honey­
pot technology to the detection of malicious instant messages. More specifically, Honey 1M uses
decoy accounts in normal users' contact lists as honeypots to capture malicious messages sent
by IM malware and suppresses the spread of malicious instant messages by performing network­
wide blocking. The efficacy of Honey 1M has been validated through both simulations and real
experiments.

To improve e-mail reliability, that is, prevent losses of wanted e-mail, this dissertation pro­
poses a collaboration-based autonomous e-mail reputation system called CARE. CARE introduces
inter-domain collaboration without central authority or third party and enables each e-mail service
provider to independently build its reputation database, including frequently contacted and unac­
quainted sending domains, based on the local e-mail history and the information exchanged with
other collaborating domains. The effectiveness of CARE on improving e-mail reliability has been
validated through a number of experiments, including a comparison of two large e-mail log traces
from two universities, a real experiment of DNS snooping on more than 36,000 domains, and
extensive simulation experiments in a large-scale environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Acknowledgments

List of Tables

List of Figures

1 Introduction

1.1 Contributions

Thwarting E-mail Spam Laundering

Countering Malicious Instant Messages

1.1.1

1.1.2

1.1.3 Improving E-mail Reliability .

1.2 Organization

2 Background

2.1 E-mail Spamming Mechanisms .

2.1.1

2.1.2

Spam Laundering Mechanisms .

Other Spamming Approaches

2.2 Instant Messaging Ma1ware

3 Thwarting E-mail Spam Laundering

iv

ix

X

xi

2

7

7

9

10

11

12

12

12

14

15

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1

3.2

3.3

3.4

3.5

3.6

Proxy-based Spam Behavior

3.1.1

3.1.2

3.1.3

Laundry Path of Proxy-based Spamming

Connection Correlation .

Packet Symmetry

Working Mechanism ofDBSpam.

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

Deployment of DBSpam .

Design Choices and Overview

Sequential Probability Ratio Testing

SPRT Detection Algorithm .

Noise Reduction

System Evaluation . .

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

Data Collection

Detection Time ...

Detection Accuracy .

Resource Consumption .

Suppressing Spam Activities

Potential Evasions .

Related Work . . .

3.5.1

3.5.2

3.5.3

Recipient-based Techniques

Sender-based Techniques .

HoneySpam.

Summary

4 Countering Malicious Instant Messages

v

20

21

23

23

27

27

28

30

33

37

40

40

42

44

47

49

52

54

54

57

58

59

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1

4.2

Related Work

HoneyiM Framework

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

Overview ..

Design Issues

System Components

Deployment .

Prototype

4.3 Evaluation

4.4

4.5

4.3.1

4.3.2

Simulation

Real Experiment

Discussion .

Summary .

5 Improving E-mail Reliability

5.1

5.2

5.3

Related Work

Motivation . .

System Design

Rating Issues

Local E-mail History

Reputation Database

5.3.1

5.3.2

5.3.3

5.3.4 Simple E-mail Reputation Protocol (SERP)

5.4 System Evaluation

5.4.1

5.4.2

Log-based Experiment

DNS-based Experiment

vi

61

62

63

65

66

71

72

73

73

78

79

82

83

84

86

90

92

92

93

98

101

101

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4.3 Simulation Experiments

5.5 Summary

6 Conclusions and Future Work

6.1 Future Work

Bibliography

Vita

vii

104

110

111

112

115

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my parents, for their unwavering love and support
throughout this and all my adventures.

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

First and foremost, I thank my advisor, Dr. Haining Wang, for his guidance, advice, support,

and encouragement through my PhD study. His focus on significant research problems and passion

for high quality research have deeply shaped my research attitude and greatly helped me to build

a solid foundation for my future career.

I also thank Dr. Phil Keams, Dr. Chi-Kwong Li, Dr. Qun Li, and Dr. Weizhen Mao for

serving on my thesis committee and providing me with invaluable comments and advice through

the whole process of thesis writing.

I am grateful to the staff of the Department of Computer Science for their assistance. Special

thanks go to Vanessa Godwin. She has made my life in William and Mary much easier.

I am indebted to the past and current PhD students in Computer Science Department, from

whom I got a lot of help, on both study and life. I have enjoyed collaborating with Zhenyu Wu,

Chuan Yue, and Steven Gianvecchio. I feel fortunate to have them as my friends and teammates.

Finally, I thank my parents, Daoming Xie and Kaiyun Jiang. They are the source of strengths

for me to overcome the difficulties on the way of pursuing my PhD. This thesis is dedicated to

them.

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 Trace information . .

3.2 Distribution of NIH1

3.3 False positives and false negatives of SPRT

3.4 Overall false positives ofDBSpam (~ = 2s)

3.5

3.6

Resource consumption

False positive comparisons (M = 5, K = 4, ~ = 2s)

41

43

46

48

49

53

5.1 Summary of notations . 95

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

3 .I Scenario of proxy-based spamm ing . 21

3.2 Time-line of spamming processes for single proxy (left) and proxy chain (right) 24

3.3 Example of reply round and TCP correlation .

3.4 E[NJHt] vs. eo and a* (81 = 0.99,{3* = 0.01)

3.5

3.6

3.7

3.8

3.9

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

Pr(X 2: K) vs. p and (M,K)

Distribution of NIHo

CDF of detection time for SPRT

Comparison of number of messages sent out before and after throttling .

Comparison ofTCP packet numbers before and after blocking

Working mechanism ofHoneyiM

Framework of Honey 1M

Relations between HoneyiM coverages and infected user percentages

Comparisons among mean curves

Effect comparisons between HoneyiM and IM throttling

Effects of randomly selecting infection targets on HoneyiM .

Number of newly-appeared senders per day

CDF of good-ratio for spam and nonspam (good) e-mail

xi

25

37

38

44

45

50

51

64

66

74

77

78

81

87

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3

5.4

Architecture of CARE system 0

Procedure of a successful mutual agreement establishment via SERP 0

505 Percentage of newly-appeared IP addresses that have been recorded by the other

university over all newly-appeared IP addresses in daily Jogs

506 Number of DNS cache hits for 25 oedu domains 0 0 0 0 0 0 0

50 7 Percentage of newly-appeared nonspam domains that are covered after using CARE

91

99

101

103

in each day 0 1 06

508 Percentage of newly-appeared spam domains that are covered after using CARE

in each day 0 1 07

509 Percentage of more nonspam messages being directly accepted after using CARE

in each day 0 108

5ol 0 Percentage of more spam messages being directly rejected after using CARE in

each day 0 1 09

Xll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Towards Secure Message Systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Message systems, which transfer information from sender to recipient via communication net­

works, are indispensable to our modem society. E-mail, the most representative message system,

is regarded as one ofthe core and most successful Internet applications. According to the survey

done in April 2009 by Pew Internet and American Life Project [12], 90% of U.S. Internet users

have the experience of sending or reading e-mail. An e-mail statistics report published in May

2009 [II] estimates that the number of worldwide e-mail users in 2009 is over 1.4 billion and

that around 247 billion messages are delivered worldwide every day in 2009. Message systems

are used in every sector of our society (e.g., business, education, government) and messages are

accessed from anywhere (e.g., PC, laptop, cell phone, PDA, and TV) at anytime.

In general, there are two types of message systems in terms of message transfer synchrony:

online message systems and off! ine message systems. Online message systems usually require

message sender and receiver to stay online, that is, keep synchronous, during a message transfer,

while offline message systems do not. E-mail is a typical example of the former and instant mes­

saging (IM) is a representative system of the latter. Because e-mail and IMperfectly complement

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each other in usage, interoperation and intercommunication between e-mail and IM systems have

been attained, which blurs the boundary between e-mail and IM from the perspective of end users.

For example, most of major e-mail service providers (ESPs) such as Yahoo! mail, Hotmail, and

Gmail have already integrated the instant messaging functionality into their Web-based e-mail

services and have added e-mail functionality in their IM client programs. Due to their represen­

tativeness and dominance among message systems in practice, we focus on e-mail and instant

messaging in this dissertation.

The enormous user base of message systems and their critical role in information delivery

make it the top priority to secure message systems. Since the commercialization of Internet, net­

work environments are no longer friendly. Networked applications are constantly subjected to

various types of attacks, and there is no exception to Internet-based message systems. The pre­

vailing type of attacks against both e-mail and IM is unwanted messages, which range from bogus

commercial advertisements, crafted scam and phishing messages, to virus. In this dissertation,

we term unwanted messages in general as spam. Recent years have seen steady growth of e­

mail spam volume [1, 76] and frequent outbreaks of mal ware spread via e-mail and IM [9, 1 0].

Unwanted messages severely endanger the usability and security of e-mail and IM.

Thanks to spam filters, flood of unwanted messages is effectively dammed before the front

door of the inboxes of end users. However, another significant problem-loss of e-mail-has

emerged along with spam filters. Aggressive spam filters may cause loss of e-mail. A recent study

on e-mail loss [13] reveals that the e-mail accounts with spam filtering lost significantly more

legitimate messages than the e-mail accounts without spam filtering 1• Many anecdotal reports

including the loss of e-mail submissions discussed in the "end2end" mail-list [1 06] also indicate

1 The messages are neither in the in box nor in the spam folder.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the existence of e-mail loss due to spam filtering. In addition, as system overloading can cause

loss of e-mail [7], being computationally intensive, spam filtering could overload e-mail systems

when an influx of e-mail messages occurs and therefore result in loss of legitimate messages.

Therefore, securing message systems requires (1) defending against unwanted messages and

(2) ensuring reliable delivery of wanted messages. These two tasks are the two sides of one coin;

together, they comprise the main theme of this dissertation: secure message systems. Next, we

consider the challenges in each of these two tasks and highlight the basic ideas of our correspond­

ing solutions.

1) Defending against unwanted messages

Content-based spam filters and IP address-based blacklists are the two most popular mecha­

nisms that protect e-mail users from unwanted e-mail messages in practice. Content-based spam

filters distinguish e-mail spam from legitimate e-mail by exploiting distinctive content features of

spam messages [35, 90]. A number of classification techniques ranging from statistics to machine

learning have been applied to capture content features of e-mail spam [19, 112]. IP address-based

blacklists record IP addresses of the identified hosts that sent spam. In practice, these blacklists

are often called DNS blackhole lists (DNSBLs) as they are mostly distributed through DNS. Spam

filtering is applied after receiving a new message while IP address-based blacklisting is applied

before message content is received.

Although spam filters are widely deployed and effective in keeping e-mail spam out ofinbox,

they lack the ability of suppressing spam in the first place. Therefore, spam still wastes a lot of

resources on the Internet and at receiving servers even if they are filtered away from inboxes of end

users. DNSBLs can block spamming promptly. However, they suffer from insufficient coverage

and responsiveness [27, 71-73]. As spammers frequently change spamming hosts and manage to

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

keep spamming activities stealthy, many spamming hosts are missed by DNSBLs. To stem the

tide ofspam that keeps growing [1], new anti-spam mechanisms that can quickly and accurately

identify and suppress spamming activities are highly demanded.

Different from e-mail systems, instant messaging systems have built-in authentication and au­

thorization mechanisms, effectively preventing spamming from unknown sources. Unfortunately,

spamming approaches have also evolved. Social engineering tricks have been largely employed

in sending unwanted messages in IM systems. Even worse, IM spamming (usually called "spim")

is mostly done by IM malware, which often results in breach of system security and causes much

more damage to IM users. Detection of malicious instant messages is hard due to the legitimacy

of message sources and camouflage of message contents. Previously proposed mechanisms for

countering malicious instant messages mainly focus on delaying the spread of malicious mes­

sages by throttling message sending on all IM users [54, 100, 1 08]. However, it is ideal to quickly

and accurately detect and stop the spread of IM malware at the beginning.

Therefore, mechanisms that can foil spamming activities are in urgent need to curtail un­

wanted messages and protect e-mail and IM users. This dissertation presents two mechanisms­

DBSpam and Honey 1M-to effectively thwart e-mail spam laundering and malicious instant mes­

sage spreading, respectively. Since spamming activities are abnormal compared to legitimate mes­

sage sending, our general approach is distilling the distinct behaviors that are embedded in spam­

ming activities and exploiting them to detect occurrences of spamming in real-time. For example,

DBSpam exploits the characteristic of packet symmetry in e-mail spam laundering and HoneyiM

leverages the characteristic of message sending in IM malware propagating. Both DBSpam and

HoneyiM can achieve high detection accuracy and short detection time. More importantly, they

do not require any change to the protocols used in e-mail and IM and are fully compatible with

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

existing protection techniques.

2) Ensuring delivery of wanted messages

Whitelisting legitimate e-mail addresses to bypass spam filtering is a simple yet widely­

adopted approach to preventing loss of wanted messages. E-mail address white lists usually work

with e-mail authentication mechanisms such as SPF [109] and DKIM [14] to prevent attacks of

forged e-mail addresses. A significant problem of e-mail address whitelists is that they cannot

provide protection for legitimate messages originated from "newly-appeared" addresses, that is,

the addresses not in the whitelists. Although approaches such as [21 ,24,30] that propagate address

whitelists among friends can alleviate the coverage problem, whitelisting at e-mail address level

is not scalable in general.

A domain-level e-mail reputation system is a more general and scalable solution to preventing

e-mail loss. E-mail from reputable domains can be directly accepted. However, as indicated

in [98, 101] and confirmed by our measurement study (see Section 5.2), newly-appeared sending

domains are common and significant to average e-mail service providers; thus local information is

insufficient and collaboration is needed for building a high-quality reputation system. One way to

achieve collaboration is using a centralized server to collect information and derive reputation, as

proposed by Singaraju and Kang [81]. However, this approach involves the complication oftrust

management.

In contrast, this dissertation explores a different dimension in the design space. To ease system

deployment and maintenance, we propose an autonomous reputation system named CARE that

involves no central server or third party. Within the framework of CARE, each domain indepen­

dently builds its reputation database based on the local e-mail history and information exchanged

with other collaborating domains; each domain also has full control of choosing their collaboration

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

domains. By doing so, CARE achieves both effectiveness and flexibility.

1.1 Contributions

The contributions ofthis dissertation are summarized as follows.

1.1.1 Thwarting E-mail Spam Laundering

• We have thoroughly studied the mechanisms of e-mail spam laundering, an important spam­

ming method in which spam proxies are employed to disguise the identities ofspam origins.

We have distilled the unique characteristics of connection correlation and packet symmetry

from the behavior of spam laundering by analyzing the protocol semantics of SMTP and

timing causality in spam laundering. To our best knowledge, our study is the first to reveal

the distinct characteristic of e-mail spam laundering, that is, packet symmetry.

• Based on the packet symmetry exhibited in spam laundering, we have developed a simple

yet effective technique, DBSpam, to detect and break spam laundering activities inside a

customer network in a timely manner. DBSpam is designed to be deployed at a network

vantage point such as an edge router or gateway that connects the network to the Internet.

Monitoring the bidirectional traffic passing through a network gateway, DBSpam exploits

the packet symmetry characteristic and utilizes a simple statistical method, Sequential Prob­

ability Ratio Test, to capture the TCP connections involved in spam laundering, single out

the spam proxies, and uncover the spam sources behind them in a timely manner. To bal­

ance the goals of promptness and accuracy, we introduce a noise-reduction technique into

DBSpam, after which the laundering path can be identified more accurately. DBSpam pro-

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vides two spam suppressing methods: rate-limit throttling and blocking, and activates the

user-selected suppressing method immediately after a laundering activity is detected.

• DBSpam pushes the defense line towards spam source. DBSpam is the first system that

foils e-mail spam laundering without the cooperation at e-mail receiving side. Therefore,

DBSpam greatly benefits not only e-mail users but also victim Internet Service Providers

(ISPs). DBSpam enables an ISP to accurately detect spam laundering activities and spam

proxies inside its customer networks. The quick responsiveness of DBSpam offers the ISP

an opportunity to suppress laundering activities and quarantine identified spam proxies in

real-time. Being a stand-alone system, DBSpam is incrementally deployable over the Inter-

net.

• Distinctive from content-based spam filtering techniques, DBSpam is lightweight in that its

detection technique does not need to scan message contents. Moreover, DBSpam has very

few assumptions about the connections between a spammer and its proxies. DBSpam works

even if (1) these connections are encrypted and the message contents are compressed; and

(2) a spammer uses proxy chains inside the monitored network.

• DBSpam complements existing anti-spam techniques. Furthermore, DBSpam can facilitate

spam filtering. This is because once spam laundering is detected, fingerprinting spam mes­

sages at the sender side is viable and spam signatures may be distributed to spam filters

elsewhere.

• We have implemented a prototype of DBSpam using libpcap on Linux and extensively

evaluated its effectiveness and performance on both detecting and suppressing spam laun­

dering through trace-based experiments. We collected a set of traces from a real network

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consisting of over 7,000 users and the traces are significant (30+ gigabytes and 7+ hours).

Our experiments show that (1) DBSpam achieves user-expected accuracy; (2) Detections of

spam laundering are no more than ten seconds and 95% of them are within five seconds; (3)

DBSpam is lightweight in terms of CPU and memory consumption and therefore is capable

of working at high-speed networks.

1.1.2 Countering Malicious Instant Messages

• We have developed a generic framework, HoneyiM, to automatically detect and suppress

the spread of malicious instant messages in an enterprise-like network. HoneyiM is the

first system that exploits the inherent characteristic of IM malware spreading and applies

the honeypot technology to the detection of malicious instant messages. Honey 1M uses de­

coy accounts in normal users' contact lists as sensors (i.e., honeypots) to capture malicious

messages sent by IM malware. By doing so, HoneyiM can achieve almost zero false posi­

tive. With accurate detection, Honey 1M suppresses the spread of malicious instant messages

by performing network-wide blocking. HoneyiM can also notify network administrators of

attack information in real-time for system quarantine and recovery. The core design of Hon­

ey 1M is generic and can be applied to a network that uses either private (enterprise) or public

IM services, which is difficult to achieve for previously proposed IM protection approaches.

• We have implemented a prototype ofHoneyiM for public IM services, based on open-source

IM client Pidgin [8] and client honeypot Capture [93]. We have validated the efficacy of

HoneyiM through both simulations and real experiments. The simulations show that even

only a small portion, e.g., 5%, of IM users in the network have decoys in their contact

lists, Honey 1M can detect the spread of malicious instant messages as early as after 0.4% of

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IM users are infected on average. The experimental results demonstrate that the prototype

system succeeds in detection, suppression, and notification of IM malware within seconds.

1.1.3 Improving E-mail Reliability

• We have conducted a measurement study on the dynamics of e-mail sending servers and

sending domains to investigate whether local e-mail history information is sufficient for

average e-mail service providers to build a reputation system with good performance. After

studying 151-day e-mail logs collected from our campus e-mail servers, we find that the

number of newly-appeared sending parties, in terms of both sending servers and sending

domains, is significant. Therefore, our study indicates that only local information may not

suffice for building a high-quality reputation system. Meanwhile, our study also confirms

that rating e-mail sending parties by their long-term behaviors is feasible and beneficial.

• We have designed a collaboration-based autonomous e-mail reputation system called CARE

that aims to significantly improve e-mail reliability. CARE works at domain level and rates

both spam domains and nonspam domains. Within the framework of CARE, each e-mail

service provider independently builds its reputation database, including both frequently con­

tacted and unacquainted sending domains, based on the local e-mail history and the infor­

mation exchanged with other collaborating domains. CARE examines the trustworthiness

of the e-mail histories obtained from collaborators by correlating them with the local his­

tory, and integrates both local and remote information to derive the reputation of remote

domains. As there is no hierarchical dependence in system architecture and no requirement

ofthird party, CARE is friendly to incremental deployment.

• We have conducted a number of experiments to validate the effectiveness of CARE on im-

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proving e-mail reliability. By comparing two large e-mail log traces from two universities

and conducting a real experiment ofDNS snooping on more than 36,000 domains, we show

that the use of collaboration among different domains in CARE can largely increase the cov­

erage of reputation system. By performing extensive simulation experiments in a large-scale

environment, we further demonstrate that CARE is effective in improving the reliability and

quality of e-mail service by accepting more nonspam messages and rejecting more spam

messages.

1.2 Organization

This dissertation is organized as follows: We present the background information of e-mail and

instant messaging spamming in Chapter 2. In Chapter 3, we first delineate the behavior of e-mail

spam laundering and then detail the working mechanism of DBSpam followed by the evaluation

of DBSpam. We also discuss the robustness of DBSpam against potential evasions and survey

related anti-spam techniques in Chapter 3. We present the design, implementation, and evaluation

of HoneyiM in Chapter 4. In Chapter 5, we first present a measurement study that motivates the

CARE system and then detail the design and evaluation of the CARE system. Finally, we conclude

this dissertation and outline our future work in Chapter 6.

II

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Background

In this chapter, we present the background information about e-mail spamming mechanisms and

instant messaging malware.

2.1 E-mail Spamming Mechanisms

In this section, we first present the spam laundering mechanisms, and then briefly describe other

commonly-used spamming approaches.

2.1.1 Spam Laundering Mechanisms

Spam laundering refers to the spamming process, in which only proxies are involved in origin

disguise. The proxy refers to the application such as SOCKS [49] that simply performs "protocol

translation" (i.e., rewrite IP addresses and port numbers) and forwards packets. Different from an

e-mail relay, which first receives the whole message and then forwards it to the next mail server,

an e-mail proxy requires that the connections on both sides of the proxy synchronize during the

message transferring. More importantly, unlike an e-mail relay which inserts the information-

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

"Received From" that records the IP address of sender and the timestamp when the message is

received-in front of the message header before relaying the message, an e-mail proxy does not

record such trace information during protocol transformation. Thus, from a recipient's perspective,

the e-mail proxy, instead of the original sender, becomes the source of the message. It is this

identity replacement that makes e-mail proxy a favorite choice for spammers.

Initially, spammers just seek open proxies on the Internet, which usually are misconfigured

proxies allowing anyone to access their services. There are many Web sites and free software pro­

viding open proxy search function. However, once such misconfigurations are corrected by system

administrators, spammers have to find other available "open" proxies. It is ideal for a spammer

to own many "private" and stable proxies. Unsecured home PCs with broadband connections are

good candidates for this purpose. Malicious software including specially-designed worms and

viruses, such as SoBig and Bagle, has been used to hijack home PCs. Equipped with Trojan horse

or backdoor programs, these compromised machines are available zombies. After proxy programs

such as SOCKS or Wingate are installed, these zombies are ready to be used as spam proxies to

pump out e-mail spam. Without serious performance degradation, most nonprofessional Windows

users are not aware of the ongoing spamming. Recent research on the network-level behavior of

spammers [72] also confirms that most sinked spam is originated from compromised Windows

hosts.

To counter the soaring growth ofspam volume, many ISPs have adopted the policy of blocking

port 25 (SMTP [47] port), in which outbound e-mail from a subscriber must be relayed by the ISP­

designated e-mail server. In other words, the ISP's edge routers only forward the SMTP traffic

from some designated IP addresses to the outside. However, spammers have easily evaded such

simple SMTP port blocking mechanisms. The spam laundry is simple: having zombies send spam

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

messages to their ISP e-mail servers first. In February 2005, Spamhaus [91] reported that over the

past few months a number of major ISPs had witnessed far more spam messages coming directly

from the e-mail servers of other ISPs. This change in proxy-based spamming activity is mainly

caused by the use of new stealthy spamware, which instructs the hijacked proxy (i.e., zombie) to

send spam messages via the legitimate e-mail server of the proxy's ISP.

2.1.2 Other Spamming Approaches

The other commonly-used spamming approaches vary from dummy ISP spamming to more recent

botnet spamming. We briefly summarize them as follows.

Act as a dummy ISP: Some professional spammers play this trick with ISPs to extend the du­

ration oftheir spamming business. By purchasing a large amount ofbandwidth from commercial

ISPs and setting up a dummy ISP, these professional spammers pretend to have "users", which

seemingly need Internet access but in fact are used for spamming. If they are tracked for spam­

ming, those spammers claim to their ISPs that the spam is sent by their nonexistent "customers".

A spammer achieves an extended spamming time by lying to one ISP, and later moving to another

ISP. To evade anti-spam tracking and lawsuit, many professional spammers operate "offshore" by

using servers in Asia and South America.

Spam through open-relay: To provide high reliability for e-mail delivery, SMTP [47] was

designed to allow relaying. It means that some MTAs (Mail Transfer Agents) may help the orig­

inator MTA to transmit e-mail messages to the destination MTA, when the direct transmission

from the originator to the destination is broken. Such a relaying service is unnecessary in current

Internet environment and most MTAs have disabled the relay service for untrustworthy sources.

However, due to misconfiguration or lack of experience, there are still many open-relays available

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the Internet [89].

Exploit CGI security flaws: Some insecure Web CGI (Common Gateway Interface) services,

such as notorious FormMail.pl [80] that allows Internet users to send e-mail feedback from an

HTML form, have been exploited by spammers to redirect e-mail to arbitrary addresses. This

CGI-based e-mail redirection is appealing to spammers, since it can conceal the spam origin.

Hijack BGP routes and steal IP blocks: Some spammers are also Internet hackers. They

hijack insecure BGP (Border Gateway Protocol) routers, pirate or fraudulently obtain some IP

address allocations from an IP address assignment agency such as ARIN (American Registry for

Internet Numbers), and use routing tricks to simulate faked networks, deceiving real ISPs into

serving them connectivity for spamming. This spamming trick is also called "BGP spectrum

agility" [72].

Spam through botnet: Recent studies have witnessed the wide use of botnets in spam­

ming [17, 72] and phishing [1 05]. Using IRC (Internet Relay Chat) channels or other commu­

nication protocols, a bot controller (also a spammer) first distributes the spam address list and

message content to all controlled bots. Then he sends a single command to bots, triggering the

mailing engine installed on bots to pump spam. For a bot controller that is not directly involved

in spamming, he may install spam proxies on bots and then lease his botnet to spammers for spam

laundering.

2.2 Instant Messaging Malware

An instant messaging (IM) system is a real-time message delivery system that has dedicated

servers for account management and message relay. IM systems can be categorized into either

public IM systems or private IM systems (also called enterprise IM systems) by their targeted

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

users and usage environment. Public IM systems are open to everybody over the Internet while

private IM systems are only accessible to a certain group of people (e.g., enterprise employees)

inside a specific network. AOL Instant Messenger (AIM) and Windows Messenger series (MSN)

illustrate the former while Reuters Messaging (RM) exemplifies the latter.

The IM malware studied in this dissertation refers to any malicious code that spreads through

either public IM systems or private IM systems. For example, Opanki [46] (attacking AIM),

Bropia [45] (attacking MSN), and Sohana [88] (attacking YIM) are typical examples of such mal­

ware. Although most of known IM malware spreads on popular public IM networks, enterprise

IM systems such as Microsoft Office Live Communications Server [59] and IBM Lotus Same­

time [41] can also be penetrated as these corporate IM services usually provide connectivity and

interoperability with public IM services. In 2005, the outbreak of a variant of Kelvir worm even

forced Reuters to shut down its IM service [38].

IM malware propagates mainly through two ways: malicious file transfer and malicious URL­

embedded message. Malware infection is usually triggered by the victim's action such as clicking

the accepted fi Je or the received URL. IM mal ware could also spread without victim's involvement,

for instance, by exploiting the vulnerabilities in IM clients. However, this type of spreading is rare.

The file transfer mechanism has been used since early 2000s. In this mechanism, IM malware

propagates by initiating malicious file transfers to remote contacts. Malicious files are usually

renamed to attract victims or to evade network filters. Once an unwary contact clicks the file,

the malware is invoked and will attempt to infect more victims in the contact list (also called

buddy list). To counter this type of malware spreading, some IM systems such as MSN forbid

IM clients to transfer certain types of files such as .pif files. While the actual file transfer is

normally carried out directly between two IM clients, the messages for transfer establishment

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

still go through IM server. Therefore, IM servers can easily detect the messages for establishing

malicious file transfers and silently drop them to block malware propagation.

Nowadays malicious URL-embedded messages become much more popular than malicious

file transfers for IM malware propagation. Instead of sending a file, IM malware sends a crafted

text message containing a malicious URL to remote contacts. As soon as a victim clicks the link,

either a malware binary is downloaded and executed or some malicious Web scripts run to exploit

the vulnerabilities of the Web browser or other related applications. Compared to malicious file

transfers, malicious URL messages have several advantages in propagation. First, malicious URL

messages have more means to compromise a system. File downloading is just one of its attacking

vectors. Second, malicious URLs can be used to collect victims' information by exploiting Web

functionality. For instance, the URL sent by Kelvir.k [77] points to a php script and contains the

contact's e-mail address. The e-mail address is harvested as soon as the URL is clicked. Last but

not least, IM malware can play more social engineering tricks on URLs. For example, a malicious

URL can be crafted to mimic the link on a reputable Web site [34]. The IM clients supporting

HTML scripts also provide a playground for IM malware to fake URLs at their will. Those forged

URLs appear normal but in fact point to malicious Web pages.

After infection, IM malware may take different actions for propagation. Many types of mal­

ware start spreading immediately after they compromise IM clients, while others wait until they

receive instructions to spread. The latter usually install certain bot programs on compromised

machines, through which the malware is controlled by the remote bot herder. IM malware might

choose different targets in spreading. Some types of IM malware only hit online contacts, while

other types also try offline users.

Although the threat of IM mal ware, especially the outbreak of zero-day IM mal ware, is on the

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rise, network administrators still lack effective solutions to protect enterprise-like networks such as

campus networks and corporate networks. Conventional protections using firewalls and anti-virus

products are insufficient to defend against IM mal ware. Most of popular IM protocols are able to

circumvent firewalls if their default ports are blocked. Signature-based anti-virus products cannot

detect zero-day IM malware. Meanwhile, anomaly detection techniques, such as Norman Sandbox

technology [64], may also be ineffective in catching evasive malware which behaves differently

in the sandbox environment. Compared to malicious file transfers, malicious URL-embedded IM

messages are even harder to be identified by anti-virus programs.

IM providers may take quick responses, for example, releasing patches and mandating client

upgrade, to newly discovered vulnerabilities in their products. They may even proactively block

potentially malicious file transfers. However, these filtering mechanisms still could be bypassed

[78, 79]. Moreover, it is extremely hard for IM providers to protect against malicious URLs that

exploit the vulnerabilities of Web browsers or other related applications [70]. While some protec­

tion schemes, such as CAPTCHA [57] and IM virus throttling [108], can enhance IM security, the

incurred overhead and usability degradation could be significant, and thus prohibit IM providers

from using them in near future.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Thwarting E-mail Spam Laundering

E-mail spam proxies such as off-the-shelf SOCKS [49] and HTTP [29] proxies play an important

role in the spam epidemic. Spammers launder e-mail spam through spam proxies to conceal their

real identities and reduce spamming cost. The popularity of proxy-based spamming is mainly due

to the anonymous characteristic of a proxy and the availability of a large number of spam proxies.

The IP address of a spammer is obfuscated by a spam proxy during the protocol transformation,

which hinders the tracking of real spam origins. According to Composite Blocking List (CBL)

[23], which is a highly-trusted spam blacklist, the number of available spam proxies and bots in

October 2009 was more than seven million. These numerous spam proxies facilitate the formation

of e-mail spam laundering, by which a spammer has great flexibility to change spam paths and

bypass anti-spam barriers. However, there is very little research done in detecting spam proxies.

Probing is a common method used to verity the existence of spam proxies in practice. Probing

works by scanning open ports on the spam hosts and examining whether or not e-mail can be sent

through the open ports. Due to the wide deployment of firewalls and the use of scanning, both

accuracy and efficiency of probing are poor.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In this chapter, we present a simple and effective mechanism, called DBSpam, which detects

and blocks spam proxies' activities inside a customer network in a timely manner, and further

traces the corresponding spam sources outside the network. DBSpam is designed to be placed

at a network vantage point such as the edge router or gateway that connects a customer network

to the Internet. The customer network could be a regional broadband (cable or DSL) customer

network, a regional dialup network, or a campus network. DBSpam detects ongoing proxy-based

spamming by monitoring bidirectional traffic. Due to the protocol semantics of SMTP (Simple

Mail Transfer Protocol) [47] and timing causality, the behavior of proxy-based spamming demon­

strates the unique characteristics of connection correlation and packet symmetry. Utilizing this

distinctive spam laundering behavior, DBSpam can easily identity the suspicious TCP connec­

tions involved in spam laundering. Then, DBSpam can quickly single out the spam proxies, trace

the spam sources behind them, and block the spam traffic.

This chapter is organized as follows. First, we present the unique behavior of proxy-based

spamm ing and reveal the salient characteristic of packet symmetry in Section 3 .1. Then, we detail

the working mechanism of DBSpam in Section 3.2. We evaluate the effectiveness of DBSpam

through the trace-based experiments in Section 3.3. We further discuss the robustness of DBSpam

against potential evasions in Section 3.4. We survey related anti-spam techniques in Section 3.5.

Finally, we summerize the contributions of this chapter in Section 3.6.

3.1 Proxy-based Spam Behavior

In this section, we delineate the distinct behavior of proxy-based spamming, which directly in­

spires the design of our detecting algorithm. Figure 3.1 depicts a typical scenario of proxy-based

spamming in a customer network such as a Cox regional residential network. Although spammers

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can conceal their real identities from destination MTAs by exploiting spam proxies, they cannot

make the connection between a spam source and its proxy invisible to the edge router or gateway

that sits in between. Here we assume that there is a network vantage point where we can monitor

all the bidirectional traffic passing through the customer network, and the location of the gateway

(or firewall) of the customer network (e.g. edge router R in Figure 3.1) that connects to the Internet

is such a point.

3.1.1 Laundry Path of Proxy-based Spamming

As shown in Figure 3.1, there is a customer network N, in which spam proxies reside. Both

spammer Sand receiving MTA Mare connected to customer network N via edge router R. S may

be the original spam source or just another spam proxy (but it must be closer to the real spam

source). M is the outside MTA.

proxy a proxy z

NetworkN

--- ~ I. Inbound command packet
2. Outbound command packet

3. Inbound reply packet
4. Outbound repy packet

Figure 3.1: Scenario of proxy-based spamming

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note that for the customer network that has its own mail server(s) such as a campus (or an en­

terprise) network, the monitored network N may not be the whole network, but one of its protected

sub-networks. Usually such campus/enterprise networks are divided into multiple sub-networks

for security and management concerns. Their mail servers are placed in DMZ (DeMilitarized

Zone) or a special sub-network that is separated from other sub-networks such as wireless, dormi­

tory, or employee sub-networks. It is one of these loosely-managed sub-networks that becomes the

monitored network Nand the router/gateway connecting the sub-network N becomes the vantage

point R. Thus, the assumption of exterior MTA M is valid even when the MTA is under the same

administration domain as network N.

Inside monitored network N, S may use a single or multiple spam proxies. If multiple proxies

are employed, they may either launder spam messages individually or be organized into one or

multiple proxy chains, depending on the spammer's strategy. Without loss of generality, only

one chain is shown in Figure 3.1. Spammer S usually communicates with spam proxies through

SOCKS or HTTP. The spam message sent from S to a may even be encrypted. If it is a proxy chain,

the spam message can be conveyed by different proxy protocols at different hops. For instance,

SOCKS 4 is used between Sand a, while HTTP is employed between a and z. However, none of

these protocol variations and message content encryptions can change the fact: it is last-hop proxy

z 1 that does the protocol transformation and forwards the spam message to the MTA via SMTP.

We define the connection between spammer Sand first-hop proxy a as the upstream connec­

tion, and define the connection between last-hop proxy z and MTA Mas the downstream connec­

tion. The upstream and downstream connections plus the proxy chain form the spam laundry path,

which is shown in Figure 3 .1.

1 proxy z and proxy a are the same in the single proxy scenario.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1.2 Connection Correlation

There is a one-to-one mapping between the upstream and downstream connections along the spam

laundry path. While this kind of connection mapping is common for proxy-based spamming,

it is very unusual for normal e-mail transmission. In normal e-mail delivery, there is only one

connection, that is, the connection between sender and receiving MTA. The existence of such

connection correlation is a strong indication of spam laundering and provides valuable clue for

spammer tracking. Here we assume that the downstream connection is an SMTP connection. For

the upstream connection we have no restriction except that it should be a TCP connection. The

packets in the upstream connection may be encrypted and even compressed.

The detection of such spam-proxy-related connection correlation is challenging due to the

following three reasons. First, content-based approaches could be ineffective as spammers may

use encryption to evade content examination. Second, because such a detection mechanism is

usually deployed at network vantage points, the induced overhead should be affordable, which is

critical to the success of its deployment. Third, since spam traffic is machine-driven and could be

delayed by proxy at will, those timing-based correlation detection algorithms such as [113] may

not work well in this environment.

3.1.3 Packet Symmetry

Figure 3.2 illustrates the detailed communication processes of spam laundering for both single

proxy and proxy chain cases at the application layer, in which the message format is "PROTOCOL

[content]". For simplicity, P/P1/P2 stands for different application protocols, including SOCKS

(v4 or v5), HTTP, etc. For SMTP, its packet content is in plain-text. But for application protocols

P/P1/P2, their packet contents may be encrypted. Since the small delays induced by message pro-

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cessing at end hosts and intermediate proxies have little effect upon the communication processes,

for ease of presentation, we ignore them in Figure 3.2. The initial proxy handshaking process is

also omitted as it has no effect on e-mail transactions. Without losing any generality, here we

only show the shortest SMTP transaction process for the single-proxy case and parts of SMTP

transaction process for the proxy-chain case.

Spammer S Proxy \1TA M Spammer S Proxy a MTAM

Figure 3.2: Time-line of spamming processes for single proxy (left) and proxy chain (right)

Due to protocol semantics, the process of proxy-based spamming is similar to that of an

interactive communication. The appearance of one inbound SOCKS-encapsulated (or HTTP­

encapsulatedi SMTP command message on the upstream connection wiii trigger the occurrence

2 For the ease of presentation, we only use SOCKS in the rest of chapter, although HTTP can be used as well.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of one outbound SMTP command message on the downstream connection later. Similarly, for

each inbound SMTP reply message on the downstream connection, later on there will be one

corresponding outbound SOCKS-encapsulated reply message carried by TCP on the upstream

connection. We term this communication pattern as message symmetry.

This message symmetry leads to the packet symmetry at the network layer with a few ex-

ceptions, in which the one-to-one packet3 mapping between the upstream and downstream con-

nections may be violated. The exceptions can be caused by (I) packet fragmentation, (2) packet

compression, (3) packet retransmission occurring along the laundry path. However, due to the fact

that SMTP reply messages are very short (usually less than 300 bytes including packet header)

and Path MTUs for most customer networks are above 500 bytes, the occurrence of (I) and (2) is

very rare. Moreover, the packet retransmission problem can be easily resolved by checking TCP

sequence numbers. In general, the packet symmetry between the inbound and outbound reply

packets holds most of time.

AI I I A I I I I A I A lA I I A I .
A ~ ~

.
A ~ ~ . : ~

.
~: A A :~ .

I I
I I I '\ II' I I '\ II' I I I I I I II ..

I I 14th round I 1 time
...

lst round 2nd round 3rdround 5th round 6th round

Inbound SMTP reply packet 1 A I I
Outbound TCP packet I

A ~ (e.g. HTTP/SOCKS)
I

connection X connection Y connection Z

Figure 3.3: Example of reply round and TCP correlation

Such packet symmetry is exemplified in Figure 3.3, where the arrow with long solid line stands

for the arrival of an inbound SMTP reply packet of the suspicious SMTP connection. In addition to

3TCP control packets such as SYN, ACK are not counted here.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the inbound SMTP connection, there are three outbound TCP connections X, Y, and Z, as shown in

Figure 3.3. Three kinds of arrows with different dotted lines stand for the arrivals of outbound TCP

packets belonging to these outbound TCP connections, respectively. The upward arrow indicates

that the packet is leaving the monitored network, while the downward arrow indicates the packet

is entering the network.

All of the inbound SMTP reply packets shown in Figure 3.3 belong to the same suspicious

SMTP connection. We define a reply round as the time interval between the arrivals of two con­

secutive reply packets on an SMTP connection. Thus, the nth reply round is the time interval

between the arrival of the nth reply packet and that of the (n + I)th reply packet. Even for the

simplified SMTP transaction, it has six reply rounds as shown in Figure 3.3. Within one reply

around, the number of arrows with a specific dotted line indicates the number of outbound TCP

packets of the corresponding TCP connection.

According to the one-to-one mapping of packet symmetry, each SMTP reply packet observed

on the downstream SMTP connection should cause one and only one TCP packet appeared on the

upstream connection. As Figure 3.3 shows, if one connection among X, Y, and Z is the suspicious

upstream connection, one and only one outbound TCP packet must be observed from that connec­

tion in every reply round. Based on this rule, only TCP connection X meets this "one and only

one" requirement and can be classified as the suspicious upstream connection with high probabil­

ity. In the second reply round, more than one packets appear on connection Z; and in the fourth

round, no packet occurs on connection Y. Thus, we can easily fi Iter out TCP connections Y and

Z as normal background traffic. Note that the order of packet arrivals in a reply round does not

affect the checking result of packet symmetry.

This packet symmetry is the key to distinguish the suspicious upstream and downstream con-

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nections along the spam laundry path from normal background traffic. It simply captures the fun­

damental feature of chained interactive communications, and does not assume any specific time

distribution of packet arrivals. We use this simple rule to detect the laundry path of proxy-based

spamming, and the detection scheme is robust against any possible time perturbation induced by

spammers. Note that the one and only one mapping of packet symmetry can be relaxed, which we

will discuss in Section 3.4.

3.2 Working Mechanism of DBSpam

DBSpam consists of two major components: spam detection module and spam suppression mod­

ule, in which the detection module is the core of DBSpam. To the best of our knowledge, so far

there is no effective technique which can online detect both spam proxies and the corresponding

spammers behind them. We envisage that DBSpam may achieve the following goals: (1) fast

detection of spam laundering with high accuracy; (2) breaking spam laundering via throttling or

blocking after detection; (3) support for spammer tracking and law enforcement; (4) support for

spam message fingerprinting; and (5) support for global forensic analysis.

In essence, the detection module of DBSpam is a simple and efficient connection correlation

detection algorithm to identify the laundry path of spam messages (i.e., the suspicious downstream

and upstream connections) and the spam source4 that drives spamming behind the proxies.

3.2.1 Deployment of DBSpam

Like other network intrusion detection systems, DBSpam needs to be placed at a network vantage

point that connects a customer network to the Internet, where it can monitor the bidirectional traffic

40r just another spam proxy that is outside the customer network but at least one more step closer to the real source.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the customer network. For a single-homed network, it is easy to locate such a network vantage

point (an edge router or a firewall) and deploy DBSpam on it. For a multi-homed network, it may

not be possible to locate a single network vantage point that can monitor all the bidirectional traffic

passing through the customer network.

However, on one hand, many customer networks use multi-homing not for load-balance, but

for reliability and fault-tolerance. Therefore, in case of the backup multi-homing, DBSpam works

well if deployed at the primary ISP edge router. On the other hand, even in the load-balance

multi-homing scenario, as long as the packets that belong to the same proxy chain go through the

same ISP edge router or firewall, DBSpam still can work at different ISP edge routers or firewalls

without coordination. Moreover, there are special network devices (e.g., Top Layer [6]) which

can passively aggregate traffic from multiple network segments. By hooking up to such devices,

DBSpam can still have the complete view of network traffic.

3.2.2 Design Choices and Overview

Our goal is to detect the spam laundry path promptly and accurately, once a proxy-based spam­

ming activity occurs on the monitored network. We show in the previous section that packet

symmetry is the inherent characteristic of proxy-based spamming behavior. Since legitimate mes­

sages are rarely delivered along the path illustrated in Figure 3 .I, the possibility of a normal SMTP

connection being consistently correlated with an unrelated TCP connection is very small in terms

of packet symmetry. Hence, frequent observations of connection correlation is a strong indication

of occurrence of spam laundering.

According to the packet symmetry rule, for th~: upstream TCP connection along a spam laun-

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dry path, its outbound packet5 number in each reply round of the downstream SMTP connection

is always one. For a normal TCP connection, however, this rule can only be satisfied with a very

small probability. Thus, a simple and intuitive correlation detection method is to count the num­

ber of outbound packets observed on suspicious TCP connections in sequential reply rounds of an

SMTP connection. Given the characteristic of successive arrival of observations, this correlation

detection problem is well suited for the statistical method of Sequential Probability Ratio Test

(SPRT) developed by Wald [102].

As a simple and powerful mathematical tool, SPRT has been used in many areas such as

portscan detection [43] and wireless MAC protocol misbehavior detection [69]. Basically, an

SPRT can be viewed as a one-dimensional random walk. The walk starts from a point between

two boundaries and can go either upward or downward with different probabilities. With each

arrival of observation, the walk makes one step in the direction determined by the result of ob­

servation. Once the walk first hits or crosses either the upper boundary or the lower boundary,

it terminates and the corresponding hypothesis is selected. For SPRT, its actual false positive

probability and false negative probability are bounded by predefined values. It has been proved

that SPRT minimizes the average number of required observations to reach a decision among all

sequential and nonsequential tests, which do not have larger error probabilities than SPRT.

We utilize the packet symmetry of SMTP reply packets to detect proxy-based spamming activ­

ity. Basically, we monitor the inbound SMTP traffic first, then apply the rule of packet symmetry

for detecting the spam laundry path inside the customer network. In other words, DBSpam fo­

cuses on the clockwise reply packet flow as shown in Figure 3.1, instead ofthe counter-clockwise

command packet flow, for connection correlation detection. The arrivals of inbound SMTP reply

5Here packets refer to nonretransmitted, nonzero-payload TCP packets.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

packets, which delimit the reply rounds and drive the progress of connection correlation detec­

tion, become a self-setting clock of the detection algorithm. SPRT terminates by either selecting

the hypothesis that upstream connection Ctcp is correlated with downstream connection Csmtp or

choosing the opposite hypothesis.

There are two benefits of using SMTP reply messages to drive SPRT. First, as mentioned

earlier, SMTP reply messages are very small, which minimizes the occurrence of packet frag­

mentation; and we can significantly increase the processing capacity of DBSpam by monitoring

small packets only. Second, being either the spam target or the relay, the remote SMTP servers

are usually very reliable; and the implementation and listening port of these servers strictly follow

the SMTP protocol semantics. Thus, the packet symmetry rule always holds, and SMTP packets

can be easily identified based on the port number ofTCP header.

In the rest part of the section, we first briefly describe the basic concept of SPRT, then present

the detection module ofDBSpam, which include two phases: SPRT detection and noise reduction.

3.2.3 Sequential Probability Ratio Testing

Let Xi, i = 1, 2, ... , be random variables representing the events observed sequentially. The SPRT

for a simple hypothesis Ho against a simple alternative H1 has the following form:

An~ B ===? accept H1 and terminate test,

An :::; A ===? accept Ho and terminate test,

A < An < B ===? conduct another observation,

30

(3.1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where two constants or boundaries A and B satisfy 0 <A < B < oo, and An is the Jog-likelihood

ratio defined as follows:

1) Pr(XI, ... ,XniHI)
An = A- (XI, ... ,Xn = In P (X X IR) .

r 1, .. ·, n 0
(3.2)

Assume X1, ... ,Xn are independent and identically distributed (i.i.d.) Bernoulli random vari-

abies with

Pr(Xi = 118) = 1- Pr(Xj = 018) = 8, i = 1, ... ,n. (3.3)

Then

_ l fli Pr(XiiHI) _~I Pr(XiiHI) _ ~z.
An-n -Ln -L 1

TI!Pr(XiiHo) 1 Pr(XiiHo) 1 '
(3.4)

where Zi =In ~~~~~Z~\. An can be viewed as a random walk (or more properly a family of random

walks6) with steps Zi which proceeds until it first hits or crosses boundary A or B. Suppose the

distributions for H1 and H0 are 81 and 80, respectively. An moves up with step length In~ when

Xi= 1, and goes down with step length In :::::~~ when Xi= 0.

In SPRT, we define two types of error

f3 = Pr(SoiHI),

where Pr(SdH;) denotes the probability of selecting Hi but in fact H1 is true. If we call the selection

of H1 detection and the selection of Ho normality, the event of S11Ho can be viewed as a false

positive. So, a represents the false positive probability. Likewise, the event of So IH1 can be

termed a false negative and f3 represents false negative probability.

6 It is a family of random walks, since the distribution of the steps depends on which hypothesis is true.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let a* and {3* be user-desired false positive and false negative probabilities, respectively.

According to (3.1), we can derive7 the Wald boundaries as follows:

A = In ___!!:___
1- a*'

B =In I- {3*
a* , (3.5)

and the derived relationships between actual error probabilities and user-desired error probabilities

are:

a*
a<-­

- 1 - {3*'
{3*

{3 <--
- 1- a*'

a+f3:::; a*+f3*.

(3.6)

(3.7)

Inequality (3.6) suggests that the actual error probabilities a and f3 can only be slightly larger than

their expected values a* and {3*. For example, if the desired a* and {3* are both 0.01, then their

actual values a and f3 will be no greater than 0.0101. Inequality (3.7) can be interpreted as that

the sum of actual error probabilities is bounded by the sum of their desired values.

According to Wald 's theory, E [N] = E [AN]/ E [Zi]· Here N denotes the number of observations

when SPRT terminates. Suppose hypothesis H 1 is true and Bernoulli variable){j has distribution

81 which implies that An steps up with probability 81 or goes down with probability 1 - 81, we

have

(3.8)

If the user-desired false negative probability of the test is {3*, then the true positive probability is

1- {3* and

E[AN/HI] =f3*A + (1 - {3*)B

={3* In___!!:___+ (I- {3*) In I- {3*.
1- a* a*

(3.9)

7The derivations of (3.5), (3.6), and (3.7) are omitted here. See [43, I 02] for details.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

With (3.8) and (3.9), we have

EN H _ /3*Inb+(1-/3*)1n~
[I I] - f) In ~ + (1 - f)) In I- 91 ·

I Bo I 1-Bo

(3.10)

Likewise, we can derive

(1 *)I fJ' + *I !=£ EN R - -a; n 1-a• a; n a•

[lol- ain~+(l-fJ)Jnl=!b.
0 Bo 0 1-Bo

(3 .11)

Apparently the average observation number E[N] of SPRT is determined by four parameters: pre-

defined error probabilities a:*, /3* and distribution parameters fJo and fJ1. The determination of

these values and their effects on E[N] will be discussed with our correlation detection algorithm

in the following.

3.2.4 SPRT Detection Algorithm

According to the principle of packet symmetry, within each reply round, there must be one and

only one outbound TCP packet appearing on the corresponding upstream connection. By contrast,

those connections that have none or more than one TCP packet can be classified as innocent

connections. Within the framework of SPRT, this correlation detection problem can be easily

transformed into an SPRT, in which we test the hypothesis H1 that Ctcp is correlated with Csmtp

against the hypothesis H0 that the two connections are uncorrelated by counting the number of

TCP packets appearing on Ctcp in each reply round ofCsmtp·

If we use a Bernoulli random variable x; to represent the observation result on Ctcp in the i-th

reply round of Csmtp and assume that these variables in different rounds are i.i.d., we have the

following distribution:

if one outbound TCP packet observed
otherwise

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr(X.IHo) = { eo if one ~utbound TCP packet observed
I) - eo OtherWISe

Algorithm 1 describes the procedure of detecting connection correlation based on SPRT. The

values of four parameters A, B, eo, e1 are specified beforehand. To identity if Ct cp and C smtp are

correlated, at the end of each reply round of Csmtp• the number of the outbound packets observed

on Ctcp is counted. If the number is 1, A is incremented by In~; otherwise, it is incremented by

In::::~~· Then, the updated A is compared with A and B. If A is either no greater than A or no

smaller than B, the detection terminates and the corresponding hypothesis is selected. Otherwise,

the test continues. However, the detection still terminates if either Ctcp or Csmtp is closed before a

hypothesis is derived. In this case, Ctcp and Csmtp are deemed uncorrelated.

For proxy-based spamming, given that packet symmetry holds most of time, the major reason

that correlation cannot be detected is mainly attributed to the packet misses by the monitoring

system. For example, when the traffic volume exceeds the capacity that the monitoring system

can handle, packets may be dropped by the monitoring system. If the packet conveying an SMTP

reply message is dropped on either the downstream connection or the upstream connection, the

correlation detection will fail in this reply round. So we can use packet miss rate to estimate

the probability of a proxy connection being correlated when spamming occurs, that is, e1• From

the conservative perspective, we take 0.01 as the packet miss rate which in fact is fairly high8

considering only small packets (say less than 300 bytes) need attention and only packet header

information is required for detection algorithm. So e1 is 0.99 in this case.

To estimate eo, we employ the mathematical model given in [20]. We assume that the unidirec-

tiona! packet arrivals of a normal TCP connection can be modeled as a nonhomogeneous Poisson

process, which can be approximated by a sequence of Poisson processes with varying rates, and

8In practice, the miss rate is usually below 0.005 in our campus network.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 1 Detect-Correlation

1: Input: Ctcp, Csmtp

2: Parameters: A,B, tlo, 81

3: Output: Ctcp is correlated with Csmtp or not

4: repeat

5: for each reply round ofCsmtp do

6: if# of outbound packets on Ctcp is 1 then

7: An +---- An-I + In ~

8: else

A A I J-e~
9: n +---- n-1 + n J-eo

10: end if

II : if An ;:: B then

12: Ctcp is correlated with Csmtp and the test stops

13: else if An :S. A then

14: Ctcp is not correlated with Csmtp and the test stops

15: else

16: wait for observation in next reply round

17: end if

18: end for

19: until either Ctcp or Csmtp is closed

over varying time periods that could be arbitrarily small. For example, Jet M(t) denote the number

of packets sent in an outbound TCP connection during time interval t. Process {M(t),t;:: 0} can be

represented by a sequence of Poisson processes (/t1, &1), (ltz,Mz), ···,where t = & 1 + tlt2 + · · ·.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The advantage of this model is that it can approximate almost any distribution. More importantly,

the number of packets observed during any given time interval T, can be represented by a Poisson

process M with a single rate ~T· Here ~T is the weighted mean of the rates of all the Poisson

processes during T.

With this model, we can easily compute the probability of one and only one packet sent in a

reply round if T denotes the duration of a reply round. From

we have

Pr(M = i) = e-(ArT) (~TT)i ., ,
l.

(3.12)

(3.13)

In (3.13) Pr(M = 1) reaches its maximum value e- 1 when ~TT = 1. Although this is a theoretical

derivative, we find that it is valid on almost all of the evaluated traces. Thus, we set eo = e- 1•

If we choose 0.005 for false positive probability a* and 0.01 for false negative probability

{3*, with e0 = e- 1 and e1 = 0.99, E[NIHJ] is 5.5 and E[NIHo] is 2.02, respectively. Figure 3.4

shows how E [NIHJ] varies with the changes of a* and e0 , when {3 * and e1 are fixed. In general,

E[NIH1] increases when e0 gets bigger or a* gets smaller. Intuitively, this prolonged random walk

is a natural result of smaller step length In ~ or enlarged distance In 1 ~t for the walk towards the

upper threshold.

From the perspective of anomaly detection, it is desirable that error probabilities, especially

the false positive probability, can be as low as possible. In the framework of SPRT, this implies

that E[NIHI] goes up, that is, the average detection time is prolonged. However, given that not

all SMTP transactions (the shortest one has only 6 reply rounds) can be longer enough to make

the SPRT reach a decision when a is too small, a tradeoff between lowering false positive and

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

10
I~

z w
8

2~----~~----~------~------~------~------~
0.3 0.35 0.4 0.5 0.55 0.6

Figure 3.4: E[NIHI] vs. eo and a* (el = 0.99,{3* = 0.01)

false negative has to be made. In DBSpam, we set a* = 0.005 so that even the shortest spam

transactions can be captured.

3.2.5 Noise Reduction

To further lower the false positives of SPRT, we introduce a simple and effective noise reduction

technique in DBSpam. In a series of correlation tests, we define the active spam sources and

proxies that are prone to be identified many times as signals, and define those innocent IP addresses

that may be accidentally captured as noises. We utilize the dichotomy between signal and noise

to distinguish spam sources and proxies from innocent end hosts. We call this procedure noise

reduction. The noise reduction are executed in two steps: first, we maintain a set Si of external IP

addresses that appear in the correlation results for each time window~; second, in the consecutive

M time windows, we single out the external IP addresses, which appear no fewer than K times, as

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the spam sources and the corresponding proxy addresses as the spam proxies.

0.9

0.8

0.7

0.6

52'
II

~ 0.5
f

0.4

0.3

0.2

0.1

0.1 0.2 0.3 0.4 0.5
O<p<1

0.6 0.7

Figure 3.5: Pr(X 2: K) vs. p and (M, K)

0.8

- M=1.K=1
· M=4, K=2

- M=5, K=3
M=4, K=3

- · M=7, K=4

0.9

The time window~ is determined by the lower-bound of spamming rate v (in replies/s) and

the number of reply rounds N:

~?_Njv. (3.14)

Hence, a spammer sending spam faster than v must appear in Si at least once in each time window

~. Assume that the appearance of an IP address in Si is independent, with a constant probability p.

Then, the number of occurrences of the IP address among M time windows follows the binomial

distribution.

(3.15)

The probability of having no fewer thanK occurrences in the binomial distribution is:

(3.16)

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.5 illustrates the dynamics ofPr(X 2:: K) with the variation of probability p for several

predetermined tuples of(M,K). The diagonal line shows the case of tuple (M = 1 ,K = 1), in which

Pr(X 2:: K) is equal top. Clearly, if p is smaller than 0.2, all other curves are below this diagonal

line, indicating that their values of Pr(X 2:: K) are smaller than that of tuple (M = 1, K = 1). In

contrast, if pis larger than 0.8, these curves are above the diagonal line, indicating that their values

of Pr(X 2:: K) are larger than that of tuple (M = 1, K = 1).

The value of p for an innocent address depends on the false positive rate of the correlation

detection, which should be closer to zero than one. The left part of Figure 3.5 illustrates the

noise reduction can further lower the chance of an innocent address being misclassified as a spam

source. On the other hand, the value of p for a spam source is related to the complementary of the

false negative rate of the correlation detection, which should be closer to one than zero as shown in

the right part of Figure 3.5. This indicates that noise reduction increases the probability of a spam

source being identified as well. Therefore, both false positives and false negatives are reduced after

noise reduction. Figure 3.5 shows that when M is fixed, the probability Pr(X 2:: K) goes smaller

with bigger K. For example, Pr(X 2:: 3lM = 4) is much smaller than Pr(X 2:: 21M= 4). Moreover,

the noise reduction algorithm works very well even with very small M and K. For example, with

(M = 4,K = 3), pre-noise-reduction false positive rate, which is 0.1, can be significantly lowered

to 0.0037 after noise reduction. These two rules of thumb may guide the selection of (M,K)

in practice. We will further discuss the parameter setup of Ll, M and K, and demonstrate the

effectiveness of the noise reduction technique in Section 3.3.3.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 System Evaluation

We implemented a prototype of DBSpam using libpcap on Linux. Due to access limitation, we

cannot deploy our prototype in an ISP network environment to evaluate its online performance.

Alternatively, we collected traces from a middle-sized campus network and conducted a series of

trace-based experiments to validate the efficacy of DBSpam.

By replaying the collected traces with our prototype, we attempt to answer the following

questions: (1) how fast DBSpam can detect spam laundering; (2) how accurate the detection result

ofDBSpam is; (3) how many system resources DBSpam consumes.

3.3.1 Data Collection

The campus network is connected to the Internet via an OC-3 data link. A Snort-based NIDS [75]

is deployed on the edge router of the campus network to block any suspicious proxy traffic (e.g.

SOCKS and HTTP) via signature checking. All outgoing e-mail messages must go through the

main e-mail server and secure authentication is enforced.

This well-protected campus network provides an ideal platform to assess the false positive ra­

tio ofDBSpam on normal network traffic. According to the IT department, proxy-based spamming

activities on this campus network are very rare. To evaluate the detection time and accuracy of

DBSpam on spam laundering, we generate "spam" traffic, including both plain-text and encrypted

proxy traffic, with the cooperation of the IT department. Although the monitoring systems of IT

can detect plain-text proxy traffic by checking content, our encrypted proxy traffic successfully

evades their detection.

The generated spamming scenario is similar to the one shown in Figure 3.1. The campus

network plays the role of network N. We use two home PCs outside the campus network, which

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are located in two different ISP broadband networks, to emulate two spam sources. The spam sink

(MTA Min Figure 3.1) is located in the dark net of the campus network. The dark net is a special

subnet that directly links to the edge router and is used to dump all malicious traffic. One SOCKS

proxy and one HTTP proxy running in two different subnets ofthe campus network form a proxy

chain. We use a common spamming tool and sockschain9 to emulate proxy-chain spamming. The

spam messages are sent from the two home PCs, through the proxy chain and destined to the spam

sink. The data collection point is just before the edge router and can see all the traffic passing

through the edge router. We use tcpdump to capture all small bidirectional TCP packets with the

snaplen set to 75 bytes.

Table 3.1: Trace information

trace duration packets average size pkt miss threads/

(second) pkt/sec (MB) rate spammer

S-I-A 770 3,872,550 5,029 295 < O.OOI I

S-1-B 674 4,I78,567 6,200 3I8 < O.OOI 3

S-I-C 756 4,509,336 5,965 343 < O.OOI I

S-2-A 654 I2,036,4I3 I8,404 93I 0.008 I

S-2-B I ,385 26,422,563 I9,078 2,044 0.005 3

S-2-C I,398 26,I72,898 I8,722 2,0I8 0.005 I

N-1 5, II6 24,434,5I8 4,776 I,85I <O.OOI -

N-2 I4,944 297,733,228 I9,923 22,950 0.006 -

We collected multiple traces of normal and spam traffic in two different months. The detailed

9Both are binary Windows programs so that we cannot modify any code.

4I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

information ofthe traces is listed in Table 3.1, and additional explanations are given below. First,

we only captured small TCP packets with packet length less than 300 bytes as DBSpam only

utilizes the SMTP reply messages for detection, which are usually conveyed by TCP packets with

length less than 300 bytes. Second, we collected two kinds of traces to evaluate the performance of

DBSpam, one with generated spam traffic and the other without generated spam traffic. All traces

include the normal background SMTP traffic passing through the campus network. The name of

a trace follows the format "{SIN}-{112}-{AIBIC}". S (N) indicates that the trace has Spam (No

spam) traffic. I (2) refers to the different month of trace collection. A (B, C) is only for spam

traces and stands for different spam scenario. Third, in order to validate DBSpam for detecting

both plain-text and encrypted spam traffic, we injected encrypted and compressed spam traffic

through SSH tunneling into traces S-*-C (* is either I or 2), and injected plain-text spam traffic

into S-*-A and S-*-B. Fourth, a multi-threaded spamming technique was used in S-*-B to validate

the efficacy ofDBSpam in a multi-threaded spamming scenario. TheN-threaded spamming means

uptoN upstream connections may be issued simultaneously from the spam source to a proxy for

spam laundering.

3.3.2 Detection Time

The overall detection time ofDBSpam is determined by SPRT detection time, the noise-reduction

time window ~. and the number of consecutive windows M. Among these three factors, SPRT

detection time is the fundamental one, which bounds the value of time window~. In the following,

we focus on the estimation of SPRT detection time.

We evaluate SPRT detection time from two perspectives: the number of observations needed

to reach a decision and the actual time spent by SPRT.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.2: Distribution of NIH1

Trace N=6 N= 11 N>= 16

S-1-A 970 (100%) 0 0

S-1-B 5019 (96.9%) 139 (2.7%) 21 (0.4%)

S-1-C 2245 (92.8%) 169 (7.0%) 6 (0.2%)

S-2-A 433 (99.1 %) 3 (0.7%) 1 (0.2%)

S-2-B 4298 (94.7%) 198 (4.4%) 40 (0.9%)

S-2-C 1758 (98.9%) 16 (1.0%) 3(0.1%)

Number of Observations N: The theoretical average number of observations under spam hy­

pothesis (E[NIHJ]) and nonspam hypothesis (E[NIHo]) can be easily computed based on Equations

(3 .1 0) and (3 .11). In our evaluation, they are rounded to 6 and 3, respectively, with a* = 0.005,

/3* = 0.01, eo= e- 1' and el = 0.99. Table 3.2 shows the distribution of NIHI in six spam traces.

The results clearly demonstrate the dominance of (N = 6) in all traces. The comparatively low

percentage of (N = 6) in trace S-1-C is mainly caused by the abnormally high packet-miss-rate of

the spam traffic but not the whole traffic. Note that due to the characteristics of SPRT, the detection

of connection correlation (H1) can only be reached after certain number of observations, such as

6 and II.

Figure 3.6 shows the distribution of NIHo for nonspam traces N-1 and N-2. The curves indi­

cate that SPRT can filter out at least 95% of normal connections within four observations. The

distributions of NIHo for spam traces are similar to those for nonspam traces.

Actual Detection Time of SPRT: After recording the start and end points for each SPRT on

six spam traces, we derive all the detection time in these traces and draw the CDFs (cumulative

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0. 7 r--.----,----,-,-----,----------.--------,

0.6

0.5

0.4
.....
a.

0.3

0.2

0.1

15

Figure 3.6: Distribution of NIHo

distribution functions) in Figure 3.7. The detection time is approximated by ceiling for CDF

drawing, e.g., 1.2s is ceiled to 2s. We classify the results from six traces into two groups: "S-1"

and "S-2", since the results in each group are very similar. As shown in Figure 3. 7, 95% detections

are made within 5 seconds. Note that the actual detection time is roughly the duration of 6 reply

rounds of SMTP connection, since the computation overhead of SPRT is negligible. The curve

difference between "S-1" and "S-2" is due to the inferior link quality in "S-2" experiments.

3.3.3 Detection Accuracy

Since the detection module ofDBSpam has two phases-SPRT detection and noise reduction, we

first evaluate the false positive and false negative of SPRT detection, and then present the overall

detection accuracy of DBSpam after noise reduction.

(I) Accuracy ofSPRT

False Positives: The left part of Table 3.3 shows the false positives of SPRT in different traces.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.8

0.6

2 3 4 5 6 7
Time (second)

Figure 3. 7: CDF of detection time for SPRT

The "detection" column is the total number of correlations reported by SPRT, and "True Positives

(TP)" and "False Positives (FP)" columns list the outcome of detections. The "True Negatives

(TN)" column lists the number of tests on normal connections that are correctly identified. Ac-

cording to the definition of false positive probability a= FP~:~Ns' the probabilities in all traces

are well below 0.0002, indicating that the false positive probability of SPRT is fairly small in

practice.

False Negatives: We estimate the false negatives by counting the number of proxy connections

that are missed by SPRT, and compute the ratio of missed spam connections, which are shown in

the right part of Table 3.3. The false negatives of SPRT are attributed to the missed packets in

the spam traces. The three spam traces S-2-A/B/C contain both long SMTP connections (no less

than ten reply rounds) and short SMTP connections (six reply rounds). More than half of the total

connections are short SMTP connections. For those short spam connections with only six reply

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.3: False positives and false negatives of SPRT

Trace Detection TPs FPs TNs FPs/ Spam Missed Miss

(FPs+TNs) Conns Conns Ratio

S-1-A 970 966 4 290,889 1.4e-5 958 8 0.008

S-1-B 5,179 5,108 71 1,156,085 6.1e-5 570 2 0.004

S-1-C 2,420 2,369 51 596,979 8.5e-5 324 0 0

S-2-A 437 320 117 1,634,307 7.2e-5 329 6 0.018

S-2-B 4,536 3,510 1,026 8,895,993 1.2e-4 1,351 27 0.020

S-2-C 1,777 1,558 219 4,266,100 S.le-5 969 13 0.013

N-1 66 - 66 687,390 9.6e-5 - - -

N-2 2,368 - 2,368 15,941,150 1.5e-4 - - -
. . ..

*TP: True Positive, FP: False Positive, TN: True Negative

rounds, if any packet on either the upstream connection or the downstream connection is missed

in the trace, SPRT cannot reach a decision, leading to a false negative. A simple estimation shows

the feasibility of the missing ratio ofspam connections. For simplicity, we assume that the packet

miss rate p is constant through the trace. Then, the probability of one packet missing in six reply

rounds is C~)p(1 - p) 11 . If p = 0.005 (the packet miss rate of traces S-2-B/C), the probability is

around 0.057, which is more than the miss ratio as shown in Table 3.3.

(2) DBSpam Accuracy after Noise Reduction

To investigate the efficacy of noise-reduction, we first need to determine the value of time win-

dow~. Figure 3. 7 shows that over 80% of all SPRTs on spam traces terminate within 2 seconds.

So, we set the time window~ to 2 seconds. For (M,K), we test several combinations and the final

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

detection results are shown in Table 3.4, where the data format is "number ofFP/number of over­

all detections". From the table, we can see that noise reduction eliminates the majority of false

positives of SPRT, due to the fact that most of wrongly-classified correlations only occur sporad­

ically. The false positive number of DBSpam approaches zero, when (1) M and K are relatively

large and (2) the gap between M and K is small. Such dynamics of false positive reduction fits

well with the analysis in Section 3.2.5. For our traces, any combination with 4/5 forM and 3/4 for

K can achieve fairly high accuracy. Of course, the high detection accuracy is achieved at the cost

of lowering detection sensitivity. It always exists a tradeoff between accuracy and sensitivity in

network anomaly detection. However, even when the time window .1 is set to 2 seconds and M is

set to 5, the overall delay of DBSpam detection is just 10 seconds but with much higher accuracy.

Currently most false positives of DBSpam are induced by P2P applications. The capacity

of spawning thousands of connections in a second and the behavior of periodic PING/PONG

communications make P2P applications have a much higher probability of being correlated than

any other applications. Due to the hog overwhelming proportion in bandwidth consumption, many

ISPs and university networks in US have restricted the maximal connections that P2P applications

can establish, which helps reduce the false positives ofDBSpam.

3.3.4 Resource Consumption

According to Table 3.1, the arrival rate of small TCP packets at the edge router can reach around

20,000 packets per second (pps), at which DBSpam must be able to handle. Current high-end

PCs can meet this requirement without much difficulty. Using a Dell Precision 360 machine

with Pentium-4 3GHz CPU and 512MB memory, we run the prototype ofDBSpam on each trace

multiple times. We use time and ps to measure the CPU and memory usage. The results are listed

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.4: Overall false positives ofDBSpam (L\ = 2s)

(M, K)

Trace (3, 2) (4, 3) (5, 3) (5, 4)

S-1-A 0/188 0/138 0/124 0/110

S-1-B 0/162 0/126 01103 0/103

S-1-C 0/194 0/150 0/124 0/123

S-2-A 0/65 0/36 0/52 0/27

S-2-B 13/335 3/243 4/216 0/186

S-2-C 0/193 01124 0/135 0/94

N-1 010 0/0 010 0/0

N-2 717 111 2/2 0/0
..

*Data Format: # of false positives I# of total detections

in Table 3.5. The average packet processing rate of DBSpam is computed by dividing the total

packet number of the trace over the processing time ("CPU Time"). The processing rates clearly

demonstrate the capability of DBSpam working at high-speed networks. Even in the worst case,

DBSpam still can handle 241,965 pps, which is over 10 times more than the required processing

speed.

Memory consumption of DBSpam is mainly determined by two factors: the number of active

SMTP connections and the number of outbound TCP connections during each SMTP reply round.

So, the peak memory consumption is not necessarily determined by the network traffic volume.

As DBSpam only needs to maintain very few states, and only a very small portion (false positive

probability) of connections need to maintain states for relatively long time (lifespan of SMTP con-

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.5: Resource consumption

Trace CPU Uti! CPU Time pps Peak Mem

S-1-A 36.3% 9.0s 430,283 2.2MB

S-1-B 37.7% 9.8s 426,384 1.6MB

S-1-C 24.0% 9.3s 484,875 1.2MB

S-2-A 58.0% 36.8s 327,076 11.9MB

S-2-B 84.3% I 09.2s 241,965 10.5MB

S-2-C 57.1% 78.6s 332,989 2.8MB

N-1 21.7% 51.1s 478,171 5.6MB

N-2 32.1% 789.9s 376,925 8.4MB

nections), the overall memory consumption should not be a problem. Also note that the memory

management of our prototype is quite naive since our focus is mainly on the correctness, not on

the performance.

3.3.5 Suppressing Spam Activities

Once the spam proxies and the spam sources behind them are identified, it is straightforward to

suppress the spam activities inside the customer network. Two commonly-used approaches to

suppressing proxy-based spam activities are rate-limit throttling and blocking.

We suggest blocking the inbound TCP traffic from the spam source to its abused proxies.

In general, the spam source is highly likely a compromised machine or the end host where a

spammer resides. It is rare that frequent innocent communications exist between a spam source

and its proxies. Therefore, the collateral damage of blocking traffic from these identified spam

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sources should be minor.

On the other hand, there may exist legitimate e-mail traffic between a spam proxy and the

MTA as a legitimate user residing in the proxy machine may also send e-mail. To minimize

the collateral damage, we conduct rate-limit throttling on the outbound SMTP traffic from spam

proxies, instead of simple blocking. The setting of rate-limit is based on the normal e-mail traffic

behavior between a nonspam client and the MTA, and can be tuned by network administrators.

To evaluate the efficacy ofDBSpam on spam suppression, we activate the suppression module

ofDBSpam and simulate the spam suppression based on the collected traces. We use two machines

for evaluating spam suppression, one for traffic generator and the other for traffic sink. We use

tcpreplay [97] to inject traffic on the wire by replaying traces on the traffic generator, and then

have DBSpam to detect and suppress spam activities on the traffic sink. The traffic sink simulates

the edge gateway in a real environment.

300

(a)

9,-----~----~-,==~==~

!
-Throttle
- - - No Throttle

200
Time (second)

(b)

300

Figure 3.8: Comparison of number of messages sent out before and after throttling

We first examine DBSpam in spam throttling. We set the maximal mail sending rate as one

message per second and throttling duration as 30 seconds. The suppression module silently drops

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the excessive messages. Here we record message numbers by counting the number of "RCPT"

commands appeared between "MAIL" and "DATA" commands in a transferring transaction. The

mail transactions with multiple "RCPT" commands are delayed to meet the threshold of maximal

sending rate. The parameters L\, M, and K of the detection module are set to 2s, 4, and 3, respec-

tively. After the detection module fires an alarm, the suppression modules is activated to throttle

the spam proxy in the downstream connection of the laundry path, which lasts for the predefined

time (i.e., 30s). Figure 3.8 shows the experimental results ofDBSpam in throttling spam activities.

Figure 3.8(a) shows an excerpt (from lOOs to 300s in trace time) of the throttling result in trace

S-1-B, and Figure 3.8(b) shows the corresponding result in trace S-2-C. The dynamics of spam

message rates with and without throttling are shown as the red solid line and the blue dashed line,

respectively. It is evident that as suppression is turned on, the spam sending rate is immediately

dropped and limited to I message/second for next 30 seconds. The alternation of detection phase

and suppression phase is also clearly shown in Figure 3.8.

"0
r::

200

8 150
Q)
1/)

~ 100
tl

~
rn
~ 50

~

) ~
1: ,, ,,,
'·' I I\

I ~ ,.
.~
I

-0

100

l-Biock
---No Block

' \
~- 1

I
\ '\

r~~~~\ I

• J"'\ r~ ~' "'~ I I • ~

r., ; l'"t• .:\If, :r
IIIIJI

.-~:i"• ~ ~1 1 111 f ll'~t~
~~r I I I ,..II "~ ~;,..,1 ,, l,ool Nil~ ~~ II 1 J~ f' I ~f .II "" ". , ~ \loll " f I ~~~' ~~'"' ~ I ~~. d "tr n \ I

~·(o j ,,
.,., ~ -

~ I I ,, I
' j ' i I

·: I
I
I

....__ '--- '--- - '--

150 200 250 300
Time (second)

(a)

"0
r::
8

80

3l 60

Qi
0..

tl 40

~
rn
0.. 20
a..
~

100

'

I
- Block
--- No Block

,\ Jl J~ ~
: ~~ z t I ,,, ,, ,, ,, ,,
" " " • •

150 200 250 300
Time (second)

(b)

Figure 3.9: Comparison ofTCP packet numbers before and after blocking

Then we test DBSpam in blocking TCP traffic from detected spam sources. The blocking

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

technique is quite simple, just dropping TCP packets from the flagged IP addresses. We use the

same experimental setup for the blocking test as that for the throttling test, that is, the same param­

eter setting for detection module and 30 seconds for blocking duration. Figure 3.9 illustrates the

dynamics of the TCP traffic from a specific spam source with and without blocking. Figure 3.9(a)

is for trace S-1-B, and Figure 3 .9(b) is for trace S-2-C. Also, the dynamics of observed TCP pack­

ets with and without block are shown as the red solid line and the blue dashed line, respectively.

From Figure 3.9, we can see that the TCP traffic from the spam source is totally blocked in the

suppression phase in both cases.

3.4 Potential Evasions

In such an ongoing arms race between spammers and anti-spammers, we envision that sufficiently

aggressive spammers will seek sophisticated techniques to evade DBSpam. This is especially true

for a spammer who is able to fully control remote spam proxy machines and deploy arbitrarily

customized software. It may use non-off-the-shelf proxy programs, which can manipulate the

traffic between the spam source and the first-hop proxy, to break packet symmetry. One possible

way is to split a single reply packet from SMTP server into n fragmented packets on the first-hop

proxy and then to transfer them back to the spam source.

However, as long as enough observations are collected, DBSpam can still capture such po­

tential evasions. Recall that the effect of this packet splitting on SPRT model is just the change

of the value of eo, which measures the probability of 1 ton outbound TCP packets observed in a

reply round. So, instead of eo= Pr(M = I), now e0 = Pr(M = I)+ ... + Pr(M = n). According

to Equation (3. I 0), without changing other parameters, the augmented value of e0 renders more

average number of observations needed to detect a spam proxy. On the other hand, not all SMTP

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transactions have enough reply rounds for detection. Due to extended observations, short-living

spamming activities may not be detected.

Table 3.6: False positive comparisons (M = 5, K = 4, ~ = 2s)

eo a* E[NjHI] S-1-A S-1-B S-1-C S-2-A S-2-B S-2-C N-1 N-2

e-I 0.005 5.5 0/110 0/103 0/123 0/27 0/186 0/94 010 0/0

0.5 0.005 8.1 0/0 0/103 0/120 0/0 0/97 0/32 0/0 8/8

0.5 0.01 7.1 0/110 0/103 0/121 0/21 2/159 0/89 0/0 12/12

0.5 0.02 6.0 0/110 2/105 0/121 0/27 7/194 1/94 0/0 21121

To demonstrate the capability ofDBSpam in capturing such evasions, we relax the definition of

packet symmetry, in which one or two data packets may appear in one reply round, and adjust e0 to

0.5 10 . Then, we estimate the overall false positives ofDBSpam, which are listed in Table 3.6 under

the parameter setting of M = 5, K = 4, and~= 2s. For comparison, the results without relaxation

are listed in the first row, while the results with relaxation are listed in the second row. Clearly,

the short-living spamming activities are missed by DBSpam, with zero detection for S-*-A traces

and much fewer detections for S-2-B and S-2-C traces. However, those spamming activities with

more reply rounds can still be accurately detected. Since parameter a*, the expected false positive

probability, has the inverse effect on E [NIHI] according to Equation (3 .1 0), we increase its value

from 0.005 to 0.01 and 0.02, to accommodate short SMTP transactions for DBSpam detection.

The third and fourth rows of Table 3.6 list the results after this adjustment, showing that DBSpam

can capture short-living spamming activities by appropriately tuning a*. When a* is set to 0.02,

DBSpam detects almost all spamming activities as before. In addition, those many more captures

10Note that 8o never exceeds 0.5 in all our traces with various packet lengths from 150 to 300 bytes.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are only at the cost of slightly more false positives, which is the necessary tradeoff in capturing

evasive spam proxy traffic.

Moreover, instead of employing off-the-shelf proxy software, any advanced evasion technique

will inevitably induce the modifications on the current spam methods and degrade the spam laun­

dering efficiency. The customized proxy software also increases the cost of spamming. Overall,

DBSpam indeed significantly raises the protection bar against e-mail spam, breaking the launder­

ing and tracing out the real spam sources, in the anti-spam-vs-spam arms race.

3.5 Related Work

Many anti-spam techniques have been proposed and deployed to counter e-mail spam from dif­

ferent perspectives. Based on the placement of anti-spam mechanisms, these techniques can be

divided into two categories: recipient-based and sender-based. In terms of fighting spam at the

source, HoneyS pam [16] might be the closest work to ours. In the following, we first briefly de­

scribe recipient-based and sender-based techniques, respectively, and then compare our work with

HoneyS pam.

3.5.1 Recipient-based Techniques

This class of techniques either (I) block/delay e-mail spam from reaching the recipient's mail­

box or (2) remove/mark e-mail spam in the recipient's mailbox. Based on the classification of

responses to spam given by [99], we further divide the receiver-based anti-spam techniques into

pre-acceptance and post-acceptance subcategories. The pre-acceptance techniques mainly focus

on blocking or delaying spam before the recipient's MTA accepts them in its mailbox, while post­

acceptance attempts to weed spam out of received messages.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pre-acceptance Techniques The pre-acceptance techniques usually utilize noncontent spam

characteristics, such as source IP address, message sending rate, and violation of SMTP standards,

to detect e-mail spam. Because these techniques are applied during SMTP transactions, they need

to be deployed on the recipient's MTA.

DNSBLs: DNSBLs refer to DNS-based Blackhole Lists, which record IP addresses of spam

sources and are accessed via DNS queries. When an SMTP connection is being established, the

receiving MTA can verify the sending machine's IP address by querying its subscribed DNSBLs.

Even DNSBLs have been widely used, their effectiveness [44, 72] and responsiveness [71] are still

under study.

MARID: MARIO (MTA Authorization Records In DNS) [58] is a class of techniques to

counter forged e-mail addresses, which are commonly used in spam, by enforcing sender authen­

tication. MARIO is also based on DNS and can be regarded as a distributed white list of authorized

MTAs. Multiple MARIO drafts have been proposed, in which SPF [109], Sender IO [55] and Do­

mainKeys [26] have been deployed in some places.

Tempfailing: Tempfailing [99] is based on the fact that legitimate SMTP servers have imple­

mented the retry mechanism as required by SMTP, but a spammer seldom retries if sending fails.

It usually works with a grey list that records the failed messages and the MTAs failed on their first

tries.

Delaying: As a variation of rate limiting, delaying is triggered by an unusually high sending

rate. Most delaying mechanisms, such as tarpitting [40], throttling [107, 110] and TCP Damping

[51] are applied at receiving MTAs.

Sender Behavior Analysis: This technique distinguishes spam from normal e-mail by exam­

ining behavior of incoming SMTP connections. Messages from the machine exhibiting character-

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

istics of malicious behavior such as directory harvest are blocked before reaching mailbox [66].

Post-acceptance Techniques The post-acceptance techniques detect and filter spam by analyz­

ing the content of the received messages, including both message header and message body. This

kind oftechniques can be deployed either at MUA (Mail User Agent) level in favor of individual

preference or at MTA level for unified management.

E-mail address based filters: There are a variety of e-mail address based filters with differ­

ent complexity. Among them, the traditional whitelists and blacklists are the simplest. Whitelists

consist of all acceptable e-mail addresses and blacklists are the opposite. Blacklists can be easily

broken when spammers forge new e-mail addresses, but using white lists alone makes the world en­

closed. [30] developed a new whitelisting system, which can automatically populate whitelists by

exploiting friend-of-friend relationships among e-mail correspondents. [42] proposed a new spam

filter based on Single-Purpose Address (SPA), which encodes a security policy that describes the

acceptable use of the address. Any e-mail that violates the policy can be either marked, bounced,

or discarded. [31] developed a remailer system, which maps a user's private permanent address to

multiple public restrictive (e.g. duration) aliases for different correspondents and manages those

aliases according to the user defined policy.

Challenge-Response (C-R): C-R [92] is used to keep the merit of whitelist without losing

important messages. Incoming messages, whose sender e-mail addresses are not in the recipient's

whitelist, are bounced back with a challenge that needs to be solved by a human being. After a

proper response is received, the sender's address can be added into the whitelist.

Heuristic filters: The features that are rare in normal messages but appear frequently in spam,

such as nonexisting domain names and spam-related keywords, can be used to distinguish spam

from normal e-mail. [90] is such an exa!llple. Each received message is verified against the heuris-

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tic filtering rules. Compared with a predefined threshold, the verification result decides whether

the message is spam or not.

Machine learning based filters: Since spam detection can be converted into the problem

of text classification, many content-based filters utilize machine-learning algorithms for filtering

spam. Among them, Bayesian-based approaches [19, 35, 52, 112] have achieved outstanding accu­

racy and have been widely used. [37] studied the effect of combining multiple machine learning

models on reducing false positives of spam detection. As these filters can adapt their classification

engines with the change of message content, they outperform heuristic filters.

Signature-based filters: Similar to the concept of a virus signature, a spam signature is the

identity of a spam message and is usually derived from certain computation on the spam message.

For each incoming message, a signature-based filter first derives its signature, then queries the

registered server for signature test, and takes proper actions based on the response. To be effective,

signature-based filters usually collaborate and contribute signatures through peer-to-peer networks

[67, 74, 114].

3.5.2 Sender-based Techniques

Usage Regulation: To effectively throttle spam at the source, ISPs and ESPs (E-mail Service

Providers) have taken various measures such as blocking port 25, SMTP authentication, to regulate

the usage of e-mail services. Message submission protocol [32] has been proposed to replace

SMTP, when a message is submitted from an MUA to its MTA.

Cost-based approaches: Borrowing the idea of postage from regular mail systems, many

cost-based anti-spam proposals [18, 48, 60, 1 03] attempt to shift the cost of thwarting spam from

the receiver side to the sender side. All these techniques assume that the average e-mail cost for a

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

normal user is negligible, but the accumulative charge for a spammer will be high enough to drive

him out of business. Cost concept may have different forms in different proposals. SHRED [48]

proposes to affix each mail with an electronic stamp and punish spammers by reducing their stamp

quotas and charging them real money, while Penny Black Project [60] enforces a sender to pay

e-mail postage by associating a CPU or memory intensive computation with an e-mail sending

process. The computation result, called "Proof-of-work", is attached with the message and can be

easily validated by the recipient.

3.5.3 HoneySpam

HoneySpam [16] is a specialized honeypot framework based on honeyd [68] to deter e-mail ad­

dress harvesters, poison spam address databases, and intercept or block spam traffic that goes

through the open relay/proxy decoys set by HoneySpam. With the network virtualization offered

by honeyd, HoneyS pam can set up multiple fake Web servers, open proxies, and open relays. Fake

Web servers provide specially crafted Web pages to trap e-mail address harvesting bots. Fake open

proxies or open relays are used to track spammers exploiting them and block spam going through

them.

HoneySpam shares the same motivation of countering spam at the source as DBSpam, and

both deal with spam proxies. However, the role of proxy and anti-spam approaches in HoneyS pam

are quite different from those in DBSpam. The proxies ofHoneySpam are intentionally set on end

hosts, and spam sources are logged by HoneySpam. Thus, spam tracking is very easy. In contrast,

detecting spam proxies is the major task of DBSpam, and proxy identification and spam tracking

can only be accomplished through traffic analysis. On the other hand, these two tracing and

blocking systems are complementary to each other. Moreover, both ofthem can be used for spam

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

signature generation, spam forensic and law enforcement.

3.6 Summary

In this chapter, we presented a simple yet effective system, DBSpam, to detect and break proxy­

based e-mail spam laundering activities inside a customer network and to trace out the corre­

sponding spam sources outside the network. Instead of content checking, DBSpam leverages the

protocol semantics and timing causality of proxy-based spamming to identify spam proxies and

real spam sources behind them. Based on connection correlation and packet symmetry principles,

DBSpam monitors the bidirectional traffic passing through a network gateway, and utilizes a sim­

ple statistical method, Sequential Probability Ratio Test, to quickly filter out innocent connections

and identify the spam laundry path with high probability. To further reduce false positives and

false negatives, we propose a noise reduction technique to make spammer-tracking more accurate

after gathering consecutive correlation detection results. We implement a prototype of DBSpam

using libpcap on Linux, and conduct trace-based experiments to evaluate its effectiveness. Our

experimental results reveal that DBSpam can be tuned to detect spam proxies and sources with

low false positives and false negatives in seconds. After detecting spam proxies and related spam

sources, DBSpam can effectively throttle or block spam traffic.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Countering Malicious Instant Messages

Instant messaging (IM) has been one of most frequently used malware attack vectors due to its

popularity. IM malware usually finds and hits next victim by exploiting current victim's contact

list and playing social engineering tricks. It is very difficult to detect and suppress the spread of

IM malware through conventional approaches such as blocking and filtering, because sources of

the malicious IM messages are legitimate and their contents are in disguise. IM systems including

public IM systems (e.g., AOL Instant Messenger) and enterprise IM systems (e.g., Reuters Mes­

saging) are widely used by enterprises and organizations for internal communication. However,

previously proposed protection approaches [54, 57, 100, 1 08] are ineffective to defend against IM

malware in an enterprise-like network environment, mainly because ofhigh false positive rate and

the requirement ofthe IM server being inside the protected network.

In this chapter, we present Honey 1M, a framework for automating the process of IM malware

detection and suppression in an enterprise-like network. HoneyiM is based on the concept of

honeypot and detects IM malware by leveraging its inherent spreading characteristics. Specifi­

cally, HoneyiM uses decoy accounts in normal users' contact lists as sensors to capture malicious

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

content sent by IM malware, which achieves almost zero false positive. With accurate detection,

HoneyiM suppresses malware by performing network-wide blocking. In addition, HoneyiM de­

livers attack information to network administrators for system quarantine and recovery. The core

design ofHoneyiM is generic and can be applied to a network that uses either private (enterprise)

or public IM services.

This chapter is structured as follows. We first overview the related work in securing instant

messaging systems in Section 4. I. Then, we present the framework of HoneyiM in Section 4.2.

Next, we detail the implementation and evaluation of HoneyiM in Sections 4.2.5 and 4.3, respec­

tively. We further discuss possible evasion to HoneyiM and the countermeasures in Section 4.4.

Finally, we summarize the contributions of this chapter in Section 4.5.

4.1 Related Work

The security threats posed by IM malware have been studied in [39, 56]. In [39], the spreading

speed of IM malware is estimated, showing that 500,000 machines could be infected within a

minute.

Previous defense schemes against IM malware are closely related to IM network modeling and

traffic measurement. Based on individual measurement and analysis, [61, 83, 108] all verify that

IM social networks formed by IM contacts are scale-free, that is, the IM network connectivities

follow power-law distributions. However, a recent measurement study [1 I I] suggests that Weibull

distributions may be more appropriate for describing the connectivity of IM social networks. For

scale-free networks, a small portion of nodes that are highly connected have significant effect on

mitigating malware spread. Based on this observation, Smith [83] proposed to delay the propaga­

tion of IM malware by disabling the accounts of most connected IM users on the network. This

6I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scheme needs to be deployed on IM servers. It only reduces the spread speed and may have sig­

nificant side-effects. Williamson et a!. [I 08] applied their virus throttling mechanism to IM and

demonstrated its effectiveness by simulation. The throttling to IM is also conducted at servers.

The throttling becomes blind blocking if its threshold is very restrictive, which degrades the us­

ability. Mannan and van Oorschot [57] proposed two defense methods, namely limited throttling

and CAPTCHA-based challenge-response. They also provided a usage study on per-user fre­

quency ofiM text messages and file transfers to support the applicability of their second scheme.

Liu eta!. modeled the spread of IM malware using multicast tree [54] and analogous branching

process with varied lifetime [53]. Honey 1M is orthogonal to all the schemes mentioned above, and

can achieve accurate detection and blocking without degrading usability.

Trivedi et a!. studied the network and content characteristics of spim, the spam messages on

IM networks, by using a proxy server as honeypot [96]. Their work is different from HoneyiM,

since [96] is a measurement study and it targets spim but not IM malware. The honeypot used

in [96] refers to a SOCKS proxy, which is exploited by spimmers to conceal their identities.

4.2 HoneyiM Framework

HoneyiM aims to assist network administrators in IM malware defense by automating the process

of malware detection and suppression in an enterprise-like network. Utilizing the innate spread­

ing characteristics of IM malware and applying the concept of honeypot, Honey 1M can detect

and block unknown IM malware at its early stage of spreading, which greatly facilitates network

filtration and system quarantine and recovery. In this section, we first give an overview of Hon­

ey 1M, how and why it can detect IM malware early. Then, we discuss several issues that need to

be considered when using HoneyiM in practice. After that, we present the design of Honey 1M

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the functionalities of its components. Finally, we describe the deployment of Honey 1M in an

enterprise-like network.

4.2.1 Overview

Honey 1M is based on the concept of honeypot. As an effective intrusion detection technology,

honeypot has been used widely. According to [95], a honeypot is an iriformation system resource

whose value lies in unauthorized or illicit use of that resource. Not only can a honeypot be a

physical machine or a specialized program, which is the common case, but it can also be an e-mail

address, or even an IM decoy user. Since IM malware always attempts to infect other users on

the victim's contact list, HoneyiM exploits decoy users to detect IM malware. Under normal cir­

cumstances, a client user will not initiate a conversation with a decoy user. Therefore, if the decoy

user receives a file transfer request or a URL-embedded text message originated from a client user,

it is highly probable that malware is spreading and the request/message sender is compromised.

Thanks to decoy users, Honey IM can achieve almost zero false positive in detection. This strong

guarantee, which is rarely offered by other schemes, relieves network administrators from worry­

ing about possible interruption to normal IM users caused by the protection technique. In addition,

HoneyiM can block malicious content that has been detected and inform network administrators

of the attack information, e.g., the IP address of the compromised machine, in real-time.

Figure 4.1 illustrates the working mechanism of Honey 1M. The IM user with an icon of hon­

eypot is the one whose contact list contains a decoy user. The events happen in the following

sequence. (I) Some IM malware compromises an IM client and (2) propagates. However, (3)

when it tries to spread again, it hits a decoy user and (4) is detected by HoneyiM. (5) HoneyiM

blocks the malicious content in IM traffic (either at the edge gateway or at the IM server if the

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IM service is provided within the network) and non-1M traffic1 instantly, and notifies the attack

information to the network administrator.

AIM user
MSNuser

Figure 4.1: Working mechanism ofHoneyiM

\

I

Honey 1M is designed to be independent, with no restriction on the type and location of IM

servers. Therefore, the framework of Honey 1M can be flexibly realized under the context of either

public IM services or private (enterprise) IM services being used in the protected network. The

core of Honey 1M is the same for either server-enhanced (with private servers) or serverless (with

public servers) realization. The difference lies in the implementation and deployment, which will

be discussed in Section 4.2.4. The framework ofHoneyiM consists of several modules and these

modules can be deployed in a single machine or at different places.

1 Doing this is to block accesses to malicious contents, e.g., malicious URLs.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.2 Design Issues

The success of Honey 1M largely depends on the use of decoy users. In the following, we discuss

three issues of Honey IM that are much related to decoy user, including initialization, sensitivity,

and compatibility.

The initialization of Honey 1M mainly refers to the creation and addition of decoy user ac­

counts. Strictly speaking, it is a deployment issue. If public IM services are used in the protected

network, the network administrators need to create decoy accounts and solicit some volunteer IM

users to add those decoy users into their contact lists. In contrast, if an enterprise IM service is

employed, the creation and addition of decoy users can be done automatically by the IM server.

However, the system must notifY volunteer users the purpose and usage of decoy accounts, and

provide a disable (or opt-out) option. This HoneyiM initialization is fulfilled at one time, and the

update of decoy accounts could be performed if necessary. In addition to the volunteer policy for

IM user cooperation, the network administrators might require the IM users who have high con­

nectivity degrees (i.e., the super-nodes in IM networks) to include decoy accounts in their contact

lists.

The sensitivity ofHoneyiM is measured by the ratio between the number of infected users and

that of all IM users in the protected network when the spreading of IM malware is first detected.

The key factor affecting the sensitivity of Honey 1M is the coverage of HoneyiM-the portion of

the IM users equipped with decoy user accounts among all IM users within the network. It is

obvious that HoneyiM cannot detect malware for those users who do not include decoy accounts

in their contact lists. Moreover, IM malware may intentionally or inadvertently bypass HoneyiM

by not hitting decoy users in the infected users' contact lists. The word "intentionally" does not

mean that the IM malware knows the decoys in advance, but reflects its capability of distinguishing

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decoys from other contacts. Here we assume that the threat comes from the outside of the protected

network and the inside IM users do not collude with the outside attackers. Given the coverage of

HoneyiM, which is usually determined by the network administration policy, we will consider

how to counter evasive IM malware to improve HoneyiM sensitivity in Section 4.4.

Compatibility is not an issue if Honey 1M is deployed on an enterprise IM server, since the

server can maintain the compatibility with supported IM clients. However, the compatibility has

to be taken into account if public IM services are used in the protected network. Under this

circumstance, various types of public IM systems may coexist. This is especially true on the

networks with less strict IM usage policies such as campus networks. Thus, HoneyiM should be

able to talk with different types of IM clients.

Honey 1M

messages information

Figure 4.2: Framework ofHoneyiM

4.2.3 System Components

Figure 4.2 shows the general framework of HoneyiM, which comprises four modules each per-

forming a specific functionality. Note that these modules could be deployed either on the same

machine or on different hosts (or network devices). As displayed, the communication module

is responsible for handling IM traffic. It parses the IM traffic to decoy users and delivers it to

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the detection module. The detection module extracts attack vectors and related information from

IM messages, and then feeds them into the suppression and notification modules. The .suppres­

sion module sifts through network traffic and filters out malicious traffic containing attack vec­

tors. Meanwhile, the notification module informs network administrators ofthe detected malware

spreading.

Communication Module

The communication module is the base of Honey 1M. Decoy accounts use it to join IM net­

works and communicate with normal IM clients. This module realizes all necessary functions of

a normal IM client, such as signing on/off, setting presence status, receiving messages and files,

etc. These functions are automatically executed by default and can also be manually operated by

a network administrator. The module only accepts the messages from the users on the contact list

for blocking "spim", the spam on IM networks. The communication module should support all

IM protocols that are used by the protected IM services, and allow multiple accounts to log into

different IM networks simultaneously if necessary.

Detection Module

The detection module serves three purposes: (1) detecting compromised IM clients, (2) iden­

tifYing attack vectors, and (3) validating attack vectors. It accomplishes the first two tasks by

consulting the communication and suppression modules and scrutinizing IM messages delivered

by the communication module, and attains the last task by conducting deep-inspection.

The detection module classifies a sending IM client as compromised, when a decoy account

receives a file transfer request or a text message with URL from the IM client. The reason is that

it is very rare for a normal user to issue such a request or message to the decoy account2 . The

2Even if a normal user accidentally sends a message to the decoy account, the message is usually a pure text

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

detection is not affected by client-to-client or client-to-server traffic encryption because the IM

messages received by a decoy (as a client) must be in plain-text. If IM malware spreads through

file transfer, the attack source, i.e., the IP address of the compromised machine, is immediately

known as a file transfer is usually done between two IM clients directly. However, ifiM malware

spreads through URL message, we cannot identify the sender directly because the message is

usually relayed through server. Under this circumstance, the attack source is inferred with the

help of the suppression module, which will be described shortly. The detection module can easily

generate the attack vector information such as malicious file names and malicious URLs from the

received IM messages.

Furthermore, the detection module performs deep-inspection to verify the virulence of there­

ceived file or URL. There are many techniques available to achieve this purpose. For example,

we can use dynamic taint analysis based techniques such as TaintCheck [63] and Argos [65] to

examine if a received binary can compromise system and to generate the corresponding signa­

ture if a compromise occurs. We also can adopt the technique used by Honey Monkey [I 04] to

check received URLs. HoneyMonkey detects Web exploits by browsing URLs inside a virtual

machine and monitoring the change of system states. In general, any effective and efficient host­

based anomaly detection techniques can be used for deep-inspection. HoneyiM does not contain

any specific technique for analyzing IM malware, but rather provides a platform to apply existing

techniques for malware dissection and leave the choice of what technique to use to network ad­

ministrators. The adopted techniques are implemented as plug-ins of the detection module, and

the deep-inspection is conducted in a contained environment such as a virtual machine to prevent

HoneyiM itself from being compromised.

message.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The incorporation of deep-inspection is justified by the following considerations. First, deep­

inspection can further reduce false positives. It is possible that innocent URLs or files could be

sent with malicious content by IM malware to disguise their malice. Second, deep-inspection

helps discover additional or real attack vectors used by IM malware. For example, file deep­

inspection can generate the signature of malware binary, based on which the filtering is much

more robust against evasion than based on file name. IM mal ware can also use different URLs in

its spreading, which in fact are doorway Web pages redirecting traffic to the same Web site that

hosts real exploits. With URL deep-inspection, the protection can be further enhanced because

not only doorway URLs but also real exploit URLs can be discovered. Last but not least, deep­

inspection uncovers the IM malware activities, such as the infection mechanism and the infected

files, for network administrators.

After attack vector extraction and validation, the detection module supplies the validated attack

vectors and sources to the suppression module for immediate network traffic filtration. In the

meantime, the detection module feeds all collected attack information into the the notification

module, which informs network administrators of the occurrence of an attack in real-time for

prompt system quarantine and recovery.

Suppression Module

The suppression module in essence is a network filter. It takes the attack source and vector

information from the detection module as input. Then, it blocks any traffic from attack sources

and filters out network traffic that contains attack vectors. Different from other modules that have

no requirement for deployment location, the suppression module should be installed at a network

vantage point, where it can monitor all traffic passing through the protected network. The location

ofthe suppression module will be further discussed in Section 4.2.4.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The suppression module consists of two components: non-1M traffic filter and IM traffic filter.

These two components are logically independent for flexible implementation and deployment.

The non-1M traffic filter fulfills two tasks: blocking attack sources and filtering non-1M network

traffic. For the former, the filter simply drops any packet from the attack sources to terminate

malware propagation. For the latter, the filter examines contents of inbound and outbound packets

to identiry if an internal user is attempting to access a malicious Web page or transfer a virulent

file. Any packet containing a matched attack vector will be discarded.

The IM traffic filter also provides two functionalities. The first is traffic filtration, which

weeds out the IM messages that either come from (or go to) the compromised clients or contain

identified malicious file names or URLs. Although a file is usually transferred between two clients,

the IM messages for establishing transfer connections are relayed through servers in plain-text

for mainstream IM products. Therefore, blocking malicious file transfer by dropping connection

establishment messages is not affected by client-to-client encryption. The second functionality of

the IM traffic filter is to help identiry malicious URL sending hosts within the protected network.

Because messages are relayed through server, the detection module cannot identiry the sources of

malicious URL messages. To track the IP address of the compromised host, the IM traffic filter

records the URLs and the corresponding IP addresses of their senders. With this information, the

detection module can easily pinpoint the malicious URL senders.

Notification Module

The notification module plays the role of messenger. Its job is to inform network adminis­

trators of the occurrence of IM malware spread upon the detection of an attack. Given the fast

spread of IM malware, the notification to network administrators should be made in real-time or

near real-time by means of SMS (Short Messaging Service) or IM. The notification module can

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

also notify the victim about the fact that his machine has been infected with IM malware via IM

or e-mail.

4.2.4 Deployment

As mentioned in the overview section, HoneyiM can be deployed with a private IM server in­

side the protected network (server-enhanced deployment) or with public IM services outside the

network (serverless deployment). The major differences between the two deployments lie in the

function location and system initialization of HoneyiM. In serverless deployment, the non-IM

and IM traffic filters of the suppression module have to be placed on the network edge device.

However, in server-enhanced deployment, while the non-IM traffic filter still needs to be on the

network edge device, the best place for the IM traffic filter is the private IM server, where the filter

can see all IM traffic. Moreover, in practice many IM servers already include the message filtering

functionality, making IM traffic filtering much easier there.

The deployment ofHoneyiM also involves system initialization, i.e., the creation and addition

of decoy accounts. In server less deployment, network administrators need to register accounts for

decoy users on public IM services before running Honey IM. Due to the maximum size of contact

list (e.g., 600 for MSN) and the protection consideration, the administrators can create multiple

decoy accounts and use them for different groups ofiM users. Then, the decoy accounts are added

into the volunteer IM users' contact lists with their cooperation. By contrast, the server-enhanced

deployment saves the efforts of network administrators and IM users by automating the creation

and addition of decoy accounts, just like the use of AIM Bots for shopping and movie guide.

This can be achieved by adding a decoy account management module to the private IM server.

The module can also be used to (1) provide IM users with the information of decoy accounts and

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the option to enable/disable them, and (2) update decoy accounts periodically against potential

evasion.

4.2.5 Prototype

To demonstrate the efficacy of Honey 1M, we have built a prototype of the serverless Honey 1M,

which can be easily transformed to the server-enhanced Honey 1M prototype with minor changes in

function location and system initialization. We implement the HoneyiM modules using different

techniques. We use a full-fledged open-source IM client Pidgin (formerly known as Gaim) [8] to

build the communication module. The detection module employs Capture [93], a high interaction

client honeypot on Windows systems, for URL deep-inspection. The detection module extracts

URLs from the communication module and feeds them into Capture, which decides whether a

URL is malicious by comparing the system states such as registry and running processes before

and after the URL is accessed. For any file transfer request HoneyiM does not perform deep­

inspection but immediately fires an alert instead, given that the file transfer method is relatively

unpopular in IM malware spreading and most IM users and programs are vigilant to this type

of threat. Honey 1M receives the delivered file and sends it to network administrators via e-mail.

In the construction of the suppression module, we use Perl IPQueue module for iptables [62] to

perform URL logging and pattern-matching. We implement the notification module with two com­

munication means: e-mail and SMS. The suppression module communicates with the detection

module via network socket, and thus can be deployed on a separate machine.

Because Pidgin supports multi-protocol and multi-account, HoneyiM can log into multiple

accounts on multiple IM networks simultaneously. Therefore, it can provide protection for mul­

tiple public IM networks. Note that the choice of Pidgin and Capture is mainly due to the

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

availability of their source code. Upon the accessibility of source code, any IM clients or anomaly

detection systems can be used to construct HoneyiM.

4.3 Evaluation

In this section, we first evaluate the detection sensitivity of Honey 1M under different coverages

via simulation. Then, we validate the applicability ofHoneyiM through real experiments.

4.3.1 Simulation

When adding decoy accounts is voluntary for IM users on the protected network, it is very possible

that Honey 1M does not cover all IM users. Under this circumstance, how effective would Honey 1M

be? Because we cannot carry out a large-scale experiment in practice, we tum to simulation

for answering this question. We adopt the simulation model from [115] due to the similarity

in propagation between IM mal ware and e-mail worms [115]. The major metric we use is the

percentage ofiM users being infected by the time the IM malware is firstly detected by Honey 1M

(the percentage of infected IM users for short), and we investigate its variation under different

HoneyiM coverages.

1) Simulation Model

The simulation model of IM malware propagation is described as follows. First, when an IM

user receives an IM message, she may or may not read the message immediately. The reading

delay for user i, denoted by T;, is a stochastic variable. When the user receives a message with a

malicious URL 3, she clicks the URL with a clicking probability denoted as Ci. We assume that

Ci is a constant for user i. If the malicious URL is clicked, the malicious code is downloaded and

3The situation for malicious file transfer is similar.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lVI = 1000, E[D] = 8 1v1 = 6ooo. E[DJ = 8
sor---~----~----~--r=~~~

45 [.- -~=~~n[
15,-------~----~----~--r=====il

I- Mean
--- Median!

40

~ 35

~ 30
lll
:J 25
"C

~ 20
~
.!: 15

I

10 \
\

5 '•

~10
f!
Q)

"' :J

\

\
\

OOL_ __ ~~-~-~-~-~~~~~~~
4 6 10 4 6

Coverage of HoneyiM (%) Coverage of HoneyiM (%)

1v1 = 6ooo, E[DJ = 16
14,.---~----~----~--~c====0

~----- ~:~~anj_
12

~10

~ 8

"' :J

al 6 u
~
.!: 4

I
\

OOL_~-~-~--~~~~~~~~~~
4 6 8 10

Coverage of HoneyiM (%)

Figure 4.3: Relations between Honey 1M coverages and infected user percentages

10

executed immediately. It infects the current IM client and sends malicious URLs to all the victim's

contacts with no delay. The malware will not spread again unless the user receives the same URL

and clicks it again.

Before we start the simulation, we need to determine the IM network topology and the values

of each Ci and ~- Here the IM network refers to the virtual network composed by the contact lists

ofthe IM users on the protected network. According to [83] that studies an IM network containing

50,158 users, over 80% of the user contacts are bidirectional, indicating that most of users are also

in the contact lists of their buddies. Thus, we model the IM network topology by an undirected

graph G = < V, E >. For \fv E V, v denotes a node (IM user), and for \fe = (u, v) E E, u, v E V,

e represents an edge that connects two users, u and v, who are in each other's contact list. lVI is

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the total number of nodes, and D(i) is the degree of node i, i.e., the number of edges connected

to node i. The size distribution of contact lists has been identified as scale-free by [61,83, 108],

except that [Ill] claims that Wei bull distribution has a better fit. However, [Ill] does not give the

parameters of Weibull distribution and the number of their monitored IM users is small compared

to [61, 83, 108]. Therefore, we model the IM network topology as power law and set the power

law exponent a to I. 7, based on the measurement results from [61] and [83]. The network is

generated by using GLP power law generator [22] with the given a, the number of nodes JVI,

and the average node degree E[D]. We generate three IM networks with the number of nodes

JVI = 1000/6000/6000 and the average node degree E[D] = 8/8/16, respectively. The maximum

node degrees of the generated networks are all below 600, the maximum size of a contact list for

MSN.

Similar to [115], we assume that IM users have independent behaviors. Due to the large

number of users JVI and independent behaviors, the mean values of user reading delay ~ and

clicking probability Ci, denoted by E [~] and E [Ci] (i = I, 2, .. · , JVj), can be assumed to follow

Gaussian distribution. That is, E[~] ""N(Jlr, CJf) and E[Ci] "'N(f.lc, CJ~). We also assume that~

follows exponential distribution and Ci is a constant for user i, and the generation of~ and Ci is

constrained by~ 2': 0 andCi E [0, I]. In simulation, we useN(20, 102) andN(0.5,0.32) to generate

E[~J and E[Ci], respectively.

2) Simulation Results

Given the network topology, we randomly deploy decoys in the network with different cover­

age 9'\ and run simulation experiments. Each simulation run stops once IM malware hits a decoy

user (blocking is in effect immediately) or timeout occurs. The number of infected users and de­

tection time are the simulation output. For each coverage 9'\, we vary the decoy deployment I 0

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

times and run simulation 100 times for each deployment, and have the mean and median values

derived from these 1, 000 simulation experiments.

With the increase of Honey 1M coverage, the corresponding percentages of infected IM users

on three different IM networks are shown in Figure 4.3, in which the solid curves are for mean

values and the dashed curves are for median values. The mean curves are above the median curves

for very small coverage values, and both types of curves drop sharply and converge to zero with the

increase of coverage. This clearly demonstrates the effectiveness of Honey 1M. Figure 4.4 further

zooms in on y-axis and compares the mean curves of the three IM networks. Even with the 5%

coverage, HoneyiM can detect the spread ofiM malware only after 2% (or 0.4%) of all IM users

are infected for the network with lVI = 1, 000 (or lVI = 6, 000). Compared to the number of nodes

lVI, the average node degree E[D] has much less effect on the performance ofHoneyiM. Two mean

curves, the dashed one for lVI = 6,000,E[D] = 8 and the dotted one for lVI = 6,000,E[D] = 16,

are almost identical.

We also compare the performance ofHoneyiM with that ofiM throttling [108]. The throttling

ofiM malware is usually conducted on an IM server. We use the "no-delay" mode ofiM throttling

and configure the working set size and threshold to 5 and 2, respectively, as suggested. Since it

is difficult to simulate the working set for each user at run time, we simplify the propagation

model by (1) randomly determining a node's working set between 0 and 5 right before the node is

propagating and (2) blocking the node after its propagation (no matter whether the delay queue is

overflowed or not). Therefore, the maximum number of the nodes that a compromised node could

infect is its working set size plus 2 (the threshold). Note that this model is conservative compared

to the original scheme, as we block an infected node permanently once it starts spreading.

Figure 4.5 shows the performance comparisons between HoneyiM (coverage 9t = 3%) and

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 4 '(f2.
-;; 3.5
Q)

~ 3
"'0
2 2.5
u

'* 2
~ 1.5
Q)

~

0.5

~
I
l
~
l

' \
' -.,

\
''\
-....
'\,

\•
~~.~·~ ...

--IV1=1000, E[D]=8
- - - IV1=6000, E[D]=8
· · · · · · · IV1=6000, E[D]=16

.... ..,. ,.. ,_,
~·~·~·-·~·-·-·-·-·-·-

o~----~------~------~------~----~
0 2 4 6 8 10

Coverage of HoneyiM (%)

Figure 4.4: Comparisons among mean curves

throttling on the three IM networks. The solid curves represent HoneyiM and the dotted curves

represent throttling. The dashed curves show the spreading of IM malware with no mitigation.

Note that the y-axis is logarithmic, and all the results for throttling and no mitigation are the

mean values for 100 runs. Compared with throttling, HoneyiM can achieve similar performance

in terms of the number of infected users on a small network (IV I = 1 , 000), and perform much

better when the network becomes bigger (IV I = 6, 000) and has more edges (£ [D] = 16). More

importantly, Honey 1M can accurately detect the malware and block its spread right after detection,

while throttling cannot differentiate malicious traffic from normal traffic, let alone block them in

an effective manner.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to'
,

;
;

I
I , ,

~ 10' ,
Cl)

,
"' I
:J

I
"0
Cl) I
t5
.S!
.E: 101

I_J

t0°
0 50

[V[= 1000, E[D] = 8
10'

[V[= 6000, E[D] = 8

...... --- ------
,, --------------------,

;
I

10' I
I ,

~ ,
Cl) I

"' :J I

~ 10
2 I I """'"""'' t5

.S! I

.5 r to'

l" • -No mitigation 1· ,. • • No mitigation I
-HoneyiM -HoneyiM
"" ·" ThroWing

to'
"" ·" Throttling

tOO t50 200 250 300 0 50 tOO t50 200
Virtual Time (tick) Virtual Time (tick)

to'
[V[= 6000, E[D] = t6

,,- ---------------------
I

I

103 I

l ... --No mitigation
-HoneyiM
""" · Throttling

t0°L_-~-~-~----'====::::'::::::::'J
0 50 tOO t50 200 250 300

Virtual Time (tick)

Figure 4.5: Effect comparisons between Honey 1M and IM throttling

250 300

4.3.2 Real Experiment

We set up a small testbed comprising three machines. We use one machine as the IM client and

the other two as HoneyiM and the network gateway. The suppression module of HoneyiM is

deployed on the network gateway. Both the IM client and HoneyiM run inside virtual machines

for security and ease of experimentation. We first use real IM malware binaries we have collected

to test HoneyiM by running malware on the IM client machine. We test Jitux-A [85], Kelvir-

F [86], Kelvir-M [84], and Kelvir-Q [87], respectively, all of which spread through malicious

URL messages on MSN platforms. The URLs for Jitux-A and Kelvir-F lead to .exe and .scr file

downloading, while the URLs for Kelvir-M and Kelvir-Q point to .php scripts which also harvest

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

victim's e-mail addresses. Unfortunately, due to the legal reaction taken by the IM providers and

security community, the Web pages pointed by these known malicious URLs are either invalid or

have been removed by the hosting Web sites4 . The URL message sent by Kelvir-F is not even

received by Honey 1M, because of the filtering in MSN servers. No detailed information about

IM malware is given by deep-inspection. Thus, we reconfigure the detection module to skip the

deep-inspection step and rerun the tests. The suppression and notification modules work well as

expected.

We also test the prototype using a generic approach which overcomes the difficulty caused by

the invalidity ofthe known malicious URLs. We mimic IM malware by sending malicious URLs

collected by ourselves to decoy accounts. The malicious URLs we used, in principle, have no

difference from those carried by known IM malware in terms of Web exploits. Thus, they should

have the same effect on normal IM clients and HoneyiM. The URL process time of Honey 1M

is mainly determined by deep-inspection, which is usually finished within 30 seconds. Overall,

Honey 1M successfully detects all malicious URLs, updates the URL blacklist, and sends the attack

information to the designated recipient via SMS and e-mail. For emulated malicious file transfers,

Honey 1M automatically receives files, reveals file names to the suppression module, and sends file

payloads to the designated recipient via e-mail. The whole process takes seconds to complete,

since no deep-inspection is performed for file transfer.

4.4 Discussion

In previous sections, we assume that IM malware always attempts to infect all online contacts by

either initiating a file transfer or sending a malicious URL during its spread. This hit-all propa-

4This situation also applies to other known IM malware.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gation strategy, however, might not always be used. For example, "smart" IM malware may send

malicious URLs or files only to the active online contacts, i.e., those contacts that the infected IM

client is talking to; or the propagation is activated only after the infected client receives a message.

Taking the non-hit-all strategy, IM malware might not hit the decoy contact even if the contact list

of the infected IM user includes the decoy accounts.

IM malware can realize the non-hit-all propagation strategy by either intentionally or randomly

selecting a part of all online contacts as targets. To prevent decoys from being easily distinguished,

we can enhance Honey 1M with interaction functionality. As a countermeasure, HoneyiM uses the

interaction functionality to mimic human users for decoys by initiating chat sessions with normal

users, making it much harder for IM malware to tell decoys from others. The chat content can be

important security notices or other user interested information. We readily agree that IM malware

can still avoid decoy contacts even with the interaction functionality, for example, by infecting

the most active contacts. However, the spread of this type of IM malware could be significantly

reduced. According to a recent IM traffic measurement [111], IM users only contact a small

portion of users in their contact lists. On average an AIM user chats with only 1.9 users and an

MSN user chats with 5.5 users.

The random selection of infection targets may also help IM malware bypass decoy contacts.

To study the effect of the random selection on Honey IM, we conduct the following experiments

based on the previous simulation for HoneyiM. We apply a probabilistic propagation strategy to

the experiments. That is, when IM malware propagates, it will send malicious content to each

contact with a probability p. With the probabilistic infection, the number of users that malware

will contact becomes p x n on average, where n is the total number of the online contacts of the

infected user.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lVI = 6000, E[DI = 8
35r:-----------;:=c::::::::===il

---Pr=1
-Pr=05
""" Pr= 0.25

10

Ol_~~~~~~~~~
4 6 0 4 6 10

Coverage of HoneyiM (%) Coverage of HoneyiM (%)

lVI = 6000, E[DI = 16

30 ~

;R
~ 25:

~
"' :J 20

~ 15
.£ I

0~~~~~~~~~~~~
0 4 6 10

Coverage of HoneyiM (%)

Figure 4.6: Effects of randomly selecting infection targets on HoneyiM

10

We test and compare the effects of random target selection on Honey 1M with three different

probabilities p = I, 0.5, 0.25 on the three IM networks, respectively. Here p = I refers to the

aforementioned deterministic infection. The comparison is displayed in Figure 4.6, in which the

curve of p = 0.5 is above the curve of p = 1 but below the curve of p = 0.25. It indicates that

with the decrease of the probability value, the average number of infected users becomes larger.

However, the difference among three curves quickly becomes negligible with the increase of the

coverage. In general, the random target selection has little effect on HoneyiM.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.5 Summary

In this chapter we presented HoneyiM, a novel detection and suppression mechanism to defend

against IM malware for enterprise-like networks. Distinct from all previous defense schemes,

HoneyiM introduces decoy users for IM malware detection. It exploits the basic spreading char­

acteristics of IM malware and guarantees almost zero false positive. With accurate detection, the

suppression of HoneyiM achieves instant network-wide blocking. Moreover, HoneyiM notifies

network administrators ofthe infected machines and the infection features ofiM malware in real­

time. The generic design ofHoneyiM enables its flexible realization on a network that uses either

enterprise IM services or public IM services. We have built a prototype of HoneyiM that works

with public IM services using open-source IM client Pidgin and client honeypot Capture. The

simulation studies demonstrate that even with a small portion of IM users equipped with decoy

accounts, Honey 1M can still detect and block IM malware in the early stage of its spread. The

real experiments on the prototype further demonstrate that HoneyiM is competently capable of

detecting and suppressing the spread of IM malware.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Improving E-mail Reliability

In this chapter we present a Qollaboration-based Autonomous e-mail REputation system (CARE)

that aims to significantly improve e-mail reliability. CARE works at domain level and rates both

spam domains and nonspam domains. CARE enables a domain to build its reputation database,

including both frequently contacted and unacquainted e-mail sending domains, by (I) locally

recording e-mail sending behavior of remote domains and (2) exchanging the local information

with other collaborating domains. CARE examines the trustworthiness of e-mail histories ob­

tained from collaborators by correlating them with local e-mail history, and integrates the local

and remote information to derive the reputation of remote domains.

This chapter is organized as follows. Section 5.1 surveys the related work. Section 5.2 presents

the original motivation ofthis work. Section 5.3 details the design of CARE. Section 5.4 validates

the effectiveness of CARE. Finally, Section 5.5 summarizes this chapter.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Related Work

E-mail reputation systems rate e-mail sending entities based on the history of their sending behav­

iors. The entity can be e-mail address, IP address, or domain name. Some reputation systems use

qualitative measures (e.g., good or bad) while others use quantitative measures (e.g., spam score is

58). Both automatic and manual operations are used in reputation establishment and maintenance.

A brieftaxonomy of e-mail reputation systems is given in [15].

Vipul's razor (later branded as Cloudmark) [67] uses e-mail content as the rating identity.

It maintains a collaborative network through which the signatures of human-identified spam are

submitted and distributed. Cloudmark employs a trust evaluation system (TeS) to maintain the

reputation of each signature contributor and evaluate the trustiness of new signatures. TeS requires

a certain number of pre-selected trusted contributors for bootstrap and may flag signatures as

contested if consensus cannot be reached.

Compared to content-based reputation systems, address-based reputation systems are much

more popular. Among them, blacklists and whitelists are the simplest. Blacklists only contain the

identity of spammers, while whitelists only record the identity of legitimate senders. E-mail ad­

dress based whitelists and blacklists, for example, DOEmail [28], are commonly used by individ­

uals. However, countless new spam addresses and spoofed legitimate addresses render blacklists

almost useless in practice and spam with spoofed whitelisted addresses can avoid filtering and

contaminate whitelists. To defeat e-mail address spoofing, many sender authentication schemes

have been proposed, in which SPF (Sender Policy Framework) [1 09] and DKIM (DomainKeys

Identified Mail) [14] are the most noticeable. SPF and DKIM can help identify the sending party

but cannot determine its legitimacy as spammers also embrace these schemes [82, 94]. As one

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

type ofiP-address-based blacklists, DNSBLs (e.g., [4,5]) disseminate blacklists through DNS and

are widely used. They only contain the IP addresses of spamming sources on centrally-managed

servers DNSBLs detect spamming hosts by using either e-mail traps (or called honeypots) or by

end-user contribution. However, the effectiveness of DNSBLs has been questioned [27, 72, 73].

Besides DNSBLs, other types of IP-address-based reputation systems such as [3] and [2] also

exist. These systems usually are commercial and use proprietary techniques for reputation main­

tenance and dissemination.

The Gmail reputation system [94] rates domains instead of IP addresses. It uses only local

information and identifies the sending domain using both heuristics and SPF and DKIM. Singaraju

et a!. [81] proposed a collaborative e-mail reputation framework called RepuScore, which also

rates domains. RepuScore relies on a central authority to collect information from collaborative

domains and manage the reputation database.

Besides qualitative rating approaches, a few quantitative rating methods have been proposed.

Leiba et al. [50] presented an algorithm to derive the reputation of e-mail domains and IP addresses

by analyzing the SMTP sending paths (in the message header) of known legitimate messages and

spam messages. The reputation score for each IP address is based on the number of spam and

non-spam messages which contain the address in their sending paths. Each intermediate address

in a sending path is associated with a credit value to prevent spammers from forging the sending

path. Within the context of e-mail social networks, Golbeck et al. [33] proposed an algorithm

to infer the relative reputation ratings (the reputation of a sender may be different in the eyes

of different recipients) of e-mail contacts based on the exchange of reputation values. Chirita et

al. [25] developed a reputation scheme called MailRank, which can compute a global reputation

score as well as a personalized score for each e-mail address. MailRank uses pre-selected e-mail

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

addresses with high reputation in bootstrap, and the rating computation is biased towards the pre­

determined address set to combat spammer attacks. However, both systems mentioned above do

not cope with address spoofing attacks. Both [33] and [25] assume the existence of global e-mail

social networks and compute reputation scores in a centralized manner.

Collaboration has been applied into the spam signature generation and e-mail address whitelist

population. To expand whitelists in an automatic manner, LOAF [24], FOAF [21], andRE: [30]

have been developed. These systems leverage the social connections, specifically the friend-of-a­

friend relations among people, to find indirect relations between senders and recipients.

5.2 Motivation

As demonstrated by [98] and [1 01], local e-mail histories can be used to enhance the quality of e­

mail service. However, they also reveal that it is impossible to cover all incoming e-mail messages

merely based on local history. In other words, there are always messages from unseen sources.

Unfortunately, the dynamics of such messages, which directly affect the performance of a local­

history-based reputation system, have not yet been studied. This motivated our following study on

the dynamics of incoming e-mail.

We collected 151-day e-mail logs for inbound messages from our campus e-mail servers. The

logs are daily-based and span from 2007/11/01 to 2008/03/31 with only one daily log missing.

For each inbound message, we logged the time of message arrival, the IP address and domain

name (if any) ofthe sending server, and the spamminess score (between 0 and 300, the bigger, the

more likely to be spam) given by the spam filter. We removed those records without valid fully

qualified domain names (FQDN), since their corresponding messages are almost certainly spam.

As original logs do not contain name ofthe domain each sending server resides in, we derived the

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2500

1il
_g 2000

~
.;: 1500
0
~

1000

500

30

1000

800

"' <::
iii
E 600
0
"0
;:
Q)
<:: 400
0
~

200

60 90 120 150 30 60 90 120 150
Day Day

(a) Server (b) Domain

Figure 5.1: Number of newly-appeared senders per day

domain information using dig and added it to the log. We observed that a significant number of

newly-appeared (never recorded by any previous logs) servers and domains consistently show up

in daily logs, even after 100 days. The average numbers of newly-appeared servers and domains

per day are 27,733 and 1, 152, respectively. More importantly, this observation also holds for those

servers and domains that mostly send legitimate e-mail.

We use metric "good-ratio" to measure sending behavior of a server (and domain). The good-

ratio of a sending server/domain is computed by dividing the number of nonspam messages over

the number of total messages sent from the server/domain across all logs. Good-ratio "1" means

always sending nonspam e-mail and good-ratio "0" means always sending spam. To reduce the

false positives (misclassified nonspam messages) caused by the spam filter, we set spam threshold

as 10 (the default threshold set by the spam filter is 50) and classifY the messages with spam-

miness scores less than or equal to 10 as nonspam and the rest as spam. This classification

results in zero false positive and about 1.8% false negatives (uncaught spam) in one of cam-

pus e-mail archives, which contains 1,800 manually verified spam messages. We further reduce

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

false negatives by applying a few well-established heuristics, which identifY sending servers with

dynamically-allocated IP addresses by their domain names. For example, home PCs with broad­

band connections such as cable modem and DSL mostly have dynamically-allocated IP addresses

and their domain names usually either contain keywords such as "cable" and "dsl" or have dis­

tinct patterns of number and alphabet combinations such as "ip 1 0-23-45-67". Because hosts with

dynamically-allocated IP addresses are widely exploited by spammers and the messages from

those hosts are almost absolutely spam, we mark the messages from dynamically-allocated IP

addresses as spam and change their spamm iness scores to 1 00. Despite that false positives and

false negatives may still exist after conservative classification and rectification, we believe the

misclassification is minor and should not affect our measurement results.

Figure 5.1 illustrates the dynamics of the numbers of newly-appeared servers and domains

whose good-ratios are no less than 0.4 in daily logs. The servers (domains) are further divided

into two groups; one group with good-ratio in [0.4, 0.8) and the other with good-ratio in [0.8,

1]. In Figure 5.1, we can see that the number of newly-appeared servers (domains) per day is not

negligible. For example, even after 100 days, newly-appeared servers with good-ratio over 0.8 per

day are still counted by thousands. Compared to newly-appeared servers per day, newly-appeared

domains with high good-ratios per day are counted by hundreds, still too many to be ignored.

These measurement results suggest that using only local history information may not be suf­

ficient for building a high-quality reputation system. Intuitively, the coverage of senders can be

improved through collaboration, as an e-mail sender that is new to one receiver may be old to

others. Naturally, the peers that have frequent e-mail communications and behave consistently

well become candidates of collaboration. As shown in one of recent spam studies [101], there

exist good e-mail servers from which most of e-mail is nonspam for most of time. HO\yever, that

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

'iii
E
E 0.8
ro
Q.
(/)

0 0.6
c
0

tl ro
J:: 0.4

.~
o;
~ 02
::>
()

0

(a) Server

·n;
E
E 0.8

"' Q.
(/)

0 0.
c
0 u
"' ~ 0.4

.~
o;
~ 02
::>
()

0 0.2 0.4 0.6
Good-ratio

(b) Domain

Figure 5.2: CDF of good-ratio for spam and nonspam (good) e-mail

0.8

J :-:=

I "' :jos~
I 0
I 0
! i Q)

06 ° c
0 ·u
"' 0.4.):;

!1!
·~

02 ~
::>
()

analysis is based on the data from one vantage point and does not study the sender behavior at the

domain level. Therefore, we use our e-mail logs to veri:t)' if their observation holds here and up to

the domain level.

Taking spam (nonspam) messages from the servers with valid domain names in all logs as a

whole, we examine the proportion of spam (nonspam) contributed by the servers with a specific

good-ratio. we plot the CDFs (cumulative distribution functions) of good-ratio for spam and

nonspam at host level in Figure 5.2 (a). The curve in the left top shows the CDF for spam while

the curve in the right bottom shows the CDF ofnonspam. The CDFs at the domain level are shown

in Figure 5.2 (b). We also examined the CDFs with different time window (number of days) and

time range (starting and ending days) and found that those CDFs are very similar to those shown

in Figure 5.2. In general, our results conform to the findings in [101]. The servers with high good-

ratios send the majority of nonspam e-mail and the servers with low good-ratios send the most

of spam, which makes the use of reputation system very helpful. For instance, the servers with

good-ratios no smaller than 0.8 send over 80% of total nons pam e-mail but less than I% of total

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

spam. Hence, whitelisting these servers would save a great deal of filtering resources and improve

the delivery of legitimate e-mail. Moreover, the server-level observations also apply at the domain

level. The curve shapes in Figure 5.2 (b) are very similar to those in Figure 5.2 (a), indicating that

well-behaved domains do exist.

Based on the measurement results, we conclude that (I) e-mail senders can be rated by their

long-term behaviors; (2) local observation may not suffice for building a high-quality rating sys­

tem. These two factors are instrumental to the design of CARE.

5.3 System Design

CARE is designed to be an autonomous system. Each domain equipped with CARE independently

determines collaborating domains, exchanges information with collaborating domains, and derives

the reputation scores of remote domains. Information exchange occurs between two domains that

mutually agree on collaboration. In case no collaboration is available, the system can continue

functioning by using only local e-mail history information. The autonomy eases incremental

deployment of CARE.

As a reputation system, CARE operates collaboratively with other anti-spam techniques. A

typical use of CARE is functioning as a preprocessor of a content-based spam filter. Messages

from domains with sufficiently high reputation scores are directly accepted while messages from

domains with very low reputation scores are directly rejected. For the rest of e-mail, those mes­

sages from domains with no reputation are directly passed to the filter and all the others are marked

with their reputation scores before passing.

The architecture of CARE is shown in Figure 5.3. The local e-mail history module takes the

log of local e-mail servers as input and derives the local Database of E-mail History (DEH). The

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f-l~al DEH -·l Remote DE~_s

'-~f~
Local 1 mod~~:) 1 • module
em~il. 1 ~ ·····

___ history _1

Figure 5.3: Architecture of CARE system

information oflocal DEH is used in both information exchange and reputation derivation. In infor-

mation exchange, the collaborating domains are determined based on their behaviors recorded by

local DEH. In reputation derivation, the local DEH involves in both calculating reputation scores

and assessing the trustworthiness of remote information from collaborating domains. Through the

communication module, a CARE system exchanges information with other collaborating systems

via Simple E-mail Reputation Protocol (SERP). To provide flexibility in deciding collaborating

domains, a policy module is incorporated allowing system administrators to apply their admission

control policies. For example, system administrators may install policies into the policy module

to forbid local domain to share information with certain remote domains. Using both local DEH

and remote DEHs, reputation scores of e-mail sending domains are computed and stored into the

reputation database.

In this section, we first highlight the rating issues in CARE. Then, we describe how to build

the local e-mail history and reputation database. After that, we detail the communication module

and SERP protocol.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.1 Rating Issues

CARE uses domain as the reputation identity, following Gmail reputation service [94] and RepuS­

core [81]. Rating domain is preferred to rating server (IP address), due to the following reasons.

First, domain is easier to be authenticated than IP address, as e-mail authentication schemes (e.g.,

SPF and DKIM) have become popular. Second, e-mail sending policies are usually applied at

domain level for nonspam domains and rating domain can provide better scalability. Third, an IP

address can be used by multiple entities simultaneously, while a domain represents only one entity

at any time. Last but not least, legitimate e-mail servers are usually placed in a separate subdomain

in a large ISP and can be easily distinguished from the subdomain where a spam botnet resides.

CARE does not differentiate e-mail relaying servers from e-mail originating servers in rating.

If an e-mail server not only sends e-mail for its own domain, but also relays e-mail for other

domains, all relayed messages will be counted onto the relay domain. "No open-relay" has been a

rule for e-mail server administration and well followed by decent e-mail service providers.

5.3.2 Local E-mail History

Local e-mail history contains the information of both inbound and outbound e-mail transmissions

occurred locally. If multiple e-mail servers are used in the local domain, the local e-mail history

is the integration of the information recorded by all those servers. Local e-mail history records

the basic information of e-mail transmissions such as e-mail transfer time, spam or not, source

and destination at the host and domain levels. This information usually can be directly extracted

from e-mail log. The domain of a remote host can be easily retrieved, e.g., by using the DNS

utility "dig". The local e-mail history does not include the messages in e-mail log that have

no corresponding domains. In general legitimate e-mail servers of an ISP can be distinguished

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from spam bots residing inside the same ISP by domain name, because legitimate e-mail servers

are usually placed in a separate domain for management and security reasons. For instance, the

broadband host "ip70-161-245-78.hr.hr.cox.net" is in domain "hr.cox.net" while the legitimate

e-mail server "smtp.west.cox.net" is in domain "west.cox.net". E-mail authentication schemes

such as SPF and DKIM can further enhance the accuracy of domain identification as the binding

between an e-mail server and its domain is explicitly expressed by special DNS records. The local

e-mail history can be updated either online or offline.

A CARE system also maintains a special database called Database of E-mail History (DEH),

which is derived from the local e-mail history and used in information sharing. Each sending

domain has a record (X, TM, GM, AD) in the database. A record profiles the e-mail sending

behavior of a domain in the past W days. W is tunable parameter and decided by the system

administrator. X is the name of sending domain. T M and GM are the numbers of total messages

and good (i.e., nons pam) messages from X, respectively. AD is the number of the active days,

in each of which, at least one message from X is received. The database is updated periodically,

e.g., twice per day, and the history information beyond W days could be removed to save disk

space.

5.3.3 Reputation Database

We derive a domain's reputation by combining both local DEH and the remote DEHs collected

from collaborating domains. Initially, we only have local database. Under this circumstance,

the reputation derivation is simplified into computing the good-ratio of each domain in the local

database. After exchanging information with collaborating domains, we also use remote databases

in derivation of domain reputation. However, the information from collaborating domains may not

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 2 Computing Domain Reputation

1: Input: DEH.;t and all collected remote DEH£ls.

2: Output: reputation score for every sender in DEH.;t and DEH£ls.

3: for each remote DEH&? do

4: compute trustworthiness score e£l.

5: end for

6: for each sender .'!C in DEH.;t and those DEH&?s that contain it do

7: compute the reputation score of .'!C.

8: end for

be fully trusted, because the authenticity of information is self-warranted. Therefore, we introduce

a trustworthiness score for each remote database. In the absence of a central authority, we rely

on the local database to assess the trustworthiness of a remote database. Specifically, we examine

the correlation between the local database and a remote database on sending domains in common,

and use the correlation result to compute the trustworthiness score of that database. The remote

databases with high trustworthiness scores are deemed reliable. A domain's reputation score is the

weighted average of good-ratios derived from the local and remote databases, and the weight for

each remote database is the trustworthiness score of the database.

Algorithm 2 describes the general process of domain reputation computing. The notations

used in the algorithm and the rest of the section are summarized in Table 5.1. In general, the

subscript of a symbol represents a history recording domain; it also can represent the domain's

DEH when the context is clear. We use !!l for a generic collaborating domain and f for the local

domain. The superscript of a symbol represents an e-mail sending domain (seen by either local

domain or a collaborating domain). For clarity, a collaborating domain with which we exchange

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.1: Summary of notations

DEH Database ofE-mail History

SMD Set of Major Domains, for history correlation

W History Window

!Z" Domain !Z"

KU(!Z") public key of domain !Z"

Kl(!Z") private key of domain !Z"

GMf number of good messages from !Z" received by ::g

T Mf number of total messages from !Z" received by ::g

AD~ number of active days !Z" sending e-mail to ::g

dg~ good-ratio of !Z" according to DEH.01

ds~ domain score of !Z" according to DEH.01

dr!JC domain reputation of !Z"

yq supporting factor of DEHq for computing 8q

roq correlation coefficient of DEHq for computing 8q

8q trustworthiness score (weight) of DEHq

f3 threshold used in constructing S MD

8 threshold used in computing yq

information is termed as a collaborator, while a domain logged in either local history or a remote

history is termed as a sender.

The process of computing domain reputation consists of two steps. In the first step (lines 3-

5) we compute the trustworthiness score of each remote database DEHq, and in the second step

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(lines 6-8) we compute the reputation score of each sender recorded by either local database or

remote databases.

To compute the trustworthiness score of remote database DEH&~:, we first derive the Set of

Major Domains (SMD) of that database. SMD contains those domains that behave well and stay

active. Such a well-behaved domain is indicated by a large domain score. The domain score is

defined as ds = ?~ x Arf. dsfj stands for the domain score of sender &: in database DEH&~:

and can be easily computed from the record of &: in DEH&~:. Senders with a sufficiently large

domain score are added into SMD, that is, SMD = {&:: ds.o;: 2: /3}, where~ is the threshold

decided locally. By setting f3 to an appropriate value, which implies a high good-ratio (we define

the good-ratio as dg = ?~)and a high ratio of active days (Arf), we can ensure that the majority

of domains in SM Dare legitimate.

Then, we compute the intersection set (denoted by INT) between local SMD (SMD.;r) and

!!l's SMD (SMD&~:) for remote database DEH&~:. Formally, INT &t' = SMD.;r n SMD&~:. We also

compute supporting factorY&~: from INT &t'· By definition,

min(JJINT &~://, 8)
Y&~: = 8 ' (5.1)

where J/S// represents the cardinality of setS, and 8 is a pre-defined system parameter. The ratio-

nale behind computing SMD and INTis to find a reliable common base for correlation computing.

In other words, the sending domains in common for correlation computing (i.e., the set of domains

represented by I NT) are expected to present consistent sending behaviors to receiving domains in-

eluding the local domain .f and remote domain !%. Legitimate e-mail service providers usually

present this characteristic. Computing y is to take the size of common base into consideration.

After that, we compute the correlation coefficient of DEH&~: (denoted by W&~:) from INT &t'

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

based on city block distance (also called Manhattan distance, taxicab distance). For the domains

in INT fil, we first derive their good-ratio vectors in DEH,_y and DEH!il (denoted as V ,_y and V !il

Then, the city block distance between V ,_y and V fil, denoted as dist (V ,_y, V !il), is obtained by sum-

ming up the difference of good-ratios in DEH,_y and DEH!il for each domain in INT fil· Formally,

n

dist(V ,_y, V tl) = L ldgii -dg1l (5.2)
i=l

We get the correlation coefficient OJfil by normalizing dist(V ,_y, V.'ii') into [0, I], that is,

(5.3)

We derive the trustworthiness score of DEH!Jl, efil, by multiplying DEH.'ii''s supporting factor

Ylil and its correlation coefficient OJfil. Formally,

e _ . _ min(II1NT£lll,c5) ·(_ dist(V,_y,Vtl))
a-Y!ll OJfil- D 1 IIINTall · (5.4)

We also incorporate a list of trusted collaborators into CARE. Administrators can add their

trusted collaborating domains into the list or remove any domain from it. The weight of each

domain in the list, that is, 8, is I. This offsets the potential inaccuracy in computing the trust-

worthiness score, since it is possible that a collaborating domain's view is different from the local

view on the same sending domain.

Finally, for each domain .'!£ we derive its reputation score dr!JC by computing the weighted

average of .'Z''s good-ratios (dg!JC) from the DEHs that record .'!£. We use~ to represent a generic

domain whose DEH contains a record for.'!£. The weight for remote database DEHq, (}q, is in

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[0, 1 J and the weight for the local database DEH..;t, 8..;t, is always I. Formally, the reputation score

of domain !:C is defined as

(5.5)

where Q = { ::g: !:C E DEH ::& } • Note that the local good-ratio dg"J can be 0. In this case, sender !:C

has not been recorded by the local domain. By using the weighted average, the sending domains

recorded by both the local domain and collaborators are assessed from a broader view, while the

sending domains recorded only by the local domain are not affected.

5.3.4 Simple E-mail Reputation Protocol (SERP)

CARE systems communicate with one another via SERP. Through SERP, a CARE system can

transfer DEH as well as other messages to its counterpart. SERP adopts a DNS-based authenti-

cation scheme, borrowing the idea of DNS-based e-mail authentication schemes. The DNS-based

authentication is lightweight, easy to install, and incrementally deployable. SERP requires every

deployment domain (e.g., example.com) to publish a special TXT resource record 1 in its _care

DNS subdomain (_care.example.com in this example). The record must specifY the domain name

(or IP address) ofthe host on which CARE is serviced and the associated public key. By doing so,

a remote CARE host can be authenticated by first querying the TXT DNS record under the _care

subdomain of the domain where the host resides, and then checking if the domain name (or IP

address) ofthe host is listed in that record.

Among all domains that have direct e-mail communication with the local domain, CARE

selects those domains that behave consistently well for collaboration. These domains can be easily

1 In case DNS SRV resource record [36] is chosen to publish CARE service, a separate DNS TXT record is still

needed for carrying public key and CARE host information.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

;

\

L.net

X.L.net
IP=10.1.2.3

~-----
(0) DNS\
queries

(1) ~CP h~nds~akin1J

(2) 220 Y.R.net CARE greeting

(5) QUIT

(6) 221 Goodbye

.. -
(7) TCP teardown

- -- -

------~--

~(R.net \
I

Y.R.net
IP=192.168.19.11

./ (0) DNS
queries

"v=1;h=10.1.Z:3;k=rsa; ·· .. _ /
TXT record lor care.L.net" · G _.-·
p=MIGIMAOGCSq ... ;" ·----------- .. ··-- ~ DNS ... -· -· .. · /

TXT record lor care.Rnet
"v=1; h=192.16B.10.11;

k=rsa; p=GNA3CBiQ ... ; "

DNS TCP SERP

Figure 5.4: Procedure of a successful mutual agreement establishment via SERP

decided by examining the local e-mail history. Apparently, they also must have a valid TXT

DNS record for CARE. Each CARE host maintains a list of remote domains satisfying these

requirements and uses it for selecting collaborating domains.

To collaborate, two domains are required to reach a mutual agreement on information ex-

change before sharing DEHs. With the agreement, the two domains will play dual roles of service

requester and provider.

Figure 5.4 illustrates the procedure of establishing a successful mutual agreement via SERP.

In the figure, the CARE hosts in domain L.net (L for short) and R.net are X.L.net (X for short) and

Y.R.net, respectively. Both domains have published their CARE DNS records. Since every CARE

system keeps a list of collaborating domains, by periodically querying the CARE DNS records of

those domains, each system can readily know the positions of CARE hosts inside those domains.

The activity of periodic DNS query is shown as step (0) in Figure 5.4. After X successfully

resolves the domain name of Y, it sends a request to Y for establishing a TCP connection. When

Y receives this request, by checking its list of collaborating domains, it can instantly decide how

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to react: accepting the request if the remote host is in the list or rejecting the request otherwise. In

this example, Y accepts the request. The TCP handshaking process is marked as step (1) in Figure

5.4. Semantically, neither step (0) nor step (1) is part ofSERP. However, SERP needs step (0) for

authentication and step (1) for a reliable data connection and authorization.

After the TCP connection is established, host Y sends a greeting message to the requesting

host X (step (2)), indicating its identity. After receiving the greeting message, X issues command

"HELO" (step (3)), followed by the domain name of X and a certificate (CertL__.R) encrypted by

the public key of domain R (i.e., KU(R)). The certificate CertL R means that domain L allows

domain R to access L's DEH. It is composed by concatenating message M and its signature, that

is, CertL R = MIIEKI(L)[H(M)], where H(M) is the hash value of M and KI(L) is the private

key of domain L. Message M contains: certificate issuer L and recipient R, certificate starting

and expiration times, and the updating interval of L's DEH. The communication proceeds if the

certificate is accepted by Y. Echoing the offer of X, Y responds by sending its certificate CertR L

back to X (step (4)). After a successful exchange, X sends command "QUIT" (step (5)), indicating

completion of the mutual agreement. The TCP connection is tom down (step (7)) as soon as Y

acknowledges the "QUIT" command (step (6)). The above procedure will be repeated once either

of the certificates expires.

After mutual agreement, two domains can exchange their DEHs with each other. The data

exchange procedure is similar to the agreement establishing procedure. The data exchange can

be optimized since DEH is usually updated gradually. We can make a snapshot of DEH as the

reference base and generate a difference file for each update to DEH. Then, we just transfer the

appropriate difference file(s) instead of a whole DEH, reducing the total bytes of data transmission.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~25r-------~---------.--------~--------.
~ -....
Q)

..s:::
15 20
>-
.0
c:
~ 15
en
en
a..

~ 10
ro
Q)
a.
a.
~ 5
>-
"§
Q)

z ~0 30 40
Day

50 60

Figure 5.5: Percentage of newly-appeared IP addresses that have been recorded by the other university

over all newly-appeared IP addresses in daily logs

5.4 System Evaluation

Our evaluation focuses on the potential benefit of using CARE. Specifically, we are interested in

the increase of coverage brought by collaboration, that is, the reduction of the number of newly-

appeared sending domains thanks to collaboration. We have analyzed real e-mail logs, conducted

a real-world estimating experiment, and performed extensive simulations to validate the effective-

ness of CARE on improving the coverage. In addition, we apply a set of simulations to demon-

strate the cheating-resistance of CARE.

5.4.1 Log-based Experiment

We first collected two-month e-mail logs from two universities recorded in the same time period.

All e-mail logs are daily based and record the source IP addresses (no domain information) and

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

spam information for inbound messages.

For newly-appeared IP addresses in the daily logs of each university, we examine how many

of them have already been recorded by the other university and calculate the percentage. The

dynamics of the percentage in the daily logs are shown in Figure 5.5, which demonstrates the

effectiveness of collaboration. The curve for university I shows that about I 6% to 20% of the

newly-appeared IP addresses in university 1 's daily logs have already been recorded in university

2's logs. For university 2, the percentage reduces to 5% but is pretty stable. The difference of

percentage for two universities may be attributed to the difference oftotal IP addresses in their e­

mail logs. On average, university I records 42,850 IP addresses daily, while university 2 observes

87,815 IP addresses in a day. However, the stability of both curves implies the stable gain from

collaboration in the long run.

5.4.2 DNS-based Experiment

Results from this log comparison are encouraging. However, due to access limits, we cannot

obtain more e-mail logs for evaluating CARE comprehensively. To estimate the potential benefit

that could be achieved by multi-domain collaboration, we applied DNS snooping. Due to the

fact that a DNS MX query is usually made before an SMTP transaction, by exploiting the DNS

caching mechanism, we can approximately infer whether e-mail has been sent to a given domain

by snooping (using iterative mode) the DNS cache ofthe sending domain. Ifthe MX record ofthe

receiving domain can be found in the DNS cache, it is highly likely that e-mail communication

between the two domains occurred recently. Clearly, the number of cache hits by DNS snooping

may not accurately reflect real e-mail communications. Nevertheless, DNS snooping provides an

efficient way of estimating the gain of multi-domain collaboration and the derived result can serve

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10000

;:::!
..c: 8000
Q)

..c:
(.)

ro
(.)

..c: 6000
"3:
en
c ·ro 4000
E
0
"0 -0
:tt:

2000

0
0 5 10 15 20 25

Domain

Figure 5.6: Number ofDNS cache hits for 25 .edu domains

as a lower bound.

We randomly selected 25 .edu domains from the Jogs used in Section 5.2 as collaborating

domains, and randomly selected 50,000 inactive domains as DNS snooping target domains. Each

of these snooped domains sent less than 5 messages in total in the logs, and none of them had sent

any messages in the past month before snooping. We use these inactive domains as "ongoing" and

"new" sending domains to study how many of them can be covered by our collaborators.

Not all inactive domains can be snooped. After DNS probing test, 36,646 out of 50,000

domains were used as probing targets. Then, we probed the DNS servers of those domains to find

out how many MX records of the selected 25 .edu domains can be hit. Finally, we group probe

results by each edu domain and show the number of probed domains that had cache hits for the

target edu domain in Figure 5.6. From the figure, we can see an obvious diversity on the number

of probed domains with a cache hit among different edu domains. Some edu domains can be hit

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in DNS caches of more than 8,000 inactive domains, while some other edu domains have less

than 1,000 hits. For an edu domain, a hit in the DNS cache of an inactive domain means that the

edu domain received e-mail from the inactive domain and thus had this domain in its local e-mail

history. Therefore, we can benefit more by collaborating with the edu domains that have more

cache hits. Overall, the total number of cache hits for 25 .edu domains is 12,660, indicating that

the e-mail history from 25 collaborating .edu domains can cover at least 34.6% of newly-appeared

domains. The gain from multi-domain collaboration could be higher with more collaborators and

more types (e.g., .com) of collaborators. In addition, we probed all the inactive domains within

one day. This implies that all 36,646 domains appeared in the same day, which, however, is unlike

to happen in practice according to our measurement results. Thus, the benefit could be even higher

in reality.

5.4.3 Simulation Experiments

We applied simulation to further study the dynamic characteristics and cheating-resistance of

CARE. We implemented a CARE simulator with full CARE functionality. The simulator is driven

by the configuration of e-mail domains (I ,200 nonspam domains and 10,000 spam domains) and

the daily traces of e-mail communications among those domains (60 days). Both spam and non­

spam domains are dynamically born in the trace. Nonspam domains stay until the end of trace,

while spam domains only stay for a short random period. Spam domains always send spam to non­

spam domains, while nonspam domains send to one another both nonspam and spam messages.

We use three types of network topologies (power-law, small world, and random graph) for non­

spam domains. We readily acknowledge that the generated traces may not be representative, since

there is no a priori knowledge on the topology and dynamics of e-mail domains. However, the em-

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

phasis here is on the effectiveness of CARE with no assumption on network and communication

patterns.

The simulator first randomly picks a given percentage of nonspam domains as CARE domains

using the domain configuration, and then starts simulation using the daily traces. In each day,

the simulator first does the message receiving and history recording driven by the trace records,

then updates the reputation database of each CARE domain. In simulation, CARE is used as

the preprocessor of a spam filter. The spam filter has fixed false positive rate and false negative

rate, 0.01 and 0.05, respectively. Messages from a domain with reputation score 0.8 or higher are

regarded as nonspam and messages from a domain with reputation score 0.1 or less are regarded

as spam. If the reputation score cannot ensure acceptance or rejection, CARE tags the message

with no-drop and passes it to the filter. All processing results are logged into the database of e­

mail history to compute reputation. All CARE domains use the same parameter setting (history

window W = 30, f3 = 0.3, and 8 = 3).

We first investigate how CARE improves domain coverage through collaboration. Figure 5. 7

shows the dynamics of percentage of newly-appeared nonspam domains that are covered after

using CARE in each day. The results are displayed from day 20 because of history accumulation.

The "net!", "net2", and "net3" stand for power-law topology, small world topology, and random

graph topology, respectively. To illustrate the effect of increasing CARE deployment rate on the

coverage, we set the percentage of the nons pam domains that use CARE as I 0%, 20%, and 30%

in the simulation, and display their results in Figure 5.7. For each given combination of network

setting and CARE domain percentage, we run ten trials and use the average as the result.

Figure 5.7 clearly demonstrates the effectiveness of CARE collaboration on improving the

coverage of nonspam domains. Moreover, we can see that the increase of percentage of CARE

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10% 20%
80

-net1
70 -+ -net2

-" -net3
60

50 50

?f. 40 ?f. 40

30 30

20 20

10 10

0
20 30 40 50 60 30 40 50 60

day day

30%

I(

50

xf"

b' i'
i'

i'

"' ,..,

60

Figure 5.7: Percentage of newly-appeared nonspam domains that are covered after using CARE in each

day

deployments renders the growth of percentage of domains being covered. Figure 5.8 shows the

dynamics of percentage of newly-appeared spam domains that are covered after using CARE

in each day. The observations from Figure 5.7 also hold in Figure 5.8. Therefore, CARE can

effectively improve the coverage for both spam domains and nonspam domains.

Bigger coverage indicates that more nonspam messages may have reputation scores and be

protected from being dropped by spam filter. We compare the number of the nonspam messages

that are directly accepted under CARE collaboration to that under no CARE collaboration and

find that CARE does increase the number of directly accepted nonspam messages. We show the

percentage of increase in terms ofnonspam messages being directly accepted in each day in Figure

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10% 20%
80

-net1
70 - + -net2

-" -net3
60

50 50

?F. 40 7ft 40

30 30

20 20

10 10

0
20 30 40 50 60 30 40 50 60

day day
30%

Figure 5.8: Percentage of newly-appeared spam domains that are covered after using CARE in each day

5.9. We can see that the acceptance of more nonspam messages, with all three different network

topologies, has been achieved and that the percentage of increase keeps growing with time in any

of the simulation environments. This indicates that the use of CARE can prevent considerably

more nonspam messages from being lost. It is also notable from Figure 5.9 that more CARE

deployments (1 0% vs. 20%) result in more nonspam messages being directly accepted.

Bigger coverage also means that more spam messages may be identified early and directly

rejected. Our comparison of the the spam messages that are directly rejected under CARE col-

laboration with that under no CARE collaboration reveals the benefit of using CARE on fighting

spam. The percentage of increase in terms of spam messages being directly rejected in each day

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10% 20%
80

-net1
70 - + -net2

-" -net3
60

50 50

cf. 40 cf.. 40

30 30

20

10

50 60

30%

50

'#. 40

30

20

50 60

Figure 5.9: Percentage of more nonspam messages being directly accepted after using CARE in each day

is shown in Figure 5.1 0. Clearly, more spam messages can be rejected when more CARE systems

are deployed and their usage becomes longer.

We are also interested in the cheating-resistance of CARE. Although it is difficult for a spam-

mer to cheat other domains by mimicking good behavior, it is relatively easy for a nonspam do-

main with high reputation to tamper its own database and cheat its collaborators. To study this

type of cheating, we randomly pick 10% of CARE domains as cheating domains and rerun the

simulation. A cheating domain always sends a forged database to its collaborators in information

exchange. The forged database has the same records as the genuine database except that the value

of GM is changed to T M- GM, that is, the complement of original GM. We find that CARE can

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10% 20%
80 80

-netll
-net1

70 - + -net2 70 - + -net2
-" -net3 -" -net3

60 60

50 50

#. 40 '#. 40

30 30

20 20

10 - 10

0 0
20 30 40 50 60 20

day

30%

50

#. 40

30

20

10

~0

Figure 5.10: Percentage of more spam messages being directly rejected after using CARE in each day

effectively resist this type of attacks. For those messages being directly rejected, there is no false

positive no matter the cheating scheme is applied or not; For those messages being directly ac-

cepted, the difference of false negatives with and without cheating is negligible. Cheating causes

only about 0.1% reduction in the total number of messages being accepted, rejected, or tagged

by CARE when 30% of nonspam domains use CARE. In general, the simulation shows that the

studied cheating scheme, when applied at a small scale, has negligible effect on CARE.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Summary

In this chapter we have presented the motivation, design, and evaluation of CARE, a collaboration­

based autonomous e-mail reputation system. CARE is a generic e-mail reputation system in that

it rates both spam and nonspam domains in an autonomous manner. Using CARE, each domain

derives the reputation scores of e-mail sending domains by sharing its local observations with

those domains that manifest consistently good behavior. In the evaluation of CARE, we used two

large e-mail log traces from two universities to quantify the benefits of collaboration between two

domains and conducted a large DNS snooping experiment to estimate the potential gain brought by

multi-domain collaboration. Moreover, we performed extensive simulations to further reveal the

dynamics and attack-resistance of CARE in a large-scale environment. Our experimental results

evidently demonstrate the effectiveness of CARE.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions and Future Work

This dissertation focuses on securing Internet-based message systems, a critically important yet

considerably difficult undertaking for today's modern society. To achieve the goal, we identify that

the following two complementary tasks must be fulfilled. They are (I) defending against unwanted

messages and (2) ensuring delivery of wanted messages. For the first task, we have developed the

DBSpam system to thwart e-mail spam laundering and the Honey 1M system to counter malicious

instant messages. For the second task, we have designed the CARE e-mail reputation system to

improve the reliability of e-mail services.

To fight against e-mail spam laundering, one of major approaches to pumping e-mail spam,

we have thoroughly studied the laundering mechanisms and distilled the unique characteristics

of connection correlation and packet symmetry from the behavior of spam laundering. We have

developed a simple yet effective technique, DBSpam, to online detect and break spam launder­

ing activities inside a customer network based on the packet symmetry. We have implemented a

prototype of DBSpam using libpcap on Linux and extensively evaluated its effectiveness and per­

formance through trace-based experiments. The experimental results demonstrate that DBSpam

Ill

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is effective in quickly and accurately capturing and suppressing e-mail spam laundering activities

and is capable of coping with high speed network traffic.

We have developed a generic framework, Honey 1M, to foil the spread of malicious instant

messages in an enterprise-like network. We exploit the inherent characteristic of IM malware

spreading and apply the honeypot technology to the detection of malicious instant messages.

Specifically, Honey 1M uses decoy accounts in normal users' contact lists as honeypots to capture

malicious messages sent by IM mal ware and suppresses the spread of malicious instant messages

by performing network-wide blocking. We have implemented a prototype ofHoneyiM for public

IM services, based on open-source IM client Pidgin and client honeypot Capture. We have

validated the efficacy of Honey 1M through both simulations and real experiments.

To largely improve e-mail reliability, that is, reduce losses ofwanted e-mail, we have designed

a collaboration-based autonomous e-mail reputation system called CARE. CARE introduces inter­

domain collaboration without central authority or third party and enables each e-mail service

provider to independently build its reputation database, including both frequently contacted and

unacquainted sending domains, using the local e-mail history and the information exchanged with

other collaborating domains. We have conducted a number of experiments to validate the ef­

fectiveness of CARE on improving e-mail reliability, including comparing two large e-mail log

traces from two universities, conducting a real experiment ofDNS snooping on more than 36,000

domains, and performing extensive simulation experiments in a large-scale environment.

6.1 Future Work

There are a couple of enhancements and extensions of our existing research that we would like to

explore in the future. First, we would like to incorporate more anomaly detection techniques into

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HoneyiM for deep inspection purpose and evaluate their accuracy and performance in practice

more comprehensively. New types of IM malware continuously emerge and some of those may

be specially designed to evade certain detections. Therefore, different types of deep inspection

techniques are needed. How to combine different detection results and derive accurate information

about suspicious instant messages would be an interesting problem for our future research.

Second, we would like to explore the applicability of HoneyiM to enterprise e-mail systems.

As the trend of fusing different message systems, especially e-mail and instant messaging, is sur­

facing in enterprises and organizations, it would be natural and desirable to apply a uniform and

comprehensive protection scheme for both e-mail and instant messaging in the environments that

have integrated message systems. To that end, Honey 1M is expected to counter not only malicious

instant messages and e-mail messages, but also unwanted bogus advertisements, scam and phish­

ing messages, etc. Therefore, it would be necessary to transform Honey 1M into a general message

protection system that incorporate both anti-e-mail-spam techniques and anti-IM-malware tech­

niques. We plan to investigate how to build such a system and make it both effective and efficient.

We have designed CARE and evaluated its effectiveness using simulations. In the future, we

plan to implement CARE as the open source plug-ins, which contain statistics report functionality,

for mainstream spam filters such as SpamAssassin [90]. We aim to distribute them and collect

practical data to evaluate the effectiveness of CARE in reality.

Last but not least, we plan to leverage the power of GPU (Graphics Processing Unit) to im­

prove the performance of content-based spam filters. Content-based spam filters are very popular.

However, they have relatively high computational cost and may not scale well with the increase of

message volume. To improve the performance of spam filters while keeping their simple single­

threaded architecture, the performance bottleneck of spam filtering should be ofHoaded. As OPUs

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have been powerful and cost-effective, we plan to employ GPUs in the computationally intensive

tasks and develop a GPU-based generic message processing engine to support different content­

based filtering systems.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] The growth of e-mail spam. http: I /en. wikipedia. org/wiki/E-mail_spam#The_
growth_of_e-mail_spam. [Accessed: Oct. 26, 2009].

[2] Habeas senderindex. http://www.habeas.com/Services/For-Receivers/
Sender Index/.

[3] Sender score. http: I /www. senderscore. org/.

[4] SpamCop Blocking List. http: I /www. spamcop. net/bl. shtml.

[5] The Spamhaus Project. http: I /www. spamhaus. org/.

[6] Top layer security. http: I /www. toplayer. com.

[7] Silent email loss by earthlink. http: I /www. pbs. org/ cringely /pulpi t/2006/
pulpit_20061201_001274.html,2006.

[8] Pidgin. http: I /pidgin. im/, 2007.

[9] Skype worm outbreak highlights importance of proactive protection. http: I I sg.
hardwarezone. com/news/view. php?id=8562&cid=8, 2007. [Accessed: Oct. 26,
2009].

[10] Storm worm. http: I /en. wikipedia. org/wiki/Storm_Worm, 2007.

[11] The radicati group, inc. releases email statistics report, 2009-2013-: http: I /www.
reuters.com/article/pressRelease/idUS119688+06-May-2009+MW20090506,
2009.

[12] Total online activities. http: I /www. pewinternet. org/Static-Pages/Trend-Data/
Online-Activites-Total.aspx,2009.

[13] SHARAD AGARWAL, VENKATA N. PADMANABHAN, AND DILIP A. JOSEPH. Addressing
email loss with suremail: Measurement, design, and evaluation. In Proc. USENIX Annual
Technical Conference 2007, pages 281-294, Santa Clara, CA, June 2007.

[14] E. ALLMAN, J. CALLAS, M. DELANY, M. LiBBEY, J. FENTON, AND M. THOMAS. RFC
4871: Domainkeys identified mail (DKIM) signatures, May 2007.

[15] DMITRI ALPEROVITCH, PAUL JUDGE, AND SYEN KRASSER. Taxonomy of email repu­
tation systems. In ICDCS 2007 Workshops, page 27, Toronto, Canada, June 2007.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[16) MAURO ANDREOLINI, ALESSANDRO BULGARELLI, MICHELE COLAJANNI, AND
FRANCESCA MAZZONI. Honeyspam: Honeypots fighting spam at the source. In Proceed­
ings of the 1st USENJX Workshop on Steps to Reducing Unwanted Traffic on the Internet
(SRUTI), pages 77-83, Cambridge, MA, July 2005.

[17] PAUL BACHER, THORSTEN HOLZ, MARKUS KOTTER, AND GEORG WICHERSKI. Know
your enemy: Tracking botnets. http: I /www. honeynet. org/papers/bots/, March
2005.

[18] ADAM BACK. Hashcash- a denial ofservice counter-measure. http://www.hashcash.
org/papers/hashcash. pdf, April 1997.

[19) JEREMY BLOSSER AND DAVID JOSEPHSEN. Scalable centralized bayesian spam mitiga­
tion with bogofilter. In Proceedings of the 18th USENIX Systems Administration Confer­
ence (LISA), pages 1-20, Atlanta, GA, November 2004.

[20) AVRIM BLUM, DAWN XIAODONG SONG, AND SHOBHA VENKATARAMAN. Detection
of interactive stepping stones: Algorithms and confidence bounds. In Proceedings of the
7th International Symposium on Recent Advances in Intrusion Detection (RAID), Sophia
Antipolis, France, September 2004.

[21] DAN BRICKLEY AND LIBBY MILLER. FOAF vocabulary specification 0.9. http://
xmlns.com/foaf/spec/,2007.

[22] TrAN Bu AND DON TOWSLEY. On Distinguishing Between Internet Power Law Topology
Generators. In Proceedings of the 2002 IEEE JNFOCOM, pages 638-647, New York, NY,
June 2002.

[23] CBL. Composite blocking list. http: I /cbl. abuseat. org, 2007.

[24] MACIEJ CEGLOWSKI AND JOSHUA SCHACHTER. LOAF. http:/ /loaf. cantbedone.
org/, 2004.

[25) PAUL-ALEXANDRU CHIRITA, JORG DIEDERICH, AND WOLFGANG NEJDL. MailRank:
Using ranking for spam detection. In Proceedings of ACM International Conference on In­
formation and Knowledge Management, pages 373-380, Bremen, Germany, October 2005.

[26] MARK DELANY. Internet draft: Domain-based email authentication using public keys
advertised in the DNS (DomainKeys), July 2006.

[27) ZHENHAI DUAN, KARTIK GOPALAN, AND XIN YUAN. Behavioral characteristics of
spammers and their network reachability properties. In Proc. IEEE ICC 2007, Glasgow,
Scotland, June 2007.

[28] DAVID ERICKSON. DO Email- default off email. http:/ /doemail. org/.

[29] R. FIELDING, J. GETTYS, J. MOGUL, H. FRYSTYK, L. MASINTER, P. LEACII, AND
T. BERNERS-LEE. RFC 2616: Hypertext transfer protocol- http/1.1, June 1999.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[30] SCOTT GARRISS, MICHAEL KAMINSKY, MICHAEL J. FREEDMAN, BRAD KARP, DAVID
MAZIERES, AND HAIFENG YU. Re: Reliable email. In Proceedings ofthe 3rd USENIX
Symposium on Networked Systems Design and Implementation (NSDI), pages 297-310,
San Jose, CA, May 2006.

[31] PAWEL GBURZYNSKI AND JACEK MAITAN. Fighting the spam wars: A remailer approach
with restrictive aliasing. ACM Transactions on Internet Technology, 4(1):1-30, February
2004.

[32] RANDALL GELLENS AND JOHN C. KLENSIN. RFC 2476: Message submission, December
1998.

[33] JENNIFER GOLBECK AND JAMES HENDLER. Reputation network analysis for email fil­
tering. In CEAS 2004, Mountain View, CA, July 2004.

[34] A LEKS GOSTEV. Social engineering: the latest chapter. http: I /www. viruslist. com/
en/weblog?weblogid=168136245, August 2005.

[35] PAUL GRAHAM. A plan for spam. http: I /www. paulgraham. com/ spam. html, 2002.

[36] A. GULBRANDSEN, P. VIXIE, AND L. ESIBOV. RFC 2782: A DNS RR for specifying the
location of services (DNS SRV), 2000.

[37] SHLOMO HERSHKOP AND SALVATORE J. STOLFO. Combining email models for false
positive reduction. In Proceedings of the lith ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 98-107, Chicago, IL, August 2005.

[38] MATTHEW HICKS. Reuters suspends im service due to kelvir worm. http: I /www. eweek.
com/article2/0, 1759, 1786151,00. asp, Apri 2005.

[39] NEAL HINDOCHA AND ERIC CHIEN. Malicious Threats and Vulnerabilities in In-
stant Messaging. http: I /www. symantec. com/avcenter/reference/malicious.
threats.instant.messaging.pdf,2003.

[40] TIM HUNTER, PAUL TERRY, AND ALAN JUDGE. Distributed tarpitting: Impeding spam
across multiple servers. In Proceedings of the 17th USENIX Systems Administration Con­
ference (LISA), pages 223-236, San Diego, CA, October 2003.

[41] IBM. Lotus Sametime. http: I /www-142. ibm. com/software/sw-lotus/sametime.

[42] JOHN JOANNIDIS. Fighting spam by encapsulating policy in email addresses. In Pro­
ceedings of the lOth Annual Network and Distributed System Security Symposium (NDSS),
pages 1-8, San Diego, CA, February 2003.

[43] JAEYEON JUNG, VERN PAXSON, ARTHUR W. BERGER, AND HARI BALAKRISHNAN.
Fast portscan detection using sequential hypothesis testing. In Proceedings of the 25th
IEEE Symposium on Security and Privacy, pages 211-225, Oakland, CA, May 2004.

[44] JAEYEON JUNG AND EMIL SIT. An empirical study of spam traffic and the use of DNS
black lists. In Proceedings of ACM SIGCOMM Internet Measurement Conference 2004,
pages 370-375, Taormina, Italy, October 2004.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[45] KASPERSKY. IM-Worm.Win32.Bropia.aj. http: I /www. viruslist. com/en/viruses/
encyclopedia?virusid=72841.

[46] KASPERSKY. IM-Worm.Win32.0panki.d. http: I /www. viruslist. com/en/viruses/
encyclopedia?virusid=84950.

[47] J. KLENSIN. RFC 2821: Simple mail transfer protocol, April2001.

[48] BALACHANDER KRISHNAMURTHY AND ED BLACKMOND. SHRED: Spam harass­
ment reduction via economic disincentives. http: I /www. research. att. com/ -bala/
papers/shred-ext.pd£,2004.

[49] M. LEECH, M. GANIS, Y. LEE, R. KURIS, D. KOBLAS, AND L. JONES. RFC 1928:
Socks protocol version 5, March 1996.

[50] BARRY LEIBA, JOEL OSSHER, V.T. RAJAN, RICHARD SEGAL, AND MARK WEGMAN.
Smtp path analysis. In CEAS 2005, Mountain View, CA, July 2005.

[51] KANG LI, CALTON PU, AND MUSTAQUE AHAMAD. Resisting spam delivery by tcp
damping. In Proceedings of the 1st Coriference on Email and Anti-Spam, pages 191-198,
Mountain View, CA, July 2004.

[52] KANG LI AND ZHENYU ZHONG. Fast statistical spam filter by approximate classifications.
In Proceedings of ACM 2006 SIGMETRICS International Conference on Measurement and
Modeling ofComputer Systems, pages 347-358, St. Malo, France, June 2006.

[53] ZHIJUN LIU AND DAVID LEE. Coping with instant messaging worms- statistical modeling
and analysis. In Proceedings of the 15th IEEE Workshop on Local and Metropolitan Area
Networks, Princeton, NJ, June 2007.

[54] ZHIJUN LIU, GUOQIANG SHU, NA LI, , AND DAVID LEE. Defending against instant
messaging worms. In Proceedings of IEEE GLOBECOM 2006, pages 1-6, San Francisco,
CA, Nov. 2006.

[55] JIM LYON AND MENG WENG WONG. Internet draft: Sender id: Authenticating e-mail,
October 2004.

[56] MOHAMMAD MANNAN AND PAUL C. VAN OORSCHOT. Secure Public Instant Messaging:
A Survey. In Proceedings of the 2nd Annual Coriference on Privacy, Security, and Trust,
pages 69-77, Fredericton, NB, Canada, 2004.

[57] MOHAMMAD MANNAN AND PAUL C. VAN OORSCHOT. On Instant Messaging Worms,
Analysis and Countermeasures. In Proceedings of WORM 2005, pages 2-11, Fairfax, VA,
Nov. 2005.

[58] MARIO. MTA authorization records in DNS. http://www.ietf.org/html.
charters/OLD/marid-charter.html,2004.

[59] MICROSOFT. Office Live Communications Server. http: I /www. microsoft. com/
office/livecomm/prodinfo/default.mspx.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[60] MICROSOFT. The penny black project. http: //research. microsoft. com/research/
sv/PennyBlack/,2003.

[61] CHERYL D. MORSE AND HAINING WANG. The Structure of An Instant Messenger Net­
work and Its Vulnerability to Malicious Codes. In Proceedings of ACM S/GCOMM 2005
Poster Session, Philadelphia, PA, Aug. 2005.

[62] NETFILTER. iptables project. http://www. netfil ter. org/projects/iptables/.

[63] JAMES NEWSOME AND DAWN SONG. Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software. In Proceedings of
the 12th NDSS, San Diego, CA, Feb. 2005.

[64] NORMAN. Norman sandbox whitepaper. http://download.norman.no/
whitepapers/whitepaper_Norman_SandBox.pdf.

[65] GEORGIOS PORTOKALIDIS, ASIA SLOWINSKA, AND HERBERT BOS. Argos: an emulator
for fingerprinting zeroday attacks. In Proceedings of the EUROSYS 2006, Leuven, Belgium,
April2006.

[66] POSTINI. Sender behavior analysis. http://www. postini. com, 2006.

[67] VIPUL VED PRAKASH AND ADAM ODONNELL. Fighting spam with reputation systems.
ACM Queue, 3(9), November 2005.

[68] NIELS PROVOS. A virtual honeypot framework. In Proceedings of the 13th USENIX
Security Symposium, pages 1-14, San Diego, CA, August 2004.

[69] SVETLANA RADOSAVAC, JOHN S. BARAS, AND IORDANIS KOUTSOPOULOS. A frame­
work for mac protocol misbehavior detection in wireless networks. In Proceedings ofthe
4th ACM workshop on Wireless security (WiSe), pages 33-42, Cologne, Germany, Septem­
ber 2005.

[70] COSTIN RAIU. The IM worms armada. http://www. virus list. com/en/weblog?
weblogid=203678309, October 2006.

[71] ANIRUDH RAMACHANDRAN, DAVID DAGON, AND NICK FEAMSTER. Can dns-based
blacklists keep up with bots? In CEAS 2006, Mountain View, CA, July 2006.

[72] ANIRUDH RAMACHANDRAN AND NICK FEAMSTER. Understanding the network-level
behavior of spammers. In Proc. ACM S/GCOMM 2006, Pisa, Italy, September 2006.

[73] ANIRUDH RAMACHANDRAN, NICK FEAMSTER, AND SANTOSH VEMPALA. Filtering
spam with behavioral blacklisting. In Proc. ACM CCS 2007, Alexandria, VA, October
2007.

[74] RHYOLITE. Distributed checksum clearinghouse (dec). http://www. rhyolite. com/
anti-spam/dcc/, 2000.

[75] MARTIN ROESCH. Snort- lightweight intrusion detection for networks. In Proceedings of
the 13th USENIX Systems Administration Coriference (LISA), pages 229-238, Seattle, WA,
November 1999.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[76] MIKE SACHOFF. Botnets driving spam volume. http://www. webpronews. com/
topnews/2009/07/29/botnets-driving-spam-volume, 2009. [Accessed: Oct. 26,
2009].

[77] ROEL SCHOUWENBERG. Kelvir changes its approach. http://www. viruslist. com/
en/weblog?weblogid=162243612, April2005.

[78] ROEL SCHOUWENBERG. Do you like photos? http: I /www. viruslist. com/en/
weblog?weblogid=199354341,Sept.2006.

[79] ROEL SCHOUWENBERG. MSN filter bypassing- part 2. http://www. virus list. com/
en/weblog?weblogid=199850358,Sept.2006.

[80] SECURITYTRACKER. Formmail.pl web-to-email cgi script allows unauthorized users
to send mail anonymously. http: I /www. securi tytracker. com/alerts/2001/Mar/
1001108. html, 2001.

[81] GAUTAM SINGARAJU AND BYUNGHOON KANG. Repuscore: Collaborative reputation
management framework for email infrastructure. In Proc. the 21st Large Installation System
Administration (LISA), 2007.

[82] GAUTAM SINGARAJU, JEFF MOSS, AND BYUNGHOON KANG. Tracking email reputation
for authenticated sender identities. In CEAS 2008, 2008.

[83] REGINALD D. SMITH. InstantMessagingasaScale-FreeNetwork. http://arxiv.org/
abs/cond-mat/0206378v2,2002.

[84] SOPHOS. Troj/Kelvir-M. http://www.sophos.com/virusinfo/analyses/
trojkelvirm.html.

[85] SOPHOS. W32/Jitux-A. http://www.sophos.com/virusinfo/analyses/
w32j i tuxa. html.

[86] SOPHOS. W32/Kelvir-F. http://www.sophos.com/virusinfo/analyses/
w32kelvirf.html.

[87] SOPHOS. W32/Kelvir-Q. http://www.sophos.com/virusinfo/analyses/
w32kel virq. html.

[88] SOPHOS. W32/Sohana-R. http://www.sophos.com/security/analyses/
w32sohanar. html.

[89] SORBS. Spam and open relay blocking system (sorbs). http: I /www. sorbs. net/, 2006.

[90] SPAMASSASSIN. The apache spamassassin project. http: I I spamassassin. apache.
org/, 2006.

[91] SPAMHAUS. Increasing spam threat from proxy hijackers. http: I /www. spamhaus. org/
news.lasso?article=156,2005.

[92] SPAMLINKS. Challenge/response spam filters. http: I I spamlinks. net/filter-cr.
htm, 2006.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[93) RAMON STEENSON AND CHRISTIAN SEIFERT. Capture: A high interaction client honey­
pot. http:llwww.nz-honeynet.orglcapture.html.

[94] BRADLEY TAYLOR. Sender reputation in a large webmail service. In CEAS 2006, Moun­
tain View, CA, 2006.

[95] THE HONEYNET PROJECT. Know Your Enemy: Learning about Security Threats (2nd
Edition). Addison-Wesley Professional, May 2004.

[96) AARJAV J. TRIVEDI, PAUL Q. JUDGE, AND SVEN KRASSER. Analyzing Network and
Content Characteristics of Spim Using Honeypots. In Proceedings of the 3rd USENIX
SRUTI, Santa Clara, CA, June 2007.

[97] AARON TURNER. Tcpreplay. http: I ltcpreplay. synfin. netltracl, 2006.

[98) RICHARD DANIEL TWINING, MATTHEW M. WILLIAMSON, MIRANDA MOWBRAY, AND
MAHER RAHMOUNI. Email prioritization: Reducing delays on legitimate mail caused by
junk mail. In Proc. USENIX Annual Technical Conference 2004, 2004.

[99) RICHARD DANIEL TWINING, MATTHEW M. WILLIAMSON, MIRANDA MOWBRAY, AND
MAHER RAHMOUNJ. Email prioritization: Reducing delays on legitimate mail caused by
junk mail. In Proceedings of USENIX 2004 Annual Technical Conference, pages 45-58,
Boston, MA, June 2004.

[100) JAMIE TWYCROSS AND MATTHEW M. WILLIAMSON. Implementing and testing a virus
throttle. In Proceedings of the 12th USENIX Security Symposium, pages 285-294, Wash­
ington, DC, August 2003.

[101) SHOBHA VENKATARAMAN, SUBHABRATA SEN, OLIVER SPATSCHECK, PATRICK
HAFFNER, AND DAWN SONG. Exploiting network structure for proactive spam mitiga­
tion. In Proc. USENIX Security 2007, page 149166, Boston, MA, August 2007.

[1 02] ABRAHAM WALD. Sequential Analysis. Dover Publications, June 2004.

[1 03) MICHAEL WALFISH, J.D. ZAMFIRESCU, HARI BALAKRISHNAN, DAVID KARGER, AND
SCOTT SHENKER. Distributed quota enforcement for spam control. In Proceedings of the
3rd USENIX Symposium on Networked Systems Design and Implementation (NSDI), pages
281-296, San Jose, CA, May 2006.

[104] YI-MIN WANG, DOUG BECK, XUXIAN JIANG, ROUSSI ROUSSEV, CHAD VERBOWSKI,
SHUO CHEN, AND SAM KING. Automated web patrol with strider honeymonkeys: Finding
web sites that exploit browser vulnerabilities. In Proceedings of the 13th NDSS, San Diego,
CA, Feb. 2006.

[105) DAVID WATSON, THORSTEN HOLZ, AND SVEN MUELLER. Know your enemy: Phishing.
http: I lwww. honeynet. orglpaperslphishingl, May 2005.

[I 06] MICHAEL WELZL. end2end-interest: A message to authors of pftdnet papers. http:
llmailman.postel.orglpipermaillend2end-interesti2008-Januaryl,2008.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[107] MATTHEW M. WILLIAMSON. Design, implementation and test of an email virus throttle.
In Proceedings of the 19th Annual Computer Security Applications Conference, pages 76--
85, Las Vegas, Nevada, December 2003.

[108] MATTHEW M. WILLIAMSON, ALAN PARRY, AND ANDREW BYDE. Virus throttling for
instant messaging. Technical report, HP Lab Bristol, May 2004.

[109] MENG WENG WONG AND WAYNE SCHLITT. RFC 4408: Sender policy framework (SPF)
for authorizing use of domains in e-mail, version 1, April2006.

[110] DALE WOOLRIDGE, JAMES LAW, AND MOTO KAWASAKI. The qmail spam throttle
mechanism. http: I I spamthrottle. qmail. calmanl qmail-spamthrottle. 5. html,
2004.

[111] ZHEN XIAO, LEI GUO, AND JOHN TRACEY. Understanding Instant Messaging Traffic
Characteristics. In Proceedings ofthe 27th ICDCS, Toronto, Canada, June 2007.

[112] BILL YERAZUNIS. CRM 114 - the controllable regex mutilator. http: I I crm114.
sourceforge.net,2003.

[113] YIN ZHANG AND VERN PAXSON. Detecting stepping stones. In Proceedings ofthe 9th
USENIX Security Symposium, pages 171-184, Denver, CO, August 2000.

[114] FENG ZHOU, LI ZHUANG, BEN Y. ZHAO, LING HUANG, ANTHONY D. JOSEPH, AND
JOHN KUBIATOWICZ. Approximate object location and spam filtering on peer-to-peer sys­
tems. In Proceedings of the 4th ACMIIFIPIUSENIX International Middleware Conference,
Markus Endler and Douglas Schmidt, editors, volume 2672 of LNCS, pages 1-20, Rio de
Janeiro, Brazil, June 2003. Springer Berlin/Heidelberg.

[115] CLIFF C. ZOU, DON TOWSLEY, AND WEIBO GONG. Modeling and Simulation Study of
the Propagation and Defense of Internet Email Worm. IEEE Transactions on Dependable
and Secure Computing, 4(2):105-118, April-June 2007.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

VITA

Mengjun Xie

Mengjun Xie received his Bachelor of Engineering and Master of Engineering degrees, both in

Computer Science, from the East China Normal University in 1999 and 2002 respectively. He has

been a PhD student in the Department of Computer Science at the College of William and Mary

since 2003. His research interests lie in network security, network systems, system security, and

operating systems. His current focus is on message systems security and reliability.

123

	Towards secure message systems
	Recommended Citation

	tmp.1539734415.pdf.P4tUo

