83 research outputs found

    Chameleon: A Hybrid Secure Computation Framework for Machine Learning Applications

    Get PDF
    We present Chameleon, a novel hybrid (mixed-protocol) framework for secure function evaluation (SFE) which enables two parties to jointly compute a function without disclosing their private inputs. Chameleon combines the best aspects of generic SFE protocols with the ones that are based upon additive secret sharing. In particular, the framework performs linear operations in the ring Z2l\mathbb{Z}_{2^l} using additively secret shared values and nonlinear operations using Yao's Garbled Circuits or the Goldreich-Micali-Wigderson protocol. Chameleon departs from the common assumption of additive or linear secret sharing models where three or more parties need to communicate in the online phase: the framework allows two parties with private inputs to communicate in the online phase under the assumption of a third node generating correlated randomness in an offline phase. Almost all of the heavy cryptographic operations are precomputed in an offline phase which substantially reduces the communication overhead. Chameleon is both scalable and significantly more efficient than the ABY framework (NDSS'15) it is based on. Our framework supports signed fixed-point numbers. In particular, Chameleon's vector dot product of signed fixed-point numbers improves the efficiency of mining and classification of encrypted data for algorithms based upon heavy matrix multiplications. Our evaluation of Chameleon on a 5 layer convolutional deep neural network shows 133x and 4.2x faster executions than Microsoft CryptoNets (ICML'16) and MiniONN (CCS'17), respectively

    ESCAPED: Efficient Secure and Private Dot Product Framework for Kernel-based Machine Learning Algorithms with Applications in Healthcare

    Full text link
    To train sophisticated machine learning models one usually needs many training samples. Especially in healthcare settings these samples can be very expensive, meaning that one institution alone usually does not have enough on its own. Merging privacy-sensitive data from different sources is usually restricted by data security and data protection measures. This can lead to approaches that reduce data quality by putting noise onto the variables (e.g., in ϵ\epsilon-differential privacy) or omitting certain values (e.g., for kk-anonymity). Other measures based on cryptographic methods can lead to very time-consuming computations, which is especially problematic for larger multi-omics data. We address this problem by introducing ESCAPED, which stands for Efficient SeCure And PrivatE Dot product framework, enabling the computation of the dot product of vectors from multiple sources on a third-party, which later trains kernel-based machine learning algorithms, while neither sacrificing privacy nor adding noise. We evaluated our framework on drug resistance prediction for HIV-infected people and multi-omics dimensionality reduction and clustering problems in precision medicine. In terms of execution time, our framework significantly outperforms the best-fitting existing approaches without sacrificing the performance of the algorithm. Even though we only show the benefit for kernel-based algorithms, our framework can open up new research opportunities for further machine learning models that require the dot product of vectors from multiple sources.Comment: AAAI 2021, Preprint version of the full paper with supplementary materia

    Outsourced Privacy-Preserving kNN Classifier Model Based on Multi-Key Homomorphic Encryption

    Get PDF
    Outsourcing the k-Nearest Neighbor (kNN) classifier to the cloud is useful, yet it will lead to serious privacy leakage due to sensitive outsourced data and models. In this paper, we design, implement and evaluate a new system employing an outsourced privacy-preserving kNN Classifier Model based on Multi-Key Homomorphic Encryption (kNNCM-MKHE). We firstly propose a security protocol based on Multi-key Brakerski-Gentry-Vaikuntanathan (BGV) for collaborative evaluation of the kNN classifier provided by multiple model owners. Analyze the operations of kNN and extract basic operations, such as addition, multiplication, and comparison. It supports the computation of encrypted data with different public keys. At the same time, we further design a new scheme that outsources evaluation works to a third-party evaluator who should not have access to the models and data. In the evaluation process, each model owner encrypts the model and uploads the encrypted models to the evaluator. After receiving encrypted the kNN classifier and the user’s inputs, the evaluator calculated the aggregated results. The evaluator will perform a secure computing protocol to aggregate the number of each class label. Then, it sends the class labels with their associated counts to the user. Each model owner and user encrypt the result together. No information will be disclosed to the evaluator. The experimental results show that our new system can securely allow multiple model owners to delegate the evaluation of kNN classifier

    Confidential Boosting with Random Linear Classifiers for Outsourced User-generated Data

    Full text link
    User-generated data is crucial to predictive modeling in many applications. With a web/mobile/wearable interface, a data owner can continuously record data generated by distributed users and build various predictive models from the data to improve their operations, services, and revenue. Due to the large size and evolving nature of users data, data owners may rely on public cloud service providers (Cloud) for storage and computation scalability. Exposing sensitive user-generated data and advanced analytic models to Cloud raises privacy concerns. We present a confidential learning framework, SecureBoost, for data owners that want to learn predictive models from aggregated user-generated data but offload the storage and computational burden to Cloud without having to worry about protecting the sensitive data. SecureBoost allows users to submit encrypted or randomly masked data to designated Cloud directly. Our framework utilizes random linear classifiers (RLCs) as the base classifiers in the boosting framework to dramatically simplify the design of the proposed confidential boosting protocols, yet still preserve the model quality. A Cryptographic Service Provider (CSP) is used to assist the Cloud's processing, reducing the complexity of the protocol constructions. We present two constructions of SecureBoost: HE+GC and SecSh+GC, using combinations of homomorphic encryption, garbled circuits, and random masking to achieve both security and efficiency. For a boosted model, Cloud learns only the RLCs and the CSP learns only the weights of the RLCs. Finally, the data owner collects the two parts to get the complete model. We conduct extensive experiments to understand the quality of the RLC-based boosting and the cost distribution of the constructions. Our results show that SecureBoost can efficiently learn high-quality boosting models from protected user-generated data

    Efficient Privacy-Aware Imagery Data Analysis

    Get PDF
    The widespread use of smartphones and camera-coupled Internet of Thing (IoT) devices triggers an explosive growth of imagery data. To extract and process the rich contents contained in imagery data, various image analysis techniques have been investigated and applied to a spectrum of application scenarios. In recent years, breakthroughs in deep learning have powered a new revolution for image analysis in terms of effectiveness with high resource consumption. Given the fact that most smartphones and IoT devices have limited computational capability and battery life, they are not ready for the processing of computational intensive analytics over imagery data collected by them, especially when deep learning is involved. To resolve the bottleneck of computation, storage, and energy for these resource constrained devices, offloading complex image analysis to public cloud computing platforms has become a promising trend in both academia and industry. However, an outstanding challenge with public cloud is on the protection of sensitive information contained in many imagery data, such as personal identities and financial data. Directly sending imagery data to the public cloud can cause serious privacy concerns and even legal issues. In this dissertation, I propose a comprehensive privacy-preserving imagery data analysis framework which can be integrated in different application scenarios to assist image analysis for resource-constrained devices with efficiency, accuracy, and privacy protection. I first identify security challenges in the utilization of public cloud for image analysis. Then, I design and develop a set of novel solutions to address these challenges. These solutions will be featured by strong privacy guarantee, lightweight computation, low accuracy loss compared with image analysis without privacy protection. To optimize the communication overhead and resource utilization of using cloud computing, I investigate edge computing, which is a promising technique to ameliorate the high communication overhead in cloud-assisted architectures. Furthermore, to boost the performance of my solutions under both cloud and edge deployment, I also provide a set of pluggable enhancement modules to be applied to meet different requirements for various tasks. By exploring the features of edge computing and cloud computing, I flexibly incorporate them as a comprehensive framework to provide privacy-preserving image analysis services

    Data Service Outsourcing and Privacy Protection in Mobile Internet

    Get PDF
    Mobile Internet data have the characteristics of large scale, variety of patterns, and complex association. On the one hand, it needs efficient data processing model to provide support for data services, and on the other hand, it needs certain computing resources to provide data security services. Due to the limited resources of mobile terminals, it is impossible to complete large-scale data computation and storage. However, outsourcing to third parties may cause some risks in user privacy protection. This monography focuses on key technologies of data service outsourcing and privacy protection, including the existing methods of data analysis and processing, the fine-grained data access control through effective user privacy protection mechanism, and the data sharing in the mobile Internet
    corecore