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Today’s common online services (social networks, media streaming, messaging,

email, etc.) bring convenience. However, these services are susceptible to privacy

leaks. Certainly, email snooping by rogue employees, email server hacks, and acci-

dental disclosures of user ratings for movies are some sources of private informa-

tion leakage. This dissertation investigates the following question: Can we build

systems that (a) provide strong privacy guarantees to the users, (b) are consistent

with existing commercial and policy regimes, and (c) are affordable?

Satisfying all three requirements simultaneously is challenging, as provid-

ing strong privacy guarantees usually necessitates either sacrificing functionality,

incurring high resource costs, or both. Indeed, there are powerful cryptographic

protocols—private information retrieval (PIR), and secure two-party computation

(2PC)—that provide strong guarantees but are orders of magnitude more expen-

sive than their non-private counterparts. This dissertation takes these protocols as

viii



a starting point and then substantially reduces their costs by tailoring them using

application-specific properties. It presents two systems, Popcorn and Pretzel, built

on this design ethos.

Popcorn is a Netflix-like media delivery system, that provably hides, even

from the content distributor (for example, Netflix), which movie a user is watch-

ing. Popcorn tailors PIR protocols to the media domain. It amortizes the server-side

overhead of PIR by batching requests from the large number of concurrent users re-

trieving content at any given time; and, it forms large batches without introducing

playback delays by leveraging the properties of media streaming. Popcorn is con-

sistent with the prevailing commercial regime (copyrights, etc.), and its per-request

dollar cost is 3.87× that of a non-private system.

The other system described in this dissertation, Pretzel, is an email system

that encrypts emails end-to-end between senders and intended recipients, but al-

lows the email service provider to perform content-based spam filtering and tar-

geted advertising. Pretzel refines a 2PC protocol. It reduces the resource consump-

tion of the protocol by replacing the underlying encryption scheme with a more

efficient one, applying a packing technique to conserve invocations of the encryp-

tion algorithm, and pruning the inputs to the protocol. Pretzel’s costs, versus a

legacy non-private implementation, are estimated to be up to 5.4× for the email

provider, with additional but modest client-side requirements.

Popcorn and Pretzel have fundamental connections. For instance, the cryp-

tographic protocols in both systems securely compute vector-matrix products. How-

ever, we observe that differences in the vector and matrix dimensions lead to dif-

ferent system designs.

Ultimately, both systems represent a potentially appealing compromise: sac-

rifice some functionality to build in strong privacy properties at affordable costs.
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Chapter 1

Introduction

Privacy is essential. But today’s common online services undermine it, while focus-
ing on providing conveniences to users. A relevant question is, how can one use
these services while hiding the content of one’s requests, from both the network
and the service provider?

The motivation for this question is a fundamental tension in the ecosys-
tem in which online services operate. On one side are users deeply uncomfort-
able with exposing the content of their requests (for example, which movie they
are requesting, the body of the email they are sending, etc.), in particular to cen-
tralized servers. The discomfort is partly philosophical: they argue that freedom
requires the ability to use online services privately [212]. But the discomfort is
also practical. An entity with access to, say, a person’s media consumption pro-
file, can reveal the person’s sexual orientation, political leaning, cultural affiliations,
etc. [187, 188, 219]. Moreover, centralized services are subject to a wide range of
insider and outsider threats. Reputable organizations have been known to unwit-
tingly harbor rogue employees bent on gaining access to user email accounts and
other private user information [50, 200, 262]. And well-run organizations are not im-
mune from hacks [245, 246]—nor, indeed, from the law. Just in the first half of 2013,
Google [121], Microsoft [185] and Yahoo! [250] collectively received over 29,000 re-
quests for email data from law enforcement, and in the overwhelming majority of
cases responded with some customer data [184].

On the other side are online service providers, who provide their services
within a commercial framework, and need to be compensated. These providers
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run functions on user data. Some of these functions target revenue generation (for
example, topic extraction [125] and advertisements), while others target the quality
of user experience (for example, spam filtering, email search, predictive personal
assistance [52, 73, 96, 198], low-delay media playback, and movie recommenda-
tions). But independent of their exact purpose, functions rely on the content of user
requests.

The general tension between privacy and profit has been noted in many
quarters before. Government regulators, including from the US, Canada, and the
EU, are on the record in support of an idea known as Privacy by Design (PbD) [17, 19,
42, 43, 211]. PbD is the abstract philosophy that software products should build in
privacy up front rather than treating it as an afterthought. However, the apparent
consensus among regulators notwithstanding, no one seems to know what PbD
truly means, much less how to implement it [132, 207].

In principle, it is possible to implement online services in a way that the
content of user requests is hidden, and yet providers are able to run functions on
that content. One option is to use cryptographic protocols. Consider an email ser-
vice. An email sender can encrypt an email using an encryption scheme, such as
PGP [266], and the intended recipients can decrypt and obtain email contents. Then,
the email provider and each recipient can engage in a secure two-party computation
(2PC); the term refers to cryptographic protocols that enable one or both parties to
learn the output of an agreed-upon function (spam filtering, topic extraction, etc.),
without revealing the inputs (proprietary spam and topic models, email contents,
etc.) to each other.

So why don’t such privacy-preserving services exist? After all, software that
implement cryptographic primitives have long existed: PGP [266] was first imple-
mented in 1991; implementations of secure two-party computation have existed
at least since 2004 [176]. There are several reasons: general deployment difficul-
ties (it’s hard, for example, to modify a communication medium as entrenched as
email [109]), usability (cryptographic primitives require keys; how should users
share keys across devices and find each other’s keys?), and even politics (there are
entrenched interests who would prefer widespread surveillance and data collec-
tion). However, one primarily technical reason is high resource costs: despite con-
tinuous progress, the state-of-the-art implementations of cryptographic primitives,
if applied as they are described in the literature, result in systems whose resource
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consumption (CPU time, disk I/O, and network transfers) is orders of magnitude
higher than in systems without the primitives. And the reasons for these high costs
are fundamental. For example, if a user wants to hide which movie she is watching,
then her request for the movie must prompt the service provider to touch its entire
video library (because otherwise the provider can infer which movie the user is not
interested in).

Indeed, privacy, functions, and costs are in a three-way trade-off. This dis-
sertation does not attempt to eliminate this trade-off—it can’t. Rather, it attempts
to improve the trade-off.

1.1 Problem statement and approach

This dissertation studies how two online services that are in common use today—
Netflix-like media delivery and email—can gain significantly on privacy while lim-
iting sacrifices on functions and costs. More specifically, it asks, how can we build
systems (Netflix-like media delivery and email) that

(i) provide strong privacy, that is, hide the content of user requests from both a
network eavesdropper [24, 107] and the service provider,

(ii) support basic functions consistent with existing commercial arrangements, that is,
make only limited sacrifices in functionality, and implement functions in a way
that they remain consistent with existing commercial and policy regime, and

(iii) have low cost, that is, have overheads (resource consumption, or this consump-
tions converted to a dollar amount) that are small multiples of the costs in the
status quo?

To answer this question, we start with cryptographic primitives (they meet
the first two requirements), and then bring practicality, that is, reduce costs, by
following the design ethos of tailoring cryptographic protocols to the application.

1.2 Contributions and contents

This dissertation focuses mainly on describing two systems—Popcorn for Netflix-
like media delivery and Pretzel for email—that build on the design ethos described
above.
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Popcorn (Chapter 2). Popcorn is the first (to our knowledge) Netflix-like media
delivery system that provably hides, even from the content distributor (e.g., Net-
flix), which movie a user is watching; respects copyrights, and achieves plausibly
deployable performance.

Popcorn starts from private information retrieval (PIR) cryptographic pro-
tocols; these protocols [71, 161] allow a client to retrieve an object from a server’s
library without revealing to the server which object is retrieved. Using novel tech-
niques, Popcorn addresses several challenges of applying PIR to media delivery.
First, it composes two different types of PIR protocols to address a tension between
content protection and server-side CPU overhead; in contrast, prior work that com-
poses the two types of PIR focuses on minimizing communication costs. Second, it
amortizes the high server-side disk I/O overhead over multiple requests from dif-
ferent users by splitting the library into exponentially-increasing slices (each slice
contains a piece from every movie), configuring the first slice to be “narrow” to
keep playback delay small, applying PIR independently to each slice, and process-
ing requests to the slices in batches. Prior PIR implementations can batch client re-
quests but not for applications that are delay-sensitive. Third, it combines padding,
splitting, and domain-specific compression techniques to convert variable-sized
media objects to the same size.

Popcorn’s evaluation provides a rough estimate of how much a private
Netflix-like service might cost in terms of computational resources. For each re-
quest, Popcorn consumes 1080×more CPU time than a non-private baseline, about
14× more I/O bandwidth, and 2× longer network transfers. However, since CPU

is cheap, these overheads, when translated to dollars, are 3.87× that of the non-
private baseline.

Pretzel (Chapter 3). Pretzel1 is the first (to our knowledge) system that encrypts
emails between senders and recipients, and simultaneously allows the email provider
to perform spam filtering and topic extraction over them, using linear classifiers
from machine learning (Naive Bayes, Support vector machines, logistic regression),
at tolerable cost.

Pretzel starts with a relatively efficient 2PC protocol geared to computations
that consist mostly of linear operations. It addresses two issues with a naive instan-

1Pretzel (Chapter 3) can be read independently of Popcorn (Chapter 2).
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tiation of this protocol: high resource consumption and leakage of private data in
the case that one or both parties deviate from the protocol. To reduce resource con-
sumption, it replaces the underlying encryption scheme with a more modern and
efficient one, conserves invocations of the encryption algorithm by applying a pack-
ing technique, and decomposes classification into a public and a private step. The
third refinement requires a novel 2PC (sub)protocol to compute a vector-submatrix
product, where one party’s private input is the (full) matrix, and the other party’s
private inputs are the vector and a set indicating the submatrix of the full matrix.

We evaluate Pretzel for realistic parameter values in the email setting [123].
Pretzel’s CPU and network overheads, versus a legacy non-private implementa-
tion, are up to 5.4× for the provider. However, Pretzel requires additional client-
side resources of several hundred megabytes of storage and per-email CPU time
of several hundred milliseconds. Pretzel’s overheads are certainly substantial, but
within the realm of plausible deployability.

Comparisons and connections (Chapter 4). This chapter describes a framework
to situate and compare the various approaches to answering our question in Sec-
tion 1.1. In particular, we look at approaches that build on trusted hardware (for
example, Intel SGX) and fully homomorphic encryption (FHE), as embodying very
different trade-offs. Chapter 4 also discusses fundamental connections between
Popcorn and Pretzel. Both these systems securely compute a vector-matrix prod-
uct, using additively homomorphic encryption. However, differences in the dimen-
sions of the vectors and matrices in the two systems result in significantly different
designs.

Summary (Chapter 5). Chapter 5 summarizes and concludes this dissertation,
and discusses the lessons we learned while building Popcorn and Pretzel.
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Chapter 2

Popcorn: A private media delivery system

Media delivery systems differ widely. YouTube’s library, for instance, is large, con-
tinuously updated, freely distributed, and supported by advertising. Netflix’s li-
brary is comparatively small, updated infrequently [15], subject to strict content
protection, and supported by paid subscriptions. This chapter describes Popcorn,
a Netflix-like system, that adopts the following privacy, functionality, and cost re-
quirements:

• It must comprehensively and provably hide the content of client requests.
“Comprehensive” means hiding consumption not only from a network eaves-
dropper [24, 107] but also from the content distributor. “Provable” means that
we wish to avoid the risk [49] of heuristic solutions.

• It must disseminate content in an on-demand fashion (that is, support low-
delay playback), and respect current controls on content dissemination (copy-
rights, etc.).

• It must dispense privacy at an attractive price point. The resource cost con-
verted into dollars should be within a small multiple of what customers pay
to access content today.

At first blush, Tor [94] and other anonymity systems [5, 165] (which conceal
who consumes content) satisfy the above requirements. However, these solutions
conflict with commercial media delivery: now Netflix would have to rely on the
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altruism of Tor nodes. Moreover, the capacity, latency, and reliability on a Tor net-
work is unlikely to match the requirements of Netflix.

Thus, Popcorn turns to a large body of cryptographic protocols known as
Private Information Retrieval, or PIR (§2.1.2). These protocols [72, 110, 161, 192, 253]
allow clients (content consumers) to request content from servers (content distrib-
utors) without the servers being able to infer which items the clients requested.

PIR protocols are promising as they meet the first requirement. However,
these protocols do not satisfy the other two requirements due to several challenges
(linear overhead of PIR, requirement of fixed object sizes, etc. as described in Sec-
tion 2.2). Popcorn addresses these challenges by cherry-picking techniques (batch-
ing, etc.) from the literature on PIR (§2.6) and working through the systems ram-
ifications of tailoring them to the specific domain of Netflix-like media consump-
tion (§2.3). But before we can delve into the details, we must give some necessary
background on PIR protocols, and describe the setting and assumptions underly-
ing Popcorn.

2.1 Setting and background on PIR

2.1.1 Scenario and threat model

The media delivery ecosystem has three principals: a content creator, a content dis-
tributor, and a content consumer. The creator (e.g., a movie studio), delegates to the
distributor (e.g., an online streaming service like Netflix) the tasks of disseminating
content and charging consumers.

We model the content kept by the distributor as a collection L of n objects;
we call L the library. We assume that a mapping, between the integers 1, . . . ,n and
the names of the objects in L, is known to the distributor and the consumers. There-
fore, a consumer can select a specific object by supplying the corresponding integer.

Threat model. We consider an attacker (for example, the content distributor or a
network eavesdropper) trying to infer what object the consumer is accessing. The
attacker has full access to the network and to the content of the consumers’ re-
quests, but for two restrictions. First, we do not consider side-channel attacks that,
for example, use knowledge of where individual consumers pause playback, or of
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their concurrent web browsing activity. Second, we assume the existence of two
non-colluding servers that the distributor can use to serve content. To satisfy this
assumption in practice, one can pick servers from separate administrative domains
(e.g., from different CDNs [32]). We discuss this topic further in Section 2.7.

We assume, as do today’s media delivery systems [38, 95], that the client-
side media decode and display environment can defeat content consumers intent
on copying and redistributing content beyond what the distributor allows.

Finally, we treat content integrity as an orthogonal problem that undermines
correctness (§2.1.2) but not privacy. The literature offers standard solutions to guar-
antee content integrity (content hashing, etc.).

2.1.2 Private Information Retrieval (PIR)

The high-level goal of PIR protocols aligns with that of Popcorn: they allow a client
to use an integer between 1 and n to retrieve any object from a library L of n ℓ-
bit objects kept by a set of k servers (k ≥ 1) without leaking to the servers any
information about which object was retrieved. A PIR protocol is structured around
three procedures: Query, Answer, and Decode. To privately retrieve object Ob = L[b]

(1 ≤ b ≤ n), the client invokes Query(b) to produce k query vectors q1, . . . , qk , one
for each server, and forwards qj to server Sj (1 ≤ j ≤ k ). Each Sj replies with aj =
Answer(qj ,L). Finally, the client computes Ob = Decode(a1, . . . , ak ) by applying the
decode algorithm to the servers’ responses.

We want three properties from a PIR protocol:

• Correctness. If a client requests the object in library L with index b, then the
protocol indeed provides it with object L[b].

• Privacy. After the server sees a query vector, its probability of guessing the
client’s requested index is no better than if the server had not seen the query
in the first place. This property can be generalized to coalitions of t < k servers,
requiring that any t out of k servers jointly do not learn any information about
the index of the requested object.

• Communication efficiency. The size of a server’s reply must not be much larger
than ℓ, and the size of a client’s request must be far smaller than ℓ (though ac-
ceptable if there is some overhead above the minimum query size of log2 n bits).

We discuss below two such PIR protocols.
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Query (index b):
for i = 1 to n do

f ← (i == b) ? 1 : 0
ci ← Enc(pk , f )

return q = (pk , c1, . . . , cn)

Answer (query vector q , library L):
// Represent L as a matrix of y-bit integers:
// L ∈ ({0, 1}y )n×(ℓ/y)

for j = 1 to ℓ/y do
rj ← ∏n

i=1 ci
Li ,j

return a = (r1, . . . , rℓ/y )

Decode (answer a , secret key sk):
return Dec(sk , r1), . . . ,Dec(sk , rℓ/y )

Figure 2.1: A computational PIR (CPIR) protocol based on an additively homomor-
phic cryptosystem (Gen, Enc, Dec) and due to Stern [226]. (pk , sk) is a (public, pri-
vate) key pair generated using Gen. n is the number of objects in the library L, and
ℓ is the length of each object.

2.1.3 Computational PIR (CPIR) protocols

CPIR protocols [161] require only a single, computationally bound server (k =

1). They are commonly constructed using additively (and not fully [58, 111]) ho-
momorphic public key cryptosystems. A cryptosystem is additively homomorphic if
Dec(sk , Enc(pk ,m1) · Enc(pk ,m2)) = m1 +m2, where m1,m2 are plaintext messages,
+ represents addition of two plaintext messages, · is a binary operation (for exam-
ple, addition, multiplication, etc.) on the ciphertexts, (pk , sk) is a (public, private)
key pair generated using the key generation algorithm Gen, Dec is the decryption
algorithm, and Enc is the encryption algorithm. Note that Enc is randomized; thus,
repeatedly encrypting the same plaintext produces different ciphertexts. Examples
of cryptosystems used in CPIR are the Paillier [193] and the lattice-based Ring-
LWE [59].

Figure 2.1 depicts a CPIR protocol, due to Stern [226], that meets the three
properties (§2.1.2):

• Correctness. Dec(sk , rj )=Dec(sk , ∏n
i=1 ci

Li ,j ), which equals ∑n
i=1 Dec(sk , ci ) · Li ,j

after the application of the additively homomorphic property. But ∀i ∈ {1, . . . ,n} \

9



Query (index b):
// Generate the first k − 1 query vectors randomly
for j = 1 to k − 1 do

select qj ∈R {0, 1}n

eb ← an n-bit string with all zeros except at b-th position
qk ← eb ⊕ q1 ⊕ · · · ⊕ qk−1 // ⊕ is bit-wise XOR
return q1, . . . , qk

Answer (query vector q , library L):
// q is one of the outputs of Query
// L has n objects; each is ℓ bits
// q is a row vector, L a logical matrix: L ∈ {0, 1}n×ℓ
return q · L // product over the two-element field F2

Decode (answers a1, . . . , ak ):
// aj is the output of Answer
return a1 ⊕ · · · ⊕ ak

Figure 2.2: The ITPIR protocol of CGKS [72]. n is the number of objects in library
L, and ℓ is the length of each object. k is the total number of servers. (In Popcorn,
k=2.)

b, Dec(sk , ci ) = 0, by construction of ci . Similarly, Dec(sk , cb) = 1. Therefore,
Dec(sk , rj )=Dec(sk , cb) · Lb,j = Lb,j .

• Privacy. The guarantee that server S does not learn b hinges on S being compu-
tationally bounded. All S sees is q = (pk , c1, . . . , cn). If S could systematically
guess b (that is, guess which ciphertext is cb = Enc(pk , 1)), then S could likewise
guess which entry is the encryption of 1 (versus 0)—which would contradict the
properties of the underlying encryption scheme.

• Communication efficiency. The length of the server’s reply is (ℓ/y) · |c| bits,
where ℓ/y is the number of ciphertexts in the reply and |c| is the size (in bits) of
a ciphertext. (ℓ/y) · |c| is comparable to ℓ, the size of object Ob , if the expansion
ratio, |c|/y , of the underlying additively homomorphic cryptosystem is small.1

The client’s request contains n ciphertexts and is thus |c| · n bits. When ℓ ≫ n

(as will be the case in our context) and |c| is a small constant (e.g., 2048 in many
Paillier implementations), |c| · n is much smaller than ℓ.

1The Paillier cryptosystem has a message expansion ratio of ≥ 2.
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2.1.4 Information-theoretic PIR (ITPIR) protocols

ITPIR protocols [72] use more than one server (k > 1), and assume that they do
not collude; thus, in practice, the servers must belong to different administrative
domains.

Figure 2.2 shows the CGKS [72] ITPIR protocol. It meets the three properties
of PIR (§2.1.2):

• Correctness. The output of Decode is
⊕k

j=1 aj , which equals
⊕k

j=1(qj ·L). By prop-
erties of the field F2 (that addition is XOR and that multiplication distributes
over addition),

⊕k
j=1(qj · L) = (

⊕k
j=1 qj ) · L = eb · L = L[b].

• Privacy. Each server in S1, . . . ,Sk−1 sees a randomly generated query vector, and
therefore each server (and all of them combined) cannot learn any information
about b. Server Sk sees qk , which is constructed by XORing unit vector eb with
the one-time pad q1⊕ · · · ⊕ qk−1. By the properties of one-time pads, Sk can learn
information about eb only by learning the one-time pad (or by colluding with all
other servers).

• Communication efficiency. The combined length of the servers’ reply is k · ℓ bits.
In Popcorn, we set k = 2 to keep this comparable to ℓ, the size of an object.
A client’s request consists of k n-bit-long query vectors, which is much smaller
than ℓ when k is small.

2.2 Challenges of applying PIR

Though PIR is promising, there are a number of challenges in applying it to large-
scale media consumption:

• Resources. The I/O and CPU resources required to serve a single request are pro-
portional to the size of the library. Batching requests should help amortize some
of this overhead, but it is in tension with the next issue.

• Strict deadlines. Media delivery has stringent latency requirements: initial delay
must be small, and the delivery must obey real-time constraints.

• Variable object sizes. Object sizes vary as a function of encoding or playback time.
However, PIR assumes objects of identical size.

• Content protection in ITPIR vs. CPIR. Content creators may be loath to disseminate
the content beyond its original distribution channel. Yet ITPIR requires multiple
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Popcorn  G#  G#
Figure 2.3: Prior PIR-oriented works (rows) and which media-related challenges
they address (columns), assuming two servers for ITPIR-based works.  means
that the work addresses the challenge; G#means that it partially addresses the chal-
lenge.

non-colluding servers, and hence multiple administrative domains, necessitat-
ing such dissemination. CPIR, on the other hand, requires only a single server;
however, its computational cost is significantly higher.2

• Billing, access control, and recommendations. For business reasons, media services
may need to support access control, pricing policies (tiers, etc.), targeted adver-
tising, and recommendations. Yet, private retrieval conflicts with all of this func-
tionality.

Subsets of these challenges have been addressed before (Figure 2.3). Pop-
corn aims mainly at the resource consumption issue, via the architecture and de-
sign described next.

2.3 Architecture and design of Popcorn

Figure 2.4 depicts Popcorn’s architecture. A primary content distributor creates an
encrypted version of the library, LEnc , using per-object keys, and replicates LEnc to
two secondary content distributors, each in separate administrative domains. The pri-
mary content distributor maintains a key server. Each secondary content distributor
maintains an object server that is distributed over multiple physical machines.

The key server delivers the per-object keys using CPIR; the object servers
deliver encrypted objects using ITPIR (§2.3.1). The distinction between key and

2The state of the art CPIR implementation is XPIR, which is based on the Ring-LWE cryptosystem.
XPIR can process data at 22 Gbps on a machine with 4 physical (and 8 virtual) cores [34], while the
CGKS ITPIR implementation in Percy++ [116], based on cheaper XOR operations, can process data
at 152 Gbps on comparable hardware.
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Figure 2.4: Popcorn’s architecture. Popcorn uses two servers for ITPIR. Each object
server stores all of the columns in the library (Figure 2.5), and is distributed over
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Figure 2.5: Popcorn terminology. Each column is stored by two ITPIR instances
(one from each object server). Columns are divided into slices, which are assigned
to physical machines.

object servers maps to today’s DRM implementations [3, 12, 199], where clients
contact two separate servers, one for encrypted video and one for decryption keys.

Media objects are split into segments—contiguous pieces of media contain-
ing, for example, a few seconds or minutes of a video. Segment sizes vary (§2.3.3).
Each object is presumed to have the same decomposition into segments (we revisit
this assumption in §2.3.4). The library is partitioned into columns (Figure 2.5); a col-
umn is a union of corresponding segments, across all objects. Therefore, a column’s
size is n times that of any segment it contains.
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Each column is stored and served by two independent ITPIR instances (one
for each object server); different instances use separate physical machines. Columns
are further sub-divided into slices, which are the work units assigned to physical
machines. A slice is 1 MB “wide” and n items “high”; we sometimes refer to 1 MB
as a chunk. Each machine is responsible for one or more slices.

To retrieve an object, the client fetches a decryption key from the key server
and the encrypted object from the object servers. The latter step proceeds in two
overlapping phases. In the first phase, the client sends, in parallel, a query vec-
tor to all machines in both object servers. On receiving a request, a machine adds
the query vector to a request queue. Each machine services its queue by: looping
over its slices, computing chunk-sized ITPIR replies for every pending request, and
pushing the resulting chunks to a file server (one per object server; Figure 2.4) that
retains the chunks until they are requested by clients. In the second phase, the client
downloads these ITPIR-encoded chunks at the appropriate playback times, and
applies Decode (Figure 2.2). This phase overlaps with the server-side generation of
replies.

2.3.1 Composing ITPIR and CPIR

As stated earlier, Popcorn combines CPIR and ITPIR: the heavier-weight CPIR,
which requires only one server, is used to serve per-object keys, while the lighter-
weight ITPIR is used to serve the large encrypted objects. As a result, both keys
and objects are served privately (because PIR is applied to them both), CPIR is not
a performance bottleneck (because it is used only for small keys), and current con-
trols on content protection are respected (because the plaintext content and keys
are stored only at the primary content distributor).

As an alternative to CPIR, the key server could use Symmetric PIR (SPIR) or
1-out-of-n Oblivious Transfer (OT). Section 2.6 discusses these alternatives.

2.3.2 Batching

Popcorn uses the CGKS ITPIR scheme described in §2.1.4, as its inexpensive oper-
ations (XORs) keep its computational overhead low (by the standards of PIR). Still,
because ITPIR queries are dense—on average, half of the entries are set to 1 (Fig-
ure 2.2)—responding to a query requires the machine serving a slice to read from
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storage and XOR, on average, n/2 chunks. This taxes I/O bandwidth, memory
bandwidth, and CPU cycles.

To reduce costs, Popcorn’s machines, which are oblivious to the content of
queries, process queries in batches, and perform a single I/O pass over a slice for all
of the queries in a batch. Batching thus amortizes I/O overhead and lets Popcorn
exploit sequential transfer bandwidth.

Batching also reduces computational (not just I/O) overhead by leveraging
the observation that the PIR computation required for a batch of requests can be ex-
pressed as matrix multiplication (q · L in Figure 2.2 can be replaced by Q · L, where
Q is a matrix whose rows are query vectors). Previous work [51, 172] (covered by
the Percy++ row in Figure 2.3) has used this observation to incorporate sub-cubic
algorithms [77, 144] that reduce the total number of operations required by PIR.
Popcorn, by contrast, chooses block matrix multiplication [163], which, though it
does not affect the total number of operations, leverages cache locality. One can
view the resulting access pattern as batching at the CPU-memory interface.

2.3.3 Specializing batching for media delivery

Given the considerations in the previous subsection, Popcorn has an interest in
increasing batch sizes (at least up to a point).3 However, there is a tension between
large batch sizes, which seem to require synchronizing clients, and meeting the
deadlines of real-time media delivery. Popcorn resolves this tension as follows.

To begin with, each ITPIR instance loops over its assigned column (§2.3)
continuously. Since a client can begin playback only after decoding the response
for the first column, Popcorn uses a “narrow” first column to keep this initial delay
short. Column width, however, increases quickly in Popcorn, making later columns
wide. The crucial intuition is that wide columns imply good batching opportunities: a
batch comprises all requests that reached an ITPIR instance during its previous
loop interval, and wider columns imply longer loop intervals.

Figure 2.6 depicts this arrangement. It is inspired by Pyramid Broadcast-
ing (PB) [240] (see also [18, 135]), wherein an object is divided into increasingly-
sized pieces, each served on a separate broadcast channel that loops over the piece.

3Above a certain batch size, there is no advantage: I/O is no longer a bottleneck, and the CPU
benefits of using matrix multiplication stop increasing. However, there is also no disadvantage, so
for simplicity, Popcorn does not bound batch sizes.
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Figure 2.6: Batching at an object server in Popcorn. Requests to the initial column
from two clients A,B are in separate batches as the processing cycle for this column
is short. The requests to a later column (sent alongside the requests to the first) can
be batched. This arrangement is inspired by Pyramid Broadcasting [240].

Differences are as follows. Whereas PB targets network bandwidth efficiency (and
clients must buffer), Popcorn aims to reduce server-side I/O (and the buffer is at
the server); one can view Popcorn’s arrangement as the I/O subsystem using PB to
“broadcast” to the next layer in the pipeline (the XORs). Furthermore, in Popcorn, a
server’s work (the XORs) depends on the number of clients (unlike in a broadcast
setting). Finally, in Popcorn, each instance is distributed over multiple physical ma-
chines. These differences lead to a design and analysis that owe a debt to PB but
are specific to our context.

Details. We start with two simplifying assumptions, which we revisit later: that a
single ITPIR instance is handled by a single machine, and that there is no network
delay or loss. Define an instance processing cycle as the duration of one iteration
of an instance’s loop. Within this cycle, an instance traverses each slice in turn,
performing Answer for all queries that arrived during the prior cycle.

We want all clients to experience smooth playback. To this end, suppose
that we are willing to impose startup delay d . Suppose further that T1 ≤ d − ϵ,
where T1 denotes the processing cycle for the first instance, and ϵ is the time for the
instance to handle a single slice. Likewise, define Ti as the processing cycle for the
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i th instance (i > 1), and suppose that for all such instances, Ti ≤ d − ϵ + ∑i−1
j=1 tj ,

where tj is the playback time of segment j .
Under these conditions, we claim that any client, regardless of when it joins,

experiences smooth playback. Why? Consider only instance 1: in the worst case,
a client initiates consumption just after instance 1 begins its processing cycle. The
client cannot download until the current processing cycle has terminated (which
takes time T1) and the first slice of the next cycle is processed (for an additional
ϵ). Smooth playback simply requires the overall delay (T1 + ϵ) to be less than d ,
matching our conditions. Once playback begins, the client has t1 additional time
before it needs the second segment. Generalizing, in the worst case for instance i

(i.e., the client’s initial request arrives just as a processing cycle begins), as long as
Ti is no larger than d − ϵ+∑i−1

j=1 tj (which is exactly what our conditions guarantee),
then the first slice of the i th instance will be ready, and playback will be smooth.

But how should the {ti} be set? Recall that, for more effective batching, Pop-
corn needs segment widths to increase: we are then seeking the maximum ti for
each instance i .

Let µ be the playback rate, Pi the rate at which XOR operations are pro-
cessed by the i th instance, Ri the I/O bandwidth available to the instance, and bi

the batch size (the number of requests accumulated in a cycle of time Ti ). To upper-
bound ti , we match load to capacity, for both I/O and CPU. For I/O, the column’s
data (n segments, each of size ti · µ) is upper-bounded by the amount of data that
the instance can read in one cycle: ti · µ · n ≤ Ti · Ri . For CPU, the picture is sim-
ilar, except that the total work scales with bi , the number of clients being served:
ti · µ · n · bi ≤ Ti · Pi . These inequalities lead to:

ti ≤ Ti ·
(
min {Ri , Pi/bi}

µ · n

)
.

Assume that for all i , min{Ri , Pi/bi} ≥ µ · n (we will arrange for this in
“Provisioning,” below). Then, the foregoing bounds (on the {Ti} and on load) im-
ply that for all i , we can set:

ti = Ti = 2i−1 · (d − ϵ)

(see Appendix A). Note that the {ti} increase exponentially in size, as desired. In
particular, approximately half of the file is covered by the final segment.
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Provisioning is driven by the earlier assumption that min{Ri , Pi/bi} ≥ µ · n
for all i . To meet the requirements on Ri and Pi , Popcorn uses multiple machines
per instance and aggregates their resources, by striping slices across them. If ri is
the per-machine I/O bandwidth for the machines used for the i th instance, then
the I/O for instance i can be handled with Ri/ri = µ · n/ri machines. Pi , the XOR
processing throughput for instance i , increases with i because so does the batch size
bi ; specifically, if λ is the overall rate at which clients initiate requests for objects,
then bi = λTi . Moreover, the per-machine XOR processing throughput for the i th
instance, pi (·), is a function of the batch size because cache locality in block matrix
multiplication (§2.3.2) (and hence throughput) improves with a a bigger batch size.
Thus, the task of processing the XOR operations for instance i can be handled by
Pi/pi (bi ) = µ · n · bi/pi (bi ) machines.

To account for the striping, we need to modify the earlier analysis of startup
delay, smooth playback, etc.: if resources from ki machines are aggregated for the
i th instance, then each machine takes ϵ · ki time instead of ϵ to handle a slice. As a
result, the inequality Ti ≤ d − ϵ + ∑i−1

j=1 tj becomes Ti ≤ d − ϵ · ki + ∑i−1
j=1 tj , and

both the {Ti} and {ti} are computed accordingly.4

The total number of machines required, across all I instances, equals: µ · n ·
∑I

i=1max{1/ri , λTi/pi (λTi )}. Notice that if the max is controlled by the first term,
then the given instance is bottlenecked by I/O (and the CPU resource is sometimes
idle); if by the second, then the instance is bottlenecked by CPU work (and the I/O
resource is sometimes idle). Later (§2.5.1) we will obtain estimates empirically for
ri and pi (·).

Popcorn must also provision for the file server machines (§2.3). The file
server requires the buffer space for each instance to equal the number of requests in
service times the size of a segment, i.e., ∑I

i=1 bi · (ti · µ). The file server also requires
I/O bandwidth equal to the rate at which reply data is produced and consumed:
2 ·∑I

i=1 bi · µ (assuming ti = Ti ).
Finally, we have been assuming no burstiness or delay in the network. To

account for network fluctuation, we must allow for clients to build up a playback
buffer, of some time length β. To this end, Ti should be upper-bounded by d − ϵ ·
ki − β + ∑i−1

j=1 tj , and the {ti} computed to be consistent with Ti .

4The computation must resolve a circular dependency as Ti is expressed in terms of ki , which
itself depends on the segment size, with a bigger segment requiring more machines. We resolve this
circularity by repeating the process of speculatively setting a ki , calculating Ti , and then refining the
speculated value of ki using the obtained value of Ti .
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Discussion. To understand the savings and amortization from Popcorn’s batch-
ing, consider a naive batching scheme, in which time is divided into epochs of
length Tepoch. Let a cohort denote the set of clients who initiate a request (for the
first chunk of a media file) in an epoch. Then, the entire cohort moves through the
slices, as it were, together. Each cohort needs enough machines to meet two require-
ments: (a) µ · n I/O bandwidth, and (b) µ · n · λ · Tepoch XOR processing through-
put (here λ · Tepoch is the cohort’s batch size). If H = T/Tepoch is the total num-
ber of cohorts (where T is the total playback time), then the total number of ma-
chines is µ · n ·∑H

i=1max{1/r , λ ·Tepoch/p(λ ·Tepoch)}, where r is the per-machine
I/O bandwidth, and p(λ ·Tepoch) is per-machine XOR processing throughput for a
batch size of λ ·Tepoch. Here, Tepoch must be upper-bounded by d − ϵ · k − β to meet
the startup delay requirements, where k is the number of machines for a cohort.

To compare the cohort batching scheme to Popcorn, we make the simplify-
ing and optimistic assumption that both schemes use machines that make the two
terms of the respective maxes equal, so that no resources are idle (we will revisit
this assumption in §2.5.2 and §2.5.4). Then, the total I/O bandwidth required by the
cohort scheme is H · µ · n , which is considerably larger than what Popcorn needs
(I · µ · n , where I ≪ H ).

In terms of computational resources, the cohort scheme needs µ · n · λ ·
T/p(λ · Tepoch) = µ · n · λ · ∑I

i=1Ti/p(λ · Tepoch) machines; Popcorn requires in-
stead µ · n · λ · ∑I

i=1Ti/pi (λ · Ti ) machines. Neither scheme is the clear-cut win-
ner; however, if we assume that p(·) = pi (·) for all i , then Popcorn has lower
computational demands, because (a) Ti ≈ 2i−1 · Tepoch (by our earlier analysis)
and (b) p(·) is monotonically increasing. In essence, Popcorn has larger batches, so
(holding machine type configuration constant) the benefit of locality is more pro-
nounced (§2.3.2), lowering Popcorn’s computational requirements relative to the
naive batching scheme.

2.3.4 Handling variable-sized objects

The design has so far assumed equally sized objects. A naive solution would be
to pad all objects to the size of the longest one. However, this would, for Netflix,
cause a 4× increase in network transfers: the average movie is approximately 1.5
hours while the longest is 6, and clients would have to download the padding in
full (doing otherwise would reveal the true object size).
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Popcorn’s solution instead chooses a representative object Oavg from the li-
brary (for example, the object closest to the average media length) and pads smaller
objects to that size. Longer objects, up to a cutoff, are compressed down to Oavg’s
size, by reducing the bitrate;5 the longest objects are split into several files.

We note that reducing the bitrate is likely to be tolerable, as variations of up
to 30% (roughly) in video bitrate have a limited impact on user satisfaction [97, 154,
220]. (Other factors, such as playback interruptions and startup times, instead have
substantial impact.) Objects that cannot be tolerably compressed must be divided
up (as in other systems [86, 133]). However, the client would then have to down-
load each division as if it were a separate movie, which means delaying consump-
tion or downloading far ahead of time (if the separate divisions were downloaded
all at once, then an attacker could guess that a longer object is being consumed).

The Netflix catalog [1] indicates that the majority of movies have a similar
size: 85% of the objects are between 60 and 120 minutes, with the majority clustered
around the average movie length of 92 minutes. Movies between 92 and 120 min-
utes will require 23% compression in the worst case and 10% on average; similarly,
the padding for objects between 60 and 92 minutes will be small to moderate. The
impact of objects at either extreme will be limited: 8% of the movies are shorter
than 60 minutes, and will require significant padding; 5% are between 120 and 135
minutes, making them candidates for aggressive compression (32% in the worst
case and 27% on average) though potentially at the cost of lowering user satisfac-
tion; and 2% are over 135 minutes, making them candidates for splitting. We think
that splitting is not a huge limitation, because we hypothesize that people usually
plan ahead to watch long movies.

2.4 Implementation

Our prototype implements the design in Section 2.3, except for large file split-
ting (§2.3.4). It leverages existing PIR implementations: the key server uses the
XPIR [34] implementation of the CPIR protocol in Figure 2.1. For the object servers,

5Regardless of an object’s bitrate, a client must issue chunk download requests at a constant rate
(e.g., one request every 1 MB/µ seconds, where 1 MB is a chunk’s size and µ is Oavg’s bitrate); other-
wise, chunk download patterns would leak information.
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Popcorn is affordable when it serves large media files to many
concurrent clients.

§2.5.2

Popcorn’s per-request dollar cost is 3.87× of a system without privacy
for workloads with ≥10K concurrent clients.

§2.5.3

Popcorn integrates well with existing web technology. It can play
DRM-encoded media within modern web browsers.

§2.5.6

Figure 2.7: Summary of Popcorn’s evaluation results.

we borrow the CGKS ITPIR implementation of Percy++ [116]6 and modify it to
support the techniques in Section 2.3. The total server-side code is 11K lines of C++.
We implement two versions of the client-side library: one in C++ (2500 lines), which
we use for experiments (§2.5.2), and one in JavaScript (500 lines), which we use to
show compatibility with modern web browsers (§2.5.6).

2.5 Evaluation

Our evaluation answers the following questions:
1. When is Popcorn affordable?
2. What is the price of Popcorn’s privacy guarantees?
3. Can we use Popcorn to watch a movie encoded using an existing DRM scheme

on a modern web browser?
Figure 2.7 summarizes our evaluation results.

Method and setup. We compare Popcorn to three baselines: NoPriv, BaselinePIR,
and BaselinePIR++. NoPriv serves object chunks from an Apache web server, mod-
eling media delivery systems that use HTTP caching at CDN edge servers [32].
BaselinePIR is a modified version of Percy++ [116] CGKS: the servers store the li-
brary L as slices and process ITPIR queries directed at them. This is essentially Pop-
corn without the techniques of §2.3. BaselinePIR++ additionally batches requests
using cohort batching (§2.3.3) to reduce both I/O and CPU costs. For all PIR sys-

6Percy++’s CGKS ITPIR implementation is one of the fastest implementations for two-server
ITPIR. An alternative is the CGKS implementation from RAID-PIR [86] (§2.6).
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RAM SSDs
type vCPUs (GB) (# × GB) cost/hr

c3.8xl 1 32 60 2 × 320 $0.6281
i2.4xl 2 16 122 4 × 800 $0.8451
i2.8xl 3 32 244 8 × 800 $1.6902

Figure 2.8: Hourly cost of reserved Amazon EC2 machines used in our experiments.
Machines starting with “c” are compute-optimized; those starting with “i” are I/O-
optimized.

tems, we experiment with one object server and multiply the measurements by
two (to reduce the financial cost of our experimental evaluation).

Our workload is modeled on existing media delivery services [227]: clients
arrive according to a Poisson process (e.g., C = 10K clients arrive in T = 90minutes).
All clients in NoPriv request the same (average-size) object, giving this baseline the
maximum benefit of server-side caching. The server’s work in Popcorn, BaselinePIR,
and BaselinePIR++ is oblivious to the request distribution (we select a Zipfian dis-
tribution with θ = 0.8).

For the four systems, we measure server- and client-side resource usage in
terms of CPU time (by instrumenting code with clock()), I/O transfers and storage
(using iostat), and network transfers (via /proc/net/dev).

Our experimental testbed is a single availability zone within Amazon’s EC2,
and is described in Figure 2.8.

2.5.1 Provisioning resources using microbenchmarks

Popcorn. Machine provisioning for Popcorn involves two steps: (1) benchmark-
ing the basic operations (details in Figure 2.9), and (2) combining the results with
the provisioning analysis in §2.3.3.

Consider, for example, provisioning the first ITPIR instance of a Popcorn
object server for a Netflix-like workload: C =10,000 clients streaming from a library
of n=8192 media files with average playing time of T =90 minutes, playback rate
of µ = 4Mbps, and startup delay of d = 15 seconds.7 The processing cycle of this

7We think that 15 seconds of delay before playing a long video is tolerable. During this time
the server could display a generic advertisement or public service announcement (existing services
commonly display 15 or 30 second advertisements [30]).
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Throughput (Gbps)

c3.8xl i2.4xl i2.8xl

Sequential read 6.4 12.6 23.3
Random mixed rw 2.1 8.0 16.0
block matrix multiplication 488–4968 488–2512 432–4608

Figure 2.9: Throughput of basic operations in Popcorn—reading a column slice
(§2.3.3), reading and writing 1 MB sized chunks, and computing block matrix mul-
tiplication on a slice (§2.3.2)—on machines listed in Figure 2.8. The latter value
depends on the size of the query matrix (§2.3.2, §2.3.3), so we report a range: from
a query matrix consisting of a single query vector to one that contains 4096 query
vectors.

instance must be T1≤ d−ϵ·k1 (§2.3.3). For our example, ϵ= 2 (the time to process
or consume a 1 MB chunk at µ= 4Mbps), and we speculatively set k1 = 3, which
gives T1≤ 15−2·3= 9 seconds. Thus, the instance is given a segment of t1=T1=

9 seconds and has a batch size of b1 = (C/T )·T1 = 17. Furthermore, it requires
storage capacity of n ·t1·µ= 36GB, read bandwidth R1= n ·µ= 32Gbps, and XOR
processing throughput P1=b1·n ·µ=544Gbps.

Our microbenchmarks (Figure 2.9) indicate that these requirements can be
met by three i2.4xl machines. If the microbenchmarks had indicated a different
number, then, as described in §2.3.3, we would have had to adjust k1 (which was
speculatively set) and repeat the provisioning process described above.

BaselinePIR. To use the fewest possible machines, we stripe the approximately
21 TB library of our Netflix-like workload across machines with highest storage
capacity (that is, i2.8xl in our testbed).

To reduce the financial cost of our experimental evaluation, we measure the
number of requests that can be serviced by this setup, along with each request’s re-
source consumption, and extrapolate the results to workloads with a larger number
of requests (e.g., to support 2× concurrent clients, we double resource costs).

BaselinePIR++. As in Popcorn, we use the microbenchmarks in Figure 2.9 and
the provisioning analysis for the cohort batching scheme (§2.3.3).
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Figure 2.10: Per-request server-side resource use (log-scaled) of Popcorn and the
baselines with varying concurrent requests C . If I/O is the bottleneck, there are idle
CPU cycles and vice versa (§2.3.3). For Popcorn, we depict both the provisioned and
consumed resources; for the baselines, we depict only the latter. We do not depict
I/O usage for NoPriv as it is always zero (see text).

2.5.2 Per-request overheads of Popcorn

To understand when Popcorn is affordable, we run experiments varying the num-
ber of concurrent requests (C ); the number of objects (n); and the playing time
of objects (T ). We find that Popcorn incurs modest costs when the library size
is moderate (≈8K media files), object sizes are large (≈90 minutes), and there are
many concurrent clients (≥10,000). Fortunately, these settings are consistent with
the workloads of Netflix-like systems (§2.7).

Before proceeding, we note that Popcorn’s provisioning method can leave
resources idle (§2.3.3), so we report both the consumed and provisioned resources.
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We focus on the consumed resources in this subsection and account for the idle
resources in the next subsection.

Overhead versus number of concurrent requests. We run Popcorn and its base-
lines with C = {1, 1K, 10K} while keeping n = 8192, T = 90minutes, µ = 4Mbps,
and d = 15 seconds. Figure 2.10 summarizes the per-request server-side resource
costs.

I/O overheads. When C =1, the I/O bandwidth Popcorn consumes matches
that of BaselinePIR and BaselinePIR++, as there is no opportunity to batch requests.
However, as the request rate increases, batching lets Popcorn amortize its I/O trans-
fers (§2.3.3): the per-request amortized I/O bandwidth decreases from ≈ 63 Gbps
(for C =1) to 53 Mbps (for C =10K ), a reduction of 1190×. Surprisingly, concurrent
requests, by hitting the file system cache, also reduce BaselinePIR’s per-request I/O
bandwidth (by 16×). As expected, BaselinePIR++’s per-request I/O bandwidth re-
duces by the cohort batch size. Finally, there are no I/O transfers in NoPriv as all
requests hit the same (cached) object.

CPU overheads. For a single request, Popcorn consumes 50% more CPU than
BaselinePIR, as the overhead of parallelizing block matrix multiplication (over mul-
tiple cores) in Popcorn (§2.3.2) is charged to a single request. As the number of
concurrent requests increases, Popcorn’s CPU overheads decrease; the per-request
CPU consumption decreases by ≈11× when the number of concurrent requests in-
creases from 1 to 10,000. We hypothesize that this stems from the increase in cache
locality from block matrix multiplication over bigger batch sizes.8 Furthermore, the
36 minutes of per-request CPU time for C =10K matches the performance of the ma-
trix multiplication microbenchmark (42 TB of data processed in 36 minutes gives a
throughput of 159 Gbps for a single CPU, consistent with the throughputs reported
in Figure 2.9).

Popcorn’s per-request CPU consumption is much higher than NoPriv (1080×
for C = 10K): for a single object, the Apache web server in NoPriv serves 1 MB
chunks and requires almost no server-side processing, whereas Popcorn XORs n

objects on average.

8In a separate experiment, we measured the percentage of cache misses for block matrix multi-
plication (§2.3.2) using CPU performance counters, and found that it reduces from 48% for a query
matrix with a single request to less than 2% for a query matrix with 210 requests.
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Figure 2.11: Popcorn per-request resource use (log-scaled) as a function of the num-
ber (top) and length (bottom) of objects.

Network and storage overheads (not depicted in the figures). Popcorn, BaselinePIR,
and BaselinePIR++, incur a two-fold network overhead over NoPriv because clients
download from two servers. With respect to storage, each instance of an object
server in Popcorn needs buffer space equal to its segment size times its batch size
(§2.3.3). Across all instances, this equals ≈15.4 TB, or ≈1.6 GB per concurrent re-
quest, which is 0.6× the size of an object.

Overhead versus number of objects. In Figure 2.11(a), we change the size of the
library (n={2048, 4096, 8192}) while keeping the other parameters fixed (C =10K,
T = 90min, µ= 1Mbps,9 and d = 15 seconds). As expected, Popcorn’s per-request
CPU and I/O bandwidth consumption, even though amortized, is proportional to n .
Network downloads and server-side storage overheads (not shown) do not change
with n .

9To reduce the financial cost of EC2 experiments, this and subsequent experiments set µ=1Mbps
instead of 4 Mbps. The change scales down the experiments; the qualitative results are unaffected.
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Overhead versus playing time of objects. In Figure 2.11(b), we change the play-
ing time of objects (T = {10, 60, 90} minutes) while keeping the other parameters
fixed (n=2048, µ=1Mbps, d=15 seconds, and C =10K). As T increases, the per-
request CPU consumption is unaffected. Also, with increasing T , the per-request
I/O consumption decreases; on the other hand, idle I/O bandwidth (not depicted
in the figure) increases (§2.3.3).

Overheads of the key server. Recall that Popcorn uses XPIR [34] as its CPIR im-
plementation (§2.4). Since XPIR does not batch requests, the per-request overheads
of the key server depend only on the number of keys (and not on the number of
concurrent requests C ). We use a single machine of type c3.8xl for the key server.
For a library with 8192 keys, it takes three seconds of server-side CPU time to pri-
vately retrieve a key; there are no I/O transfers because the 128 KB library fits in
memory. Thus, as expected, the key server is not a performance bottleneck for Pop-
corn. Moreover, the end-to-end time to retrieve a key is much less than the startup
delay of d=15 seconds.

Client-side overheads. Compared to NoPriv, Popcorn’s client consumes addi-
tional CPU and network bandwidth (because it has to generate and decode PIR
queries, and download content from two object servers). For example, for n =

8192 objects, T = 90minutes, and µ = 4Mbps, we find that Popcorn’s client (run
on a single vCPU of c3.8xl type machine) consumes 10 CPU seconds (compared to
NoPriv’s 1.7 CPU seconds), and 25 MB of network upload bandwidth (compared to
NoPriv’s 11 MB).

2.5.3 Dollar-cost analysis

The previous subsection showed that Popcorn significantly reduces CPU and I/O
consumption over the baseline PIR systems, at least for large objects and high load.
These improvements provide the foundation for achieving privacy at low cost, a
cost that we now quantify.

Method. We use the pricing model of Amazon EC2 (Figure 2.8) to estimate the
per-request machine cost, and the pricing model of CDNs ($0.006 per GB) [202]
to compute per-request network cost. We choose these pricing models because
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experimental configuration per-request costs ($)

#reqs #1 #2 #3 machine network total

NoPriv 10K – – – – 0.016 0.016
Popcorn 1 2 60 0 77.943 0.032 77.975
Popcorn 1K 17 50 4 0.09 0.032 0.122
Popcorn 10K 185 32 32 0.03 0.032 0.062

Figure 2.12: Estimated per-request dollar cost for NoPriv and Popcorn. #1, #2, and
#3 refer to the type of AWS EC2 machines from Figure 2.8.

they are public—though, in an actual deployment, a service could receive whole-
sale, bulk, or negotiated prices. We use a Netflix-like workload in our calculations:
n = 8192 media files, T = 90minutes, µ= 4Mbps with varying number of concur-
rent clients. Figure 2.12 summarizes our results. We find that Popcorn’s per-request
cost is within a small multiple of NoPriv for a workload with C =10K concurrent
clients.

NoPriv. To give NoPriv the maximum benefit, we disregard its machine cost. The
per-request cost is then determined solely by the network transfer cost, and is ≈
$0.016 (i.e., 90 minutes × 4 Mbps × $0.006/GB).

Popcorn. We provision EC2 machines as described in §2.5.1 and §2.3.3. The total
per-request cost is derived by combining (1) the per-request machine cost, com-
puted by dividing total machine cost by the total number of requests, and (2) the
per-request network cost. This method charges Popcorn for both consumed and
idle resources (Figure 2.10). For the Netflix-like library and C =10K, the per-request
cost is $0.062 (the per-request machine cost is $0.03; the per-request network cost
is $0.032).10 Popcorn thus increases dollar cost 3.87× over NoPriv, in line with our
initial affordability requirement (§1). Importantly, Popcorn’s low cost is premised
on many clients accessing the system concurrently: the per-request machine cost
decreases with the number of concurrent clients. It is $78 for C = 1 and $0.09 for
C =1K.

10The network cost can be reduced for a pricing model in which network transfers between
(ITPIR) servers is cheaper than server to client transfers, by using the techniques of Riffle [162, Sec-
tion 4.4] (§2.6).
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system description

XPIR [34] fastest CPIR implementation
XPIR++ XPIR with naive batching (§2.3.2)
BaselinePIR XPIR composed with CGKS ITPIR (§2.3.1)
BaselinePIR++ BaselinePIR with naive batching (§2.3.2)
Popcorn §2.3.1+ §2.3.2+ §2.3.3

Figure 2.13: Comparison points. “Naive batching” refers to an instantiation of
batching, as described in Section 2.3.2, with the cohort batching scheme described
in Section 2.3.3.

BaselinePIR and BaselinePIR++. Since we might have provisioned these sys-
tems wastefully, we do not estimate their dollar cost using the machine-based pric-
ing model, which charges for both the consumed and idle resources. Instead, we
use a per-resource pricing model to estimate the dollar cost of these systems, as
described next.

2.5.4 Further comparisons

In this subsection, we estimate the dollar cost of BaselinePIR, BaselinePIR++, XPIR,
and XPIR++, a hypothetical extension to XPIR that uses cohort batching (§2.3.2) to
reduce I/O costs (but does not use matrix multiplication). Figure 2.13 summarizes
these alternatives.

The estimates for BaselinePIR, BaselinePIR++, and Popcorn are based on ex-
perimental data from §2.5.2; for XPIR and XPIR++, we calculate CPU resource con-
sumption using XPIR’s reported performance and I/O bandwidth consumption
from the expression 2·(n ·µ)/bcohort (the factor of two is due to XPIR’s preprocessed
library being twice the size of the original [34]).

We compare these systems for the Netflix-like workload of §2.5.3. We set the
startup delay d to 15 seconds, except for the systems using cohort batching scheme,
for which we vary d .

We use a per-resource pricing model (derived in Appendix B) based on
Amazon EC2’s machine cost (Figure 2.8) and on the network cost of CDNs [202].
Our model charges CPU at $0.0076/hour, I/O bandwidth at $0.042/Gbps-hour, and
network transfers at $0.006 per GB. Multiplied by each system’s consumption of the
corresponding resources, these values determine the per-request dollar cost (Fig-
ure 2.14).

29



I/O Dollar cost

# vCPUs
bandwidth

(Gbps)
relative to

NoPriv

X [34]/X++ (C=1) 11.6 64 265×
X++ (C=1K) 11.6 26.6 118×
X++ (C=1K, d=60) 11.6 5.96 37×
X++ (C=1K, d=600) 11.6 0.58 16×
X++ (C=10K) 11.6 2.66 24×
X++ (C=10K, d=60) 11.6 0.59 16×
X++ (C=10K, d=600) 11.6 0.058 13.5×
B/B++ (C=1) 3.1 64 256×
B (C=1K) 2.4 4 19×
B (C=10K) 2.5 4 19×
B++ (C=1K) 1.7 16 66×
B++ (C=1K, d=60) 1.26 9.15 39×
B++ (C=1K, d=600) 0.49 0.54 4.5×
B++ (C=10K) 0.65 3 14×
B++ (C=10K, d=60) 0.49 0.59 4.7×
B++ (C=10K, d=600) 0.41 0.058 2.5×
P (C=1) 4.6–992 63–781 253×–4873×
P (C=1K) 0.5–1.47 0.43–0.83 4×–7.6×
P (C=10K) 0.4–0.74 0.053–0.23 2.5×–3.87×

Figure 2.14: Per-request resource consumption and estimated dollar-cost of XPIR
(X), XPIR++ (X++), BaselinePIR (B), BaselinePIR++ (B++), and Popcorn (P). Net-
work transfers are not shown; they are 5× NoPriv for X and X++, and 2× NoPriv
for the other systems. For Popcorn, we present a range: the smallest value consid-
ers only the consumed resources, while largest value includes both consumed and
idle resources. Startup delay d is 15 seconds unless specified otherwise.

• The costs of XPIR are high (265× NoPriv), though adding a naive batching
scheme (XPIR++) significantly reduces them (by ≈11× for C =10K, d=15).

• Using ITPIR for object delivery (in conjunction with CPIR (§2.3.1)) reduces
the costs further (by ≈ 2× for C = 10K, d = 15). The disadvantage is that
ITPIR requires non-colluding servers.

• Increasing the startup delay (and thus the batch size of the cohort) can fur-
ther reduce costs. For example, increasing d from 15 to 60 seconds reduces
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costs by 3× (a reduction from 14× NoPriv to 4.7× NoPriv).
• BaselinePIR++ matches the cost of Popcorn (when C = 10K) but requires a

40× higher startup delay (d = 10 minutes in BaselinePIR++ vs. 15 seconds
for Popcorn).

2.5.5 Discussion

The analysis presented in the previous two subsections estimates that adding pri-
vacy to a Netflix-like service would increase resource costs by 3.87 times. However,
it does not indicate the broader economic impact on the service, which depends
on many factors including resource costs. On the one hand, the increased resource
costs may drive up the subscription fee and reduce the number of subscribers. On
the other hand, the added privacy could encourage the addition of sensitive con-
tent (adult movies, etc.) and drive up the number of subscribers. Therefore, it may
be difficult to predict, in general, revenue with an increase in resource costs, and in
particular, effect on subscription fee seen by customers. To understand the broad
economic impact a detailed analysis is required, which is beyond the scope of this
dissertation.

2.5.6 Compatibility study of Popcorn

To verify Popcorn’s compatibility with modern Web browsers and DRM technol-
ogy, we implemented a Popcorn client in JavaScript and used it to watch short
videos in the WebM format [25] (protected using WebM Encryption [26]). Our pro-
totype works on Chrome (version 45.0.2454), and makes use of the HTML5 video
tag and extensions: the decoded ITPIR content is passed into the Media Source Ex-
tension interface, which forwards media chunks to the video player; the decoded
CPIR response is also passed into the Encrypted Media Extension interface, which
decrypts the protected content.

2.6 Related Work

Alternatives to PIR for privacy. Obfuscation [49, 99, 203] protects clients’ privacy
by cloaking traffic with dummy requests. This approach requires less processing
than PIR at clients and servers, but significantly higher network cost: matching
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PIR’s degree of privacy (the number of objects among which a request is hidden)
would require downloading the entire library.

Rather than the content being consumed, anonymity hides the identity of the
consumer [94, 165]. This could be used to hide metadata (login times, download
frequency, etc.), which is complementary to PIR. However, anonymity-based solu-
tions can reveal access patterns that, combined with other background information,
may disclose a user’s media consumption [187].

Oblivious RAM (ORAM) [119, 175, 178, 225] algorithms conceal a client’s ac-
cess patterns from a storage server. Similarly, searchable symmetric encryption (SSE)
(surveyed in [68, 69]) offers yet another solution for private data retrieval from a re-
mote database. However, these solutions target a setup where the client outsources
its encrypted data to a server.

Recent results [149, 195] enhance the above setup: they let clients privately
retrieve data from a remote database owned by a different entity. Unlike PIR, these
protocols allow for a controlled amount of leakage in the form of data-access and
query patterns. Unlike us, they assume that the server does not collude with clients
(e.g., in Popcorn the server can pretend to be a new customer of the streaming
service). If the server can collude with a client, it can issue queries for each media
file in the system, monitor access patterns, and decode all other clients’ queries.

Improving the performance of PIR. The computational challenges of PIR have
been obvious since its introduction, and have since been mitigated in several ways.

Distributing the work, either by moving it to the cloud or by dividing it
among clients [88, 177, 194], reduces latency but not the total computational bur-
den.

GPUs [83, 181] and cheaper cryptographic operations [34, 36, 101, 232, 254]
have reduced the computational load of CPIR, refuting the notion [221] that CPIR is
likely to be more expensive than the naive solution of transferring the entire library.
However, the single request cost for media delivery in XPIR [34], the fastest system
employing these techniques, is still higher than desirable (see §2.5.4 and Figure 2.14
for a comparison with Popcorn).

Another path to better performance is to limit the privacy guarantees to
only a portion of the library [190, 191, 242]. For example, bbPIR [242] allows users of
libraries that can be thought of as a matrix to specify a submatrix (called a bounding

32



box) from which bits can be privately retrieved using CPIR. This approach can be
useful for efficiently implementing privacy-preserving location-based services: the
larger the bounding box, the higher the privacy, but also the higher the processing
and network costs.

Perhaps the most direct way to reduce the overhead of PIR is to genuinely
reduce the work that servers need to perform. Lueks and Goldberg [172], building
on earlier theoretical work by Beimel et al. [51] and Ishai et al. [148], show that one
can achieve sub-linear server-side computation by efficiently processing batches of
requests from multiple clients. Popcorn is inspired by this work: it uses batching
at multiple stages of its protocol, but tailored for media delivery. Another recent
system, RAID-PIR [86], based on the implementation of upPIR [67], reduces server-
side work, first, by storing and processing only a fraction of the library at each ITPIR
server and, second, by encoding multiple requests from the same client in a single
query. Popcorn’s performance could potentially benefit from these techniques, but
only when using more than two servers, or when clients issue multiple simulta-
neous requests. Currently, Popcorn assumes exactly two servers and that clients
request objects sequentially.

Finally, performance can be improved with dedicated hardware [44, 145,
171, 222, 247], at the price of having to trust its manufacturer: a client can connect
to a secure coprocessor that (obliviously to the server hosting the library) retrieves
and delivers the requested object.

A large body of literature focuses on instead reducing the communication
overhead of PIR [110, 192]. Unlike Popcorn, these protocols target an environment
in which n≫ ℓ. In that context, Devet et al. [89] propose a technique that, like Pop-
corn, composes CPIR and ITPIR. Unlike Popcorn, the composition is hierarchical
(ITPIR selects a sub-library, and iterations of CPIR select an object) and minimizes
communication costs.

In very recent work, Riffle [162], like Popcorn, targets the case ℓ≫ n . Un-
like Popcorn, Riffle focuses on peer-to-peer file transfers (as opposed to centralized
streaming media). Riffle uses ITPIR, with k > 2, and focuses on reducing server-
to-client network transfers (§2.1.4), by adding server-to-server transfers; this could
potentially be composed with Popcorn.
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Protecting library content in PIR. The tension between ITPIR and content protec-
tion has been noted before. Gertner et al. [113] introduce the problem and propose
two solutions, both of which, at a high level, protect the content by storing at un-
trusted servers independent random data (e.g., two servers store random data that
XORs to the library content). Goldberg’s ITPIR protocol [117] has a similar protec-
tion property as [113], but it uses fewer servers. Huang et al. [139] protect library
content kept at untrusted servers by first encrypting it, and then using a thresh-
old signature scheme [87] to serve keys for the encrypted object. In all the above
schemes, the library content can be disclosed if more than a threshold of untrusted
servers collude. By composing CPIR and ITPIR (§2.3.1), Popcorn instead keeps con-
tent protection collusion-proof.

Symmetric PIR (SPIR) schemes add an additional facet to content protec-
tion by preventing dishonest clients from learning information about the content
of a database beyond what is contained in the records they retrieved [114]. Popcorn
currently assumes an honest client (§2.1.1) and thus does not use SPIR to privately
download keys from the key server; however, it can reduce that trust by transform-
ing its CPIR protocol into an SPIR protocol [91, 186].

1-out-of-N oblivious transfer (OT) [60, 186] provides the same content pro-
tection property as SPIR but, unlike SPIR, can have network overhead linear in the
size of the library. In our experiments, this overhead would not be costly: WebM
Encryption (§2.5.6) sets our keys to 128 bits, which, for n=8192 objects, yields a
library of only 128 KB. However, the linear overhead can in general be large (e.g.,
if the key server embeds keys within DRM licenses); for this reason, Popcorn’s key
server does not use OT.

Handling variable-sized objects in PIR. A naive solution is to pad every object
to the size of the longest, and download (the equivalent of) the longest object from
each server. Prior work [86, 133] avoids this solution by (a) concatenating small ob-
jects (e.g., a few objects form one row of the library), and (b) splitting large objects
over multiple rows of the library and using multi-row queries that retrieve (secretly)
many rows in a single query. The reduced communication cost is close to the op-
timal: the size of the longest object in the library. However, this cost is still high,
especially if a smaller object is being retrieved. An alternative is to download dif-
ferent rows (of an object) as independent objects, possibly at the cost of increasing
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the consumption delay [86]. Popcorn uses this technique for objects that are di-
vided over multiple rows, but in addition reduces the number of such objects by
using a combination of compression and padding (§2.3.4).

Prior PIR implementations. Many of the CPIR and ITPIR protocols described
above have been implemented. The Percy++ library [116] contains several of them
[36, 72, 88–90, 117, 134, 172]. Also, [133] is implemented as a fork of Percy++, RAID-
PIR [86] is implemented on top of upPIR [67], and there are numerous CPIR imple-
mentations [34, 83, 101, 177, 181, 194, 210, 232, 242, 254], among which XPIR [34]
is the fastest. Popcorn incorporates some of these implementations as modules:
it uses the XPIR library for CPIR and borrows the CGKS ITPIR [72] code from
Percy++. Sections 2.4 and 2.5 empirically or analytically compare Popcorn against
these prior implementations.

2.7 Discussion, limitations, and future work

We evaluated Popcorn at the scale of a Netflix library, and found that the results are
cautiously encouraging: compared to a baseline, I/O and CPU overhead are both
lower (due to amortization, batching, and careful provisioning). And, although the
overall resource cost is high, the dollar cost is manageable. Below, we discuss funda-
mental limitations of Popcorn, followed by limitations of the prototype and current
design that require future work.

Fundamental limitations. We see three main limitations. First, because Popcorn’s
overheads grow linearly with the number of objects, it has no hope of scaling to
YouTube-size libraries. Second, organizations that serve objects can collude to com-
promise Popcorn’s privacy guarantee. Admittedly, an assumption of no collusion
may be unrealistic against state-level adversaries that can compromise multiple or-
ganizations (or already have). Third, Popcorn cannot support forward seeks during
playback: such user actions alter the download pattern in a content-dependent way,
thus revealing information.

Library updates. To support online updates, Popcorn should execute both CPIR
and ITPIR queries on the same version of the key and object libraries, at the key
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server and at both object servers. Standard solutions exist (e.g., generation numbers
in concert with garbage collection).

Integration with CDNs. Running Popcorn on content delivery networks (CDNs)
would present two main challenges: maintaining the utility of batching when run-
ning on a distributed infrastructure, and increased hardware provisioning at the
CDN’s edge servers. Though addressing the latter is non-trivial, we think that
it does not require a paradigm shift: Akamai’s EdgeComputing service [84] al-
ready enables running CPU-intensive enterprise business web applications at edge
servers. Moreover, Netflix recently installed custom-built storage-optimized appli-
ances at the edges.

Similarly, we think that, though the CDN’s distributed infrastructure will re-
duce opportunities for batching, enough concurrency will remain to make the ser-
vice cost effective. Indeed, rough back-of-the-envelope calculations suggest that re-
quest rates for Netflix are already quite high (e.g., over 9200 requests/90min/PoP11)
and are growing fast [14]. This is not specific to Netflix: similar request rates (aver-
age of 6000 requests in 90 minutes from within a single city) have been reported for
other video on demand systems [258].

Changes in load. Unless Popcorn is always wastefully provisioned for the peak
load, load changes require care: the assignment of work units to machines depends
on the number of clients (§2.3.3). A solution is to rely on virtual machines (VMs):
give each VM a single slice, and then provide elasticity via VM migration or con-
solidation.

Variations in quality and bandwidth. Adaptive streaming lets clients switch be-
tween different video quality levels to adjust to bandwidth fluctuations. Popcorn
could support this feature in two ways. First, it could maintain an individual library
for each quality level. Clients would send queries to all libraries but download a
video chunk only from the appropriate one. (A concern is, does switching between
libraries leak information? No, because the chunk download pattern and switches
are “lined up” with a reference object, Oavg (§2.3.4).) This solution is simple, but

11Assumes 10 billion hours watched in 3 months [13], requests are for a 90 minute video, and a
total of 500 Points of Presence (PoP).
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asking each library to process every request would increase server-side work sig-
nificantly.

Alternatively, Popcorn could exploit layered coding [136, 152, 201, 213] or
multiple description coding (MDC) [126, 204, 243]. There would be a single basic
quality library accessed by all clients, with separate libraries for enhancement lay-
ers (better spatial resolution, bitrate, frame rate, etc.). The server-side work would
thus be proportional only to the size of the highest quality library.

Billing and accounting. Popcorn must enable the content distributor to charge
consumers, pay royalties, and collect aggregate statistics. The current prototype
can support both subscription-based and pay-per-view pricing models, by moni-
toring accesses to the key server. Furthermore, by default it works with a prepaid
royalty model, where the distributor pays a fixed license fee up front. However,
in its current form, Popcorn does not support advanced pricing models (different
prices for different objects, possibly in tiers) or advanced royalties models (e.g.,
based on number of views or aggregate statistics). However, we think that these
limitations are not fundamental, as prior works [37, 65, 134, 229] have addressed
them in different contexts. Future work is to investigate the performance and pri-
vacy implications of composing these works with Popcorn.

Targeted ads and recommendation services. Popcorn does not currently sup-
port targeted advertisements or recommendations. Incorporating relevant prior
work [47, 63, 66, 129, 150, 157] into Popcorn is a direction for future work.
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Chapter 3

Pretzel: A privacy-preserving email system

Email, in contrast to on-demand media, is ubiquitous and fundamental. For many,
it is the principal communication medium, even with intimates. For these reasons,
and others outlined in Chapter 1 (hacks of centralized servers, snooping by rogue
employees, etc.), our animating ideal is that email should be end-to-end private by
default.

How far are we from this ideal? On the plus side, hop-by-hop encryption
has brought encouraging progress in protecting email privacy against a range of
network-level attacks. Specifically, many emails now travel between servers over
encrypted channels (TLS [92, 106]). And network connections between the user and
the provider are often encrypted, for example using HTTPS (in the case of webmail
providers) or VPNs (in the case of enterprise email accounts).

However, emails are not by default encrypted end-to-end between the two
clients: intermediate hops, such as the sender’s and receiver’s email provider, han-
dle emails in plaintext. A crucial reason emails are not encrypted end-to-end by
default—at least the one that is often cited [75, 76, 105, 122, 223]—is that encryp-
tion appears to be incompatible with value-added functions (such as spam filter-
ing), as noted earlier (Chapter 1). These functions are proprietary; for example, the
provider might have invested in training a spam filtering model, and does not want
to publicize it (even if a dedicated party can infer it [230]). So it follows that the
functions must execute on providers’ servers with access to plaintext emails.

But does that truly follow? In this chapter, we describe Pretzel, a private
email system that refutes these claims on incompatibility. At a high-level, Pretzel re-
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lies on two cryptographic primitives: end-to-end encryption and secure two-party
computation (2PC); 2PC protocols enable one or both parties to learn the output
of an agreed-upon function (for example, spam filtering), without revealing the
inputs (spam filter and email) to each other.

The challenge in Pretzel comes from the 2PC component. There is a ten-
sion between expressive power (the best 2PC schemes can handle any function
and even hide it from one of the two parties) and cost (those schemes remain ex-
orbitant, despite progress in lowering the costs; §3.2.2). Therefore, Pretzel makes
certain compromises (§3.1.1) to gain even the possibility of plausible performance:
baking in specific algorithms, requiring both the algorithms’ logic and the model
features to be exposed (model parameters are hidden), and incurring per-function
design work.

Pretzel’s central example is classification, which it applies to both spam fil-
tering and topic extraction (the implementation also includes a simple keyword
search function). Pretzel’s first step is to compose (a) a relatively efficient 2PC pro-
tocol (§3.2.2) geared to computations that consist mostly of linear operations [33,
54, 142, 196, 208], (b) linear classifiers from machine learning (Naive Bayes, SVMs,
logistic regression), which fit this form and which have good accuracy (§3.2.1), and
(c) mechanisms that protect against adversarial parties. Although the precise pro-
tocol (§3.2.3) has not appeared before, we don’t claim it as a contribution, as its
elements are well-understood. This combination is simply the jumping-off point
for Pretzel.

The work of Pretzel is adapting and incorporating this baseline into a sys-
tem for end-to-end encrypted email. In this context, the costs of the baseline would
be, if not quite outlandish, nevertheless too high. Pretzel responds with several
protocol refinements: replacing the cryptosystem (§3.3.1), conserving calls into it
by applying a packing technique [112] (§3.3.2), and decomposing classification into
a non-private and a private step (§3.3.3). In addition, Pretzel applies well-known
ideas (feature selection to reduce costs, various mechanisms to guard against mis-
uses of the protocol).

None of the elements of Pretzel are individually remarkable. However, taken
together, they produce the first (to our knowledge) demonstration that classifica-
tion can be done privately, at tolerable cost, in the email setting (§3.5).
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3.1 Architecture and design of Pretzel

3.1.1 Design ethos: (non)requirements

Pretzel would ideally (a) enable rich computation (of functions such as spam fil-
tering, topic extraction, and predictive personal assistance) over email, (b) hide the
inputs and implementations of those computations, and (c) impose little overhead.
But these three ideals are in tension. Below we describe the compromises that form
Pretzel’s design ethos.

• Functionality. We will not insist that Pretzel replicate exactly the computations
that providers such as Google perform over email; in fact, we don’t actually
know in detail what they do. Rather, we aim to approximate the value-added
functions that they provide.

• Provider privacy. Related to the prior point, Pretzel will not support proprietary
algorithms; instead, Pretzel will protect the inputs to the algorithms. For example,
all users of Pretzel will know the spam filtering model (both its structure and its
features), but the parameters to the model will be proprietary.

• User privacy. Pretzel will not try to enshroud users’ email in complete secrecy;
indeed, it seems unavoidable that computing over emails would reveal some
information about them. However, Pretzel will be designed to reveal only the
outputs of the computation, and these outputs will be short (in bits).

• Threat model and maliciousness. Pretzel will not build in protection against actions
that subvert the protocol’s semantics (for example, a provider who follows the
protocol to the letter but who designs the topic extraction model to recover a
precise email); we will deal with this issue by relying on context, a point we
elaborate on later (§3.3.4, §3.6). Pretzel will, however, build in defenses against
adversaries that deviate from the protocol’s mechanics; these defenses will not as-
sume particular misbehaviors, only that adversaries are subject to normal cryp-
tographic hardness.

• Performance and price. Whereas the status quo imposes little overhead on email
clients, Pretzel will incur network, storage, and computation overhead at clients.
However, Pretzel will aim to limit the network overhead to small multiples of
the overhead in the status quo, the storage cost to several hundred megabytes,
and the CPU cost to a few hundred milliseconds of time per processed email. For
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Figure 3.1: Pretzel’s architecture. e denotes plaintext email; e ′ denotes encrypted
email. The sender’s provider is not depicted.

the provider, Pretzel’s aim is to limit overheads to small multiples of the costs in
the status quo.

• Deployability and usability. Certain computations, such as encryption, will have
to run on the client. However, web applications are permitted to consume client-
side resources, including storage [74]. Furthermore, Pretzel will also aim to be
configuration-free. Finally, Pretzel must be backwards compatible with existing
email delivery infrastructure (SMTP, IMAP, etc.).

3.1.2 Architecture

Figure 3.1 shows Pretzel’s architecture. Pretzel comprises an e2e module and function
modules. The e2e module implements an end-to-end encryption scheme; a function
module implements a computation over the email content (spam filtering, etc.).
The e2e module is client-side only, while a function module has a component at the
client and another at the provider.

At a high level, Pretzel works as follows. An email sender uses its e2e mod-
ule to encrypt and sign an email for an email recipient (step À). The recipient uses
its e2e module to authenticate and decrypt the email (step Á). The e2e module
can implement any end-to-end encryption scheme; Pretzel’s current prototype uses
OpenPGP [16, 64]. Next, the recipient passes the decrypted email contents to the
client-side components of the function modules (step Â), which then participate
in a protocol with their counterparts at the provider (step Ã). At the end of the
protocol, either the client or the provider learns the output of the computation (for
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example, a bit encoding whether the email is spam or not). Finally, the client pro-
cesses the decrypted email according to the output (for example, labels it as spam),
and delivers it to the recipient (step Ä).

Pretzel’s e2e module requires cryptographic keys for encrypting, decrypt-
ing, signing, and verifying, and also demands a solution to manage these keys (for
instance, share keys across devices) [8, 55, 180, 244]. However, the problem of man-
aging keys is one of the obstacles (§3.6) that Pretzel does not address.

The main work for Pretzel surrounds the function modules; the challenge
is to balance privacy, functionality, and performance (§3.1.1). Our focus will be on
two modules: spam filtering and topic extraction (§3.2, §3.3). We will also report
on an elementary keyword search module (§3.4). But before delving into details,
we walk through some necessary background on the class of computations run by
these modules and the cryptographic protocols that they build on.

3.2 Background, baseline, and related work

3.2.1 Classification

Spam filtering and topic extraction are classification problems and, as such, re-
quire classifier algorithms. Pretzel is geared to linear classifiers. So far, we have im-
plemented Naive Bayes (NB) [127, 179, 183, 205] classifiers, specifically a variant
of Graham-Robinson’s NB [127, 205] for spam filtering (we call this variant GR-
NB),1 and multinomial NB [179] for topic extraction; Logistic Regression (LR) clas-
sifiers [108, 120, 167, 189], specifically binary LR [167] and multinomial LR [108]
for spam filtering and topic extraction respectively; and linear Support Vector Ma-
chine (SVM) classifiers [56, 81, 151, 215], specifically two-class and one-versus-all
SVM [56] for spam filtering and topic extraction respectively. These algorithms, or
variants of them, yield high accuracy [79, 120, 127, 137, 151, 263] (see also §3.5.1,
§3.5.2), and are used in popular open-source software packages for spam filtering,
classification, and general machine learning [2, 21, 22, 27, 28, 108].

The three types of classifiers differ in their underlying assumptions and
how they learn parameters from training data. However, when applying a trained

1The original Graham-Robinson NB protects against spam emails that hide a short message within
a large non-spam text [128]. We do not implement that piece; the resulting change in classification
accuracy is small (§3.5.1).
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model, they all perform analogous linear operations. We will use Naive Bayes as a
running example, because it is the simplest to explain.

Naive Bayes classifiers. These algorithms assume that a document can belong to
one of several categories (for example, spam or non-spam). The algorithms output
a prediction of a document’s category.

Documents (emails) are represented by feature vectors x⃗ =(x1, . . . , xN ), where
N is the total number of features. A feature can be a word, a group of words, or
any other efficiently computable aspect of the document; the algorithms do not
assume a particular mapping between documents and feature vectors, only that
some mapping exists. In the GR-NB spam classifier [127, 205], xi is Boolean, and
indicates the presence or absence of feature i in the document; in the multinomial
NB text classifier, xi is the frequency of feature i .

The algorithms take as input a feature vector and a model that describes
the categories. A model is a set of vectors {(⃗vj , p(Cj ))} (1≤ j ≤B), where Cj is
a category (for example, spam or non-spam), and B is the number of categories
(two for spam; 2208 for topics, based on Google’s public list of topics [123]). p(Cj )

denotes the assumed a priori category distribution. The i th entry of v⃗j is denoted
p(ti |Cj ) and is, roughly speaking, the probability that feature i , call it ti , appears
in documents whose category is Cj .2

The GR-NB spam classification algorithm labels an email, as represented by
feature vector x⃗ , as spam if p(spam | x⃗ ) is greater than some fixed threshold. To do
so, the algorithm computes α= 1/p(spam | x⃗ )−1 in log space. One can show (Ap-
pendix C.1) that log α is equivalent to:(

i=N

∑
i=1

xi ·log p(ti |C2)

)
+1·log p(C2)

−
(

i=N

∑
i=1

xi ·log p(ti |C1)

)
+1·log p(C1), (3.1)

2In more detail, the GR-NB spam classifier assumes that the {xi} are realizations of independent,
separate Bernoulli random variables (RVs), with the probabilities of each RV, p(ti |Cj ), depending
on the hypothesized category. The multinomial NB text classifier assumes that the {xi} follow a
multinomial distribution, with N bins and ∑i xi trials, where the bin probabilities are p(ti |Cj ) and
depend on the hypothesized category.
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where C1 represents spam and C2 represents non-spam.
For the multinomial NB text classifier, selection works by identifying the

category Cj ∗ that maximizes likelihood: j ∗=argmaxj p(Cj | x⃗ ). One can show (Ap-
pendix C.2) that it suffices to select the Cj for which the following is maximal:(

i=N

∑
i=1

xi ·log p(ti |Cj )

)
+1·log p(Cj ). (3.2)

For LR and SVM classifiers, the term log p(ti |Cj ) is replaced by a “weight”
term wi ,j for feature xi and category Cj , and log p(Cj ) is replaced by a “bias” term
bj for category j .

3.2.2 Secure two-party computation

To perform the computation described above within a function module (§3.1.2) se-
curely, that is, in a way that the client does not learn the model parameters and
the provider does not learn the feature vector, Pretzel uses secure two-party compu-
tation (2PC): cryptographic protocols that enable two parties to compute a function
without revealing their inputs to each other [118, 252]. Pretzel builds on a rela-
tively efficient 2PC protocol [33, 54, 142, 196, 208] that we name Yao+GLLM; we
present this below, informally and bottom up (for details and rigorous descriptions,
see [115, 138, 169, 209]).

Yao’s 2PC A building block of Yao+GLLM is the classic scheme of Yao [252]. Let
f be a function, represented as a Boolean circuit (meaning a network of Boolean
gates: AND, OR, etc.), with n-bit input, and let there be two parties P1 and P2 that
supply separate pieces of this input, denoted x1 and x2, respectively. Then Yao (as
the protocol is sometimes known), when run between P1 and P2, takes as inputs
f and x1 from P1, x2 from P2, and outputs f (x1, x2) to P2, such that P1 does not
learn anything about x2, and P2 does not learn anything about x1 except what can
be inferred from f (x1, x2).

At a very high level, Yao works by having one party generate encrypted
truth tables, called garbled Boolean gates, for gates in the original circuit, and having
the other party decrypt and thereby evaluate the garbled gates.

In principle, Yao handles arbitrary functions. In practice, however, the costs
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are high. A big problem is the computational model. For example, 32-bit multipli-
cation, when represented as a Boolean circuit, requires on the order of 2,000 gates,
and each of those gates induces cryptographic operations (encryption, etc.). Re-
cent activity has improved the costs (see [124, 140, 158, 160, 168, 224, 260, 261]
and references therein), but the bottom line is still too expensive to handle arbi-
trary computations. Indeed, Pretzel’s prototype uses Yao very selectively—just to
compute several comparisons of 32-bit numbers—and even then it turns out to
be a bottleneck (§3.5.1, §3.5.2), despite using a recent and optimized implementa-
tion [259, 260].

Secure dot products. Another building block of Yao+GLLM is a secure dot prod-
uct protocol, specifically GLLM [115]. Many such protocols (also called secure scalar
product (SSP) protocols) have been proposed [39, 46, 100, 102–104, 115, 146, 218,
231, 234, 249, 265]. They fall into two categories: those that are provably secure [100,
115, 249] and those that either have no security proof or require trusting a third
party [39, 46, 102–104, 146, 218, 231, 234, 265]. Several protocols in the latter cate-
gory have been attacked [70, 115, 141, 156, 164]. GLLM [115] is in the first category,
is state of the art, and is widely used.

Hybrid: Yao+GLLM. Pretzel’s starting point is Yao+GLLM, a hybrid of Yao and
GLLM. It is depicted in Figure 3.2. One party starts with a matrix, and encrypts
the entries. The other party starts with a vector and leverages additive (not fully)
homomorphic encryption (AHE) to (a) compute the vector-matrix product in ci-
pherspace, and (b) blind the resulting vector. The first party then decrypts to ob-
tain the blinded vector. The vector then feeds into Yao: the two parties remove the
blinding and perform some computation ϕ.

Yao+GLLM has been applied to spam filtering using LR [196], face recog-
nition using SVM [33], and face and biometric identification using Euclidean dis-
tance [54, 142, 208].

Other related work. There are many works on private classification that do not
build on Yao+GLLM. They rely on alternate building blocks or hybrids: additively
homomorphic encryption [57, 170], fully homomorphic encryption [159] (FHE),
or a different Yao hybrid [62]. For us, Yao+GLLM appeared to be a more promis-
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ing starting point. For example, in contrast to the protocol of Khedr et al. [159],
Yao+GLLM reveals only the final output of the computation rather than intermedi-
ate dot products. As another example, the resource consumption in Yao+GLLM is
considerably lower than in Bost et al. [57].3

Another related line of research focuses on privacy and linear classifiers—
but in the training phase. Multiple parties can train a global model without reveal-
ing their private inputs [235, 237, 251, 255–257], or a party can release a trained
“noisy” model that hides its training data [155, 236, 264]. These works are comple-
mentary to Pretzel’s focus on applying trained models.

3.2.3 Baseline protocol

Pretzel begins by applying the Yao+GLLM protocol (Figure 3.2, §3.2.2) to the algo-
rithms described in Section 3.2.1. This works because expressions (3.1) and (3.2)
are dot products of the necessary form. Specifically, the provider is party X and
supplies (⃗vj , p(Cj )); the client is party Y and supplies (⃗x , 1), which it obtains from
an email using a feature extraction algorithm supplied by the provider (§3.1.1); and
the protocol computes their dot product. Then, the threshold comparison (for spam
filtering) or the maximal selection (for topic extraction) happens inside an instance
of Yao. For spam filtering, the client receives the classification output; for topic ex-
traction, the provider does. Note that storing the encrypted model at the client is
justified by an assumption that model vectors change infrequently [78, 214, 215].

In defining this baseline, we include mechanisms to defend against adver-
sarial parties (§3.1.1). Specifically, whereas under the classical Yao protocol an ac-
tively adversarial party can obtain the other’s private inputs [147], Pretzel incor-
porates a variant [147, 158] that solves this problem. This variant brings some ad-
ditional expense, but that expense can be incurred during the setup phase and
amortized. Also, Yao+GLLM assumes that the AHE’s key generation is done hon-

3For the data point at N =70, B =24 (these variables are defined in Figure 3.2), Bost et al. report
network transfers and computation times (for the two parties) of 1911 KB, 1664 ms, and 1652 ms [57],
whereas these overheads are 156.1 KB, 757.9 ms, and 8.6 ms for our implementation of Yao+GLLM
(§3.4) on comparable hardware. These differences in overheads are due to a packing optimization in
Yao+GLLM and improvements (see the pointers to recent activity above) that reduce the overheads of
Yao.

46



Yao+GLLM

• The protocol has two parties. Party X begins with a matrix; Party Y begins with a vector.
The protocol computes a vector-matrix product and then performs an arbitrary computa-
tion, ϕ, on the resulting vector; neither party’s input is revealed to the other.

• The protocol assumes an additively homomorphic encryption (AHE) scheme
(Gen,Enc,Dec), meaning that Enc(pk ,m1)·Enc(pk ,m2) = Enc(pk ,m1+m2), where m1,m2

are plaintext messages, + represents addition of two plaintext messages, and · is an
operation on the ciphertexts. This also implies that given a constant z and Enc(pk ,m1),
one can compute Enc(pk , z ·m1).
Setup phase

1. Party X forms a matrix with columns v⃗1, . . . , v⃗B ; each vector has N components. It does
the following:

(a) Generates public and secret keys (pk , sk)←Gen(1k ), where k is a security parame-
ter.

(b) Using an AHE scheme, encrypts each column of the matrix component-wise. That
is, computes Enc(pk , v⃗j )=(Enc(pk , v1,j ), . . . ,Enc(pk , vN ,j )).

(c) Sends the encrypted matrix columns and pk to Party Y.

Computation phase
2. Party Y begins with an N -component vector x⃗ =(x1, . . . , xN ). It does the following:

(a) (dot products) Computes encrypted dot product for each matrix column:
Enc(pk , dj )=Enc(pk , ∑N

i=1 xi ·vi ,j ), this abuses notation, since the encryption func-
tion is not deterministic. The computation relies on the homomorphic property.

(b) (blinding) Blinds dj by adding random noise nj ∈R {0, 1}b+δ. That is, computes
Enc(pk , dj+nj )=Enc(pk , dj )·Enc(pk ,nj ). Here b is the bit-length of dj and δ≥1 is
a security parameter.

(c) Sends (Enc(pk , d1+n1), . . . ,Enc(pk , dB+nB )) to Party X.

3. Party X applies Dec component-wise, to get (d1+n1, . . . , dB+nB )
4. Party X and Party Y participate in Yao’s 2PC protocol; they use a function f that sub-

tracts the noise nj from dj+nj and applies the function ϕ to the dj . One of the two
parties (which one depends on the arrangement) obtains the output ϕ(d1, . . . , dB ).

Figure 3.2: Yao+GLLM. This protocol [33, 54, 142, 196, 208] combines GLLM’s se-
cure dot products [115] with Yao’s general-purpose 2PC [252]. Pretzel’s design and
implementation apply this protocol to the linear classifiers described in §3.2.1. The
provider is Party X, and the client is Party Y. Pretzel’s instantiation of this protocol
incorporates several additional elements (§3.2.3): a variant of Yao [147, 158] that
defends against actively adversarial parties; amortization of the expense of this
variant via precomputation in the setup phase; a technique to defend against ad-
versarial key generation (for example, not invoking Gen correctly); and a packing
technique (§3.3.2) in steps 1b and 2a.
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estly, whereas we would prefer not to make that assumption; Pretzel incorporates
the standard response.4

While the overall baseline is literally new (Yao+GLLM was previously used
in weaker threat models, etc.), its elements are well-known, so we do not claim
novelty.

3.3 Pretzel’s protocol refinements

The baseline just described is a promising foundation for private classification. But
adapting it to an end-to-end system for encrypted email requires work. The main
issue is costs. As examples, for a spam classification model with N = 5M features,
the protocol consumes over 1 GB of client-side storage space; for topic extraction
with B = 2048 categories, it consumes over 150 ms of provider-side CPU time and
8 MB in network transfers (§3.5). Another issue to consider is the robustness of the
guarantees.

This section describes Pretzel’s refinements, adjustments, and modifications.
The nature of the work varies from low-level cryptographic optimizations, to archi-
tectural rearrangement, to applications of known ideas (in which case the work
is demonstrating that they are suitable here). We begin with refinements that are
aimed at reducing costs (§3.3.1–§3.3.3), the effects of which are summarized in Fig-
ure 3.3; then we describe Pretzel’s robustness to misbehaving parties (§3.3.4).

3.3.1 Replacing the cryptosystem

Both Pretzel and the baseline require additively homomorphic encryption (Fig-
ure 3.2). The traditional choice for AHE—it is used in prior works [33, 142, 196,
208]—is Paillier [193], which is based on a longstanding number-theoretic presumed
hardness assumption. However, Paillier’s Dec takes hundreds of microseconds on
a modern CPU, which contributes substantially to provider-side CPU time.

Instead, Pretzel turns to a cryptosystem based on the Ring-LWE assump-
tion [173], a relatively young assumption (which is usually a disadvantage in cryp-
tography) but one that has nonetheless received a lot of recent attention [31, 59, 85,

4In more detail, the AHE has public parameters which, if chosen adversely (non-randomly) would
undermine the expected usage. To get around this, Pretzel determines these parameters with Diffie-
Hellman key exchange so that both parties inject randomness into these parameters [93, 98, 182, 216].
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174, 197, 206]. Specifically, Pretzel incorporates the additively homomorphic cryp-
tosystem of Brakerski and Vaikuntanathan [59], as implemented and optimized by
Melchor et al. [35] in the XPIR system; we call this XPIR-BV. This change brings the
cost of each invocation of Dec down by over an order of magnitude, to scores of
microseconds (§3.5), and similarly with Enc. The gain is reflected in the cost model
(Figure 3.3), in replacing dpail with dxpir (likewise with epail and expir, etc.)

However, the change makes ciphertexts 64× larger: from 256 bytes to 16 KB.
Yet, this is not the disaster that it seems. Network costs do increase (in Figure 3.2,
step 2c), but by far less than 64×. Because the domain of the encryption function
(that is, the size of the plaintext space) grows, one can tame what would otherwise
be a large increase in network and storage, and also gain further CPU savings. We
describe this next.

3.3.2 Packing in Pretzel

The basic idea is to represent multiple plaintext elements (for example, model pa-
rameters) in a single ciphertext; this opportunity exists because the domain of Enc
is much larger than any single element that needs to be encrypted. Using packing,
one can reduce the number of invocations of Enc and Dec in Figure 3.2, specifically
in step 1b, step 2b, and step 3. The consequence is a significant reduction in resource
consumption, specifically client storage for spam filtering, and provider CPU time
for topic extraction.

A common packing technique—it is used in GLLM [115], Pretzel’s baseline
(§3.2.3), and the works that build on GLLM [33, 142]—traverses each row in the
matrix from left to right and encrypts together sets of elements, while restricting
the packing to be within the given rows. Although better than no packing, this
technique does not always fully utilize the space in a ciphertext. For example, when
the number of elements in a matrix row is two (as in the spam filtering application)
and the number of elements that can be packed together is 1024 (as in the XPIR-BV

ciphertexts), then 1022 “slots” remain unutilized.
Recent packing techniques, proposed in the context of aggregation queries

on encrypted databases [233] and homomorphic evaluation of AES-128 encryp-
tion [112], address the limitation described above, by packing across both columns
and rows. These techniques traverse the matrix in row-major order without restrict-
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Figure 3.4: Packing in Pretzel. Light gray rectangles represent matrix columns
(⃗v1, . . . , v⃗B ); dark gray represent ciphertexts. The arrangement in matrices with
p columns follows GLLM [115]; the matrix with < p columns follows Gentry et
al. [112].

ing the packing to be within a row (see the rightmost matrix in Figure 3.4), thereby
utilizing the “empty slots” in a ciphertext.

Pretzel incorporates both types of techniques described above. Below, we
describe the relevant details on how and where these techniques are incorporated.

Details. Let p be the number of elements that can be packed together in a cipher-
text, and let b be the number of semantically useful bits in a dot product output.
Then, in step 1b in Figure 3.2, Pretzel splits (not depicted in the figure) the matrix
{(⃗vj , p(Cj ))} into zero or more sets of p column vectors plus up to one set with
fewer than p vectors as depicted in Figure 3.4. For the sets with p vectors, it packs
together all p elements of a row [115]. For the last set, it packs elements in row-
major order under one constraint: elements in the same row of the matrix must not
be put into different ciphertexts [112, 233].

Then, to compute dot products (in step 2a in Figure 3.2) for all columns
except those in the rightmost matrix (Figure 3.4), Pretzel uses the fact that that the
elements that need to be added are aligned [115]. For example, if the elements in
the first row (v1,1, . . . , v1,p) are to be added to those in the second row (v2,1, . . . , v2,p),
then the ciphertext space operation applied to c1=Enc(pk , v1,1∥ . . . ∥v1,p) and c2=

Enc(pk , v2,1∥ . . . ∥v2,p) yields c3 = c1·c2 = Enc(pk , v1,1+v2,1∥ . . . ∥v1,p+v2,p). For this
to work, the individual sums (for example, v1,p+v2,p) cannot overflow b bits.
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For the columns in the rightmost matrix (Figure 3.4), Pretzel performs dot
products by exploiting the homomorphism to cyclically rotate the packed elements
in a ciphertext [112]. For example, assume c=Enc(pk , v1,1∥ . . . ∥v1,k∥v2,1∥ . . . ∥v2,k )

is a packed ciphertext, where v1,1, . . . , v1,k are elements from the first row, and
v2,1, . . . , v2,k are from the second row. To add each v1,i with v2,i for i ∈ {1, . . . , k},
one can left-shift elements in c by k positions to get c ′=Enc(pk , v2,1∥ . . . ∥v2,k∥ . . .);
this is done by applying the “constant multiplication” operation (Figure 3.2, bullet
2), with z =2k ·b . At this point, the rows are lined up, and one can operate on c and
c ′ to add the plaintext elements.

We haven’t yet said how the values of p and b are determined. Let G denote
the number of bits in the domain of the encryption algorithm Enc, bin denote the
number of bits required to represent an element that would be encrypted (a model
parameter in our case), and fin denote the number of bits for the multiplier of an
encrypted element (frequency of a feature extracted from an email in our case).
Then, the output of a dot product computation—assuming a sum of L products,
each formed from a bin-bit element and a fin-bit element—has b= logL+bin+fin bits
(in our context, L would be the number of features extracted from an email). This
means that there is “room” to pack p=⌊G/b⌋ elements into a single ciphertext.

Cost savings. Here we give rough estimates of the effect of the refinements in this
subsection and the previous; a more detailed evaluation is in Section 3.5. For the
spam filtering module, the provider’s CPU drops by 5× and the client-side storage
drops by 7×, relative to the baseline (§3.2.3). However, CPU at the client increases
by 10× (owing to the cyclic shifts), and the network overhead increases by 5.4×;
despite these increases, both costs are not exorbitant in absolute terms, and we
view them as tolerable (§3.5.1, §3.5.2). The provider-side costs for spam filtering
are comparable to an arrangement where the provider classifies plaintext emails
non-privately.

For the topic extraction module, the cost improvements relative to the base-
line (§3.2.3) are smaller: provider CPU drops by 1.37×, client CPU drops by 3.25×,
storage goes up by a factor of 2, and the network cost goes up slightly. Beyond
that, the non-private version of this function is vastly cheaper than for spam, to the
point that the private version is (depending on the resource) up to two orders of
magnitude worse than the non-private version. The next subsection addresses this.
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3.3.3 Pruning in topic extraction

Decomposed classification. So far, many of the costs are proportional to B : CPU

and network cost of Yao (Figure 3.2, step 4), and storage (Figure 3.2, “setup phase”).
For spam filtering, this is not a problem (B=2) but for topic extraction, B can be in
the thousands.

Pretzel’s response is a technique that we call decomposed classification. To ex-
plain the idea, we regard topic extraction as abstractly mapping an email, together
with a set S of cardinality B (all possible topics), down to a set S ∗ of cardinality 1
(the chosen topic), using a model with proprietary parameters. Pretzel decomposes
this map into two:

(i) Map the email, together with the set S , to a set S ′ of cardinality B ′ (for example,
B ′=20); S ′ comprises candidate topics. The client does this by itself.

(ii) Map the email, together with S ′, down to a set S ′′ of cardinality 1; ideally
S ′′ is the same as S ∗ (otherwise, accuracy is sacrificed). This step relies on a
proprietary model and is done using secure two-party machinery. Thus, the
costs of the expensive part of the protocol are now proportional to B ′ rather
than to B (the gain is reflected in Figure 3.3, the last two columns of the “per-
email” rows).

For this arrangement to make sense, several requirements must be met. First,
the client needs to be able to perform the map in step (i) locally. Here, Pretzel ex-
ploits an observation: topic lists (the set S ) are public today [123]. They have to be,
so that advertisers can target and users can set interests. Thus, a client can in prin-
ciple use some non-proprietary classifier for step (i). Pretzel is agnostic about the
source of this classifier; it could be supplied by the client, the provider, or a third
party.5

Second, the arrangement needs to be accurate, which it is when S ′ contains
S ∗. Pretzel observes that although the classifier used in step (i) would not be honed,
it doesn’t need to be, because it is performing a far coarser task than choosing a
single topic. Thus, in principle, the step (i) map might reliably produce accurate
outputs—meaning that the true topic, S ∗, is among the B ′ candidates—without
much training, expertise, or other proprietary input. Our experiments confirm that
indeed the loss of end-to-end accuracy is small (§3.5.2).

Finally, step (ii) must not reveal S ′ to the provider, since that would be more

5In our prototype, the provider supplies the classifier after training it on a very small fraction of
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Pretzel’s protocol for proprietary topic extraction, based on candidate topics

• The protocol has two parties. Party X begins with a matrix v⃗1, . . . , v⃗B . Party Y begins with a
vector x⃗ =(x1, . . . , xN ) and a list S ′ of B ′<B column indexes, where each index is between
1 and B ; S ′ indicates a subset of the columns of matrix v⃗ . The protocol constructs a vector
from the product of x⃗ and the submatrix of v⃗ given by S ′, and outputs the column index
(in v⃗ ) that corresponds to the maximum element in the vector-submatrix product; neither
party’s input is revealed to the other.

• The protocol has two phases: setup and computation. The setup phase is as described in
Figure 3.2 but with the addition of packing from §3.3.2.
Computation phase

3. Party Y does the following:

(a) (compute dot products) As described in Figure 3.2, step 2a, and §3.3.2. At the
end of the dot product computations, it gets a vector of packed ciphertexts p⃗cts=
(Enc(pk , d1∥ . . . ∥dp), . . . ,Enc(pk , . . . ∥dB∥ . . .)), where di is the dot product of x⃗
and the i -th matrix column v⃗i , and p is the number of b-bit positions in a packed
ciphertext (§3.3.2).

(b) (separate out dot products for the columns in S ′ from the rest) For each entry in S ′,
i.e., S ′[j ], makes a copy of the packed ciphertext containing dS ′ [j ], and shifts dS ′ [j ]
to the left-most b-bit position in that ciphertext. Because each ciphertext holds p
elements, the separation works by using the quotient and remainder of S ′[j ], when
divided by p, to identify, respectively, the relevant packed ciphertext and position
within it. That is, for 1≤ j ≤B ′, computes ciphertext Enc(pk , dS ′ [j ]∥ . . .)= p⃗cts[Qj ]·
2b·Rj , where Qj = ⌈S ′[j ]/p⌉−1, and Rj = (S ′[j ]−1) mod p. The shifting relies on
the multiply-by-constant homomorphic operation (see Figure 3.2 and §3.3.2).

(c) (blinding) Blinds dS ′ [j ] using the technique described in Figure 3.2, step 2b,
but extended to packed ciphertexts. Sends the B ′ ciphertexts (Enc(pk , dS ′ [1]+
n1∥ . . .), . . . ,Enc(pk , dS ′ [B ′ ]+nB ′∥ . . .)) to Party X. Here, nj is the added noise.

4. Party X applies Dec on the B ′ ciphertexts, followed by bitwise right shift on the result-
ing plaintexts, to get dS ′ [1]+n1, . . . , dS ′ [B ′ ]+nB ′ .

5. The two parties engage in Yao’s 2PC. Party Y supplies S ′ and {nj } for 1≤ j ≤B ′; Party
X supplies {(dS ′ [j ]+nj )} for 1≤ j ≤B ′; and, the parties use a function f that subtracts
nj from dS ′ [j ]+nj , and computes and returns S ′[argmaxj dS ′ [j ]] to Party X.

Figure 3.5: Protocol for proprietary topic extraction, based on candidate topics (this
instantiates step (ii) in Section 3.3.3). The provider is Party X; the client is Party Y.
This protocol builds on the protocol presented in §3.2.3–§3.3.2.
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information than a single extracted topic. This rules out instantiating step (ii) by
naively applying the existing protocol (§3.2.3–§3.3.2), with S ′ in place of S . Pret-
zel’s response is depicted in Figure 3.5. There are some low-level details to handle
because of the interaction with packing (§3.3.2), but at a high level, this protocol
works as follows. The provider supplies the entire proprietary model (with all B
topics); the client obtains B dot products, in encrypted form, via the inexpensive
component of Yao+GLLM (secure dot product). The client then extracts and blinds
the B ′ dot products that correspond to the candidate topics. The parties finish by
using Yao to privately identify the topic that produced the maximum.

Feature selection. Protocol storage is proportional to N (Figure 3.2, “setup phase”).
Pretzel’s response is the standard technique of feature selection [228]: incorporating
into the model the features most helpful for discrimination. This takes place in the
“setup phase” of the protocol (the number of rows in the provider’s matrix reduces
from N to N ′; for the resulting cost reductions, see the last two columns of the
“setup” rows in Figure 3.3). Of course, one presumes that providers already prune
their models; the proposal here is to do so more aggressively. Section 3.5.2 shows
that in return for large drops in the number of considered features, the accuracy
drops only modestly. In fact, reductions of 75% in the number of features is a plau-
sible operating point.

Cost savings. Feature selection reduces client-storage costs by a factor of N/N ′.
For B = 2048,B ′ = 20, and L= 692 (average number of features per email in the
authors’ emails), relative to the protocol in §3.3.2, the provider CPU drops by 45×,
client CPU drops by 8.4×, and the network transfers drop by 20.4× (§3.5.2). Thus,
the aforementioned two orders of magnitude (above the non-private version) be-
comes roughly 5×.

3.3.4 Robustness to misbehaving parties

Pretzel aims to provide the following guarantees, even when parties deviate from
the protocol:

its dataset.
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1. The client and provider cannot (directly) observe each other’s inputs nor
any intermediate state in the computation.

2. The client learns at most 1 bit of output each time spam classification is
invoked.

3. The provider learns at most logB bits of output per email. This comes from
topic extraction.

Guarantee (1) follows from the baseline protocol, which includes mecha-
nisms that thwart the attempted subversion of the protocol (§3.2.3). Guarantee (2)
follows from Guarantee (1) and the fact that the client is the party who gets the
spam classification output. Guarantee (3) follows similarly, provided that the client
feeds each email into the protocol at most once; we discuss this requirement shortly.

Before continuing, we note that the two applications are asymmetric. In
spam classification, the client, who gets the output, could conceivably try to learn
the provider’s model; however, the provider does not directly learn anything about
the client’s email. With topic extraction, the roles are reversed. Because the output
is obtained by the provider, what is potentially at risk is the privacy of the email of
the client, who instead has no access to the provider’s model.

Leakage. Despite its guarantees about the number of output bits, Pretzel has
nothing to say about the meaning of those bits. For example, in topic extraction,
an adversarial provider could construct a tailored “model” to attack an email (or
the emails of a particular user), in which case the logB bits could yield impor-
tant information about the email. A client who is concerned about this issue has
several options, including opting out of topic extraction (and presumably compen-
sating the provider for service, since a key purpose of topic extraction is ad display,
which generates revenue). We describe a more mischievous response below (in “In-
tegrity”).

In the spam application, an adversarial client could construct emails to try to
infer model parameters, and then leak the model. Such leakage would not only un-
dermine the proprietary nature of the model but also make it easier for spammers
to bypass the spam filter [53, 241]. A possible defense would be for the provider to
periodically revise the model (and maintain different versions).
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Repetition and replay. An adversarial provider could conceivably replay a given
email to a client k different times, each time with a unique topic model. The provider
would then get k logB bits from the email, rather than logB . Our defense is simply
for the client to regard email transmission from each sender’s device as a separate
asynchronous—and lossy and duplicating—transmission channel. Solutions to de-
tecting duplicates over such channels are well-understood: counters, windows, etc.
Something to note is that, for this defense to work, emails have to be signed, oth-
erwise an adversary can deny service by pretending to be a sender and spuriously
exhausting counters.

Integrity. Pretzel does not offer any guarantees about which function Yao actually
computes. For topic extraction, the client could, rather than garbling argmax (§3.2.2),
instead garble an arbitrary function. Similarly, a client could input bogus candidate
topics in step (ii) of decomposed classification (§3.3.3). In such cases, the aforemen-
tioned guarantees continue to hold (no inputs are disclosed, etc.), though of course
this misbehavior interferes with the ultimate functionality. Pretzel does not defend
against this case, and in fact, it could be considered a feature—it gives the client a
passive way to “opt out”, with plausible deniability (for example, the client could
garble a function that produces an arbitrary choice of index).

The analogous attack, for spam, is for the provider to garble a function other
than threshold comparison. This would undermine the spam/nospam classifica-
tion and would presumably be disincentivized by the same forces incentivizing
providers to supply spam filtering as a service in the first place.

3.4 Implementation

Our prototype fully implements the design described in Section 3.3. In addition, it
includes an elementary keyword search module in which the client maintains and
queries a client-side search index. The modules, written in 5,300 lines of C++ and
160 lines of Python, glue the code we borrow from existing libraries: GPGME [6]
for OpenPGP encryption, Obliv-C [259] for Yao’s 2PC protocol,6 XPIR [35] for the

6Another choice would have been TinyGarble [224]. We found the performance of Obliv-C and
TinyGarble to be comparable for the functions we compute inside Yao in Pretzel; we choose the
former because it is easier to integrate with Pretzel’s C++ code.
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XPIR-BV AHE scheme, LIBLINEAR [45, 108] to train LR and SVM classifiers, and
SQLite FTS4 [23] for the search index.

3.5 Evaluation

Our evaluation answers the following questions:
1. What are the provider- and client-side overheads of Pretzel? For what configu-

rations (model size, email size, etc.) are they low?
2. How much do Pretzel’s optimizations (§3.3) help in reducing the overheads?
3. How accurate are Pretzel’s functions (for example, how accurately can they fil-

ter spam emails or extract topics of emails)?
A summary of evaluation results is as follows:

• Pretzel’s provider-side CPU consumption for spam filtering and topic ex-
traction is, respectively, 0.65 and 1.03–1.78× of a non-private arrangement,
and, respectively, 0.17× and 0.01–0.02× of its baseline (§3.2.3). (One of the
reasons that provider-side CPU consumption is low—and sometimes lower
than in a non-private arrangement—is that the protocols shift work to the
client.)

• Network transfers in Pretzel are 2.7–5.4× of a non-private arrangement, and
0.024–0.048× of its baseline (§3.2.3).

• Pretzel’s client-side CPU consumption is less than 1s per email, and storage
space use is a few hundred MBs. These are a few factors lower than in the
baseline (§3.2.3).

• For topic extraction, the potential coarsening effects of Pretzel’s classifiers
(§3.3.3) are a drop in accuracy of between 1–3%.

Method and setup. We consider spam filtering, topic extraction, and keyword
search separately.

For spam filtering and topic extraction, we compare Pretzel to its starting
baseline, which we call Hybrid (this baseline is described in detail in Section 3.2.3
and Figure 3.2), and NoPriv, which models the status quo, in which the provider
locally runs classification on plaintext email contents. For the keyword search func-
tion, we consider only the basic client-side search index based scheme (§3.4).
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We vary the following parameters: number of features (N ) and categories
(B ) in the classification models, number of features in an email (L), and the num-
ber of candidate topics (B ′) in topic extraction. For the classification models, we
use synthetic datasets for measuring resource overheads, and real-world datasets
for measuring accuracies. To generate synthetic emails, we use random words (be-
tween 4 to 12 letters each), and consider each word as one feature. For real-world
data, we use the Ling-spam [40] (481 spam and 2,411 non-spam emails), Enron [4]
(17,148 spam and 16,555 non-spam emails of about 150 Enron employees), and
Gmail (355 spam and 600 non-spam emails received by one of the authors over
a period of one month) datasets for spam filtering evaluation, and the 20 News-
group [7] (18,846 Usenet posts on 20 topics), Reuters-21578 [20] (12,603 newswire
stories on 90 topics), and RCV1 [166] (806,778 newswire stories from 296 regions)
datasets for topic extraction evaluation. To extract features from the documents in
real-world datasets, we use the feature extraction algorithms from SpamBayes [22]
and scikit-learn [21].

We measure resource overheads in terms of provider- and client-side CPU

times to process an email, network transfers between provider and client, and the
storage space used at a client. The resource overheads are independent of the classi-
fication algorithm (NB, LR, SVM), so we present them once; the accuracies depend
on the classification algorithm, so we present them for each algorithm. To measure
accuracies for spam classification, we use 10-fold cross validation experiments [61];
for topic extraction, we train a model on the training part of the datasets, and then
apply it to the documents in the testing part.

Our testbed is Amazon EC2. We use a single m3.2xlarge machine for the
provider and one machine of the same type for a client. At the provider, we use
an independent CPU for each function module (§3.1.2). Similarly, the client uses a
single CPU.

Microbenchmarks. Figure 3.6 shows the CPU and network costs for the common
operations (Figure 3.3) in Pretzel and the baselines. We will use these microbench-
marks to explain the performance evaluation in the next subsections.
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encryption decryption addition left shift and add

GPG 1.7 ms 1.3 ms N/A N/A
Paillier 2.5 ms 0.7 ms 7 µs N/A

XPIR-BV 103 µs 31 µs 3 µs 70 µs

Yao cost CPU network transfers

ϕ = integer comparison 71 µs 2501 B
ϕ = argmax 70 µs 3959 B

map lookup float addition

NoPriv operations 0.17 µs 0.001 µs

Figure 3.6: Microbenchmarks for operations shared by Pretzel and the baselines
(Figure 3.3). Both CPU and network costs are averaged over 1,000 runs; standard
deviations (not shown) are within 5% of the averages. OpenPGP encryption and
decryption times depend on the length of the email; we use an email size of 75 KB,
which is in line with average email size [29]. Similarly, Yao costs for ϕ = argmax
depend linearly on the number of input values; we show costs per input value.

3.5.1 Spam filtering

This subsection reports the resource overheads (provider- and client-side CPU time,
network transfers, and client-side storage space use) and accuracy of spam filtering
in Pretzel.

We set three different values for the number of features in the spam classifi-
cation model: N ={200K, 1M, 5M}. These values correspond to the typical number
of features in various deployments of Bayesian spam filtering software [9–11]. We
also vary the number of features in an email (L= {200, 1000, 5000}); these values
are chosen based on the Ling-spam dataset (average of 377 and a maximum of 3638
features per email) and the Gmail dataset (average of 692 and a maximum of 5215
features per email). The number of categories B is two: spam and non-spam.

Provider-side CPU time. Figure 3.7 shows the per-email CPU time consumed by
the provider.

For emails with fewer features (L= 200), the CPU time of Pretzel is 2.7×
NoPriv’s and 0.17× Hybrid’s. Pretzel’s is more than NoPriv’s because in NoPriv
the provider does L feature extractions, map lookups, and float additions, which
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Figure 3.7: Provider-side CPU time per email in microseconds for the spam filtering
module while varying the number of features (N ) in the spam classification model,
and the number of features (L) in an email. CPU time for NoPriv varies only slightly
with N (not visible), while (provider-side) CPU times for Hybrid and Pretzel are
independent of both L and N (Figure 3.3).

are fast operations (Figure 3.6), whereas in Pretzel, the provider does relatively ex-
pensive operations: one additively homomorphic decryption of a XPIR-BV cipher-
text plus one comparison inside Yao (Figure 3.3 and §3.3.1). Pretzel’s CPU time is
lower than Hybrid’s because in Pretzel, the provider decrypts a XPIR-BV ciphertext
whereas in Hybrid the provider decrypts a Paillier ciphertext (Figure 3.6).

As the number of features in an email increases (L={1000, 5000}), provider’s
CPU time in both Pretzel and Hybrid does not change, as it is independent of L (un-
like the client’s) while NoPriv’s increases since it is linear in L (see Figure 3.3). A
particular point of interest is L=692 (the average number of features per email in
the Gmail dataset), for which the CPU time of Pretzel is 0.65× NoPriv’s (as noted
at the beginning of this section, the number is lower than in the status quo in part
because Pretzel shifts computational work to the client).

Client-side overheads. Figure 3.8 shows the size of the spam model for the vari-
ous systems. We notice that the model in Pretzel is approximately 7× smaller than
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Size

N =200K N =1M N =5M

Non-encrypted 4.3 MB 21.5 MB 107.3 MB
Hybrid 51.6 MB 258.0 MB 1.3 GB
Pretzel-withGLLMPacking 3.1 GB 15.3 GB 76.3 GB
Pretzel 7.4 MB 36.7 MB 183.5 MB

Figure 3.8: Size of encrypted and plaintext spam classification models. N is the
number of features in the model. Pretzel-withGLLMPacking is Pretzel, but with
the packing in Pretzel replaced with the packing in GLLM (§3.3.2).

the model in Hybrid. This is due to the difference in packing in the two systems:
“across rows and columns” (in Pretzel) versus “across columns” (in GLLM [115],
implemented in Hybrid (§3.3.2). We also notice that, given the refinement of re-
placing the cryptosystem (§3.3.1), packing across both rows and columns is es-
sential in Pretzel, to prevent a manifold increase in the model size (the Pretzel-
withGLLMPacking row in the figure).

In terms of client-side CPU time, Pretzel takes ≈358 ms to process an email
with many features (L= 5000) against a large model (N = 5M). This time is domi-
nated by the L left shift and add operations in the secure dot product computation
(§3.3.2). Our microbenchmarks (Figure 3.6) explain this number: 5000 of the left
shift and add operation takes 5000×70µs=350ms. A large L is an unfavorable sce-
nario for Pretzel: client-side processing is proportional to L (Figure 3.3).

Network transfers. Both Pretzel and Hybrid add network overhead relative to
NoPriv. It is, respectively, 19.6 KB and 3.6 KB per email (or 26.1% and 4.8% of
NoPriv, when considering average email size as reported by [29]). These overheads
are due to transfer of a ciphertext and a comparison inside Yao’s framework (Fig-
ure 3.2). Pretzel’s overheads are higher than Hybrid’s because the XPIR-BV cipher-
text in Pretzel is much larger than the Paillier ciphertext.

Accuracy. Figure 3.9 shows Pretzel’s spam classification accuracy for the differ-
ent classification algorithms it supports. (The figure also shows precision and re-
call. Higher precision means lower false positives, or non-spam falsely classified
as spam; higher recall means lower false negatives, or spam falsely classified as
non-spam.)
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Ling-spam Enron Gmail

Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec.

GR-NB 99.4 98.1 98.1 98.8 99.2 98.4 98.1 99.7 95.2
LR 99.4 99.4 97.1 98.9 98.4 99.5 98.5 98.9 97.2

SVM 99.4 99.2 97.5 98.7 98.5 99.0 98.5 98.9 97.2
GR 99.3 98.1 97.9 98.8 99.2 98.4 98.1 99.7 95.2

Figure 3.9: Accuracy (Acc.), precision (Prec.), and recall (Rec.) for spam filtering in
Pretzel. Sets of columns correspond to the different spam datasets, and the rows cor-
respond to the classification algorithms Pretzel supports: GR-NB, binary LR, and
two-class SVM (§3.2.1). Also shown is accuracy for the original Graham-Robinson
Naive Bayes algorithm (GR).
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Figure 3.10: Provider-side CPU time per email in milliseconds for topic extraction,
varying the number of categories (B ) in the model and the number of candidate top-
ics (B ′). The case B =B ′ measures Pretzel without the decomposed classification
technique (§3.3.3). The y-axis is log-scaled. N and L are set to 100K and 692 (aver-
age number of features per email in the authors’ Gmail dataset). The CPU times do
not depend on N or L for Pretzel and Hybrid; they increase linearly with L and
vary slightly with N for NoPriv.
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network transfers

B=128 B=512 B=2048

Hybrid 501.5 KB 2.0 MB 8.0 MB
Pretzel (B ′=B ) 516.6 KB 2.0 MB 8.0 MB
Pretzel (B ′=20) 402.0 KB 402.0 KB 401.9 KB
Pretzel (B ′=10) 201.0 KB 201.0 KB 201.2 KB

Figure 3.11: Network transfers per email for topic extraction in Pretzel and Hybrid.
B ′ is the number of candidate topics in decomposed classification (§3.3.3). Network
transfers are independent of the number of features in the model (N ) and email (L)
(Figure 3.3).

3.5.2 Topic extraction

This subsection reports the resource overheads (provider- and client-side CPU time,
network transfers, and client-side storage space use) and accuracy of topic extrac-
tion in Pretzel.

We experiment with N ={20K, 100K})7 and B={128, 512, 2048}. These pa-
rameters are based on the total number of features in the topic extraction datasets
we use and Google’s public list of topics (2208 topics [123]). For the number of
candidate topics for Pretzel (§3.3.3), we experiment with B ′={5, 10, 20, 40}.

Provider-side CPU time Figure 3.10 shows the per email CPU time consumed by
the provider. Without decomposed classification (§3.3.3)—this is the B ′=B case in
the figure—Pretzel’s CPU time is significantly higher than NoPriv’s but lower than
Hybrid’s. Pretzel’s time differs from Hybrid’s because packed XPIR-BV ciphertexts
have lower decryption CPU time per plaintext element than Paillier ciphertexts.
With decomposed classification, the number of comparisons inside Yao’s frame-
work come down and, as expected, the difference between CPU times in Pretzel and
NoPriv drops (§3.3.3). For B = 2048,B ′= 20, Pretzel’s CPU time is 1.78× NoPriv’s;
for B=2048,B ′=10, it is 1.03× NoPriv’s.

Network transfers. Figure 3.11 shows the network transfers per email for Hybrid
and Pretzel. As expected, with decomposed classification, Pretzel’s network trans-

7The number of features in topic extraction models are usually much lower than in spam models
because of word variations for spam, for example, FREE and FR33, etc.
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Size

N =20K N =100K

Non-encrypted 144.3 MB 769.4 MB
Hybrid 288.4 MB 1.5 GB
Pretzel 720.7 MB 3.8 GB

Figure 3.12: Size of topic extraction models for the various systems. N is the number
of features in the model. B is set to 2048.

Percentage of the total training dataset

1% 2% 5% 10%

B ′=5 79.6 84.0 90.1 94.0
B ′=10 89.6 92.1 95.6 97.7
B ′=20 95.9 97.3 98.5 99.3
B ′=40 98.7 99.3 99.8 99.9

Figure 3.13: Impact of decomposed classification (§3.3.3) on classification accuracy
for the RCV1 dataset with 296 topics. The columns (except the first) correspond to
the percentage of the total training dataset used to train the (public) model that
extracts candidate topics. The rows correspond to the number of candidate topics
(B ′). The cells contain the percentage of test documents for which the “true cate-
gory” (according to a classifier trained on the entire training dataset) is contained
in the candidate topics. Higher percentage is better; 100% is ideal.

fers are lower; they are 402 KB per email (or 5.4× the average email size of 75 KB,
as reported in [29]) for B=2048,B ′=20, and 201 KB per email (or 2.7× the average
email size) for B=2048,B ′=10.

Client-side overheads. Figure 3.12 shows the model sizes (before feature selec-
tion; §3.3.3) for the various systems for different values of N and B=2048. Pretzel’s
model is bigger than Hybrid’s for two reasons. First, its model comprises a public
part and an encrypted part that comes from the provider. Second, the ciphertext-to-
plaintext size ratio in XPIR-BV is twice that of Paillier.

In terms of client-side CPU time, as in spam filtering, Pretzel (with or with-
out decomposed classification) takes less than half a second to process an email
with many features (L=5000).
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Figure 3.14: Classification accuracy of topic extraction classifiers in Pretzel as a func-
tion of N ′/N , where N is the total number of features in the training part of the
datasets and N ′ is the number of selected features (§3.3.3). The plotted accuracies
are for the 20News (20N), Reuters (REU), and RCV1 (RCV) datasets. 20N and REU
come pre-split into training and testing parts: 60%/40% and 75%/25% for the two
respectively, whereas we randomly split RCV into 70%/30% training/testing por-
tions. Pretzel can operate at a point where number of features selected N ′ is roughly
25% of N ; this would result in only a marginal drop in accuracy.

Loss of accuracy. Recall that classification accuracy for topic extraction in Pretzel
could be affected by decomposed classification and feature selection (§3.3.3). Fig-
ure 3.13 shows the variation in classification accuracy due to decomposed classifica-
tion. (The depicted data are for the RCV1 dataset and NB classifier; the qualitative
results are similar for the other datasets and classifiers.) The data suggest that an
effective non-proprietary classifier can be trained using a small fraction of training
data, for only a small loss in end-to-end accuracy.

Figure 3.14 shows classification accuracy for classifiers trained with and
without feature selection, and while varying the degree of feature selection (using
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the Chi-square selection technique [228]). It appears that even after a high degree of
feature selection, accuracy drops only modestly below its peak point. (This would
reduce the client-side storage cost presented in Figure 3.12.)

3.5.3 Keyword search and absolute costs

index size query time update time

Ling-spam 5.2 MB 0.32 ms 0.18 ms
Enron 27.2 MB 0.49 ms 0.1 ms
20 Newsgroup 23.9 MB 0.3 ms 0.12 ms
Reuters-21578 6.0 MB 0.28 ms 0.06 ms
Gmail Inbox (40K emails) 50.4 MB 0.13 ms 0.12 ms

Figure 3.15: Client-side search index sizes, CPU times to query a keyword in the
indexes (that is, retrieve a list of emails that contain a keyword), and CPU times to
index a new email.

Figure 3.15 shows the client-side storage and CPU costs of Pretzel’s keyword
search module (§3.4).

We now consider whether the preceding costs, in absolute terms, would be
acceptable in a deployment. We consider an average user who receives 150 emails
daily [239] of average size (75 KB) [29], and owns a mobile device with 32 GB of
storage.

To spam filter a long email, the client takes 358 ms, which would be less
than a minute daily. As for the encrypted model, one with 5M features occupies
183.5 MB or 0.5% of the device’s storage. For network overheads, each email trans-
fers an extra 19.33 KB, which is 2.8 MB daily.

For topic extraction, the client uses less than half a second of CPU per email
(or less than 75s daily); a model with 2048 categories (close to Google’s) and 20K
features occupies 720.7MB or 2.2% of the device’s storage (this can be reduced fur-
ther using feature selection). Also, the client transfers an extra 59 MB (5.4 times the
size of the emails) over the network daily, when the number of candidate topics
(B ′) is 20.

Overall, these costs are certainly substantial—and we don’t mean to dimin-
ish that issue—but we believe that the magnitudes in question are still within tol-
erance for most users.
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3.6 Discussion, limitations, and future work

Pretzel is an improvement over its baseline (§3.2.3) of up to 100×, depending on the
resource (§3.5). Its absolute overheads are substantial but, as just discussed (§3.5.3),
are within the realm of plausibility.

Pretzel’s prototype has several limitations. It handles only the functions we
presented (spam filtering, topic extraction, and keyword search) and only using
specific algorithms (linear classifiers). Extending Pretzel to include other functions
(predictive personal assistance, virus scanning, etc.), other algorithms (neural net-
works, etc.), or other (potentially cheaper) theoretical machinery [48] is future work.
So is adapting Pretzel to hide metadata.

A fundamental limitation of Pretzel is information leakage (§3.1.1). This
issue and potential remedies are discussed in Section 3.3.4. To elaborate slightly,
providers can protect their models (in the spam function) by periodically revising
the model parameters and maintaining different versions for different clients; hid-
ing classifier algorithms, which is another line of future work, would also help [241].
And clients who wish to do so can protect their emails (in topic extraction) by opt-
ing out with plausible deniability; also, providers cannot expose all or even a sub-
stantial fraction of clients this way, as that would forfeit the original purpose of
topic extraction. Nevertheless, defaults being defaults, most clients would proba-
bly not opt out, which means that particular clients could indeed be targeted by a
sufficiently adversarial provider.

If Pretzel were widely deployed, we would need a way to derive and retrain
models. This is a separate problem, with existing research [235, 237, 251, 255–257];
combining Pretzel and this literature is future work.

There are many other obstacles between the status quo and default end-to-
end encryption. In general, it’s hard to modify a communication medium as en-
trenched as email [109]. On the other hand, there is reason for hope: TLS between
data centers was deployed over just several years [106]. Another obstacle is key
management and usability: how do users share keys across devices and find each
other’s keys? This too is difficult, but there is recent research and commercial at-
tention [8, 55, 180, 244]. Finally, politics: there are entrenched interests who would
prefer email not to be encrypted.
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Chapter 4

Comparisons and connections

To better understand the design space and rationale for Popcorn and Pretzel, we
introduce a framework to situate and compare the various approaches that can
provide privacy in online applications such as media consumption and email. Next,
we reflect on our choices, and shed light on the fundamental connections between
Popcorn and Pretzel.

4.1 Framework

Our framework is depicted in Figure 4.1. It has three axes: trust assumptions, gen-
erality, and expense.

4.1.1 Trust assumptions (Axis 1)

Approaches that provide privacy typically make one or more trust assumptions.
Examples of such assumptions are cryptographic hardness, anytrust, and secure hard-
ware.

Cryptographic hardness. Cryptographic hardness is the assumption that certain
computational problems (factorization of large integers, discrete log, ring-LWE [173],
etc.) are unsolvable by an adversary with limited computational capacity. Crypto-
graphic protocols in general assume cryptographic hardness. As an example, Pret-
zel’s 2PC protocol (§3.3) relies on the hardness of the ring-LWE problem.
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Figure 4.1: A framework to situate the various approaches that can hide the con-
tent of user requests, especially in online services such as media consumption and
email. This framework has three axes. The first axis (left) captures the underlying
trust assumptions; the second axis (top) captures generality; and the third axis cap-
tures the expense of the approach, denoted by stars within parentheses, where (⋆)
denotes low in terms of both consumed resources and dollars, (⋆⋆) denotes high in
terms of consumed resources but low in terms of dollars, and (⋆⋆⋆) denotes high
in terms of both consumed resources and dollars.

Anytrust. Anytrust refers to the assumption that at least one of the many entities
participating in a protocol exactly follows the steps of the protocol; the rest of the
entities may deviate arbitrarily from the protocol [217, 248]. Furthermore, one does
not need to know which entities correctly follow the protocol. For instance, ITPIR
cryptographic protocols (§2.1.4) assume that there are multiple servers that do not
all collude with each other.

Cryptographic hardness and anytrust. This assumption combines the two as-
sumptions described above. For example, Popcorn’s PIR protocol (§2.3) composes
a CPIR (which assumes cryptographic hardness) with an ITPIR protocol (which
assumes anytrust).
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Secure hardware. Secure hardware refers to the assumption that a hardware com-
ponent meets a certain set of security-related requirements. For example, Intel’s
SGX-enabled processors [82, 143] ensure that the memory contents of user-level
processes are inaccessible to privileged software like kernel and hypervisor. How-
ever, to meet the security-related requirements, Intel SGX additionally depends on
authentication services, such as remote attestation [153], run by the hardware man-
ufacturer.

4.1.2 Generality (Axis 2)

The second axis in framework captures how generally applicable an approach is.

Widely applicable. Approaches under this category (second column in Figure 4.1)
can be used for a wide variety of applications. One example in this category is Yao’s
2PC protocol (§3.2.2), which allows two parties to jointly compute any function on
their private inputs, without revealing the inputs to each other. This protocol can be
used to build private systems for media consumption, email, and other online ap-
plications. Another example is fully homomorphic encryption (FHE) [111], which
supports arbitrary computations in cipherspace.

A single type of application. Unlike widely applicable, approaches in this cate-
gory deal with only one type of application. For example, CPIR, ITPIR, and hardware-
assisted PIR [44, 222] protocols apply only to the data retrieval setting. Similarly,
Yao+GLLM (§3.2.2) and GLLM [115] protocols apply only to functions that compute
dot products.

Tailored. Approaches in this category (rightmost column in Figure 4.1) support
typically one application, and have limited scope. For example, Popcorn’s PIR pro-
tocol applies only to the Netflix-like data retrieval setting where the objects being
retrieved are long, similar in size, and consumed progressively. Likewise, Pretzel’s
2PC protocol applies only to the linear classification function in which the cate-
gories of the classifier are public.
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4.1.3 Expense (Axis 3)

This axis captures two different but related costs: resource consumption (CPU, net-
work, and disk I/O) of an approach, and the resource consumption converted into
a dollar amount.

Low in terms of both consumed resources and dollars. Approaches that fall in
this category have a low resource overhead, which translates to a small dollar cost.
Pretzel’s 2PC protocol falls in this category. Approaches that use Intel SGX also
have low resource overheads because they run unmodified (or slightly modified)
application code.

High in terms of consumed resources but low in terms of dollars. Approaches
that heavily consume only the cheap resources fall in this category. For instance,
Popcorn’s PIR protocol consumes CPU (a cheap resource) extensively but is engi-
neered to conserve the more expensive resources (disk I/O and network).

High in terms of both consumed resources and dollars. Many approaches con-
sume all (or at least the expensive) resources heavily. For example, Yao’s 2PC pro-
tocol performs cryptographic operations for individual gates in a large Boolean cir-
cuit, resulting in a high CPU and network cost (§3.2.2). Similarly, CPIR and ITPIR
protocols require operating on the entire object library (movie library, etc.), result-
ing in a high CPU and disk I/O overhead.

4.2 Our choices

In our framework (§4.1), Popcorn’s PIR protocol is represented by (cryptographic
hardness and anytrust, tailored, high in terms of consumed resources but low in
terms of dollars), and Pretzel’s 2PC protocol is represented by (cryptographic hard-
ness, tailored, low in terms of both consumed resources and dollars). We now ex-
plain why these choices are appropriate in our context (§1.1).

For the first axis, we prefer cryptographic hardness and anytrust based as-
sumptions over secure hardware, for two reasons.

72



First, we did not want to put trust into a single entity whereas the secure
hardware assumption demands that the entity designing or manufacturing the
hardware (for example, Intel) is trusted. In contrast, anytrust demands trusting one
of the participating entities; not a particular one. Further, cryptographic hardness
requires trusting hardness of one or more well-studied computational problems.
Second, approaches under the cryptographic hardness and anytrust assumptions
are based on solid theoretical foundations and make reasoning about privacy prop-
erties easier. In contrast, systems built on trusted hardware can have several side-
channels (cache access patterns, memory access patterns, power draw, etc.) through
which private information can leak.

For the second axis, we could choose any of the three categories. Approaches
under “widely applicable” and “a single type of application” categories can sup-
port sophisticated functions besides basic functions. However, we choose the “tai-
lored” category for both Popcorn and Pretzel to fulfill our requirement of support-
ing only basic functions (§1.1).

For the third axis, the category “low in terms of both consumed resources
and dollars” is a natural choice. We choose this category for Pretzel. For Popcorn,
we cannot choose the same category. There are three approaches—Pretzel’s 2PC,
Intel SGX, and hardware-assisted PIR—under this category. Pretzel’s 2PC is not
applicable to Netflix-like media delivery since it is tailored to the email setting.
The other two approaches are in conflict with our requirement of providing strong
privacy guarantees (§1.1). Therefore, for Popcorn we choose the next best category
of “high in terms of consumed resources but low in terms of dollars”.

4.3 Connections between Popcorn and Pretzel

Popcorn and Pretzel, although built for different applications, have significant con-
nections. In this section, we elaborate on the connections, similarities, and differ-
ences between these systems.

Popcorn and Pretzel exhibit a connection by sharing the same design ethos
of tailoring cryptographic protocols to the application. Popcorn takes PIR crypto-
graphic protocols and tailors them for the Netflix-like media delivery setting (§2.3).
Likewise, Pretzel starts from a 2PC protocol and tailors it to the email setting (§3.3).

While designing Popcorn and Pretzel, we uncovered another connection as
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Figure 4.2: Vector-matrix product in Popcorn (top) and Pretzel (bottom). Popcorn’s
matrix is several tens of terabytes in size, while Pretzel’s matrix is only a few hun-
dred megabytes. The vector in Popcorn is much shorter than in Pretzel.

both these systems compute a vector-matrix product. The vector encodes a movie
or an email, and the matrix encodes a movie library or a classification model. To
compute the vector-matrix product privately, both systems build on additively ho-
momorphic encryption.

We also observed differences in the vector and matrix dimensions while de-
signing these systems (Figure 4.2). In Popcorn, the vector is short (a few thousand
elements) and the matrix is large (a few tens of terabytes in size). In contrast, the
vector is long (a few million elements) and the matrix is small (a few hundred
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megabytes in size) in Pretzel. These differences in vector and matrix dimensions
influence the designs of the two systems.

• In Popcorn, the server stores the matrix as clients don’t have terabytes of stor-
age, and a client encrypts and sends a short vector to the server. In contrast,
in Pretzel, a client keeps the long vector, and the server encrypts and sends
the matrix to the client. Thus, in Popcorn, the bulk of the computation is per-
formed at the server, while in Pretzel it is performed at the client.

• Popcorn demands a solution for high disk I/O costs, for two reasons. First,
its matrix is large in size. Second, an encrypted vector is dense, and vector
density is proportional to the fraction of the matrix that has to be touched to
compute the vector-matrix product (§2.3.2). In Pretzel, high disk I/O is not
an issue, as its vector is sparse (§3.5).

Besides the connections described above, there is an implicit connection
between Popcorn and Pretzel worth mentioning. While designing Popcorn, we
came across XPIR [35], a prior work on private Netflix-like media delivery, and no-
ticed the low decryption cost of its underlying additively homomorphic encryption
scheme (XPIR-BV). While building Pretzel, when we were looking for a cryptosys-
tem that could meet the two requirements of low decryption cost, and additively
homomorphic properties, XPIR-BV was an obvious choice (§3.3.1). Popcorn has fa-
cilitated Pretzel.
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Chapter 5

Summary, lessons learned, discussion

In this dissertation, we studied how one could build a Netflix-like media delivery
and an email service such that they (a) provide strong privacy guarantees to the
users, (b) support the provider’s basic functions, and (c) have affordable resource
costs. To satisfy these requirements, our first step was to turn to cryptographic pro-
tocols (private information retrieval and secure two-party computation). Although
these protocols met the first two requirements, there was a key challenge: huge
resource costs.

We addressed this challenge by following the design ethos of tailoring cryp-
tographic protocols using application-specific properties. Based on this design ethos,
we built two systems—Popcorn and Pretzel. Popcorn is a Netflix-like media de-
livery system that provably hides, from both the service provider and a network
eavesdropper, which movie a user is watching. It relies on private information re-
trieval (PIR) cryptographic protocols (§2.1.2). It composes two different types of
PIR to ease a tension between overheads and content protection (§2.3.1), batches
requests from a large number of users to amortize the overheads of PIR (§2.3.2),
forms large batches while keeping a small playback delay by leveraging streaming
(§2.3.3), and uses a combination of padding and bitrate reduction to handle vari-
ations in media object sizes (§2.3.4). The cost of serving an object in Popcorn, in
terms of dollars spent, is 3.87× that of a non-private system (§2.5). In contrast, the
factor is 265 if PIR is applied as it is described in the literature.

The other system described in this dissertation, Pretzel, is an email system
in which email contents are encrypted end-to-end between senders and intended
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recipients, and the email service provider performs spam filtering and topic extrac-
tion over the email contents, using linear classifiers from machine learning (Naive
Bayes, Logistic regression, and SVMs; §3.2.1). Pretzel relies on a secure two-party
computation cryptographic protocol (§3.2.3). It reduces the resource consumption
of this protocol by replacing the underlying cryptosystem (§3.3.1), conserving calls
into the cryptosystem (§3.3.2), and decomposing classification into a private and
non-private step (§3.3.3). Pretzel’s overheads, relative to a non-private implemen-
tation, are up to 5.4× for the provider, with additional but tolerable client-side
requirements (§3.5). These costs represent reductions versus the starting 2PC pro-
tocol of between 1.8× and 100× (§3.5).

Popcorn and Pretzel are fundamentally connected (§4.3). They both com-
pute a vector-matrix product privately, however, the dimensions of the vectors and
matrices in the two are different. A consequence is that the designs of the two sys-
tems have to address different challenges: high disk I/O in Popcorn versus high
network costs in Pretzel.

Both Popcorn and Pretzel have several limitations; some of these limitations
are fundamental, while others are either tied to the design or the prototype (§2.7,
§3.6). Nevertheless, they demonstrate that it is possible to build in strong privacy
properties into commonly used online services.

Lessons learned. We learned several lessons while building Popcorn and Pretzel.

• A few compromises on design requirements can enable progress. To build Popcorn we
decided to avoid ITPIR (§2.1.4) at first because ITPIR assumes non-colluding
servers; instead, we attempted to rely only on CPIR (§2.1.3). Although CPIR
makes weaker assumptions than ITPIR, it is much more expensive; as a result,
we were not able to build a practical system for many months. However, after
compromising on the set of assumptions, and composing CPIR with ITPIR, we
were able to take significant strides in reducing costs.
Similarly, our first attempt to build Pretzel used sophisticated non-linear clas-
sifiers. Again, we were not able to make progress until we switched to linear
classifiers with a simpler structure. In hindsight, the switch appears to be a good
choice because not only did we manage to leverage the simple structure to move
swiftly, but also the sacrifice in accuracy, due to the reduction in sophistication,
ended up being tolerable (§3.5).
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• Cryptographic protocols can be your best friends. On the surface, cryptographic pro-
tocols like PIR and 2PC appear scary (at least to systems researchers); they have
a steep learning curve and they are, if directly applied, impractical, due to their
huge resource costs. For example, PIR protocols entail a server-side overhead
that is linear in the size of the server’s library. Nevertheless, these protocols
have certain advantages. First, they are based only on cryptographic hardness
assumptions rather than on assumptions that require trusting a single entity.
Second, they are accompanied by rigorous proofs and make reasoning about
the end-to-end guarantees of a system easier. For example, in Pretzel, using the
guarantees of 2PC protocols, we were able to at least say that the end-to-end
leakage is bounded in the number of bits.

• Knowledge gained while building one system can facilitate the design of another system.
While working on Popcorn, we learned about additively homomorphic encryp-
tion (AHE) schemes proposed for a private Netflix-like media delivery appli-
cation. Further, we learned about protocols that can securely compute vector-
matrix products. This knowledge proved to be very useful when we were build-
ing Pretzel. First, when we learned that Pretzel needed to compute a vector-
matrix product we were able to turn to the protocols that we had studied earlier.
Second, Pretzel needed an AHE scheme that had a low decryption CPU time.
Here, we were able to use the exact scheme that was proposed for the private
Netflix-like application.

• Explore different designs to restrict unavoidable leakage. Sometimes it is not possible
to compute over user private data without avoiding leakage. For instance, per-
forming topic extraction over a private email leads to leakage of one or more
topics. In such scenarios, leakage of topics can be restricted, by exploring dif-
ferent designs. Our first attempt to build Pretzel1 leaked many topics per email.
However, using an alternate design (§3.3.3), we were able to restrict the leakage
to a single topic.

Discussion. We demonstrated how to build private and plausibly deployable sys-
tems for on-demand media delivery (Popcorn) and email (Pretzel). To move further
toward a real-world deployment of these systems, future research focus should be
(a) to expand on the functions they support, and (b) to improve the privacy proper-
ties they provide.

1https://arxiv.org/pdf/1612.04265v2.pdf
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Popcorn will gain from support for movie recommendations. One could
start this pursuit by trying to compose relevant prior work on privacy-preserving
recommendations [66, 150, 157] with Popcorn.

For its part, Pretzel will benefit from two additions to improve its privacy
properties. First is support for proprietary algorithms; in principle, one can use 2PC
to hide the service provider’s proprietary algorithms, but the challenge will be to
tame the high resource costs. Second is support for hiding email metadata; there
are prior works [41, 80, 162, 238] that can provably hide the metadata of messaging
applications but, again, the resource costs of these works are too high for the email
setting. Adapting techniques from these works into a provably-secure low-cost sys-
tem for hiding email metadata could be a promising approach.

Looking forward, Popcorn and Pretzel may not completely replace the sta-
tus quo, even after extensions, for different reasons. First, decision makers may
prefer surveillance and mass data collection (§3.6). Second, some users may not
want to trade-off functionality for strong privacy properties. However, we believe
that Popcorn and Pretzel can at least be an alternative to the status quo, especially
for the people who do not want to compromise on their privacy. These systems can
also motivate future research on building private and practical systems for other
online applications like web search. Our hope is that the systems we built, and the
ones they will shape, will impact discourse about the viability of a world where
people’s right to privacy on the web is not left solely in the hands of laws, policies,
trust, and hope, but vigorously defended through technical solutions.
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Appendix A

Derivation of segment sizes in Popcorn

Recall the inequalities defined in Section 2.3.3:

ti ≤ Ti ·α, where α =
min {Ri ,Pi/bi}

µ ·n

Ti ≤ d ′+
i−1
∑
j=1

tj , where d ′ = d−ϵ

We consider the special case where both sides of the inequalities are equal. Com-
bining both statements:

ti =

(
d ′+

i−1
∑
j=1

tj

)
·α

We show that ti = (d ′ ·α·(1+α)i−1) is a solution to the above equation. Substituting
on both sides:

d ′ ·α · (1+α)i−1 =

(
d ′+

i−1
∑
j=1

d ′ ·α · (1+α)j−1
)
·α.

Summing the finite geometric series, and rearranging:

=

(
d ′+d ′ ·α ·

(
(1+α)i−1−1

α

))
·α

= d ′ ·α · (1+α)i−1.

Setting α = 1, we get ti = 2i−1 · (d−ϵ), as desired.
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Appendix B

Details on Popcorn’s pricing model

Our high-level goal is to estimate the hourly cost of renting three resources on Ama-
zon EC2: a vCPU, 1 GB of memory, and 1 Gbps of sequential read I/O bandwidth.
To get the estimates, we make the simplifying assumption that the price of an EC2
machine depends only on these three resources. Of course, in practice, pricing
machines is a complex process that depends on many factors (I/O performance
for non-sequential workloads, cost of the networking infrastructure, prices set by
competitors, etc.); the values derived here should be treated as only estimates.

At a high level, our method is to use the specification of machines on Ama-
zon EC2 and their corresponding prices to derive a system of linear equations; in
these equations variables represent the unit cost of the resources mentioned above,
coefficients represent the “quantity” of those resources in an Amazon EC2 machine,
and the RHS will be the price of renting that machine.

We consider the machines in Figure 2.8 and an additional machine. We need
this additional machine as the equation for i2.4xl is not linearly independent from
that of i2.8xl, which leaves us with two equations to solve for three variables. To
write the third equation, we pick a memory optimized machine that has 32 vCPUs,
244 GB of memory capacity, 2 SSDs with 320 GB capacity each (6.4 Gbps sequential
read I/O bandwidth), and is rented out for $0.9822 per hour. Using these, we get
the following equations:
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32C +60M +6.4I = 0.6281

32C +244M +6.4I = 0.9822

32C +244M +23.3I = 1.6902,

where C is the hourly cost of renting a vCPU, M is the cost of renting 1 GB of mem-
ory for an hour, and I is the hourly cost for 1 Gbps of sequential read I/O band-
width.

Solving for the unknowns in the equations, we get I=0.042, M=0.0019, and
C=0.0076.
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Appendix C

Details of Naive Bayes

C.1 Spam classification

Section 3.2.1 stated that the GR-NB algorithm labels a document (email) as spam
if α =1/p(spam | x⃗ )−1 is greater than some fixed threshold, and that log α can be
expressed as (

i=N

∑
i=1

xi · log p(ti |C2)

)
+1 · log p(C2)

−
(

i=N

∑
i=1

xi · log p(ti |C1)

)
+1 · log p(C1), (C.1)

where the spam category is represented by C1 and non-spam is C2. Here we show
this derivation.

From Bayes Rule:

p(C1 | x⃗ ) =
p (⃗x |C1) ·p(C1)

p (⃗x )
.

Rewriting:

1

p(C1 | x⃗ )
−1 =

p (⃗x )

p (⃗x |C1) ·p(C1)
−1.
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Expanding p (⃗x ) to p (⃗x |C1) ·p(C1)+p (⃗x |C2) ·p(C2):

=
p (⃗x |C2) ·p(C2)

p (⃗x |C1) ·p(C1)
. (C.2)

The Naive Bayes assumption says that the presence (or absence) of a feature is
independent of the other features, which means

p (⃗x |Cj ) =
i=N

∏
i=1

p(ti |Cj )
xi .

Plugging the above equation into equation (C.2):

α =
∏i=N

i=1 p(ti |C2)xi ·p(C2)

∏i=N
i=1 p(ti |C1)xi ·p(C1)

.

In log space, the expression above is equation (C.1).

C.2 Multinomial text classification

Section 3.2.1 stated that the multinomial NB algorithm identifies the category Cj ∗

that maximizes j ∗ = argmaxj p(Cj | x⃗ ). The section stated that the maximal p(Cj | x⃗ )
can be determined by examining(

i=N

∑
i=1

xi · log p(ti |Cj )

)
+1 · log p(Cj ),

for each j . Here we give a derivation of this fact.
From Bayes Rule:

p(Cj | x⃗ ) =
p (⃗x |Cj ) ·p(Cj )

p (⃗x )
. (C.3)

The multinomial Naive Bayes algorithm assumes that a document, email, or fea-
ture vector x⃗ is formed by picking, with replacement, L=∑i=N

i=1 xi features from the
set of N features in the model. Then, p (⃗x |Cj ) is modeled as a multinomial distri-
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bution:

p (⃗x |Cj ) =
p(L) ·L!

∏i=N
i=1 xi !

·
i=N

∏
i=1

p(ti |Cj )
xi .

Plugging the above equation into Equation (C.3):

=
1

p (⃗x )
· p(L) ·L!

∏i=N
i=1 xi !

·
i=N

∏
i=1

p(ti |Cj )
xi ·p(Cj )

Discounting the terms that are independent of j (which we are free to do because
the maximum is unaffected by such terms), the expression above becomes:

i=N

∏
i=1

p(ti |Cj )
xi ·p(Cj ),

which, when converted to log space, is the claimed expression.
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