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Abstract: Outsourcing the k-Nearest Neighbor (kNN) classifier to the cloud is
useful, yet it will lead to serious privacy leakage due to sensitive outsourced data
and models. In this paper, we design, implement and evaluate a new system
employing an outsourced privacy-preserving kNN Classifier Model based on
Multi-Key Homomorphic Encryption (kNNCM-MKHE). We firstly propose a
security protocol based on Multi-key Brakerski-Gentry-Vaikuntanathan (BGV)
for collaborative evaluation of the kNN classifier provided by multiple model
owners. Analyze the operations of kNN and extract basic operations, such as addi-
tion, multiplication, and comparison. It supports the computation of encrypted
data with different public keys. At the same time, we further design a new scheme
that outsources evaluation works to a third-party evaluator who should not have
access to the models and data. In the evaluation process, each model owner
encrypts the model and uploads the encrypted models to the evaluator. After
receiving encrypted the kNN classifier and the user’s inputs, the evaluator calcu-
lated the aggregated results. The evaluator will perform a secure computing
protocol to aggregate the number of each class label. Then, it sends the class
labels with their associated counts to the user. Each model owner and user encrypt
the result together. No information will be disclosed to the evaluator. The experi-
mental results show that our new system can securely allow multiple model own-
ers to delegate the evaluation of kNN classifier.
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1 Introduction

With its development, outsourced classification services [1–3] have been used in medical diagnosis,
image retrieval, anomaly detection and Internet of Things [4]. K-Nearest Neighbor (kNN) is a common
technique used to solve classification problems in machine learning [5,6]. Outsourced kNN classification
services are more and more widely used in practical applications [7]. For example, many medical
technology companies have models trained on medical records datasets that can be deployed in the cloud
to provide intelligent medical diagnosis services to patients. Models trained by many fintech companies
can be deployed in the cloud to provide customers with credit risk forecasting services. However, privacy
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concerns restrict the development of outsourced classification services [8]. For example, in the training
phase, the training data may be stolen by the adversary, resulting in the leakage of user sensitive
information (medical data, home address). In the classification phase, the adversary may access the target
model through inference attacks to obtain model information. It will seriously damage the property rights
of the model owners and cause significant economic losses to the model owners by obtaining the entire
model by a reverse attack method [9]. It hinders the wider application of outsourced classification
services to a certain extent, so it is very important to ensure data and model privacy [10].

In response to the above problems, many scholars usually use homomorphic encryption to construct a
client-server two-party model [11], in which the server has a kNN classifier, and the client inputs encrypted
features to start the evaluation. Classification over encrypted data is more challenging than traditional
machine learning model classification, and there are still two problems:

(1) First, once the classifier is handed over to the cloud server, it will damage the copyright of the user’s
classifier models, and a three-party model needs to be used for processing. Tai et al. [12] proposed a
privacy-preserving two-party classifier evaluation protocol, which significantly improves efficiency.
Lu et al. [13] proposed a new scheme to realize secure outsourced storage and kNN query in the
cloud, protect the privacy of data owners and query users from the cloud, and data owners do not
need to query online. However, the above schemes are stored in the server, and the adversary
attacks the server and steals the models.

(2) Second, the data sources in the existing scheme use the same public key to encrypt data, and the
security assumption is based on the fact that the server cannot collude with any model owner.
Once they collude, the cloud server can decrypt and obtain models. Recently, Mandal et al. [14]
proposed a scheme to support a large number of users to jointly learn a shared machine learning
model, where coordinated by a centralized server from multiple devices. They designed two
privacy-preserving protocols for training linear and logistic regression models based on an
additive homomorphic encryption scheme. However, each user has the same public key and
private key, as long as A obtains the encrypted data of B, it can decrypt and learn the data of B.

Based on the above research, we further propose an outsourced privacy-preserving kNN classifier model
based on multi-key homomorphic encryption (kNNCM-MKHE) for prediction. Outsourced to third-party
evaluators, models are not leaked to unauthorized entities. In this paper, we focus on the scenario where
predictive models from multiple owners are sent to the evaluator for collaborative evaluation. Due to the
diversity of data, collaborative machine learning has become popular to improve accuracy. In medical
diagnosis, many hospitals and medical laboratories collaborate to provide a better diagnosis. Compared
with other methods, our proposed method can support the joint evaluation of multi-party models, use
different keys, and prevent parties from collusion. The privacy of multi-party models and data is
protected. We highlight contributions below:

� First, we proposed an outsourced privacy-preserving kNN tripartite model, which allows multiple
model owners to outsource kNN classification services to an untrusted party. Each model owner
encrypts their models so that none of them can get access to the classifiers, while the evaluator
remains unaware of the model or user query data. It protects data and model confidentiality.

� Secondly, we designed a secure computing protocol based on multi-key homomorphic encryption,
which supports the computation of encrypted data with different public keys and provides security
proofs. The calculation processes of kNN are analyzed, and the basic operations are extracted.
Since the public and private keys of each model owner are different, even if any model owner
colludes with the evaluator, no information will be disclosed to the evaluator. At the same time,
collusion between model owners is prevented.
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2 Related Work

In order to take advantage of the computing power provided by the cloud, more and more models are
outsourced computing on the cloud, for example, Support Vector Machine (SVM) [15], neural network
[16,17], and deep learning [18–20]. Wang et al. [21] proposed a decision tree query scheme over
encrypted data and designed corresponding security protocols, including secure binary decomposition and
secure minimum protocol, which solved the complex problem of multi-party framework construction and
improved computing efficiency. It protected the privacy of training data, user queries, and query results.
Yu et al. [22] proposed an efficient blockchain-based distributed network Iterative Dichotomiser 3 (ID3)
decision tree classification framework for expanding the amount of training data, it can make more
training data sharing without sacrificing data privacy. Existing privacy-preserving medical pre-diagnosis
schemes are all experimented on single-label datasets, while. Dan et al. [23] proposed a scheme that will
consider multi-label instances. Boldyreva et al. [24] designed an outsourced security approximate kNN
model, which can perform secure approximate kNN search and updates. Meanwhile, they designed a
generic construction based on locality-sensitive hashing, symmetric encryption, and an oblivious map.
Liang et al. [25] used multiple keywords and an improved k-nearest neighbor technology to improve
search accuracy. Compared to [25], our protocol supports multiple model owners to upload their models
and prevents collusion between models. Liu et al. [26] implemented a secure kNN classification scheme
in cloud servers for Cyberspace (CKKSKNNC) based on the CKKS homomorphic encryption and
supports batch calculation. Compared to our protocol, it supports floating-point numbers computing.
However, the protocol we designed to allow multiple model owners to jointly evaluate the results.

Since the cloud server is run by a third party, users cannot fully trust it. Therefore, how to perform
privacy-preserving machine learning on cloud data from different data providers becomes a challenge. Li
et al. [27] proposed a new scheme to secure datasets from different providers and cloud datasets. To
protect the privacy requirements of different providers, their datasets are encrypted using different public
keys of a double decryption algorithm (DD-PKE). Jiang et al. [28] and Zou et al. [29] proposed a secure
privacy protection outsourcing scheme under multi-key in cloud computing, which combines the double
decryption mechanism with the Multi-key HE scheme to solve the privacy protection collaborative deep
learning encryption with different public keys. A secure neural network in federated learning is proposed,
allowing different clients to encrypt their local models with different keys, relying on two non-colluding
cloud servers. The client uploads the encrypted local model to the first cloud server, and the second
server can decrypt it by a trapdoor. The experimental results show that the accuracy is high, but the
efficiency is not high. [29] implements the k-means clustering scheme. However, the cost of computation
and communication is high.

There have also been recent efforts in secure machine learning under two-server [30]/three-server
[31,32], /four-server [33] models, where three/four servers must participate in online interactions. Two
and more cloud service providers need to come to an agreement and collaborate on the service. Reaching
the agreement among more cloud service providers is expected to be a bit more complicated.

3 Preliminary

Multi-key HE supports extensions of Somewhat Homomorphic Encryption (SWHE) to compute
encrypted data under different keys. The existing Multi-key HE scheme with extended ciphertexts is a
multi-key variant of the BGV scheme. Multi-key BGV scheme (MKBGV) [34] compares with the
traditional single-key homomorphic encryption, it is more suitable for computing multi-user data in a
cloud environment.

Definition 1 (Multi-key homomorphic encryption). Multi-key homomorphic encryption is defined as
follows:
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Setup (1j, 1K; 1L): Given the security parameters j, the number of keys K, maximum circuit depth L,
return a public parameter pp;

GenðppÞ: Given the public parameter pp, generate key pair (pkmi ; skmi) and (pkc; skc), where
i ¼ 1; . . . ; K. They also generate the evaluation helper,

Encðpk; lÞ: Given the public parameter pp, public key, and the plaintext l, then output ciphertext
c ¼ ðc0; c1Þ;

Extðpk; cÞ: Extend c to c under concatenated key pk ¼ fpkc; pkmg, and output two sub-vectors
c ¼ ðcc; cmÞ, where is in the form c ¼ fðcc;0; cc;1Þjðcm;0; cm;1Þg;

Decðsk; cÞ: Decrypt an extended c ¼ ðcc; cmÞ under the concatenated secret key sk ¼ fskc; skmg. Each
model owner computes qmi

¼ cm;0smi þ temi , then compute cm;1 �
Pn
i¼1

cm;0smi .

4 System and Adversary Model

4.1 System Model

Our system architecture is illustrated in Fig. 1. There are three entities: User (U ), Model Owners (MOsi),
and Evaluator (E).

Each model ownerMOsi (e.g., hospital) has a kNN model wi (the classifier’s core), which can be used to
evaluate the data (health condition of patients). They upload encrypted models to the evaluator (e.g., cloud
server) for collaborative evaluation of kNN. The collections of kNN contributed by all MOsi , which is
evaluated in the E. Each kNN model wi produces one result, and E produces an encrypted aggregate
classification result. The user (e.g., patient) sends encrypted inputs xi (e.g., weight, height, blood pressure,
medical history and other private information) to the evaluator, and the evaluator returns an encrypted
classification result to the patient. The patient obtains the final classification result through decryption.
Each entity is described as follows.

(1) Model Owners (MOsi): Each model owner has a classification model W. MOsi encrypt models and
upload them to E. MOsi can perform classification work using W. The confidentiality of W is

Figure 1: The system architecture
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protected by homomorphic encryption. Finally, each model owner will participate in the partial
decryption.

(2) User (U ): The U has query data x ¼ ðx1; . . . ; xdÞ and desires to predict the class to which x belongs.
U sends an encrypted input to the E for computations to obtain the CðW ; xÞ without revealing any
information to other entities.

(3) Evaluator (E): After receiving an encrypted query data under the key of the U, the E will perform
secure counting protocols to obliviously aggregate each unique class label. The evaluator then
sends the class labels with their associated counts to the U.

4.2 Adversary Model

Consistent with previous existing works on privacy-preserving machine learning, all participants are
assumed to be semi-honest, which means that each participant performs the computing task honestly with
protocols, but is curious about original data and tries to extract private data from intermediate results
generated in the process of computing execution. We follow prior works under semi-honest. In our
system, it is considered that evaluator and model owners might be corrupted by such an adversary.

For the evaluator entity, we consider that the user’s input data and the model owner’s model should not
be known to the evaluator, because the user input data contains private information and the model is private
property. Both are encrypted and uploaded to the evaluator. The evaluator cannot decrypt it alone. Even if the
evaluator is attacked, it is safe.

For the model owners’ entity, the trained modelW is the knowledge of the model owners. It is encrypted
and outsourced to E to provide classification service for legally authenticatedU. It is valuable and private; the
privacy of models requires that neither the E, an external eavesdropper should not derive any useful
information about the plaintext of model W. Even if the model owner is attacked or colluded with other
model owners, models will not be leaked due to the different keys.

5 Our Proposed Design

5.1 Overview

There are three phases of interactions between different parties, as shown in Fig. 2. In the first phase,
each model owner MOsi encrypts the model W. Upload the encrypted models to the evaluator. The user
sends an encrypted input to the evaluator. In the second phase, the evaluator evaluates each model with
model owners. Once it is done, each model outputs a class label. The evaluator will perform a secure
computing protocol to aggregate the number of each class label. Then, it sends the class labels with their
associated counts to the user. In the final phase, each model owner sends a decryption component to the
user, then, the evaluator aggregates decryption results, finally, the user uses the secret key and decryption
component to decrypt it.

5.2 Symbol Description

There are two encryption schemes used in this scheme: AES and SWHE. In order to facilitate the
description of the subsequent communication protocol and the ciphertext classification process, a
description of the relevant symbols is given, as shown in Table 1.

5.3 Communication Protocol

The communication protocols of kNNCM-MKHE include comparison protocol, dot product protocol,
and minimum protocol. The comparison protocol is used to compare two ciphertext data; the dot product
protocol is used to realize the euclidean distance calculation of two encrypted vectors; the minimum
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protocol is used to realize the conversion from multiple encryption schemes. The following is a detailed
introduction to three communication protocols.

5.3.1 Comparison Protocol
It is assumed that there are two parties in the MUX protocol, which is mainly used to implement if-else

expressions over ciphertext. The U inputs encrypted data and E inputs private key for decryption. TheMUX
expressions are shown in Protocol 1.

Protoco1 1: MUX protocol over encrypted data

Input U: z½ �½ �; x½ �½ �; y½ �½ �;
Input E: private key km;

Output U: selected result s½ �½ �
01: U: r R ZN

02: U: z0½ �½ �  z½ �½ � � r½ �½ �
03: U: send z0½ �½ � to E

Figure 2: The system architecture

Table 1: Symbols

Symbol Meaning

U , MOsi , E an user, ith model owner and an evaluator, respectively

CðÞ a kNN classifier

x a query data as input

W a kNN classification model

pkc; skc the SWHE key pair of the user U

pkmi ; skmi the SWHE key pair of the model owner MOsi

pk ¼ fpkc; pkmg the MKHE concatenated key

�h i AES encryption

�½ � SWHE encryption

�½ �½ � MKHE extended encryption

(Continued)
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04: E: z0  MKFHEð z0½ �½ �; kmÞ
05: E: send z0 to U

06: U: if ðr ¼ 0Þ
07: U: z½ �½ �  z0

08: U: else

09: U: z½ �½ �  r � z0

10: U: s½ �½ �  z½ �½ � � x½ �½ � � y½ �½ �ð Þð Þ � y½ �½ �
11: U: return s½ �½ �

Protoco1 (continued)

The Comparison protocol is built on theMUX protocol. The protocol is jointly participated by U and E.
The input ofMOsi is two binary data encrypted by the bit and the input of E is the private key for decryption.
Comparison protocol is to first compare bit-by-bit except for the highest bit, and the comparison results are
obtained via the formula res ¼ an � ðbn þ 1Þ þ ðan þ bn þ 1Þ � c. If res ¼ 1, then a, b; if res ¼ 0, then
a � b. MUX protocol is called during protocol execution. Protocol 2 is shown as followed.

Protocol 2: Comparison protocol over encrypted data

Input U: a½ �½ � ¼ an½ �½ � an�1½ �½ � . . . a0½ �½ �, b½ �½ � ¼ bn½ �½ � bn�1½ �½ � . . . b0½ �½ �
the number n of bits;

Input E: private key km;

Output U: comparison result t;

01: U: temp½ �½ �  0½ �½ �; c½ �½ �  0½ �½ �
02: U: for 0 	 i 	 n� 1:

03: U: temp½ �½ �  ai½ �½ � � bi½ �½ � � 1

04: U: c½ �½ �¼ MUXð temp½ �½ �; c½ �½ �; bi½ �½ �Þ
05: U: res½ �½ �  an½ �½ � 
 ð bn½ �½ � � 1Þð Þ � ð an½ �½ � � bn½ �½ � � 1Þ 
 c½ �½ �ð Þ
06: U: r R ZN

07: U: res0½ �½ �  res½ �½ � � r½ �½ �
08: U: send res0½ �½ � to E

09: E: res0  MKFHE:Decð res0½ �½ �; kmÞ
10: E: if ðres0 ¼ 0Þ
11: E: e½ �½ �  1½ �½ �
12: E: else

13: E: e½ �½ �  0½ �½ �
14: E: send e½ �½ � to U

15: U: t½ �½ �  r½ �½ � 
 e½ �½ �
17: U: t  MKFHE:Decð t½ �½ �; kcÞ
18: U: return t
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5.3.2 Dot Product Protocol
The dot product protocol calculates two SWHE encrypted ciphertext vectors, and returns an encrypted

result, which represents the square of the euclidean distance between the encrypted data to be tested and each
encrypted training data.

In the dot product protocol, the input of E is the test data xi½ �½ � and the training data yi½ �½ �. SWHE cannot
perform root arithmetic, so the protocol uses sum of squares instead of root arithmetic calculation. The dot
product protocol is euclidean distance calculation.

Protocol 3 is a description of the dot product protocol.

Protocol 3: Dot product protocol over encrypted data

Input E: xi½ �½ �, yi½ �½ �;
Output U: ½½s��
01: E: ½½s��  ½½0��
02: E:for 1 	 i 	 d:

03: E: ½½zi��  ð½½xi�� � ½½yi��Þ � ð½½xi�� � ½½yi��Þ
04: E: ½½s��  ½½s�� � ½½zi��
05: E: return ½½s��

5.3.3 Minimum Protocol
The minimum protocol is to compare m encrypted ciphertext data and obtain the subscript of the

minimum value. The core idea is to first compare the values, assign the smaller value to the one with the
smaller subscript, then, assign 0 to the larger subscript, and record the original smaller subscript. And
then continue to compare the new array until the number of arrays is 1, which is the minimum value.

In the minimum value, the input data is an array storing the encrypted euclidean distance, and the input
data of E is the corresponding private key used for decryption. dmin½ �½ � represents the minimum encryption
value, and dflag

� �� �
represents the comparison result of the two encrypted data.

Protocol 4: Get minimum protocol over encrypted data

Input U: ½½d0��; . . . ; ½½dm�1��;
Output E: pk;

Input U: ½½dmin��
01: U: for 0 	 i 	 m:

02: U: ½½d0i ��  ½½di��
03: U: num m

04: U: for 1 	 i 	 logm2
� �

:

05: U: for 1 	 j 	 num=2b c:
06: U, E: flag ¼ EncCompare ½½d02iðj�1Þ��; ½½d02iðj�1Þþ2i�1 ��

� �

07: U: r1 R ZN ; r2 R ZN

08: U: ½½d1��  ½½d02iðj�1Þ�� � ½½r1��
09: U: ½½d2��  ½½d02iðj�1Þþ2i�1 �� � ½½r2��

(Continued)
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10: U: send ½½d1�� ½½d2�� to S

11: E: if (flag ¼¼ 1):

12: E: refresh ½½dmin��  ½½d1��
13: E: else:

14: E: refresh ½½dmin��  ½½d2��
15: E: send ½½dmin�� and ½½dflag�� to C

16: U: ½½d02iðj�1Þ��  ½½dmin�� � ð½½flag�� � ½½1��Þ 
 r2 � ½½flag�� 
 r1

17: U: ½½d02iðj�1Þþ2i�1 ��  ½½0��
18: U: num num=2d e
19: U: return ½½dmin��  ½½d00��

5.4 Classification Process

The classification process is divided into three phases between different parties. In the first phase, each
model owner MOsi and user U generate respective keys. In the second phase, E and U performs the kNN
classification based on the above secure protocols to obtain an encrypted result. In the final phase, jointly
decrypt, and U gets the decryption result. The specific process is described as follows.

5.4.1 Build Multiple Keys
Each model owner generates an AES key kmi, the SWHE key pkmi, which is used to encrypt the models

before sending them to the E. Then, generate an evaluation helper element KeyGen ppð Þ !
pkmi ; skmið Þ; ekm0i

� 	
and a joint key pkm ¼

Pn
i¼1

pkmi and evaluation helper element ekm0 ¼
Pn
i¼1

ekm0i .

The user independently generates an AES key and a SWHE key pair pkc; skcð Þ and ekc0 , which is used
later to generate the evaluation key ekc.

Model owner and user encrypt their AES key using the SWHE key to get kmi½ �m; kc½ �c. Then, they send
them to the evaluator.

5.4.2 Classification Process
In the classification process, U is the requester of the classification service and has the data x to be

classified, which is classified by the evaluator; E is the responder of the classification service, responsible
for providing the classification service. MOsi has uploaded the encrypted model before the classification
process.

This section uses the above protocol to construct the classification process. First, convert the type of data
from floating-point numbers to integers and encrypt it. Secondly, calculate the euclidean distance through
Protocol 3, and then obtain the minimum value in the distance array through protocol 4, the idea is to
compare the values in the array to get the smaller of the two values, and assign the larger value to 0. The
small squares form a new array, and then continue to compare the new array until the number of arrays is
1, and the value is the minimum value. Loop k times to obtain k nearest neighbors samples, and finally
use the method introduced in Protocol 6 to count the number of categories to obtain the classification
result. Among them, each protocol is regarded as a module, and the modules are connected through the
modular sequence combination to construct the kNNCM-MKHE classifier, so that the user can only know

Protocol 4 (continued)
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the final classification result, but not the distance between the test sample and the training sample; make the
evaluation was unable to obtain the user’s input x.

Protocol 5 is a description of the kNNCM-MKHE classification process.

Protocol 5: kNNCM-MKHE classification algorithm

Input U: x ¼ x1; x2; ::; xdð Þ, kc;
Input E: D ¼ y1; . . . ; ymð Þ, pk, km, L ¼ c1; . . . ; cmð Þ;
Output U: ci

01: U: for 0 	 i 	 m:

02: U: xih i  AES xl�1h i; xl�2h i; ::; x0h ið Þ
03: U: send xih i to E

04: E: x½ � ¼ AESdec xh i; ½km�ð Þ
05: E: x½ �½ � ¼ Extðpk; x½ �Þ
06: E: for 0 	 i 	 m:

07: U, E: ½½di��  innerdotð½½x��; ½½yi��Þ
08: U: d:push backð½½di��Þ
09: U: for 0 	 i 	 k:

10: U: ½½d��  permutationð½½d��Þ
11: U, E: ½½dmin��  getMINmð½½d0��; . . . ; ½½dm�1��Þ
12: U: ½½dmin��  ½½MAX ��
13: U: lab:push backðvminÞ;
14: U: i getMaxClassðlabÞ
15: U: return ci  L½i�

The collaborative evaluation process of kNNCM-MKHE is as follows:

Step 1: EachMOsi sends models to the E, thenMOsi and U send kmi½ �m; kc½ �c to the E to start evaluation;

Step 2: U input the data to be classified x, and convert each data x into bit-wise representation
xl�1; xl�2; ::; x0ð Þ. U encrypts each bit using AES key to get xl�1h i; xl�2h i; ::; x0h i. And send
xl�1h i; xl�2h i; ::; x0h i to E;

Step 3: Upon receiving xl�1h i; xl�2h i; ::; x0h i, E extends ciphertexts x½ � ¼ AESdec xh i; ½km�ð Þ. Then,
extend each of x½ �½ � ¼ Extðpk; x½ �Þ using the extended SWHE key pk;

Step 4: U and each model in the E call Protocol 3 to calculate the euclidean distance until all data is
traversed. U obtains the encrypted result and saves it in the array d;

Step 5: Each model the E calls Protocol 4 to obtain a minimum value in the array d, saves its
corresponding category to the array lab, resets the minimum value to the maximum value, and calls
protocol cyclically until k nearest neighbors are obtained. Finally, U obtains the categories of k nearest
neighbor, and the results are stored in the array lab.

Step 6: U performs category statistics, counts the number of each category in the array lab, and the
category in a model with the most occurrences c0i. Then, aggregate the c0i in each model to get the final
collaborative evaluation result ci.
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In the classification process, the U finally obtains an array of k-nearest neighbor data categories, which
represents the number of neighbors, ck representing the categories. Count the number of occurrences of each
category in the array lab, the most occurrences are the category to which the data to be classified belongs.
Protocol 6 category statistic is a specific description of the function.

Protocol 6: Category statistical algorithm

Input U: lab ¼ c1; . . . ; ckf g, num;
Output U: index

01: U: count [num]

02: U: For i in k:

03: U: count [i]++

04: U: max = count [0], index = 0

05: U: For 1 	 i, num:

06: C: If ðcount½i�.maxÞ:
07: U: max ¼ count½i�, index = i

08: U: return index

5.4.3 Decryption the Result
After classification, the results are extended ciphertexts using pk. Each result is c ¼ fðcc;0; cc;1Þjðcm;0; cm;1Þg.

The user can decrypt ðcc;0; cc;1Þ and model owners decrypt ðcm;0; cm;1Þ. Evaluator sends cm;0 to each model
owner. Then, each model owner constructs qmi

¼ cm;0smi þ temi and returns it to the evaluator. Finally, the

evaluator aggregates the result q ¼Pn
i¼1

qi ¼ cm;0sm þ tekm and sends it to the user. The user decrypts the

result using q and skc. Fig. 3 illustrates the decryption process.

6 Security Analysis

The encryption scheme used by our proposed system is secure against semi-honest adversaries. The
evaluator converts AES ciphertext to the SWHE ciphertext under the secret key pkc and the model owner
joint key pkm. MKHE provides semantic security unless all keys are compromised by the adversary.

For all model owners, the model is their private property and cannot be known by other parties. The
model is encrypted before being sent to the evaluator, so the model is secure for the evaluator and the
user. The model owner does not participate in the subsequent classification process, so user query data
and classification results are also secure for the model owner.

The user’s view consists of feature vector x and class labels, which have been ciphertext computed on the
evaluator. The feature vector x is encrypted by the user, only the user has the decrypted private key, and no
other party except the user can decrypt it. The obtained class labels need to be decrypted jointly by the
evaluator and the user, which protects the security of the class labels.

Figure 3: Some functions of x
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In the classification process, first, the square of the euclidean distance between the test and training data
is calculated by the dot product protocol. It is secure under the semi-honest model. The evaluator only sends
encrypted ciphertext data to the user, and does not receive any input from the user, which ensures the security
of being classified. Finally, call the random permutation function to replace the subscript of the array d, and
then call the minimum value protocol to obtain the value. Since each minimum value protocol uses the
random permutation function to replace the index of the array, the evaluator cannot know the real value.
The user cannot only obtain the minimum value of the refreshed ciphertext, and cannot obtain the size
relationship of the data to be compared, which ensures that the size relationship of the array elements will
not be leaked to the user.

To sum up, the constructed kNNCM-MKHE is secure under the semi-honest model.

7 Evaluation

Our scheme is implemented in C++ on Ubuntu18.04.2 64-bit version, Intel(R) Core(TM) i7-9700M
CPU (3.00 GHz) 32 GB RAM. We constructed the kNNCM-MKHE based on the multi-key BGV scheme
[34] using NTL and GMP. We evaluate the performance of the Heart Disease (HD), Breast Cancer (BC),
and Credit Approval (CA) datasets [35], which is consisting of 70% training examples and 30% testing
examples. The key length in the encryption scheme is 1024 bits, and the security parameters are k ¼ 100.

First, the comparison protocol is evaluated from four aspects: user, evaluator running time, exchange
data volume, and exchange times for the encrypted data of two-bit lengths. The experimental results are
shown in Table 2. The running time is related to the comparison bit length. The longer the bit length, the
longer the user and evaluator running time, and the greater the amount of data exchanged.

This experiment evaluates the calculation and comparison time of the user and the evaluator, the total
amount of exchanged data and the number of exchanges. The specific experimental results are shown in
Table 3.

Table 2: Evaluation of comparison protocol

The bit length User
(ms)

Evaluator
(ms)

Exchange data
volume (kB)

Exchange
time

64 13.07 15.45 27.88 11

128 21.11 23.04 54.76 21

Table 3: kNNCM-MKHE performance test

Dataset k Number
of bits

Participants Distance
calculation (ms)

kNN Bandwidth
(MB)

Exchange
times

Heart Disease 3 128 user 904.15 7295.82 23.48 3071

evaluator 830.26 9002.36

Breast Cancer 5 128 user 846.76 16725.1 42.72 7357

evaluator 1351.35 22248.1

Credit
Approval

3 64 user 789.33 2750.38 13.13 3219

evaluator 946.44 3046.93
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To validate the performance of kNNCM-MKHE, experiments on the running time of kNNCM-MKHE
when the number of model owners varies, as shown in Fig. 4.

In the kNNCM-MKHE process, the evaluator and user are mainly involved, and it can be seen that the
evaluator bears most of the computational overhead. At the same time, as the number of model owners
increases, so does the running time of the evaluator and user.

Table 4 shows the comparison of evaluation time and accuracy under kNN plaintext and kNNCM-
MKHE when n changes, n represents the total number of data.

It can be seen from Table 4, evaluation over encrypted data is much slower compared to unencrypted
data. Because computations on encrypted data are much more complex than plaintext computations. As
the number of datasets increases, so does the evaluation time and accuracy rate, which proves that the
proposed model is effective.

Fig. 5 shows the average running time of each stage on the three datasets of kNNCM-MKHE, including
mode, euclidean distance, decrypt encrypted data and kNN neighbor.

As can be seen from Fig. 5, the longest time consuming stage is finding k-nearest neighbor samples, and
for Heart Disease and Credit Screening data, the k value is the same as the number of training samples, and

Figure 4: The running time of kNNCM-MKHE (ms)

Table 4: The accuracy comparison of plaintext and ciphertext

The total number
of training data (n)

Model Evaluation time (s) Accuracy (%)

300 kNN plaintext 3.3 92.68

kNNCM-MKHE 38.5 71.19

500 kNN plaintext 3.5 97.25

kNNCM-MKHE 53.7 74.44

600 kNN plaintext 3.5 98.41

kNNCM-MKHE 62.2 75.43
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the bits compared are 128 and 64, respectively. The time to find k nearest neighbors is almost half of Heart
Disease. It can be seen that the number of bits is positively correlated with the samples of k nearest neighbors.

8 Conclusion

In this paper, we proposed a kNNCM-MKHE scheme that allows model owners to provide their
encrypted models to outsource kNN classifier service, so that none of them can get access to other’s
classifiers. Compared with previous works, our system protects data and models confidentiality. More
importantly, we designed a secure computing protocol based on MKBGV to support the computation
over encrypted data with different public keys and provided security proofs. Experiments have proved
that collaborative evaluation of multiple model owners is feasible.
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