66 research outputs found

    Secure agent transport and integrity protection

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Design and implementation of a multi-agent opportunistic grid computing platform

    Get PDF
    Opportunistic Grid Computing involves joining idle computing resources in enterprises into a converged high performance commodity infrastructure. The research described in this dissertation investigates the viability of public resource computing in offering a plethora of possibilities through seamless access to shared compute and storage resources. The research proposes and conceptualizes the Multi-Agent Opportunistic Grid (MAOG) solution in an Information and Communication Technologies for Development (ICT4D) initiative to address some limitations prevalent in traditional distributed system implementations. Proof-of-concept software components based on JADE (Java Agent Development Framework) validated Multi-Agent Systems (MAS) as an important tool for provisioning of Opportunistic Grid Computing platforms. Exploration of agent technologies within the research context identified two key components which improve access to extended computer capabilities. The first component is a Mobile Agent (MA) compute component in which a group of agents interact to pool shared processor cycles. The compute component integrates dynamic resource identification and allocation strategies by incorporating the Contract Net Protocol (CNP) and rule based reasoning concepts. The second service is a MAS based storage component realized through disk mirroring and Google file-system’s chunking with atomic append storage techniques. This research provides a candidate Opportunistic Grid Computing platform design and implementation through the use of MAS. Experiments conducted validated the design and implementation of the compute and storage services. From results, support for processing user applications; resource identification and allocation; and rule based reasoning validated the MA compute component. A MAS based file-system that implements chunking optimizations was considered to be optimum based on evaluations. The findings from the undertaken experiments also validated the functional adequacy of the implementation, and show the suitability of MAS for provisioning of robust, autonomous, and intelligent platforms. The context of this research, ICT4D, provides a solution to optimizing and increasing the utilization of computing resources that are usually idle in these contexts

    Privacy in Mobile Agent Systems: Untraceability

    Get PDF
    Agent based Internet environments are an interesting alternative to existing approaches of building software systems. The enabling feature of agents is that they allow software development based on the abstraction (a "metaphor") of elements of the real world. In other words, they allow building software systems, which work as human societies, in which members share products and services, cooperate or compete with each other. Organisational, behavioural and functional models etc applied into the systems can be copied from the real world. The growing interest in agent technologies in the European Union was expressed through the foundation of the Coordination Action for Agent-Based Computing, funded under the European Commission's Sixth Framework Programme (FP6). The action, called AgentLink III is run by the Information Society Technologies (IST) programme. The long-term goal of AgentLink is to put Europe at the leading edge of international competitiveness in this increasingly important area. According to AgentLink "Roadmap for Agent Based Computing"; agent-based systems are perceived as "one of the most vibrant and important areas of research and development to have emerged in information technology in recent years, underpinning many aspects of broader information society technologies"; However, with the emergence of the new paradigm, came also new challenges. One of them is that agent environments, especially those which allow for mobility of agents, are much more difficult to protect from intruders than conventional systems. Agent environments still lack sufficient and effective solutions to assure their security. The problem which till now has not been addressed sufficiently in agent-based systems is privacy, and particularly the anonymity of agent users. Although anonymity was studied extensively for traditional message-based communication for which during the past twenty five years various techniques have been proposed, for agent systems this problem has never been directly addressed. The research presented in this report aimed at filling this gap. This report summarises results of studies aiming at the identification of threats to privacy in agent-based systems and the methods of their protection.JRC.G.6-Sensors, radar technologies and cybersecurit

    Supporting internet-scale multi-agent systems

    Get PDF

    Regionally distributed architecture for dynamic e-learning environment (RDADeLE)

    Get PDF
    e-Learning is becoming an influential role as an economic method and a flexible mode of study in the institutions of higher education today which has a presence in an increasing number of college and university courses. e-Learning as system of systems is a dynamic and scalable environment. Within this environment, e-learning is still searching for a permanent, comfortable and serviceable position that is to be controlled, managed, flexible, accessible and continually up-to-date with the wider university structure. As most academic and business institutions and training centres around the world have adopted the e-learning concept and technology in order to create, deliver and manage their learning materials through the web, it has become the focus of investigation. However, management, monitoring and collaboration between these institutions and centres are limited. Existing technologies such as grid, web services and agents are promising better results. In this research a new architecture has been developed and adopted to make the e-learning environment more dynamic and scalable by dividing it into regional data grids which are managed and monitored by agents. Multi-agent technology has been applied to integrate each regional data grid with others in order to produce an architecture which is more scalable, reliable, and efficient. The result we refer to as Regionally Distributed Architecture for Dynamic e-Learning Environment (RDADeLE). Our RDADeLE architecture is an agent-based grid environment which is composed of components such as learners, staff, nodes, regional grids, grid services and Learning Objects (LOs). These components are built and organised as a multi-agent system (MAS) using the Java Agent Development (JADE) platform. The main role of the agents in our architecture is to control and monitor grid components in order to build an adaptable, extensible, and flexible grid-based e-learning system. Two techniques have been developed and adopted in the architecture to build LOs' information and grid services. The first technique is the XML-based Registries Technique (XRT). In this technique LOs' information is built using XML registries to be discovered by the learners. The registries are written in Dublin Core Metadata Initiative (DCMI) format. The second technique is the Registered-based Services Technique (RST). In this technique the services are grid services which are built using agents. The services are registered with the Directory Facilitator (DF) of a JADE platform in order to be discovered by all other components. All components of the RDADeLE system, including grid service, are built as a multi-agent system (MAS). Each regional grid in the first technique has only its own registry, whereas in the second technique the grid services of all regional grids have to be registered with the DF. We have evaluated the RDADeLE system guided by both techniques by building a simulation of the prototype. The prototype has a main interface which consists of the name of the system (RDADeLE) and a specification table which includes Number of Regional Grids, Number of Nodes, Maximum Number of Learners connected to each node, and Number of Grid Services to be filled by the administrator of the RDADeLE system in order to create the prototype. Using the RST technique shows that the RDADeLE system can be built with more regional grids with less memory consumption. Moreover, using the RST technique shows that more grid services can be registered in the RDADeLE system with a lower average search time and the search performance is increased compared with the XRT technique. Finally, using one or both techniques, the XRT or the RST, in the prototype does not affect the reliability of the RDADeLE system.Royal Commission for Jubail and Yanbu - Directorate General For Jubail Project Kingdom of Saudi Arabi

    Multi-agent system security for mobile communication

    Get PDF
    This thesis investigates security in multi-agent systems for mobile communication. Mobile as well as non-mobile agent technology is addressed. A general security analysis based on properties of agents and multi-agent systems is presented along with an overview of security measures applicable to multi-agent systems, and in particular to mobile agent systems. A security architecture, designed for deployment of agent technology in a mobile communication environment, is presented. The security architecture allows modelling of interactions at all levels within a mobile communication system. This architecture is used as the basis for describing security services and mechanisms for a multi-agent system. It is shown how security mechanisms can be used in an agent system, with emphasis on secure agent communication. Mobile agents are vulnerable to attacks from the hosts on which they are executing. Two methods for dealing with threats posed by malicious hosts to a trading agent are presented. The rst approach uses a threshold scheme and multiple mobile agents to minimise the eect of malicious hosts. The second introduces trusted nodes into the infrastructure. Undetachable signatures have been proposed as a way to limit the damage a malicious host can do by misusing a signature key carried by a mobile agent. This thesis proposes an alternative scheme based on conventional signatures and public key certicates. Threshold signatures can be used in a mobile agent scenario to spread the risk between several agents and thereby overcome the threats posed by individual malicious hosts. An alternative to threshold signatures, based on conventional signatures, achieving comparable security guarantees with potential practical advantages compared to a threshold scheme is proposed in this thesis. Undetachable signatures and threshold signatures are both concepts applicable to mobile agents. This thesis proposes a technique combining the two schemes to achieve undetachable threshold signatures. This thesis denes the concept of certicate translation, which allows an agent to have one certicate translated into another format if so required, and thereby save storage space as well as being able to cope with a certicate format not foreseen at the time the agent was created

    Secure Agents

    Get PDF
    With the rapid proliferation of software agents, there comes an increased need for agents to ensure that they do not provide data and/or services to unauthorized users. We first develop an abstract definition of what it means for an agent to preserve data/action security. Most often, this requires an agent to have knowledge that is impossible to acquire --- hence, we then develop approximate security checks that take into account, the fact that an agent usually has incomplete/approximate beliefs about other agents. We develop two types of security checks --- static ones that can be checked prior to deploying the agent, and dynamic ones that are executed at run time. We prove that a number of these problems are undecidable, but under certain conditions, they are decidable and (our definition of) security can be guaranteed. Finally, we propose a language within which the developer of an agent can specify her security needs, and present provably correct algorithms for static/dynamic security verification. (Also cross-refernced as UMIACS-TR-99-62

    Design and implementation of a multi-agent opportunistic grid computing platform

    Get PDF
    Opportunistic Grid Computing involves joining idle computing resources in enterprises into a converged high performance commodity infrastructure. The research described in this dissertation investigates the viability of public resource computing in offering a plethora of possibilities through seamless access to shared compute and storage resources. The research proposes and conceptualizes the Multi-Agent Opportunistic Grid (MAOG) solution in an Information and Communication Technologies for Development (ICT4D) initiative to address some limitations prevalent in traditional distributed system implementations. Proof-of-concept software components based on JADE (Java Agent Development Framework) validated Multi-Agent Systems (MAS) as an important tool for provisioning of Opportunistic Grid Computing platforms. Exploration of agent technologies within the research context identified two key components which improve access to extended computer capabilities. The first component is a Mobile Agent (MA) compute component in which a group of agents interact to pool shared processor cycles. The compute component integrates dynamic resource identification and allocation strategies by incorporating the Contract Net Protocol (CNP) and rule based reasoning concepts. The second service is a MAS based storage component realized through disk mirroring and Google file-system’s chunking with atomic append storage techniques. This research provides a candidate Opportunistic Grid Computing platform design and implementation through the use of MAS. Experiments conducted validated the design and implementation of the compute and storage services. From results, support for processing user applications; resource identification and allocation; and rule based reasoning validated the MA compute component. A MAS based file-system that implements chunking optimizations was considered to be optimum based on evaluations. The findings from the undertaken experiments also validated the functional adequacy of the implementation, and show the suitability of MAS for provisioning of robust, autonomous, and intelligent platforms. The context of this research, ICT4D, provides a solution to optimizing and increasing the utilization of computing resources that are usually idle in these contexts
    corecore