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Chapter 1 

Introduction 

 

1.1 Mobile Agent 

With the extensive penetration of Internet technology in our everyday life, many new 

opportunities arise, especially in the field of commerce.  E-Commerce, or electronic 

commerce, is born along with the Internet.  The setting up of a virtual shop leads to an 

immediate presence in the electronic world for a merchant.  Billions around the world 

will be able to view the products/services online, and purchase online.  With this 

‘click-and-mortar’ concept, there is no need for the rental of expensive shops in a 

prime location, nor the need for hiring sales promoters.  All that is needed is a web 

presence on the Internet. 

 

As technology evolves, there is more than to setting up a virtual shop in the Internet.  

With millions of virtual shops springing up in various parts of the world, it is 

impossible for a customer to manually browse through all the possible shops before 

making a purchase decision.  The task is even more challenging when the pricing 

information is dependent on the customer’s requirement and subjected to negotiation.  

No customer is able to explain and negotiate the requirements to various online shops 

and gathering pricing information one by one.  There is an urgent need for automated 
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information gathering and negotiation.  To address this concern, mobile agent 

technology is coming into the limelight [14].  Mobile agent can be defined as a system 

situated within a part of an environment that senses that environment and acts on it, 

over time, in pursuit of its own agenda and so as to effect what it senses in the future 

[20].  A mobile agent will be able to automate certain tasks that were processed 

manually and make certain decisions intelligently with/without the interference of its 

owner.  With this approach, information gathering can be performed automatically 

within the split of a second, negotiation of certain complexity can take place without 

the active participation of agent owners, and the decision making process can be more 

efficient and reliable. 

 

One hindrance to the widespread adoption of mobile agent technology is the lack of 

security. 

 

Let’s take a look at the following example: A customer Alice browses through Virtual 

CD Mall -- an online CD shop – looking for her favorite artist Mariah Carey’s latest 

album.  Once she makes her selection, she clicks on the ‘Check out’ button.  On the 

order confirmation page, she is asked to key in her VISA credit card number and 

expiry date.  A few days later, the CD is mailed to Alice via registered mail.  At the 

end of the month, Alice receives her VISA statement in which the online transaction is 

recorded correctly.  She happily makes the payment and thinks everything is over. 

 

A few months later, when the next VISA statement arrives, Alice is astonished to find 

her card was used to pay for Playboy, an infamous online adult entertainment provider.  
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She immediately contacts VISA and reports the incident.  However, the investigation 

is unable to reveal anything.  At the end, Alice and VISA has to share the loss. 

 

When it comes to online transactions, security becomes the primary concern.  Internet 

was developed without security in mind.  Information is flowing from hubs to hubs 

before it reaches the destination.  By simply tapping to wires or hubs, one can easily 

monitor all information traffic.  In the above example, one possibility is as follows: 

Henry, a hacker that happens to be monitoring Internet traffic to Visual CD Mall when 

Alice makes the online purchase.  When Alice keys in her VISA card number and 

expiry date, the unencrypted information is eavesdropped.  Subsequently, Henry uses 

the information for his own online purchases. 

 

When a mobile agent carries sensitive information and private mission to execute in a 

remote location, the agent owner must be assured of various issues so that the agent 

will not be compromised, the information carried by the agent won’t be stolen, the 

cash credit carried by the agent wont’ be misused, etc.  Security will be the issue that 

has to be addressed carefully if mobile agent is to be used in the field of electronic 

commerce. 

 

1.2 Security 

Before going into the security mechanisms implemented under SAFER (Secure Agent 

Fabrication, Evolution , and Roaming) [1], it is necessary to describe general concerns 

about security.  There are five general security concerns [29], namely, identification, 

authentication, secrecy, message integrity and non-repudiation. 
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Identification is the process of establishing the identity of a party.  This may not sound 

difficult in the context of real world, but in digital world, identification is not so 

straightforward.  For example, in the real life, if Alice is a frequent shopper of CD 

Mall, the assistant will be able to establish the identity of Alice the moment she walks 

into the mall.  Alternatively, she can produce her frequent shopper card to establish her 

identity.  In digital world, merchants and shoppers do not get to see each other in 

person, hence, mechanisms must be provided to establish the identity of each other.  

Depending on the level of security needed, different approaches can be taken.  They 

vary from simply providing the frequent buyer number to producing a third-party 

issued digital certificate. 

 

Authentication refers to the process in which the identity of a party is verified.  If a 

shop assistant recognizes Alice by her face, identification and authentication takes 

place at the same time (assuming Alice does not have a twin sister).  Or if the shop 

assistant does not know Alice by person, the matching of Alice’s face and the one on 

the frequent shopper card produced by Alice verifies that the cardholder is indeed 

Alice.  Unfortunately, over the Internet, there is no way to authenticate each other via 

the above means.  If Alice identifies herself by frequent shopper number, then 

authentication can be done by requesting her to key in the password associated with 

her number.  However, this only provides a certain level of authentication.  If Henry 

manages to intercept Alice’s password, he will be able to impersonate Alice to Virtual 

CD Mall.  The more secure means is through the use of digital certificate.  To verify 

that the holder of the certificate is indeed the owner of the certificate, a random 
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challenge can be sent to the certificate holder and a signature on the challenge is 

returned as an authentication message.  Although the principle sounds secure, a secure 

protocol is required to achieve it without subjecting the protocol to known security 

attacks. 

 

Secrecy, or privacy, refers to the confidentiality of the information exchanged.  In real 

life, important documents are locked or sealed to keep away prying eyes.  Similarly, in 

digital world, various encryption techniques are available to digitally ‘lock’ 

information.  Only the person with the secret key is able to ‘unlock’ the information.  

In the example previously, Alice’s credit card number is lost because sensitive 

information is not encrypted during its transmission in open network.  In the design of 

SAFER, a combination of symmetric key encryption and public key encryption is used 

to ensure secrecy. 

 

Message integrity aims to ensure the message is transmitted without being tampered 

with or replaced.  When Alice places a digital order to purchase the CD titled Honey 

by Mariah Carey, Henry may intercept the order, change the purchase item to History 

by Michael Jackson and sends the modified order to Virtual CD Mall.  If Virtual CD 

Mall is unaware that the order has been tampered with, it will go ahead to ship the 

wrong CD to Alice.  In cryptography, message integrity is ensured using a combination 

of public key encryption and one-way hash function. 

 

Non-repudiation is probably one among the last remaining issues not addressed by e-

commerce.  It refers to the inability of any party to deny that the communication has 
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taken place.  For example, after placing an order with Virtual CD Mall, Alice should 

not be able to deny it and refuse to pay when the bill arrives.  Similarly, Virtual CD 

Mall should not be able to deny that Alice has made a purchase for Honey in the event 

that it runs out of stock.  The design of SAFER ensures that important events (such as 

agent roaming, contract signing, etc) are non-deniable. 

 

1.3 SAFER – Secure Agent Fabrication Evolution and Roaming 

SAFER, or Secure Agent Fabrication, Evolution and Roaming, is a mobile agent 

framework that is specially designed for the purpose of electronic commerce [1].  As 

the name implies, SAFER provides an execution framework for mobile agents that 

facilitates agent fabrication, agent evolution and agent roaming.  Most important of all, 

security has been a prime concern from the first day of research [2-4] given the nature 

of E-Commerce.  By building strong and efficient security mechanisms around itself, 

SAFER aims to provide a trustworthy framework for mobile agents, increasing trust 

factors to end users by providing the ability to trust, predictable performance and 

communication channel [17]. 
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The overview of SAFER is shown in Figure 1.  While SAFER is designed to establish 

various SAFER communities with various functional entities as shown in Figure 2, it 

can be shown in Figure 1 that in addition to the various design considerations above, 

SAFER is also designed to be an open framework to interface to non-SAFER 

communities. 
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1.4 SADIS - SAFER Agent Data Integrity Shield 

In the first paper on SAFER, a secure agent transport protocol is proposed to ensure 

roaming security (the secure agent transport protocol will be covered in subsequent 

section).  While agent transport protocol provides for the secure roaming of agents, 

there are other areas related to security to be addressed. 
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Agent integrity is one such area that is crucial to the success of agent technology.  

Agent integrity refers to both agent code integrity and agent data integrity.  Agent code 

can be defined as the executable module carried by an agent and any static information 

burned in the agent before it starts roaming.  Agent code should not be modified under 

any circumstances during the agent’s roaming session, thus the protection to its 

integrity can be achieved via conventional digital signature method.  More complex 

code integrity scheme is also proposed in [6].  Different from agent code, agent data is 

dynamic in nature and will change as the agent roams from host to host.  Despite the 

various attempts in the literature, there is no satisfactory solution to the problem so far.  

Some of the common weaknesses of the current schemes are vulnerabilities to revisit 

attack and illegal modification (including deletion/insertion) of agent data.  AMP [5], 

an earlier proposal under SAFER to address agent data integrity, does address some of 

the weaknesses in the current literature.  Unfortunately, the extensive use of PKI 

technology introduces too much overhead to the protocol.  Also, AMP requires the 

agent to deposit its data collected to the butler before it roams to another host.  While 

this is a viable and secure approach, our approach will provide an alternative by 

allowing the agent to carry the data by itself without depositing it (or the data hash) 

onto the butler. 

 

Besides addressing the common vulnerabilities of current literature (revisit attack and 

data modification attack), SADIS also strives to achieve maximum efficiency without 

compromising security.  It minimizes the use of PKI technology and relies on 

symmetric key encryption as much as possible, thus reducing the overhead introduced 



Secure Agent Transport And Integrity Protection  10 

by the security mechanism to a minimum.  In terms of data efficiency, it does not 

require the agent to carry any encryption key or random (for encryption key derivation) 

with it - some existing mechanism does require that.  Instead, the data encryption key 

and the communication session key are both derivable from a key seed that is unique to 

the agent’s roaming session in the current host.  As a result, the butler can derive the 

communication session key and data encryption key directly. 

 

Another feature in SADIS is strong security.  The key seed negotiation itself is based 

on a variation of DH key exchange.  During the negotiation, it also achieves the 

objective of implicit destination host authentication, and prevents the current host from 

getting any insight into the next key seed.  Furthermore, to protect the key seed, it is 

never used directly as encryption key throughout the scheme.  Instead, it is used to 

derive each session key and one-time data encryption key.  Effectively, each message 

exchange between the agent butler and the agent is protected using a different session 

key.  There is no correlation between each session key, making it extremely difficult 

for any attack on the keys. 

 

Most of the existing research focused on how to detect integrity compromise, but 

neglected the need to identify the malicious host.  With SADIS, the agent butler will 

not only be able to detect any compromise to data integrity, but to positively identify 

the malicious host. 
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1.5 SAT – Secure Agent Transport 

A fundamental factor for agent roaming is the ability of mobile agents to roam from 

one host to another.  Without roaming capability, the concept of mobile agent is no 

longer meaningful. 

 

When a mobile agent roams from one host to another, a number of security concerns 

arise.  Firstly, a number of general security concerns discussed above is applicable.  In 

terms of data secrecy, information carried by the agent may be stolen during roaming, 

the code/execution logic carried by the agent may also be stolen.  In terms of data 

integrity, the information on the agent may be modified by a malicious party, and the 

execution logic may also be modified.  Another security concern is non-repudiation.  

There must be mechanisms available to ensure that the source host cannot deny that 

the agent has left for its destination afterwards, and similarly, that the destination host 

cannot deny that the agent has arrived.  In addition, there are security concerns specific 

to agent roaming as well.  For example, agents during roaming is vulnerable to 

abduction by malicious host, or ‘cloned’ maliciously by another host. 

 

With all the security concerns mentioned above, agent transport becomes an important 

area to be addressed before establishing a SAFER framework.  SAT, or Secure Agent 

Transport, is the agent roaming mechanism designed for SAFER to address all the 

above security concerns. 
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1.6 Approaches and Results 

As the thesis focuses mainly on security related issues, the research focus is mostly 

motivated by the limitations of existing literature, especially flaws from existing 

protocols and mechanisms.  The research problem is defined based on a literature 

review on current and updated literature.  The two main problems addressed in this 

thesis include agent data integrity protection and agent transport security. 

 

Before dwelling into the details of research, a list of assumptions is clearly stated and 

used as a basis for the research.  The problem definition combines with the assumption 

statement essentially draws the boundary of the research focus and create a basis for 

subsequent research activities.  Since the research is a part of the SAFER research 

initiatives, most of the assumptions stated are either assumptions from SAFER 

framework or issues already addressed/to be addressed by SAFER framework. 

 

Unlike some of the previous security related researches, security researches in SAFER 

emphasizes on both security strength as well as efficiency.  It is true that security 

always comes with a cost in efficiency.  The research is conducted in such a way that 

defines security as a baseline and works around this security baseline to improve 

efficiency as much as possible.  In this way, SAFER aims to achieve optimal 

efficiency while ensuring the security of the protocols.  This principle is reflected in 

the design of SADIS and SAT in subsequent chapters.  To further improve the 

applicability of the protocols, flexibility is also provided with the design.  A number of 

different options are provided for the applications to choose based on the application’s 

individual requirements.  Based on the criticality of the mission and sensitivity of the 
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information carried by the agent, the agent owner can choose the most appropriate 

protocol to satisfy the necessary security requirement and achieve higher productivity. 

 

To verify the strength of the protocols designed, a comprehensive security analysis is 

performed on the protocol.  Various attack scenarios are explored and analyzed.  The 

strength of the protocol can be clearly illustrated in the security analysis as all 

foreseeable attacks can be protected against by the security mechanisms. 

 

Prototyping is adopted as a general approach to evaluate the feasibility and test the 

efficiency of the protocols designed.  Prototypes are developed for both SADIS and 

SAT.  The results of the prototyping demonstrates the highly practicality of the 

protocols designed. 

 

1.7 Structure of This Thesis 

This thesis is organized into seven chapters.  In this chapter, the overall SAFER 

framework and the motivations of the researches are introduced.  The methodologies 

adopted for the researches are also described. 

 

In Chapter 2, a comprehensive literature review is presented.  The latest relevant 

literatures are analyzed and compared to the current research in this thesis.  In the 

literature review, the motivation of the current research will be reinforced once again.  

At the same time, the contribution of current research can be seen through the various 

comparisons to the current research. 
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Chapter 3 is an overview of SADIS, SAFER Agent Data Integrity Shield.  It presents 

an overall picture of SADIS protocol. 

 

The details of SADIS are presented in Chapter 4.  This includes the details of Key 

Seed Negotiation Protocol, Data Integrity Protection Protocol, security analysis of both 

protocols, implementation details as well as a section on the security attack simulation. 

 

The overview of SAT, Secure Agent Transport, is presented in Chapter 5. 

 

Detailed designs of SAT will be included in Chapter 6.  The three different agent 

transport protocols, their security analysis and the result of the implementation will be 

covered. 

 

Chapter 7 concludes the research on SADIS and SAT. 
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Chapter 2 

Related Work 

 

2.1  Related Work on Agent Integrity Protection (SADIS) 

Agent data integrity has been a topic of active research in the literature for a while.  

There are various techniques to protect agent integrities [16], some of them based on 

trusted hardware, some of them based on trusted host, and some even based on 

conventional contractual agreements.  In comparison, SADIS addresses the problem of 

data integrity protection via a combination of techniques discussed in [16]: execution 

tracing, encrypted payload, environmental key generation and undetacheable signature. 

 

Over the years, there have been a lot of research targeted for agent integrity protection 

in one way or another.  One of the newest active researches is the security architecture 

by Borselius [18].  The security architecture by Borselius aims at defining a complete 

security architecture designed for mobile agent systems.  It categorizes security 

services into the following: agent management and control, agent communications 

service, agent security service, agent mobility service, and agent logging service.  

SADIS addresses the agent communication service as well as agent security services 

(integrity protection), while the research of SAT addresses agent mobility service. 
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While many of the security services are still under active research, the security 

mechanisms for protecting agents against malicious host is described in [19].  The 

paper proposes two mechanisms to protect mobile agents.  The first mechanism makes 

use of a threshold scheme to protect mobile agents.  Under the mechanism, a group of 

agents is dispatched to carry out the task, each agent carrying a vote.  The agent votes 

for the best bid (under a trading scenario) independently.  If more than n out of m (m > 

n) agents vote for the transaction, the agent owner will agree to the transaction.  There 

are two modes of agent execution, one is to allow the agent to contact each merchant 

independently and gathers bid based on the given criteria, and the other to let the agent 

contact a subset of the merchants and communicates the best bid to its peers. 

 

The first mode of execution effectively simplifies the agent roaming by allowing one 

agent visit one merchant only.  While the approach avoids the potential danger of 

having the agent compromised by the subsequent host, it does not employ a 

mechanism to protect the agent against the current host.  In the second mode of 

execution, the agent is required to communicate the best bid out of a subset of 

merchants to its peers.  Firstly, specific security mechanism to protect the agent against 

subsequent merchants is not explicitly mentioned in [19].  Furthermore, if the agent’s 

peer accepts the information without verification, the purpose of voting is defeated as 

the agent that collects the information can effectively manipulate the votes of its peers. 

 

Most important of all, the threshold mechanism’s security is based on the probability 

that no more than n hosts out of m are malicious.  In another word, the security is 

established based on probability.  Different from this approach, SADIS’s security is 
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completely based on its own merit without making any assumption about the integrity 

of external hosts.  This is because the author believes that in an E-Commerce 

environment, security should not have any dependency on probability. 

 

The second mechanism in the paper makes use of a trusted host to ‘supervise’ and 

‘manage’ its agents.  This is similar to the agent butler concept in SAFER.  However, 

the mechanism requires each host to have a shared secret pre-established with the 

trusted host before the agents can interact with the host.  Effectively, the trusted host 

must ‘know’ all the merchant hosts before sending out the agents.  However, in the 

context of Internet, this is quite impossible and may significantly reduce the roaming 

scope of the agents.  In SADIS, there is no requirement for such pre-established secrets 

between any entities.  This allows any agent in SADIS to visit any hosts in the 

community, regardless whether the agent ‘knows’ the destination prior to the visit or 

not.  This feature ensures that SADIS is more suitable for the practical E-Commerce 

environment. 

 

While the research in [18] [19] is actively underway, there are other more mature 

researches in the area.  One of such research works on agent protection is SOMA. 

 

SOMA [11], or Secure and Open Mobile Agent, developed by University of Bologna, 

is a Java-based mobile agent framework that provides for scalability, openness, 

security in the Internet.  One of the research focuses of SOMA is to protect mobile 

agent’s data integrity.  To achieve this, SOMA makes use of two mechanisms: Multi 

Hop (MH) Protocol and Trusted Third Party (TTP) Protocol. 
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The advantage of MH protocol is that it does not require any trusted third party or even 

the agent butler for its operation.  This is a highly desirable feature for agent integrity 

protection protocol.  Unfortunately, MH protocol does not hold well against revisit 

attack when the agent visits two or more collaborating malicious hosts during one 

roaming session [5].  This limitation indicates that the security of MH protocol is based 

on probability (that the agent does not visit two or more collaborating malicious hosts).  

If the agent visits host n and host m (n < m) who happen to be both malicious and 

collaborating, there are a number of attacks possible.  Firstly, host m can effectively 

wipe out the roaming record between n and m completely, producing an illusion to the 

butler that the agent hops from host n to host m directly.  Another possible attack is for 

host n to ‘make provisions’ for data insertion before dispatching the agent for the next 

host.  At any time before the agent returns home, host n can insert data into the agent 

using the provisions it made earlier.  Lastly, host n can even modify the data it 

provides to the agent when the agent reaches host m.  More detailed descriptions to the 

attacks on MH protocol was provided in [7]. 

 

Trusted Third Party protocol uses a different approach towards agent integrity 

protection.  Sensitive operations (e.g. data hash calculation) are performed within a 

trusted environment so that the result can be certified and fully trusted.  While this is 

definitely a secure mechanism, it does introduce significant overhead and 

inconvenience to the infrastructure.  Since the agent has to visit a trusted host every 

time it needs to perform such sensitive operations, trusted third party host must be 

deployed in the network to facilitate such operations.  Putting aside the practical 
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administration and logistics issue, the introduction of these hosts opens up more points 

of failure and attack for hackers.  If one of the many TTPs is broken into, all agents 

that visit this TTP may be compromised. 

 

As a result, TTP and MH are used in combination to provide optimal security and 

efficiency under SOMA.  However, given the nature of MH and TTP protocols, the 

security of its combined use is still subjected to the probability that the agent does not 

visit two collaborating host between visit to TTPs.  In this thesis, we will propose a 

solution that does not base its security on probability. 

 

Another agent system that addresses data integrity is Ajanta [8].  Ajanta is a platform 

for agent-based application on the Internet developed in the University of Minnesota.  

It makes use of an append-only container for agent data integrity protection.  The main 

objective is to allow host to append new data to the container but prevents anyone from 

modifying the previous data without being detected.  To achieve the objective, a 

checksum is calculated based on the previous checksum and the signed data from a 

new host.  All the checksums are kept in the container for verification purpose later. 

 

Similar to the MH protocol, such an append-only container suffers from revisit attack.  

If an agent visits collaborating malicious host n and m (n < m), host m can effectively 

remove the agent data from n to m without being detected.  Another way to attack is to 

place a false set of data between host n and host m such that the data favor the 

malicious party.  As long as the signatures for the fake data are valid, there is no way 

the butler can find out if the agent really visited those hosts.  From these attacks on 
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existing research, the importance of protecting agent itinerary is obvious.  In SADIS, 

agent’s itinerary is implicitly updated in the agent butler during key seed negotiation.  

This prevents any party from modifying the itinerary recorded on the butler and guard 

against all itinerary related attacks. 

 

There is one recent research on agent data integrity protection called One-Time Key 

Generation System (OKGS) developed in Kwang-Ju Institute of Science and 

Technology, South Korea [13].  OKGS proposed an innovative approach of using a 

one-time data encryption key to encrypt the data provided by the host, and chain the 

encryption key to the hash values carried by the agent.  When agents roam from host to 

host, each of them carry a hash value Ci-1.  When the agent reaches host i, the host will 

generate two random values R1 and R2.  It will perform an XOR operation on Ci-1 and 

R1, and hash the output to product data encryption key Si.  This data encryption key 

will be used to encrypt the data provided by the current host i.  Subsequently, it will 

perform another XOR operation on the data encryption key Si and R2.  The output of 

the XOR operation is hashed to become the next hash value Ci.  The two random R1 

and R2 will be encrypted together with the digital signature on the data using the agent 

butler’s public key.  When the agent returns to the butler, the butler can repeat the key 

derivation process to derive the data encryption key. 

 

OKGS does protect the agent data against a number of attack scenarios under revisit 

attack, such as data insertion attack and data modification attack to certain extent.  

However, it does not protect the agent against deletion attack as two collaborating 

malicious hosts can easily remove roaming records in-between them. 
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Furthermore, the use of XOR operation and two different random values are identified 

as a main weakness of the algorithm.  Firstly, XOR operation is subjected to easy 

manipulation if one party has control over one of the inputs and has knowledge about 

the others.  In this case, the host can adjust the random value in such a way that the 

output of the XOR operation can be exactly what it wants.  As a result, the host will be 

able to dictate the data encryption key to be used.  Similarly, the host also has full 

control over the next hash value.  Secondly, the use of two different random values 

does not introduce more randomness to the algorithm.  On the contrary, given the 

vulnerability of the XOR operation earlier, using two random values gives the host 

more room for manipulation over the data encryption key and hash value.  For example, 

a host can change its encryption key after the agent has left (e.g., when the agent 

reaches one of host’s collaborating partners).  By producing a different R1, the host can 

change the encryption key to a different value.  And by producing a suitable R2, the 

hash value chaining effect can be maintained. 

 

However, it should be pointed out that the signature algorithm does prevent the host 

from manipulating the encrypted data even though it can manipulate the encryption 

key.  As a result, in case of this attack, the butler will probably find that the data 

provided by the host is corrupted but all chained signatures are valid.  The data 

integrity is thus corrupted without being detected. 

 

Instead of using a random value to generate data encryption key, SADIS makes use of 

a negotiated key seed to generate data encryption key.  The advantage of this approach 
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is that no random value needs to be encrypted and stored with the agent.  This 

effectively reduces one PKI operation (encrypt the random value with the butler’s 

public key) and optimizes the agent data size (does not need to carry encrypted random 

value any more).  In addition, with the new design in SADIS, the weaknesses related to 

the XOR operation and two random values are not inherited. 

 

Inspired by OKGS’s innovative one-time encryption key concept, SADIS will extend 

this property to the communication between agent and butler as well.  Not only is the 

data encryption key one-time, but the communication session key is as well.  Using 

efficient hash calculations, the dynamic communication session key can be derived 

separately by the agent butler and the agent with minimum overhead.  Despite the fact 

that all keys are derived from the same session-based key seed, SADIS also ensures 

that there is little correlation between these keys.  As a result, even if some of the keys 

are compromised, the key seed will still remain secret. 

 

There has also been some previous research under the SAFER initiative [1] that 

addresses agent integrity.  Code-on-demand agent integrity protection [6] focuses on 

protecting the agent code integrity, including both static code and dynamic code (code-

on-demand).  It works together with SADIS to protect different component of an agent.  

Another earlier research on Agent Monitoring Protocol (AMP) [5] effectively 

addresses the issue of agent data integrity.  The research itself is inspired by some 

existing limitation of data integrity protection mechanisms under revisit attack.  Unlike 

some existing proposals in the literature, AMP does not require some trusted third 

party for its operation, thus reducing the infrastructure overhead to support agent 
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roaming.  Instead, the agent communicates with the butler actively to update the butler 

of its data, hash value, and itinerary whenever the agent roams from host to host.  It is 

a protocol that is specifically designed to protect agents against revisit attack from 

malicious hosts.  Unfortunately, the extensive use of PKI operations resulted in 

significant computation overhead.  For each message sent between the butler and the 

agent, there are two PKI operations involved.  Furthermore, it deposits its data and 

hash into the butler whenever it roams, thus requiring very active and heavy 

communication between the butler and the agent.  In addition to protecting the agent 

from malicious attack, SADIS is designed with the objective of efficiency.  For 

example, the use of PKI to protect agent to butler communication is replaced by 

symmetric key encryption and a new key seed negotiation protocol is introduced.  

Comparing with existing literature, SADIS is among the few that has focus not only on 

security, but efficiency as well, resulting in a highly practical solution. 

 

2.2  Related Work on Agent Transport Protocol (SAT) 

There has been a lot of research on the area of intelligent agents in the literature.  Some 

only proposed certain features of intelligent agents, while others attempt to define a 

complete agent architecture.  Unfortunately, there is no standardization in the various 

proposals, resulting in vastly different agent systems.  Efforts are made to standardize 

some aspect of agent systems so that different systems can inter-operate with each 

other.  In the area of knowledge representation and exchange, one of the most widely 

accepted standards is KQML [23] [32] (Knowledge Query and Manipulation Language) 

developed as part of the Knowledge Sharing Effort.  KQML is designed as a high level 

language for runtime exchange of information between heterogeneous systems.  
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Unfortunately, KQML is designed with little security considerations because no 

security mechanism is built to address even the common security concerns, not to 

mention specific security concerns introduced by certain agent features.  Agent 

systems using KQML will have to implement security mechanisms on top of KQML to 

protect itself.  In an attempt to equip KQML with ‘built-in’ security mechanisms, 

Secret Agent [24] is proposed by Thirunavukkarasu. 

 

Secret Agent defines a security layer on top of KQML.  Applications will have to 

implement special message format in order to make use of Secret Agent.  However, the 

solution does not gain much popularity.  Secret Agent has a number of shortcomings 

and is handicapped by the design of KQML.  Firstly, one requirement of Secret Agent 

is that every agent implementing the security algorithm must possess a key (master 

key).  This master key is either a symmetric key or based on PKI.  If the key is based 

on a symmetric key algorithm, due to the nature of symmetric key algorithm 

(encryption key and decryption key are the same), an agent will have to maintain a 

separate key with each agent it wishes to communicate.  The prerequisite for an agent 

to communicate with another is that both of them have the knowledge of a common 

master key, which is exclusive to both of them.  This requirement inevitably introduces 

the problem of key management.  The maintenance as well as protection of the master 

key database may pose additional security threats to agent systems.  For example, if 

the key database of Alice is compromised, all agents corresponding with Alice will be 

compromised.  The point of failure for an agent is any one of the agents it corresponds 

with.  If either one of them is compromised, the agent is compromised. 
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Furthermore, if the agent intends to talk to an agent with whom it has no common pre-

established master key, a central authentication server is required to generate such a 

key.  The use of a central authentication server introduces other issues into the 

architecture.  Among them are potential attacks on the authentication server, key 

transport/exchange algorithm, key database management at the central authentication 

server etc. 

 

If the master key is based on PKI, the agent identity must be tightly tied to the key pair.  

This was insufficiently addressed in the Secret Agent design, subjecting the algorithm 

to man-in-the-middle attack.  For example, when agent Alice and Bob starts a 

handshake, if a third agent Eva can intercept all messages between Alice and Bob, 

agent Eva can pretend to be agent Alice while talking to agent Bob, and vice versa.  If 

key and ID is not tightly integrated (like that in digital certificates), there is almost no 

way agent Alice or Bob can detect this attack.  In the SAFER transport protocol, agent 

identity and key pair is tightly integrated using digital certification. 

 

A number of limitations of Secret Agent are inherited from KQML [24]: 

 

Limitation 1: Message delivery must be reliable and in order.  This is because KQML 

assumes the message delivery is robust.  In the SAFER transport protocol, there is no 

such assumption so the system can operate across heterogeneous systems. 

 

Limitation 2: It does not support non-repudiation on receipt of messages due to the 

asynchronous nature of KQML.  A receiving agent can safely deny the receipt of 
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messages.  However, there is no way an agent can deny similar events in the SAFER 

transport protocol. 

 

Limitation 3: There is no support for exchanging credentials.  Agents are unable to 

present their credentials to each other for verification.  On the contrary, under the 

SAFER transport protocol, digital certificate exchange is frequently used in agent 

handshaking process. 

 

Limitation 4: There is no support for replay detection if message ID method is not used 

in Secret Agents.  The design of SAFER messages prevents such attack from taking 

place. 

 

Another prominent transportable agent system is Agent TCL developed in Dartmouth 

College [18][33].  Agent TCL addresses most areas of agent transport by providing a 

complete suite of solutions.  It is probably one of the most complete agent systems 

under research.  Its security mechanism aims at protecting resources and the agent 

itself.  Since some existing agent systems are already very strong in this area, Agent 

TCL ‘seeks to confirm their sufficiency and either copy or redesign as appropriate’ 

[28].  In terms of agent protection, the author acknowledges that ‘it is clear that it is 

impossible to protect an agent from the machine on which the agent is executing… it is 

equally clear that it is impossible to protect an agent from a resource that willfully 

provides false information’ [28].  As a result, the author ‘seeks to implement a 

verification mechanism so that each machine can check whether an agent was 

modified unexpectedly after it left the home machine’ [28].  In other words, it 
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addresses agent integrity and provides certain level of traceability to the agents.  The 

other areas of security, like non-repudiation, verification, identification, are not 

carefully addressed. 

 

Besides Agent TCL, TACOMA is another agent system under active research.  It is 

jointly developed by the University of Tromsø, Cornell University and the University 

of California, San Diego.  The security focus of TACOMA is on fault tolerance.  

Agents are protected against faulty hardware under two protocols.  Similar to Agent 

TCL, these protocols are based on assumptions of common secret or prior knowledge 

in source and destination.  The use of hardware solution and requirement for pre-

established shared secrets makes it difficult to achieve in the Internet environment.  To 

protect a host from malicious agents, three approaches are proposed, one based on 

hardware, one using sandbox restriction and the other using proof-carrying code.  

While the hardware-based approach is almost impossible to enforce in a multi-vendor 

environment, the other two approaches are purely software based.  They will be refined 

and enhanced in the SAFER transport protocol. 

 

Compared to the various agent systems discussed above, SAFER is designed to 

address the special needs of e-commerce.  The other mobile agent systems are either 

too general or too specific to a particular application.  By designing SAFER with e-

commerce application concerns in mind, the architecture will be suitable for e-

commerce application.  The most important concern is probably security as discussed 

in previous sections.  Due to the nature of e-commerce, security becomes a prerequisite 

for any successful e-commerce application.  Other concerns are mobility, efficiency 
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and interoperability.  In addition, the design allows certain flexibility to cater to 

different needs of different applications. 

 

There is, however, an industrial strength generic transport protocol available in the 

literature.  SSL, or Secure Socket Layer, is the generic transport protocol widely 

accepted and used in the Internet environment [36].  SAFER framework does not make 

use of SSL as its underlying transport mechanism for a number of reasons.  Firstly, 

while there is no doubt about the security strength of SSL, it does not address certain 

concerns specific to SAFER (since it is a generic protocol that focus on transport 

security only).  The implicit authentication of destination host by agent owner is one 

such example.  If SSL is adopted, the authentication above must be carried out 

explicitly as it is not part of SSL, thus requiring a separate communication between the 

agent butler and destination host.  However, with a tightly integrated transport protocol, 

the agent butler will be able to perform implicit authentication to the destination host 

through the specially designed transport protocol, improving its efficiency.  

Furthermore, a customized transport protocol allows other SAFER modules to have 

tighter integration with the transport mechanism to achieve higher efficiency.  For 

example, although SADIS is designed to protect agent data integrity at destination host, 

it has dependencies on agent transport for its key seed negotiation process.  Another 

limitation of SSL is that it treats all messages equally, regardless of the sensitivity of 

the messages.  However, not all messages in the agent transport process are sensitive 

and require sophisticated encryption.  With a customized solution, messages can be 

scrambled only if necessary to achieve optimal efficiency.  From the various concerns 
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discussed earlier, although SSL is a widely accepted industry standard for 

communication, SAFER does not simply use it as its transport mechanism. 
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Chapter 3 

SADIS 

3.1 Overview 

SADIS is designed based on the SAFER framework.  The proposal itself is based on a 

number of assumptions that was implemented under SAFER. 

 

Firstly, entities in SAFER, including agents, butlers and hosts, should have globally 

unique identification number (IDs).  This ID will be used to uniquely identify each 

entity. 

 

Secondly, each agent butler and host should have a digital certificate that is issued by a 

trusted CA under SAFER.  These entities with digital certificate will be able to use the 

private key of its certificate to perform digital signatures and, if necessary, encryption. 

 

Thirdly, while the host may be malicious, the execution environment of mobile agents 

should be secure and the execution integrity of the agent can be maintained.  This 

assumption is made because protecting the agent’s execution environment is a 

completely separate area of research that is independent of this thesis.  There are some 

discussions in this area in the literature.  Without secure execution environment and 

execution integrity, none of the agent data protection scheme will be effective. 



Secure Agent Transport And Integrity Protection  31 

 

Another assumption is that entities involved are respecting and cooperating with the 

SADIS protocol.  For example, where digital signature is required, the signer should be 

willing to perform the signature under the protocol.  Otherwise, the refusal will be 

immediately detected by the requestor and the entity refusing to sign will be excluded 

from future interactions with the requestor.  As a result, there is no incentive for any 

entity to refuse full cooperation under the SADIS protocol. 

 

Given the fact that the agent may be executing in a malicious environment, and that 

even if the execution integrity is maintained, the privacy of the execution may not be 

guaranteed, SADIS does not require the agent to carry any private key with it.  As a 

result, there is no need for the agent to carry any digital certificates.  Agent 

authentication can be achieved by verifying the digital signature on the agent code 

(agent code integrity protection). 

 

Lastly, SADIS does not require the agent to have a pre-determined itinerary.  The 

agent is able to decide which is the next destination host independently. 

 

Under SADIS, data integrity and agent-to-butler communication are protected by a 

session-based key seed.  This key seed will be negotiated between the agent and butler 

every time the agent roams to a new host and will remain valid throughout the agent’s 

visit to the host.  A one-time data encryption key will be derived from the key seed to 

encrypt data provided by the current host.  The communication between the agent and 

the butler will be protected by communication session keys.  Communication session 
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key is also derived from the key seed using a different formula.  Different from most 

conventional session keys, SADIS makes use of an evolving session key instead of a 

static session key.  The formula for session key derivation contains a variable 

component that ensures session keys generated for each message exchange will be 

different from each other.  At the same time, the formula is also designed to ensure that 

there is no correlation between the subsequent session keys through the use of hash 

functions.  In this way, any attempt to attack the key through cipher-text attack will be 

extremely difficult since each message will be encrypted using a different key.  The 

key seed negotiation protocol and various key generation algorithms will be discussed 

in detail in the next section. 

 

The proposed key seed negotiation protocol lays the necessary foundation for the data 

integrity protection protocol.  At the end of agent roaming, the host will provide a set 

of data to be carried by the agent.  The host will also perform a digital signature on the 

current data as well as the signature from the previous host using its private key.  The 

signature can be subsequently verified whenever the agent reaches a new destination or 

returns to the agent butler.  The details of the data signature generation and integrity 

verification process will be discussed in details in data integrity protection protocol 

section. 

 

3.2  Key Seed Negotiation Protocol 

The proposed key seed negotiation protocol defines the process for key seed 

negotiation as well as session key and data encryption key derivation. 
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When an agent first leaves the butler, the butler will generate a random initial key seed, 

encrypt it with the destination host’s public key and deposit into the agent before 

sending the agent to the destination host.  It should be noted that the agent transmission 

is protected by the agent transport protocol [3].  Otherwise, a malicious host (man-in-

the-middle) can perform an attack by replacing the encrypted key seed with a new key 

seed and encrypt it with the destination’s public key.  In this case, the agent and the 

destination host will not know the key seed has been manipulated.  When the agent 

starts to communicate with the butler using the wrong key seed, the malicious host can 

intercept all the messages and re-encrypt them with the correct key derived from the 

correct key seed and forward them to the agent butler.  In this way, a malicious host 

can compromise the whole protocol. 

 

The key seed carried by the agent is session-based, it is valid until the agent leaves the 

current host.  When the agent decides to leave the current host, it must determine the 

destination host, and start the key seed negotiation process with the agent butler. 

 

The key seed negotiation process is based on the Diffie-Hellman (DH) key exchange 

protocol [15] with a variation.  The agent will first generate a private DH parameter a 

and its corresponding public parameter x.  The value x, together with the ID of the 

destination host, will be encrypted using a communication session key and sent to the 

agent butler. 

 

The agent butler will decrypt the message using the same communication session key 

(derivation of communication session key will be discussed later in the section).  It too, 
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will generate its own DH private parameter b and its corresponding public parameter y.  

With the private parameter b and the public parameter x from the agent, the butler can 

derive the new key seed and use it for communications with the agent in the new host.  

Instead of sending the public parameter y to the agent as in normal DH key exchange, 

the agent butler will encrypt the value y, host ID, agent ID and current timestamp with 

the destination host’s public key to get message M.  Message M will be sent to the 

agent after encrypting with the communication session key. 

 

 M = E(y + IDhost + IDagent + timestamp, HpubKey)     (1) 

 

At the same time, the agent butler updates the agent’s itinerary and stores the 

information locally.  Since the agent itinerary is stored locally in SADIS, it effectively 

protects the agent’s actual itinerary against any hacking attempts related to itinerary.  

The protection of agent itinerary in turn, protects the agent against certain data 

integrity attack, namely, data deletion attack. 

 

When the agent receives the double-encrypted DH public parameter y, it can decrypt 

with the communication session key.  Since the decrypted result M is parameter y and 

some other information encrypted with the destination host's public key, the current 

host will not be able to find out the value of y and thus find out the new key seed to be 

used when the agent reaches the destination host.  It should be noted that this does not 

prevent the host from replacing M with its own version M’ with the same host ID, 

agent ID, timestamp but different y.  The inclusion of host ID, agent ID inside M can 
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render such attack useless against SADIS.  A detailed discussion on this attack can be 

found in the security analysis section. 

 

Subsequently, the agent will store M into its data segment and requests the current host 

to send itself to the destination host using the agent transport protocol [3]. 

 

On arriving at the destination host, the agent will be activated.  Before it resumes 

normal operation, the agent will request the new host to decrypt message M.  If the 

host is the correct destination host, it will be able to use the right private key to decrypt 

message M, and thus obtain the DH public parameter y.  As a result, the decryption of 

message M not only completes the key seed negotiation process, but also serves as a 

means to authenticate the destination host.  Once the message M is decrypted, the host 

will verify that the agent ID in the decrypted message matches the incoming agent, and 

the host ID in the decrypted message matches that of the current host.  In this way, the 

host can ensure that it is decrypting for a legitimate agent instead of some bogus agent 

(this is to prevent an attack scenario depicted in the security analysis section).  If the 

IDs in the decrypted messages match, the decrypted value of y is returned to the agent. 

 

With the plain value of y, the agent can derive the key seed by using its previously 

generated private parameter a.  With the new key seed derived, the key seed 

negotiation process is completed.  The agent can resume normal operation in the new 

host. 
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Whenever the agent or the butler needs to communicate with each other, the sender 

will first derive a communication session key using the key seed and use this 

communication session key to encrypt the message.  The receiver can make use of the 

same formula to derive the communication session key from the same key seed to 

decrypt the message. 

 

The communication session key KCSK is derived using the formula below: 

 

 KCSK = Hash(key_seed + IDhost + seqNo)     (2) 

 

The sequence number is a running number that starts with 1 for each agent roaming 

session.  Whenever the agent reaches a new host, the sequence number will be reset to 

1.  In this way, each message communicated will be encrypted using a different key.  

Given the varying communication session key, if one of the messages is somehow lost 

without being detected, the butler and agent will not be able to communicate 

afterwards.  As a result, SADIS makes use of TCP/IP as a communication mechanism 

so that any loss of messages can be immediately detected by the sender.  In the case of 

an unsuccessful message, the sender will send ‘ping’ messages to the recipient in 

unencrypted format until the recipient or the communication channel recovers.  Once 

the communication is re-established, the sender will resend the previous message 

(encrypted using the same communication session key).  In this way, the agent and the 

butler can synchronize on communication session key calculations. 
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When the host provides information to the agent, the agent will encrypt the 

information with a data encryption key KDEK.  The data encryption key is derived as 

follows: 

 

 KDEK = Hash(key_seed + IDhost)      (3) 

 

The details on encryption will be discussed in the next section. 

 

3.3  Data Integrity Protection Protocol 

The key seed negotiation protocol lays the necessary foundation for integrity 

protection by establishing a session-based key seed between the agent and its butler.  

Agent data integrity is protected through the use of this key seed and the digital 

certificates of the hosts.  This section will illustrate the data integrity protection 

protocol in details. 

 

Our data Integrity Protection protocol is comprised of two parts: chained signature 

generation and data integrity verification.  Chained signature generation is performed 

before the agent leaves the current host.  The agent gathers data provided by the 

current host di and construct Di as follows: 

 

 Di = E(di + IDhost + IDagent + timestamp, kDEK)    (4) 

 

Or, 
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 Di = di + IDhost + IDagent + timestamp     (5) 

 

The inclusion of host ID, agent ID and timestamp is to protect the data from possible 

replay attack, especially when the information is not encrypted with the data 

encryption key.  For example, if the agent ID is not included in the message, a 

malicious host can potentially replace the data provided for one agent with that 

provided for a bogus agent.  Similarly, if timestamp is not included into the message, 

earlier data provided to the same agent can be used at a later time to replace current 

data provided to the agent from the same host.  The inclusion of the IDs of the parties 

involved and a timestamp essentially creates an unambiguous memorandum between 

the agent and the host. 

 

Note that the construction of Di gives the flexibility to encrypt the data or keep it in 

plain.  As far as the agent integrity protection protocol is concerned, it does not matter 

whether the data is encrypted (since the data integrity is protected using chained digital 

signature).  The agent butler or the agent itself can decide if the data should be 

encrypted.  As a general rule of thumb, it is recommended that the agent should 

encrypt data that is not required for the remaining of the roaming session for maximum 

security. 

 

After constructing Di, the agent will request the host to perform a signature on the 

following: 

 

 ci = Sig(Di + ci-1 + IDhost + IDagent + timestamp, kpriv)    (6) 
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where c0 is the digital signature on the agent code by its butler. 

 

There is some advantage with the use of a chained digital signature compared to the 

conventional signature approach.  In the scenario when a malicious host attempts to 

modify the data from an innocent host i and somehow manages to produce a valid 

digital signature ci, the data integrity would have been broken if the digital signature is 

independent and not chained to each other.  The independent digital signature also 

opens the window for host i modify data provided to the agent at a later time (one such 

scenario is the agent visits one of the host’s collaborating partners later).  Regardless of 

the message format used, so long as the messages are independent of each other, host i 

will have no problem reproducing a valid signature to the modified message.  In this 

way, data integrity can be compromised.  With chained digital signature, even if the 

malicious host (or host i itself) produces a valid digital signature after modifying the 

data, the new signature ci’ is unlikely to be the same as ci.  If the new signature is 

different from the original signature, as the previous signature is provided as input to 

the next signature, the subsequent signature verification will fail, thus detecting 

compromise to data integrity.  The inclusion of host ID, agent ID, and timestamp 

prevents anyone from performing a replay attack. 

 

When the agent reaches a new destination, the host must perform an integrity check on 

the incoming agent.  In the design of SADIS, even if the new destination host does not 

perform an immediate integrity check on the incoming agent, any compromise to the 

data integrity can still be detected when the agent returns to the butler.  The drawback, 

however, is that the identity of the malicious host may not be established.  One design 
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focus of SADIS is not only to detect data integrity compromise, but more importantly, 

to identify malicious hosts.  To achieve malicious host identification, it is an obligation 

for all hosts to verify the incoming agent’s data integrity before activating the agent for 

execution.  In the event of data integrity verification failure, the previous host will be 

identified as the malicious host. 

 

Data integrity verification includes the verification of all the previous signatures.  The 

verification of signature c0 ensures agent code integrity, the verification of ci ensures 

data provided by host hi is intact.  If any signature failed the verification, the agent is 

considered compromised. 

 

While the process to verify all data integrity may seem to incur too much overhead and 

somewhat redundant (e.g., why need to verify the integrity of d1 in h3 while host h2 

already verifies that), it is necessary to ensure the robustness of the protocol and to 

support the function of malicious host identification.  For example, if only the 

signatures of the n consecutive previous hosts are verified, in the scenario when the 

previous n consecutive hosts happen to be all malicious and collaborating with one 

another, these malicious hosts can somehow produce the illusion to the next innocent 

host that data integrity has been maintained by creating seemingly correct signatures.  

As the next innocent host only verifies the previous n signatures that happen to be the 

creation of malicious hosts, it will get the impression that data integrity has not been 

compromised.  Although the agent butler can eventually detect such data integrity 

compromise (since agent butler has to verify all signatures), there is no way to 

establish the identity of malicious host(s). 
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Chapter 4 

SADIS Analysis and Prototype 

 

4.1  Security Analysis 

To analyze the effectiveness and reliability of SADIS, a detailed security analysis is 

performed subjecting SADIS to a variety of attacks.  Based on the targets and types of 

attacks, the various attacks to SADIS can be classified into data attack, key attack, 

signature attack, itinerary attack, and composite attack.  Composite attack refers to 

attacks that are combinations of one or more of the above-mentioned attacks.  The 

security analysis will be organized according to the above classifications. 

 

4.1.1 Data Attack 

 

Data attack refers to any attempt that aims to compromise the data carried by an agent.  

Compromise can be in the form of data modification, deletion, or insertion. 

 

Let us consider the scenario of data modification where a malicious host wants to 

modify agent data or one of the hosts in the agent itinerary attempts to modify its own 

data after the agent has left.  Assume the data targeted is Di provided by host i, since 

the agent itinerary is protected by the butler and cannot be changed, only host i can 
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produce a valid signature if the data were to be modified.  However, even if the 

malicious party (or even host i itself) can produce a valid signature ci’ corresponding to 

Di’, since ci is chained to the signature of the next host ci+1, signature verification for 

host (i+1) will fail.  If the malicious host wants to ensure the signature verification for 

the next host is also successful, it has to forge the signature of the next host as well.  

Following similar argument, in order to perform a successful data modification attack, 

the malicious host must be able to forge the signatures for all hosts in the itinerary 

since host i.  As the only way to achieve this is to obtain the private keys of all the 

following hosts, data modification attack is extremely difficult under SADIS. 

 

Another way to compromise data integrity is by inserting additional data into the agent.  

This includes inserting into data provided by hosts in the agent itinerary as well as 

inserting new hosts into the existing itinerary and fabricating data from the new host.  

The former scenario is the same as data modification attack.  In the second scenario, 

the malicious host essentially needs to modify the itinerary of the agent.  This will be 

covered in the discussion on itinerary attack later in the section. 

 

Other than data modification and data insertion, data deletion is another form of data 

integrity attack.  As illustrated in the discussion in related work, quite a number of the 

existing data integrity protocols suffer from this attack.  After analyzing the root cause 

of the vulnerabilities, it is realized that it’s extremely important to protect the agent’s 

itinerary.  Otherwise, in the case of a revisit attack, the subsequent host can easily 

‘restore’ the agent to the state of its previous visit to one of the host’s collaborator in 

the agent’s itinerary.  However, if the agent’s itinerary is closely guarded by the butler, 



Secure Agent Transport And Integrity Protection  43 

any data deletion will result in modification to the agent’s itinerary and thus be 

detected. 

 

4.1.2 Key Attack 

 

Besides direct attack on data integrity, a malicious host may attempt to attack the 

various keys in order to compromise data integrity.  There are three different types of 

keys in SADIS.  They are session-based key seed, communication session key, and 

data encryption key. 

 

In SADIS, a key seed is negotiated between the agent and the butler during agent 

roaming process.  Once the key seed is negotiated, it will be kept by the agent and the 

butler separately.  It will not be used directly as encryption key at all.  Attacks to the 

key seed can only target the key seed negotiation protocol.  As all communication in 

key seed negotiation is protected by the communication session key, we can safely rule 

out the possibility of any third party malicious attempts to break the protocol.  We can 

focus on the scenario where the current host attempts to break the key exchange to 

obtain the key seed to be used in the subsequent host.  Given the simplicity of DH key 

exchange, the parameters available for manipulation is the DH private parameter a in 

plain text and the encrypted DH public parameter from butler y encrypted using the 

destination host’s public key. 

 

Firstly, without any manipulation, the current host will not be able to complete DH key 

exchange to find out the new key seed.  This is because the DH public parameter from 
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butler y is encrypted using the destination host’s public key.  Without the private key 

from the destination host, no one can obtain y to complete the key exchange.  

Furthermore, as the encrypted message contains the agent ID and destination host ID, 

the current host won’t be able to send a bogus agent carrying this encrypted y to the 

destination host for decryption. 

 

If the current host attempts to manipulate any one or both of these parameters, it is able 

to manipulate the key seed derived when the agent reaches the destination host.  (This 

is because any change to a or y will change the result of key exchange, and anyone can 

forge the encrypted y since the encryption key is a public key).  However, the change 

in key seed will be immediately detected when the agent communicates with the butler 

or vice versa.  This attack can only change the key seed in the agent but won’t be able 

to compromise the key seed in the butler.  In order to perform a successful attack, the 

current host must also be able to obtain the key seed in the butler so that it can act as a 

middle-man subsequently to intercept and replace message communicated between the 

butler and the agent.  Unfortunately, as illustrated earlier, there is no way the current 

host can find out the value of DH public parameter from butler y.  Thus, the key seed 

will not be compromised. 

 

Besides key seed, SADIS makes use of communication session key and data 

encryption key in the protocol.  These two keys are directly derived from the session-

based key seed using a hash function.  In the case of communication session key, a 

sequence number is used in the key derivation to ensure each message communicated 

is encrypted with a different and unrelated communication session key.  As far as any 
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third-party host is concerned, attack to communication session key or data encryption 

key is equivalent to attacking the encryption key given only the cipher text.  Even in 

the extreme case when such a key is compromised, the loss is limited to the message it 

encrypts.  The other keys will remain in secret due to the nature of one-way hash 

functions. 

 

4.1.3 Signature Attack 

 

Despite being categorized separately, signature attack is meaningless if carried out 

alone.  Usually a malicious host would need to forge digital signature when it attempts 

to compromise data integrity.  If data integrity is not compromised, there is no need to 

attack the chained signature at all.  Signature related attacks due to data integrity 

compromise have been discussed earlier in the section. 

 

4.1.4 Itinerary Attack 

 

At the first glance, agent itinerary may not seem highly sensitive.  However, as 

examination of related work shows, if agent itinerary is not carefully protected, it may 

lead to compromise to data integrity, especially in the case of data deletion as 

illustrated earlier in the section.  Given the importance of agent itinerary protection, 

SADIS employs a relatively conservative approach to protecting agent itinerary by 

storing the itinerary information in the butler as the agent roams.  As the agent updates 

the butler of its next destination host as part of the key seed negotiation protocol, there 

is no additional overhead related to the itinerary protection mechanism.  With the agent 



Secure Agent Transport And Integrity Protection  46 

itinerary updated and stored with the agent butler, there is no way a malicious host can 

perform any attack on the itinerary (except, of course, if it breaks into the agent butler). 

 

4.1.5 Composite Attack 

 

As the analysis above shows, agent data integrity attack may not always target only in 

one area.  At times, in order to perform a successful attack, more than one area are 

targeted simultaneously.  These composite attacks have been discussed in the earlier 

section along with analysis on different attack targets. 

 

In addition to attacks with specific targets, there are certain general hacking techniques 

such as man-in-the-middle attack, replay attack.  The design of SADIS employs a 

mechanism to protect the protocol against these hacking techniques.  Through the use 

of communication session key, man-in-the-middle attack can be avoided (This is 

because man-in-the-middle attack will not be effective if the attacker can’t decrypt the 

message at all).  On the other hand, the use of sequence number in communication 

session key generation effectively protects the protocol from replay attack by a third 

party host.  In addition, the inclusion of host ID, agent ID, and timestamp during the 

key seed negotiation process prevents the current host from performing a replay attack 

with the next destination host (attempting to obtain the next key seed). 

 

Lastly, the design of SADIS does not have dependency on any specific 

encryption/hashing algorithm.  In an unlikely scenario when one algorithm is broken, 

SADIS can always switch to a stronger algorithm. 
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4.2  Implementation 

In order to verify the design of SADIS and assess its applicability, a prototype of 

SADIS is developed.  The prototyping language is chosen to be Java.  One of the main 

reasons for choosing Java is its platform independent feature.  Internet is a complex 

environment that comprises of various platforms.  With Java as the prototyping 

language, the effort required to port the prototype from one platform to another can be 

avoided.  Furthermore, being one of the leading programming platforms in the 

marketplace, Java has a wide range of libraries to choose from.  Modules such as 

cryptographic library, messaging utility, etc. are already available to be used as 

components in the prototype.  The reuse of existing modules significantly shortened 

the prototyping effort, allowing the team to put its main focus on the research. 

 

The prototype consists of four different entities: the agent butler m, agent bond, and 

two hosts jinx and natalya.  The agent butler m (as shown in Figure 3) coordinates the 

agent’s roaming (console of agent bond is shown in Figure 6), participates in key seed 

negotiation, tracks the agent’s whereabouts and receives the agent during its return.  

Host jinx (as shown in Figure 4) plays the role of source host.  It is the host where the 

agent is originally located.  After agent bond (agent bond’s console is shown in Figure 

6) completes its processing in jinx, it will get jinx to sign the data it collected from it.  

Once the signature is obtained, it will trigger the key seed negotiation process with 

butler m and roam to the destination host natalya.  Upon arrival of agent bond, host 

natalya (as shown in Figure 5) will perform data integrity verification on the agent 

bond before assisting it to complete the key seed negotiation process.  Once the key 
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seed negotiation is completed, agent bond can resume its operation.  To further 

illustrate the use of communication session key, the agent butler m and the agent bond 

can send messages to each other at any time.  The communication session key will be 

synchronized between the two, ensuring each message is encrypted using a different 

key.  At the end of the agent roaming, agent bond will return to butler m.  In addition 

to performing data integrity check on the agent bond, m can also decrypt the data 

carried by bond using the various key seeds. 

 

 

Figure 3 Agent butler console 
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Figure 4 Host jinx console 

 

 

 

Figure 5 Host natalya console 
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Figure 6 Agent bond’s console 

 

Each entity in the prototype contains common data such as unique ID, description, 

parent ID (for entities without parents, this field can be null).  Individual entities like 

agent, agent butler extends from the common entity and supplement with its specific 

data structures.  The additional data structures for agent, agent butler, host, and other 

supporting entities are shown as follows:  

 

 Agent extends SAFEREntity { 

  byte[] key_seed;  // Session-based Key Seed 

  int skey_counter;  // Communication Session Key Counter 

  String current_hostID; // Current host ID 

  IkeyExchange keyExchange; // Key exchange protocol 

  byte[] encrypted_y;  // Encrypted DH parameter y 

  AgentSuitcase agentSuitcase; // Agent suitcase to store itinerary and 

data 
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 };  

 

 Butler extends SAFEREntity { 

  IkeyExchange keyExchange; // Key exchange protocol 

  byte[] key_seed;  // Current key seed 

  int skey_counter;  // Communication session key counter 

  Hashtable local_agents; // Agents currently residing in butler 

  Hashtable roaming_agents; // Agents currently roaming outside 

  ItineraryTracker tracker; // Agent itinerary tracker 

 }; 

 

 Host extends SAFEREntity { 

  Hashtable agents; // Agents visiting current host 

 } 

 

 // AgentSuitcase stores the data collected by an agent from various hosts 

 AgentSuitcase { 

  String agentID; // Agent ID 

  Vector datas;  // Data collected from various hosts 

  Vector signatures; // Signatures from various hosts 

  Vector hosts;  // Hosts information 

 } 

 

 // ItineraryTracker assists the butler to keep track of all its agents’ itineraries 
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 ItineraryTracker { 

  Hashtable currentHostIDs; // IDs of the current hosts 

  Hashtable currentHostAddrs;  // Host Name of current hosts 

  Hashtable currentHostPorts;  // Port Number of current hosts 

  Hashtable currentKeySeeds;  // Key seeds of current hosts 

  Hashtable histories;   // Histories for agents 

 } 

 

The communication between entities is developed on top of a messaging server and 

uses TCP/IP as its underlying protocol.  The messaging server is designed as a generic 

messaging platform that is capable of supporting multiple message protocols.  In the 

earlier prototype of agent transport, the messaging server was used to support agent 

transport messaging protocol.  In the current prototype, three more protocols are 

developed: key negotiation protocol, butler control protocol, and host control protocol.  

Key negotiation protocol (KNP) is in charge of handling the message exchanges 

during key seed negotiation.  It is equipped by the agent butler as well as every host.  

Butler control protocol, (BCP), is used to control the butler during the prototype 

demonstration.  Functions within butler control protocol include requesting the display 

of agent information, sending echo messages to agent, and requesting for agent’s 

return etc.  Similarly, a host control protocol, (HCP), is developed to control hosts.  

Functions within host control protocol include sending agent to another host, receiving 

incoming agent, etc.  The messages supported by each protocol are illustrated in 

Appendix C. 
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It can be seen in the various screenshots below that different protocols can be 

selectively loaded onto an entity based on requirement.  For example, in Figure 3, it 

can be seen that agent butler is loaded with agent transport protocol (BAT), key 

negotiation protocol (KNP), and butler control protocol (BCP).  The use of a generic 

messaging server facilitates the modularization of the prototype and integration of 

various protocols. 

 

Just like any other security mechanism, there is certain overhead associated with 

SADIS.  The overhead is incurred as additional time required for processing as well as 

additional data carried by the agent. 

 

To assess the efficiency of SADIS, benchmarking is performed on the prototype.  The 

benchmarking environment is composed of three PCs connected with each other in an 

intranet environment with 100MB LAN connections.  One PC acts as the agent butler 

m, while the other two act as host jinx and natalya respectively.  Agent bond travels 

between the three entities during the roaming and data collection simulation.  Each PC 

is configured with PIII 800 MHz processor with 512MB RAM each.  The result of 

SADIS benchmarking is broken down based on functionality and is shown in Table 1 

and Table 2.  From the tables, it can be seen that the bulk of the overhead is incurred 

during key seed negotiation where the key exchange protocol and the public key 

operation is performed.  During key seed negotiation, one PKI operation is incurred in 

the agent butler when it encrypts the public parameter of the key exchange with the 

destination host’s public key, and another PKI operation when the destination host 

decrypts the incoming encrypted key exchange parameter.  Given the computation 
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intensive nature of PKI operation, it is expected that the overhead incurred during the 

key seed negotiation process will be relatively higher than the rest.  Despite the 

relatively high overhead, this will not impact the overall performance of SADIS 

significantly because the frequency of agent roaming is low compared to the frequency 

of some other agent operations (such as agent to butler communication).  As a result, 

the overhead incurred at this stage is ‘one-time’ in nature.  Comparing with the 

statistics from OKGS, OKGS general incurs additional processing time of more than 

500 milli seconds.  Assuming there is 0 additional overhead caused by non-PKI 

operations, each PKI operation in OKGS incurs an overhead of 250 milli-seconds.  In 

SADIS prototype, the overhead of one PKI operation is roughly 230 milli-seconds 

(take the average overhead of the key seed negotiation process).  The two figures are 

very close to each other, suggesting a similar prototyping configuration.  

Coincidentally, this number is slightly more than twice the overhead in SADIS.  

Considering the fact that OKGS requires one more PKI operation in the message 

exchange, the statistics shows that SADIS’ efficiency improvement when the use of 

PKI operations is minimized.  The time savings achieved is the time taking for one 

PKI operation.  In SADIS prototype, this is about 230 to 250 milli-seconds. 

 

 

 

 

 

 

Table 1 SADIS Time Efficiency – Performance without SADIS 
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Operation 1 (ms) 2 (ms) 3 (ms) 4 (ms) 5 (ms) Avg 
(ms) 

Key Seed 
Negotiation 

(butler timing)

40 50 50 40 40 44.0 

Key Seed 
Negotiation 
(destination 

host) 

41 41 40 40 40 40.4 

Agent Butler 
Communication 
(agent timing – 

send) 

40 40 50 40 40 42.0 

Agent Butler 
Communication 
(butler timing – 

send) 

30 30 31 40 30 32.2 

Agent Butler 
Communication 
(agent timing – 

receive) 

10 10 10 10 10 10.0 

Agent Butler 
Communication 
(butler timing – 

receive) 

10 30 10 10 20 16.0 
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Table 2 SADIS Time Efficiency – Performance Comparison with SADIS 

 

Operation 1 (ms) 2 (ms) 3 (ms) 4 (ms) 5 (ms) Avg 
(ms) 

Overhead 
(ms) 

Key Seed 
Negotiation 

(butler timing)

250 260 250 220 260 248.0 204.0 

Key Seed 
Negotiation 
(destination 

host) 

290 281 260 280 290 280.2 239.8 

Agent Butler 
Communication 
(agent timing – 

send) 

60 60 70 50 60 60.0 18.0 

Agent Butler 
Communication 
(butler timing – 

send) 

41 50 40 40 40 42.2 10.0 

Agent Butler 
Communication 
(agent timing – 

receive) 

10 20 10 10 10 12.0 2.0 

Agent Butler 
Communication 
(butler timing – 

receive) 

30 30 30 20 20 26.0 10.0 

 

 

Other than in the key seed negotiation, the time overhead incurred elsewhere in the 

protocol is negligible.  As shown in the two tables, with the key seed negotiated, the 

time overhead incurred during message exchange will not exceed 20 milli-seconds.  

This is due to the use of Symmetric-Key Encryption during the more frequent message 

exchanges.  The efficiency of the evolving communication session key can also be 

shown statistically as its contribution to the time overhead is negligible. 
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Other than overhead in terms of processing time, there is certain overhead to data size 

as well.  Before the detailed analysis of data overhead, it is necessary to point out that 

SADIS is designed to produce almost fixed data overhead regardless of the data size.  

In another word, regardless of the size of actual data, the overhead associated with 

SADIS is almost fixed, and can be limited to a fixed number of bytes.  As a result, 

SADIS tends to be more efficient when actual data size is higher.  While some of the 

existing literature also achieves higher efficiency when data size increase (e.g., OKGS), 

the size of the overhead increases when the size of actual data as well.  The larger the 

data size, the higher the overhead size.  However, the data overhead is SADIS has a 

maximum size regardless of the data size and does not increase as the data size 

increases.  This ability to limit the size of overhead data regardless of actual data size 

is a significant improvement in efficiency over existing work. 

 

The various overheads of SADIS can be best illustrated in Table 3.  The first data 

overhead is incurred during the padding for symmetric key encryption.  As most 

popular symmetric key encryption algorithm works on fixed length data blocks, it is 

necessary to pad the plain data into multiples of the block size before performing the 

encryption.  The symmetric algorithm used in the current prototype is triple-DES that 

operates on blocks of 8 bytes.  As a result, the padding will produce a maximum of 8 

bytes data overhead. 

 

Another data overhead is in the generation of data Di.  For security purposes, the IDs 

of the host and agent are added to the actual data together with the current timestamp.  

The prototype makes use of Java type ‘Long’ to model the IDs.  And the timestamp is 
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also a ‘Long’ in Java.  Since each ‘Long’ occupies 8 bytes of storage space, the total 

overhead will be 24 bytes. 

 

The last and most significant overhead is the digital signature created by the host.  

While the actual size of the digital signature depends on the signing algorithm used, 

the size of the digital signature is always a fixed length.  In our prototype, RSA is used 

as the digital signature algorithm.  Thus, the overhead of digital signature is a fixed 

length of 64 bytes. 

 

Altogether, SADIS has a maximum data overhead of 96 bytes.  Assuming the actual 

data size is 1800 bytes (this is smallest actual data size used in the benchmarking of 

OKGS), this yields a data overhead of 5.33%.  This figure will improve linearly as the 

size of the actual data increases.  The data overhead of 5.33% is compared with the 

benchmark of OKGS that averages to 36.2% (actual data size in OKGS is from 1836 to 

2001). 

 

Table 3 SADIS Data Overhead 

 

 Original Data 
Size 

Maximum 
Overhead 

Overhead OKGS 
Overhead 

1 1800 96 5.33% 33.87% 
2 2001 96 4.80% 37.73% 
3 5000 96 1.92% N/A 
4 10000 96 0.96% N/A 
5 100000 96 0.10% N/A 
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As the statistics shows, SADIS is optimized to improve both time efficiency instead of 

data efficiency compared with related work in the literature.  The feasibility and 

practicality of SADIS are thus demonstrated through the prototype. 

 

4.3  Attack Simulation 

4.3.1 Overview 

In order to further verify the security strength of SADIS protocol, various attack 

scenarios are simulated using the prototype developed in previous section.  Five 

different attack scenarios covering all attacks described in the security analysis section 

are simulated.  The simulations and their results are discussed in this section. 

 

4.3.2 Data Modification Attack 

a. Scenario Description 

The data modification attack simulates the situation when a malicious host attempts to 

modify data provided by another host.  In the simulation for this attack, the data 

provided by host jinx to agent bond is modified by an unknown malicious host during 

agent roaming.  As data carried by bond is already encrypted with the communication 

session key corresponding to the roaming session with jinx, the malicious host can 

only modify part of the encrypted message in order to confuse the agent butler (data is 

decrypted when the agent returns to agent butler) or the subsequent hosts (data 

integrity check is performed at every host). 

 

In this case, the compromise to agent data integrity is immediately detected when the 

agent reaches the next host and a data integrity check is performed on the agent. 
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b. Simulation Steps 

- Enable attack scenario 1 from the property file (safer.properties) 

- Start agent butler m (runm.bat) 

- Start host natalya (runnat.bat) 

- Run host jinx (agent roams from jinx to natalya) (runjinx.bat) 

- When destination host natalya performs data integrity check on the agent, the 

compromise is discovered (see console of host natalya) 

 

4.3.3 Signature Attack 

a. Scenario Description 

 

Signature attack refers to attacks that attempt to modify the digital signature on the 

agent data in order to cover any evidence of data compromise.  To simulate this attack, 

one malicious host between jinx and natalya attempts to modify the digital signature 

from host jinx.  It first modifies the data provided by jinx and somehow manages a 

valid signature.  Despite being able to forge a valid signature, the new signature no 

longer matches the original signature chain (as the signatures are chained with each 

other).  As a result, when the agent reaches the next host or returns to agent butler, the 

integrity validation will reveal the breakage of the signature chain, thus detecting the 

integrity compromise. 

 

b. Simulation Steps 
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- Enable attack scenario 2 from the property file (safer.properties) 

- Start agent butler m (runm.bat) 

- Start host natalya (runnat.bat) 

- Run host jinx (agent roams from jinx to natalya) (runjinx.bat) 

- Deposit data on agent from jinx (runtest sg.edu.nus.safer.demo.DepositData 

<agent_host> <port> <agentID> <message>) 

- Trigger agent return to butler m (runtest sg.edu.nus.safer.demo.AgentReturn 

<agent_host> <port> <agentID>) 

- The agent butler who performs an integrity check on the returning agent detects the 

integrity compromise and throws an exception 

 

4.3.4 Data Deletion Attack 

a. Scenario Description 

 

Another type of agent data compromise is in the form of data deletion.  In this attack 

scenario, host natalya attempts to wipe out from agent bond all data collected from 

host jinx, including the itinerary record on bond showing its visit to jinx.  Even if host 

natalya can somehow reconstruct a valid signature chain, once agent bond returns to 

the butler m, m will be able to detect the compromise when it compares the record 

itinerary against that stored in agent bond. 

 

b. Simulation Steps 

 

- Enable attack scenario 3 from the property file (safer.properties) 
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- Start agent butler m (runm.bat) 

- Start host natalya (runnat.bat) 

- Run host jinx (agent roams from jinx to natalya) (runjinx.bat) 

- Deposit data on agent from jinx (runtest sg.edu.nus.safer.demo.DepositData 

<agent_host> <port> <agentID> <message>) 

- Trigger agent return to butler m (runtest sg.edu.nus.safer.demo.AgentReturn 

<agent_host> <port> <agentID>) 

- The agent butler who performs an itinerary verification on the returning agent 

detects the itinerary compromise and throws an exception 

 

4.3.5 Key Seed Manipulation Attack 

 

a. Scenario Description 

 

Host jinx attempts to modify the encrypted dh parameter from m and replace it with 

another dh parameter.  In order not to alert the next host natalya about the compromise, 

the new encrypted dh parameter must have a valid agent id (bond) and a valid host id 

(natalya) but different DH parameter.  Once the agent reaches natalya and starts to 

communicate with the agent butler, the compromise will be detected as demonstrated.  

As agent roaming requires butler’s directly involvement, the compromise will be 

definitely be detected. 

 

b. Simulation Steps 
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- Enable attack scenario 4 from the property file (safer.properties) 

- Start agent butler m (runm.bat) 

- Start host natalya (runnat.bat) 

- Run host jinx (agent roams from jinx to natalya) (runjinx.bat) 

- Deposit data on agent from jinx (runtest sg.edu.nus.safer.demo.DepositData 

<agent_host> <port> <agentID> <message>) 

- Trigger agent return to butler m (runtest sg.edu.nus.safer.demo.AgentReturn 

<agent_host> <port> <agentID>) 

- The agent butler detects the itinerary compromise and throws an exception 

 

4.3.6 Itinerary Attack 

a. Scenario Description 

 

In the earlier attack scenario simulation on data deletion, the agent itinerary is 

compromised along with data deletion.  The roaming record to a particular host has 

been removed from agent itinerary.  In this scenario, a malicious host attempts to 

fabricate an agent’s roaming record by inserting additional itinerary entries into the 

agent.  Host natalya modifies the agent itinerary during the agent’s visit and dispatches 

the agent back to butler m.  Again, the attack simulation ensures that the new signature 

chain is still valid.  However, when the butler m receives the agent and performs an 

itinerary verification, the compromise can be detected. 

 

b. Simulation Steps 
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- Enable attack scenario 5 from the property file (safer.properties) 

- Start agent butler m (runm.bat) 

- Start host natalya (runnat.bat) 

- Run host jinx (agent roams from jinx to natalya) (runjinx.bat) 

- Run echo (AB or BA) (runtest sg.edu.nus.safer.demo.SendEcho AB <agent_host> 

<port> <agentID> <message>) 
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Chapter 5 

SAT 

 

5.1 Overview 

As SAT lays the foundation of SAFER security framework, the dependency of SAT is 

intentionally kept to a minimum.  The only assumption of SAT is that entities should 

have a digital certificate and its corresponding private key.  This implies that the 

entities in SAFER will be able to perform PKI operations using its private key.  The 

main objective of this assumption is to enable entities to identify themselves to 

external parties easily. 

 

The foundation of SAT begins with the message format used.  Messages 

communicated during agent transport follow a general message format.  The general 

message format includes features like timestamp, message sequence number, message 

digest etc.  It is designed to protect the protocol against certain security attacks.  One 

of these attack is replay attack, in which malicious host records a message and attempts 

to ‘play back’ at a later time.  The use of timestamp, sequence numbering as well as 

message expiry in the general message format can effectively defend against replay 

attacks.  The integrity of message is detected by the signed message digest attached.  

To provide most robust message digest, two message digest algorithms are used in 
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cascade to ensure that the protocol will not be compromised even if one of the message 

digest algorithm is compromised. 

 

With the general message format established, agent transport is comprised of three 

different transport protocols designed to address different security requirements.  

Supervised agent transport is the default transport protocol used in SAFER.  It 

provides standard security feature that protects the agent against malicious host and 

allows the agent butler to have real-time information about the agent’s whereabouts.  

However, the limitation of this protocol is the agent butler’s active involvement in the 

transport process.  In order to allow agent roaming while butler is offline, unsupervised 

agent transport is designed.  This protocol does not require the active involvement of 

agent butler during roaming.  The limitation is that information about agent roaming 

will reach the butler at a slightly later time as the acknowledgement messages of 

roaming are dispatched to the butler in asynchronous mode.  In case the agent is 

somehow compromised, it may take slightly longer for the agent butler to realize than 

supervised agent transport.  Both supervised and unsupervised agent transport are 

standard transport mechanisms in SAFER. 

 

In order to allow applications with special needs to have customized transport 

mechanism and yet make use of SAFER framework, bootstrap transport protocol is 

proposed.  In bootstrap transport protocol, a special transport agent carrying the 

customized transport protocol is first dispatched to the destination host under either 

supervised or unsupervised agent transport.  The transport agent will perform the 
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necessary authentication of the destination host before starting the actual agent 

transport using application-specific algorithms. 

 

The general message format and three different agent transport algorithms will be 

explained in details in the next chapter. 

 

5.2 Assumptions 

As a prerequisite, each SAFER entity must carry a digital certificate issued by SAFER 

Certificate Authority, or SCA.  In this way, agents, agent owners and hosts will all 

carry its own unique digital certificate.  The certificate itself is used to establish the 

identity of a SAFER entity.  The private component of the certificate has signing 

capability.  This allows the certificate owner to authenticate itself to the SAFER 

community. 

 

From the host’s viewpoint, agent is a piece of foreign code that executes locally.  In 

order to allow the host certain control over visiting agents, mobile agents executing in 

foreign host is not allowed to communicate directly with external parties.  In other 

words, agents will not be able to establish socket connections directly with any entity 

outside the host, not even the agent’s owner/butler.  Agent receptionist will act as a 

middleman to facilitate and monitor agent communication with external party.  There 

is an important reason that agent is not allowed to communicate directly with external 

parties.  If the agent is able to communicate directly with external parties, it can easily 

‘smuggle’ in other agents (could be malicious agents) into the host without informing 

the host.  This defeats the purpose of agent transport.  To make things worse, there is 
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no way for the host to detect that the agent is bringing in other agents without proper 

authorization.  As a result, the agent is not allowed to make direct communication with 

external parties in SAFER. 

 

5.3  General Message Format 

In SAFE, agent transport is achieved via a series of message exchanges.  The format of 

each general message is as follows: 

 

 SAFER Message = Message Content + Timestamp + Sequence Number + MD(Message 
Content + Timestamp + Sequence Number) + Signature(MD)   (7) 

 

The main body of a SAFER message comprises of message content, a timestamp and a 

sequence number.  The message content is defined by individual message.  It can 

contain any information sent by the message issuer. 

 

A timestamp is imposed on each message.  It contains the issue time of the message 

and an expiry time of the same message.  When a SAFER message reaches the 

recipient, the recipient should inspect the timestamp first.  If the message arrives 

before the issue time of the message or after the expiry time of the message, the 

recipient should generate an alert to the message sender as well as the recipient’s 

administrator.  The duration between expiry time and issue time is set in the SAFER 

community.  However, individual entities can choose to set a different duration based 

on their needs.  The local setting should overwrite the general setting by SAFER.  The 

general guideline is that the duration must be longer than the maximum tolerable time 

for message exchange to complete but slightly less than maximum tolerable agent 
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transport time.  The reason is that a message must remain valid when it reaches its 

recipient.  Message transmission itself will incur certain time overhead.  If the validity 

duration is shorter than the maximum tolerable time for message exchange, a message 

may become invalid by the time it reaches its recipient.  However, to effectively 

prevent replay attack, the message should not have a lifetime longer than needed.  

When agent transport process completes, the message does not need to remain valid 

any more.  As a result, the duration should be slightly shorter than the maximum 

tolerable agent transport time. 

 

To further prevent replay attack, message exchanges between entities during agent 

transport is labeled according to each transport session.  A running sequence number is 

included into the message body whenever a new message is exchanged.  For example, 

if Alice sends a message to Virtual CD Mall with a sequence number 1, the next 

message sent by Alice to Virtual CD Mall will have a sequence number of 2.  Similarly, 

messages from Virtual CD Mall to Alice will bear the same sequence number.  In this 

way, if a message is lost during transmission or an additional message is received, the 

recipient will be able to detect it and alert both parties involved in the communication. 

 

In order to protect the integrity of the main message body, a message digest is 

appended to the main message.  The formula of the message digest is as follows: 

 

 Message Digest = MD5(SHA(message_body) + message_body)  (8) 

 



Secure Agent Transport And Integrity Protection  70 

The calculation of message digest is based on the most popular message digest 

algorithm, MD5 and SHA.  By combining both algorithms, the formula leverages on 

the strength of both MD5 and SHA.  Even if one of them is compromised, the overall 

security of the formula is still intact.  If there is a transmission error in the message 

body, a recalculation of message digest based on the corrupted message body will 

generate a different set of message digest. 

 

The message digest alone is not sufficient to protect the integrity of SAFER message.  

A malicious hacker can modify the message body and recalculate the value of message 

digest using the same formula and produce a seemingly valid message digest.  To 

ensure the authenticity of the message, a digital signature on the message digest is 

generated for each SAFER message.  Since only the message issuer has the private key 

to its digital certificate, no one else will be able to generate a valid signature based on a 

modified set of message digest.  In addition to ensuring message integrity, the 

signature serves as a proof for non-repudiation as well. 

 

If the message content is sensitive, it can be encrypted using a symmetric key 

algorithm (e.g., Triple DES).  SAFER does not provide a general key exchange 

protocol for general messages.  The secret key used for encryption will have to be 

decided in higher level (in different agent transport protocols). 

 

The design of general message format covers quite a number of security concerns.  The 

general security concerns (identification, authentication, secrecy, message integrity and 

non-repudiation) have been addressed.  Some known security attacks to general 
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messages (e.g. replay attack, man-in-the-middle attack) have been addressed.  

However, it is noted that the same attacks may be applied to the transport protocol 

itself.  They will be further addressed in the design of different transport protocols. 

 

To cater for different application concerns, two transport protocols were proposed in 

[2], supervised agent transport and unsupervised agent transport.  However, it is 

realized that there will be additional security concerns for certain applications in which 

a proprietary transport protocol is desired.  To cater for the needs of these applications, 

bootstrap agent transport protocol is designed.  These three protocols will be discussed 

in the following sections in details. 

 

5.4  Supervised Agent Transport 

Supervised agent transport is designed for applications that require close supervision of 

agents.  Under this protocol, agents have to request roaming permit from its owner or 

butler before it is able to start roaming.  The owner has the option to deny the roaming 

request and prevent the agent from roaming to undesirable hosts.  If Alice sends out a 

group of agents to search for the best bargain of Mariah Carey albums, one criteria is 

probably not to repeat searching the same CD shop.  To meet the criteria, she can use 

supervised agent transport approach.  Whenever an agent wishes to roam to a new 

online shop, Alice will search her list of visited shops to ensure that the new 

destination is not in the list.  If the destination is already in the list, she will deny the 

roaming request and inform the agent to try some other shops, thus avoiding repeated 

effort.  If the destination does not exist in the list, she can update the list with the new 
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shop and signal the agent to go ahead.  Without agent owner playing an active role in 

the transport protocol, it is difficult to have tight control over agent roaming. 

 

The procedures of supervised agent transport is shown in Figure 7: 

 

Agent Owner/Butler

Source Receptionist Destination Receptionist

Agent
(Before Send)

1. EP Req
2. EP Req

3. EP Reply
4. EP

5. RP Req

Session DB

6. Gen Session

7. Rp Reply

8. Freeze

Legends:

EP - Entry Permit
RP - Roaming Permit

9. Send Req

Agent
(After Send)

10. Send Agent 11. Partial Activation

12. Unfreeze Key Request

13. Load Session

14. Unfreeze Key

15. Unfreeze
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Figure 7 Supervised agent transport 

 

5.4.1 Agent Receptionist 

 

Agent receptionist is a process running at every host to facilitate agent transport.  If an 

agent wishes to roam to a host, it should communicate with the agent receptionist at 

the destination host to complete the transport protocol.  Every host will keep a pool of 

agent receptionist to service incoming agents.  Whenever an agent roaming request 

arrives, an idle agent receptionist from the pool will be activated to entertain the 
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request.  In this way, a number of agents can be serviced concurrently.  The number of 

agent receptionists in the pool should be set to the maximum number of acceptable 

concurrent visiting agents in the host.  If the number of roaming requests exceeds the 

number of agent receptionists, the request will not be granted until some existing 

visiting agent leaves the host. 

 

5.4.2 Request through source receptionist for entry permit 

 

To initiate supervised agent transport, an agent needs to request for an entry permit 

from the destination receptionist.  Unfortunately, the agent in a foreign host is not 

allowed to make direct communication with external parties due to security concerns.  

All communication between visiting agent and foreign parties (other agents outside the 

host, agent owner etc) goes through the agent receptionist.  The request for an entry 

permit is first sent to the source receptionist.  The request contains the requesting 

agent’s digital certificate and the destination address.  The source receptionist will 

forward the agent’s digital certificate to the destination receptionist as specified in the 

agent’s request. 

 

The destination receptionist can inspect the requesting agent’s information by reading 

its digital certificate and decide whether to issue entry permit based on its own 

authorization policy.  If the destination receptionist decides to grant the request, an 

entry permit is generated and returned to the requesting agent.  The entry permit will 

contain a random challenge, a serial number, a validity period and the digital certificate 
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of the requesting agent and a digital signature by the destination receptionist on the 

entry permit. 

 

The random challenge is used to authenticate the incoming agent.  Its usage will be 

discussed later in the discussion of supervised agent transport protocol.  For book 

keeping purpose, a serial number is included in the entry permit issued by a 

receptionist.  This number should be unique to all entry permits issued by the same 

receptionist.  It is possible that entry permits issued by different receptionists bear the 

same serial number.  This will not cause any conflict in supervised agent transport.  A 

timestamp is also part of the entry permit.  Different from timestamps on general 

messages, the timestamp on entry permit specifies the validity of the entry permit.  It is 

up to each receptionist to decide how long the issued entry permit remains valid.  In 

order to prove the authenticity of the entry permit, the issuing receptionist needs to 

digitally sign the entry permit with its private key. 

 

5.4.3 Request for roaming permit 

 

Once the source receptionist receives the entry permit from destination receptionist, it 

simply forwards it to the requesting agent.  The next step is for the agent to receive a 

roaming permit from its owner/butler.  The agent sends the entry permit and address of 

its owner/butler to the source receptionist.  Without processing, the source receptionist 

forwards the entry permit to the address as specified in the agent request. 
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The agent owner/butler can decide whether the roaming permit should be issued based 

on its own criteria.  For example, the agent owner/butler can deny the roaming request 

if the agent is roaming to an undesirable site (repeated search or black-listed), grant the 

roaming permit if the destination is a ‘trusted’ host, or even consult the user if the 

roaming operation may cause significant impact to the user. 

 

In any case, if the agent owner/butler decides to issue the roaming permit, it will have 

to generate a session number, a random challenge, a freeze/unfreeze key pair.  The 

roaming permit should contain the session number, random challenge, freeze key, 

timestamp, entry permit and a signature on all the above from the agent owner/butler. 

 

The session number is used to uniquely identify a roaming session.  This number is 

stored in the session database together with other session information.  When the agent 

reaches the destination and requests for the unfreeze key, session number will be used 

as a unique key to retrieve the corresponding unfreeze key. 

 

In order to verify that the agent has indeed reached the intended destination, a random 

challenge is generated into the roaming permit.  A digital signature on this random 

challenge is required for the destination to prove its authenticity.  This will be 

discussed in greater detail later. 

 

For the issuing of every roaming permit, a key pair is generated.  A public key is 

included in the roaming permit for agents to encrypt or freeze its sensitive code/data 
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during roaming.  When the agent reaches the destination, it can obtain the private key 

(unfreeze key) from its owner to activate itself. 

 

Same as entry permit, roaming permit also contains a timestamp that specifies the 

validity of the permit.  As a general guideline, the validity should be the same as that in 

the entry permit unless the validity specified in the entry permit is deemed 

inappropriate. 

 

Since a roaming permit is issued based on the entry permit presented, the entry permit 

will be part of the roaming permit.  In this way, a roaming permit issued to entry 

permit A can not be used as a valid roaming permit to enable an agent roaming using 

entry permit B. 

 

Finally, to provide non-repudiation, the agent owner/butler will digitally sign the 

roaming permit.  Without a valid signature attached, a roaming permit will be void. 

 

5.4.4 Agent Freeze 

 

If the roaming request is granted, source receptionist will receive the roaming permit 

from the agent owner/butler and forward it to the requesting agent without processing.  

With the roaming permit and entry permit, the agent is now able to request for roaming 

from the source receptionist.  In order to protect the agent during its roaming, sensitive 

function and codes inside the agent ‘body’ will be frozen.  This is achieved using the 

freeze key in the roaming permit.  Even if the agent is intercepted during its 
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transmission, the agent’s capability is restricted.  No much harm can be done to the 

agent owner/butler.  To ensure a smooth roaming operation, the agent’s ‘life support 

systems’ cannot be frozen.  Functions that are critical to the agent’s roaming capability, 

such as basic communication module, unfreeze operation module (which requires an 

unfreeze key to execute), must remain functional when the agent is roaming.  All other 

functions and data not critical to agent roaming can be frozen and subsequently 

activated when the agent reaches its destination. 

 

5.4.5 Agent Transport 

 

Once frozen, the agent is ready for transmission over the Internet.  To activate roaming, 

the agent sends a request containing the roaming permit to the source receptionist.  The 

source receptionist can optionally verify the validity and authenticity of the roaming 

permit.  Since the roaming permit (as well as the entry permit inside it) will be 

inspected one more time when it reaches the destination receptionist, the inspection by 

the source receptionist is optional. 

 

If the agent’s roaming permit is valid, the source receptionist will transmit the frozen 

agent to the destination receptionist as specified in the entry permit.  Once the 

transmission is completed, the source receptionist will terminate the execution of the 

original agent and make itself available to other incoming agents.  The involvement of 

the source receptionist in the transport ends here. 
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5.4.6 Agent Pre-Activation 

 

When the frozen agent reaches the destination receptionist, it will inspect the agent’s 

roaming permit and the entry permit (contained in the roaming permit) carefully.  By 

verifying the validity of both permits, the destination receptionist establish the 

followings: 

 

a. The agent has been granted permission to enter the destination; 

b. The entry permit carried by the agent has not expired; 

c. The agent has obtained sufficient authorization from its owner/butler for 

roaming; 

d. The roaming permit carried by the agent is not expired; 

 

If the destination receptionist is satisfied with the agent’s credentials, it will activate 

the agent partially and allows it to continue agent transport process. 

 

5.4.7 Request for Unfreeze Key and Agent Activation 

 

Although the agent has been activated, it is still unable to perform any operation since 

all sensitive codes/data is frozen.  To unfreeze the agent, it has to request the unfreeze 

key from its owner/butler.  To prove the authenticity of the destination, the destination 

receptionist is required to sign the random challenge in the roaming permit.  The 

request for unfreeze key contains the session number, the certificate of destination and 

the signature on the random challenge. 
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The agent owner/butler can verify that the agent has indeed reached the right 

destination by validating the signature.  If the signature is valid, the agent owner/butler 

will retrieve the unfreeze key based on session number, encrypt it using the 

destination’s certificate and returns to the agent. 

 

The destination receptionist can decrypt the unfreeze key using its private component 

of the certificate and passes the unfreeze key to the agent.  Using the unfreeze key, the 

agent unfreezes itself.  To prove to the destination host that the incoming agent is 

indeed the agent requesting the entry permit, the agent will use its private key to sign 

the random challenge in the entry permit and return to the destination receptionist.  

Once this signature has been verified, the destination receptionist fully activates the 

agent so that it can continue its execution in the new host. 

 

The direct agent transport process is completed. 

 

5.5  Unsupervised Agent Transport 

Supervised agent protocol is not a perfect solution to agent transport.  Although it 

provides tight supervision to an agent owner/butler, it has its limitations.  Since the 

agent owner/butler is actively involved in the transport, the protocol inevitably incurs 

additional network traffic.  This results in lower efficiency of the protocol.  This 

especially significant when the agent owner/butler is located behind network with 

lower bandwidth, or the agent owner/butler is supervising a large number of agents.  

The network or the agent owner/butler can become the bottleneck and slow down the 
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agent roaming process.  For example, if Alice is behind an unstable network, she may 

not want to supervise her agents’ roaming, especially if the agents are carrying out 

non-sensitive, independent tasks. 

 

The steps involved in unsupervised agent transport is shown in Figure 8 below: 
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Figure 8 Unsupervised agent transport 

 

5.5.1 Request for Entry Permit 

 

Same as supervised agent transport, unsupervised agent transport is initiated by an 

agent requesting an entry permit from a destination receptionist through a source 

receptionist.  The request comprises of the agent’s certificate, a random challenge, the 
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address of the destination receptionist.  The destination receptionist will use the agent’s 

certificate to identify the requesting agent.  The random challenge will be used in later 

stages to authenticate the destination receptionist.  When the source receptionist 

receives the request, it will pass this to the destination receptionist (as specified in the 

request) without much processing. 

 

On receiving the entry request, the destination receptionist will have to decide whether 

the request should be granted.  Same as supervised agent transport, each destination 

receptionist can have its own criteria on granting entry permits.  If the destination 

receptionist decides to issue an entry permit, it will generate a serial number.  This 

number must be unique within the destination receptionist and will be used to identify 

the transport session in later stages.  At the same time, a freeze/unfreeze key pair is 

generated.  The freeze key will be sent to the agent while the unfreeze key is stored in 

database as part of the session information.  To challenge the authenticity of the 

requesting agent, a random challenge is generated and included in the entry permit.  

Similar to the entry permit in supervised agent transport, the validity period and the 

requesting agent’s certificate are included into the entry permit.  Finally, the 

destination receptionist signs the entry permit and sends it to the source receptionist.  

The source receptionist simply forwards the permit to the requesting agent. 

 

5.5.2 Pre-roaming Notification 

 

Unlike supervised agent transport, the agent does not need to seek an explicit approval 

to roam from its owner/butler.  Instead, a pre-roaming notification is sent to the agent 
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owner/butler through indirect means.  Typically the notification can be in the form of 

email or UDP package.  This notification contains the address information of source 

and destination receptionist only.  It serves to inform the agent owner/butler that the 

agent has started its roaming.  Since the notification is indirect, the agent does not need 

to wait for the owner/butler’s reply before roaming. 

 

5.5.3 Agent Freeze 

 

Similar to supervised agent transport, the agent has to freeze its sensitive data/function 

before roaming.  In supervised agent transport, the freeze key comes from the agent 

owner/butler.  Since agent owner/butler is no longer directly involved in unsupervised 

agent transport, the agent will use the freeze key generated by the destination 

receptionist instead. 

 

5.5.4 Agent Transport 

 

Once the agent freezes its sensitive data/function, it will make a request to the source 

receptionist for the actual transport.  The source receptionist will send the frozen agent 

to the destination receptionist as specified in the entry permit.  Once the transport is 

completed, the source agent receptionist terminates the execution of the original agent 

and gets ready to service another incoming agent. 
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5.5.5 Request for Unfreeze Key 

 

When the destination receptionist receives the agent, it will first inspect the agent’s 

entry permit.  If the entry permit is authentic and valid, it will activate the agent 

partially so that it can complete the roaming.  Once the agent is activated, it will first 

request the unfreeze key from destination receptionist using the serial number in the 

entry permit.  As communication between the agent and destination receptionist takes 

place locally, there is no need to encrypt the communication.  The destination 

receptionist can fetch the unfreeze key from its session depository and return it to the 

agent.  With the unfreeze key, the agent is able to unfreeze its sensitive data/function. 

 

5.5.6 Agent Activation 

 

To request for full activation, the agent must sign the random challenge in the entry 

permit and send it to the destination receptionist.  If the signature is verified 

successfully, the destination receptionist can be convinced that the agent arrived is 

indeed the agent requesting for entry permit.  To authenticate itself, the destination 

receptionist will sign the random challenge in the entry permit request and passes it to 

the agent.  If this signature is verified, the agent is convinced that it has reached the 

right destination.  Once mutual authentication is completed, the destination receptionist 

will fully activate the agent. 

 

5.5.7 Post-roaming Notification 
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On full activation, the agent must send a post-roaming notification to its owner/butler.  

This will inform the agent owner/butler that the agent roaming has bee completed 

successfully.  Again, this notification will take place through an indirect channel so 

that the agent does not need to wait for any reply before continuing with its normal 

execution. 

 

The unsupervised agent transport is completed when the post-roam notification has 

been sent out.  

  

5.6  Bootstrap Agent Transport 

Both supervised and unsupervised agent transport make use of a fixed protocol for 

agent transports.  The procedures for agent transport in these two protocols have been 

clearly defined without much room for variations.  It is realized that there exist 

applications that require special transport mechanism for their agents.  For example, 

applications that involve highly sensitive content may wish to use a proprietary 

protocol for their agent transports.  In order to allow this flexibility, SAFER provides a 

third transport protocol, bootstrap agent transport.  Under bootstrap agent transport, 

agent transport is completed in two phases.  The first phase is to send a transport agent 

to the destination using either supervised or unsupervised agent transport.  In the 

second phase, the transport agent takes over the role of destination receptionist and 

continues the transport of its parent agent with its own agent transport protocols.  In 

this way, different applications can implement their transport agents using the 

preferred transport mechanisms and still be able to make use of the SAFER agent 

transport.  Bootstrap agent transport is illustrated in Figure 9 below: 
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igure 9 Bootstrap agent transport 

 

 the first phase, the transport agent is sent to the destination receptionist using either 

nce the transport agent reaches the destination, it starts execution in a restricted 
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supervised or unsupervised agent transport with some modifications.  The original 

supervised and unsupervised agent transport requires agent authentication and 

destination authentication to make sure that the right agent reaches the right destination.  

Under bootstrap agent transport, the transmission of transport agent does not require 

both agent authentication and destination authentication. 

 

O

environment.  It is not given the full privilege as a normal agent does because of the 

fact that it has yet to authenticate itself to the destination.  Under the restricted 

environment, the transport agent is not allowed to interact with local host services.  It 
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is only allowed to communicate with its parent until the parent reaches destination.  A 

maximum time frame is imposed on the transport agent during which the transmission 

of its parent must complete.  This is to prevent the transport agent from hacking 

attempts to local host.  SAFER allows individual transport agents be customized to use 

any secure protocol for parent agent transmission.  Concerns such as anonymity, 

secrecy, integrity etc should be taken care of by the transport agents.  If the algorithm 

used by the transport agent is not secure, the whole agent may be compromised.  In 

SAFER, parent agent is assumed the responsibility to make sure its transport agent 

uses a secure transport protocol. 

 

When the parent agent reaches the destination, it can continue the handshake with the 

destination receptionist and perform mutual authentication directly.  The authentication 

scheme is similar to that in supervised/unsupervised agent transport. 
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Chapter 6 

SAT Analysis and Prototype 

 

6.1  Implementation 

To prototype the design of agent transport, the protocol discussed above is 

implemented. 

 

The prototype is built on Windows 95/NT platform using Java.  Since Java is a 

platform-independent language, the prototype can be deployed to any other platform 

that supports JVM (Java Virtual Machine).  There are a few reasons why Java is 

chosen as the implementation language.  Firstly, the most powerful feature of Java – 

platform independence - makes it the ideal language for building Internet-based 

applications.  Internet is an architecture that is made up of a vast variety of platforms.  

In order to provide interoperability across multi-vendor platforms, a truly platform 

independent language is desired.  With Java, the prototype can be build once and run 

anywhere on other platforms. 

 

Further more, the garbage collector feature of Java significantly reduces the 

programming effort and allows developers to concentrate on programming logic rather 

than taking care of memory.  Unlike some other languages such as C/C++, Java VM 
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manages memory automatically through its garbage collector.  Memory of 

unreferenced objects will be automatically reclaimed when the garbage collector is 

activated, thus reducing memory consumption to the minimum. 

 

Another feature that benefits the prototyping is thread-safe.  Java language makes it 

easy to develop multi-thread applications.  Threading is taken care of by JVM so that 

applications using Java threading is automatically thread-safe.  In other languages, 

extra effort is needed to ensure the program runs normally under multi-thread scenario. 

 

As a first step in the prototyping, unsupervised agent transport has been implemented.  

Two agent receptionists are setup in different hosts simulating the source host and 

destination host.  An agent carrying certain functions is invoked from the source host.  

It kicks off a series of message exchanges under unsupervised agent transport and 

eventually reaches the destination host.  During the process, source receptionist and 

destination receptionist are involved in the handshake.  When the agent reaches the 

destination, it successfully unfreezes itself and is activated for normal execution.  

During the simulation, two indirect messages are sent to the agent owner/butler (pre-

roaming notice and post-roaming notice) as stipulated in the unsupervised agent 

transport protocol. 

 

Functions carried by the agents are loaded into the agent body before roaming 

operation.  They will be preserved throughout the agent transport.  All functions 

carried are classified into sensitive functions and non-sensitive functions.  Examples of 

sensitive functions are digital signature generation, negotiation strategy, mission 



Secure Agent Transport And Integrity Protection  89 

statement, etc.  Sensitive functions will be encrypted during the actual transmission.  

Non-sensitive functions refer to both functions with less sensitivity and functions that 

are vital to agent transport.  Functions with less sensitivity do not need to be encrypted, 

and functions that are vital to agent transport cannot be encrypted or agent transport 

will not be able to perform regularly. 

 

In the implementation, encryption on agent functions is done by first converting the 

agent function’s byte-code into a binary stream (using the serialization feature of Java), 

and subsequently perform symmetric key encryption on the binary stream.  The 

encrypted byte stream is carried in the agent body during agent transmission.  When 

the agent reaches the destination, the encrypted byte stream will be decrypted into the 

original binary stream.  From the original byte stream, the byte-code can be 

reconstructed and the agent function class dynamically loaded.  The serialization 

feature of Java significantly reduces the programming complexity here. 

 

The flow of unsupervised agent transport protocol implementation is summarized as 

follows: 

 

6.1.1 Entry Permit Request (Agent to Source Receptionist) 

 

Message content: agent certificate, destination address, and purpose of visit description. 

 

6.1.2 Entry Permit Request (Source Receptionist to Destination Receptionist) 
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Message content: agent certificate, purpose of visit description. 

 

6.1.3 Session Generation (Destination Receptionist) 

 

Action: Generate random session key, generate random challenge, generate 

freeze/unfreeze key pair, and store session information to local database. 

 

6.1.4 Issue Entry Permit (Destination Receptionist to Source Receptionist) 

 

Message content: agent description and entry permit (content of entry permit is 

discussed in the earlier section). 

 

6.1.5 Entry Permit Reply (Source Receptionist to Agent) 

 

Message content: entry permit. 

 

6.1.6 Agent Freeze (Agent) 

 

Action: generate random session key, encrypt sensitive functions with session key, 

encrypt session key with freeze key. 

 

6.1.7 Pre-Roaming Notice (Agent to Agent Owner/Butler – Indirect) 

 

The notice is sent as an email message with destination address in the message body. 



Secure Agent Transport And Integrity Protection  91 

 

6.1.8 Send Request (Agent to Source Receptionist) 

 

Message content: entry permit, destination address and encrypted agent. 

 

6.1.9 Send Agent (Source Receptionist to Destination Receptionist) 

 

Message content: entry permit and encrypted agent. 

 

6.1.10 Partial Activation (Destination Receptionist to Agent) 

 

Action: activate the agent for execution to continue the agent transport process. 

 

6.1.11 Unfreeze Key Request (Agent to Destination Receptionist) 

 

Message content: agent certificate, entry permit, and session identifier. 

 

6.1.12 Load Session (Destination Receptionist) 

 

Action: validate entry permit, load unfreeze key from database based on session 

identifier. 

 

6.1.13 Unfreeze Key Reply (Destination Receptionist to Agent) 
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Message content: unfreeze key. 

 

6.1.14 Unfreeze and Activation (Agent) 

 

Action: decrypt session key using unfreeze key, and decrypt sensitive functions using 

the session key. 

 

6.1.15 Post-Roaming Notice (Agent to Agent Owner/Butler – Indirect) 

 

An email message is sent out to agent owner/butler notifying the success of agent 

transport. 
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Chapter 7 

Conclusion 

 

In the first part of the thesis, a new data integrity protection protocol, SADIS, is 

proposed under the SAFER research initiative.  Besides being secure against a variety 

of attacks and robust against vulnerabilities of related work in the literature, the 

research of SADIS includes the objective of efficiency.  This is reflected in the 

minimized use of PKI operations and reduced message exchanges between the agent 

and the butler and results in superior performance compared with other researches in 

the literature.  The introduction of variation to DH key exchange and evolving 

communication session key further strengthened the security of the design.  Unlike 

some existing literature, the data integrity protection protocol aims not only to detect 

data integrity compromise, but more importantly, to identify the malicious host. 

 

In the second part of the thesis, the security of agent transport is addressed in SAT.  

SAT is the foundation of SAFER framework to provide mobile agents with roaming 

capability without compromising security.  General security concerns as well as 

security concerns raised by agent transport have been carefully addressed.  The design 

of the protocol also takes into consideration different concerns for different 

applications.  Instead of standardizing on one transport protocol, three different 

transport protocols are designed, catering to various needs.  Based on the level of 
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control desired, one can choose between supervised agent transport and unsupervised 

agent transport.  For applications that require high level of security during agent 

roaming, bootstrap agent transport is provided so that individual applications can 

customize their transport protocols. 

 

With security, efficiency, and flexibility as its main design focuses, SADIS and SAT 

work with other security mechanisms under SAFER (e.g., SAFER Certification, Agent 

Battery – A special mechanism to measure the risk factors accumulated for a roaming 

session) to provide mobile agents with a secure platform.  Special considerations were 

taken during the design of both protocols to ensure an efficient and practical solution.  

This can be demonstrated in the benchmark of the prototype. 

 

Besides agent data integrity and agent transport security, there are other security 

concerns to be addressed in SAFER.  One such concern is a mechanism to assess the 

agent’s accumulated risk level as it roams.  There have been some considerations for 

using ‘agent battery’ concept to address this during the earlier stages of the research.  

However, the research in this area is independent of this thesis and requires separate 

consideration.  Furthermore, in order to establish the identity of different agents from 

different agent communities, certain level of certification (e.g., SAFER certification) 

or agent passport is required.  More research can be conducted in this area following 

the earlier exploration in this research. 
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Appendix A 

Major Source Code for SADIS 

Source code of Agent.java: 

 

package sg.edu.nus.safer.object; 

 

import java.util.*; 

import sg.edu.nus.base.crypto.CryptoFactory; 

import sg.edu.nus.base.crypto.IMDService; 

import sg.edu.nus.base.crypto.IKeyExchange; 

import sg.edu.nus.base.crypto.IEncryptionService; 

import sg.edu.nus.base.crypto.RSAUtils; 

import sg.edu.nus.base.exception.BaseException; 

import sg.edu.nus.base.logger.DefaultLogger; 

import sg.edu.nus.base.util.ObjectUtil; 

import sg.edu.nus.base.util.HexUtil; 

import sg.edu.nus.base.util.PauseUtil; 

import sg.edu.nus.safer.constant.SaferConst; 

import sg.edu.nus.safer.hcp.HCP10Client; 

import sg.edu.nus.safer.knp.KNP10Client; 

import sg.edu.nus.safer.knp.KNPHelloMessage; 

import sg.edu.nus.safer.knp.KNPReplyMessage; 

import sg.edu.nus.safer.cert.CertDB; 

import sg.edu.nus.safer.attack.AttackUtils; 

import com.integrosys.base.techinfra.propertyfile.PropertyManager; 

import crypto.MasterCert; 

import firefox.crypto.CryptoUtils; 
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import firefox.crypto.RSAPublicKey; 

 

public class Agent extends object.Agent { 

    private byte[] m_key_seed = 

PropertyManager.getValue("agent.InitialKeySeed", 

"supermanmagicgal").getBytes(); 

    private int m_skey_counter = 0; 

    private String m_currentHostID; 

    private Host m_currentHost; 

    private IKeyExchange m_keyExchange; 

    private byte[] m_encrypted_y; 

    private AgentSuitcase m_agentSuitcase; 

 

 // Constructor 

    public Agent(String ID, String description, MasterCert cert, 

String ownerID, String ownerEmail) { 

        super(ID, description, cert, ownerID, ownerEmail); 

        init(); 

    } 

 

 // Initializes the agent 

    private int init() { 

        m_agentSuitcase = new AgentSuitcase(getID()); 

        return 1; 

    } 

 

    public void setKeySeed(byte[] key_seed) { 

        m_key_seed = key_seed; 

        m_skey_counter = 0; 

    } 

 

    private byte[] getKeySeed() { 

        return m_key_seed; 
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    } 

 

 // Get the next skey counter 

    private int nextCounterValue() { 

        DefaultLogger.info(this, "Getting next counter value, 

increasing by one from " + m_skey_counter); 

        return ++m_skey_counter; 

    } 

 

 // Decrease skey counter (used for attack simulation) 

    public void decreaseCounterValue() { 

        DefaultLogger.info(this, "Decreasing counter value, this 

should be called only if it is necessary to rollback the counter 

value in case of failure!"); 

        m_skey_counter--; 

    } 

 

 // Obtain the next communication session key 

    public byte[] getSessionKey(String host_id) throws BaseException 

{ 

 

        IMDService md = CryptoFactory.getMDService(); 

        md.initialize(); 

        if (getKeySeed() != null) md.update(getKeySeed()); 

        if (host_id != null) md.update(host_id); 

        md.update(new Integer(nextCounterValue()).toString()); 

        byte[] hash = md.digest(); 

        byte[] key = new byte[SaferConst.SKEY_LEN]; 

        System.arraycopy(hash, 0, key, 0, SaferConst.SKEY_LEN); 

        return key; 

    } 

 

 // Get data encryption key 
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    public byte[] getDEK(String host_id) throws BaseException { 

        IMDService md = CryptoFactory.getMDService(); 

        md.initialize(); 

        if (getKeySeed() != null) md.update(getKeySeed()); 

        if (host_id != null) md.update(host_id); 

        byte[] hash = md.digest(); 

        byte[] key = new byte[SaferConst.DEK_LEN]; 

        System.arraycopy(hash, 0, key, 0, SaferConst.DEK_LEN); 

        return key; 

    } 

 

    public String getButlerHost() { 

        return PropertyManager.getValue("agent.Butler.Address"); 

    } 

    public int getButlerPort() { 

        return PropertyManager.getInt("agent.Butler.Port"); 

    } 

    public void setCurrentHostID(String hostID) { 

        m_currentHostID = hostID; 

    } 

    public String getCurrentHostID() { 

        return m_currentHostID; 

    } 

 

    public void setCurrentHost(Host host) { m_currentHost = host; } 

    public Host getCurrentHost() { return m_currentHost; } 

 

  // Process echo message from agent butler 

    public void processEcho(byte[] cipher) throws BaseException { 

        DefaultLogger.info(this, "Processing echo message"); 

        byte[] plain = null; 

        if (SaferConst.USE_SAFER) { 

            IEncryptionService encryptor = 



Secure Agent Transport And Integrity Protection  106 

CryptoFactory.getEncryptionService(); 

            plain = 

encryptor.decrypt(getSessionKey(getCurrentHostID()), cipher); 

            plain = CryptoUtils.unpad(plain); 

        } else { 

            plain = cipher; 

        } 

        DefaultLogger.info(this, "Butler says: " + new String(plain)); 

    } 

 

 // Send echo message to agent butler 

    public void sendEchoToButler(String message) throws BaseException 

{ 

        DefaultLogger.info(this, "Send echo message to butler"); 

        byte[] cipher = null; 

        if (SaferConst.USE_SAFER) { 

            IEncryptionService encryptor = 

CryptoFactory.getEncryptionService(); 

            byte[] plain = CryptoUtils.pad(message.getBytes()); 

            cipher = 

encryptor.encrypt(getSessionKey(getCurrentHostID()), plain); 

        } else { 

            cipher = message.getBytes(); 

        } 

        KNP10Client client = new KNP10Client(getButlerHost(), 

getButlerPort()); 

        client.sendABEcho(getID(), getCurrentHostID(), cipher); 

    } 

 

 // Prepares hello message (with SAFER) 

    private KNPHelloMessage prepareHelloMessageWithSAFER(String 

hostID, String hostAddr, int hostPort) throws BaseException { 

        DefaultLogger.info(this, "Start to roam to host with 
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SAFER ..."); 

        // initialize DH key exchange 

        DefaultLogger.info(this, "Generating DH private and public 

parameter ..."); 

        m_keyExchange = CryptoFactory.getKeyExchange(); 

        m_keyExchange.initialize(); 

 

        // prepare plain information to send to butler 

        // including target host ID, dh public param 

        DefaultLogger.info(this, "Preparing target host ID, dh public 

param for key exchange ..."); 

        Object dh_public = m_keyExchange.getPublicKey(); 

        //String targetHostID = 

PropertyManager.getValue("targethost.ID"); 

        String targetHostID = hostID; 

        //String host = 

PropertyManager.getValue("targethost.Address"); 

        //int port = PropertyManager.getInt("targethost.Port"); 

        String host = hostAddr; 

        int port = hostPort; 

        Vector v = new Vector(3); 

        v.addElement(targetHostID); 

        v.addElement(dh_public); 

        v.addElement(getID()); 

 

 

        // serialize data carrier v in order to encrypt 

        byte[] cipher = null; 

        try { 

            byte[] plain = ObjectUtil.objectToBytes(v); 

            DefaultLogger.info(this, "Plain data size is: " + 

plain.length); 

            plain = CryptoUtils.pad(plain); 



Secure Agent Transport And Integrity Protection  108 

            IEncryptionService encryptor = 

CryptoFactory.getEncryptionService(); 

            DefaultLogger.info(this, "Plain before encryption is: " + 

HexUtil.bytesToHex(plain)); 

            cipher = 

encryptor.encrypt(getSessionKey(getCurrentHostID()), plain); 

            DefaultLogger.info(this, "Encrypted result is (size " + 

cipher.length + "): " + HexUtil.bytesToHex(cipher)); 

        } catch (Throwable t) { 

            t.printStackTrace(); 

            throw new BaseException("Exception caught in Agent while 

encrypting information with session key"); 

        } 

 

        KNPHelloMessage message = new KNPHelloMessage(); 

        message.addData(getCurrentHostID()); 

        message.addData(cipher); 

        message.addData(getID()); 

        message.addData(host); 

        message.addData(new Integer(port)); 

        message.addData(targetHostID); 

        return message; 

    } 

 

 // Prepares hello message (not using SAFER, for comparison 

purpose) 

    private KNPHelloMessage prepareHelloMessageWithoutSAFER(String 

hostID, String hostAddr, int hostPort) throws BaseException { 

        DefaultLogger.info(this, "Start to roam to host without 

SAFER ..."); 

        // prepare plain information to send to butler 

        // including target host ID but no dh public param 

        DefaultLogger.info(this, "Preparing target host ID for 
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roaming ..."); 

        //String targetHostID = 

PropertyManager.getValue("targethost.ID"); 

        String targetHostID = hostID; 

        //String host = 

PropertyManager.getValue("targethost.Address"); 

        String host = hostAddr; 

        //int port = PropertyManager.getInt("targethost.Port"); 

        int port = hostPort; 

        KNPHelloMessage message = new KNPHelloMessage(); 

        message.addData(targetHostID); 

        message.addData(getID()); 

        message.addData(host); 

        message.addData(new Integer(port)); 

        return message; 

    } 

 // Trigger agent roaming to next host 

    public void roamToHost(String hostID, String hostAddr, int 

hostPort) throws BaseException { 

        KNPHelloMessage message = null; 

        if (SaferConst.USE_SAFER) message = 

prepareHelloMessageWithSAFER(hostID, hostAddr, hostPort); 

        else message = prepareHelloMessageWithoutSAFER(hostID, 

hostAddr, hostPort); 

        // send message to butler 

        PauseUtil.pause(); 

        KNP10Client client = new KNP10Client(getButlerHost(), 

getButlerPort()); 

        client.connectToServer(); 

        KNPReplyMessage reply = client.sendHelloMessage(message); 

        if (SaferConst.USE_SAFER) processReplyMessageWithSAFER(reply); 

        else processReplyMessageWithoutSAFER(reply); 

        DefaultLogger.info(this, "About to request current host to 



Secure Agent Transport And Integrity Protection  110 

send itself to target host ..."); 

        PauseUtil.pause(); 

        //String host = 

PropertyManager.getValue("targethost.Address"); 

        //int port = PropertyManager.getInt("targethost.Port"); 

        getCurrentHost().sendAgent(this, hostAddr, hostPort); 

    } 

 

 // process KNP reply message (using SAFER) 

    private void processReplyMessageWithSAFER(KNPReplyMessage reply) 

throws BaseException { 

        DefaultLogger.info(this, "Processing reply message with 

SAFER ..."); 

        byte[] cipher = (byte[]) reply.getDataAt(0); 

 

        IEncryptionService encryptor = 

CryptoFactory.getEncryptionService(); 

        byte[] plain = 

encryptor.decrypt(getSessionKey(getCurrentHostID()), cipher); 

        plain = CryptoUtils.unpad(plain); 

        DefaultLogger.info(this, "Decrypted plain length is: " + 

plain.length); 

 

        m_encrypted_y = plain; 

        if (AttackUtils.isHostAttackEnabled(4, 

getCurrentHost().getID())) { 

            // use a dummy message to replace encrypted y 

            DefaultLogger.info(this, "creating fake DH param"); 

            m_keyExchange = CryptoFactory.getKeyExchange(); 

            m_keyExchange.initialize(); 

            Vector v = new Vector(); 

            v.addElement(m_keyExchange.getPublicKey()); // DH param 

            v.addElement("natalya");    // dummy host ID, use the 
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right host 

            v.addElement("bond");       // dummy agent ID 

            v.addElement(new Date());   // dummy timestamp 

            plain = ObjectUtil.objectToBytes(v); 

            // Encrypt plain with destination host's public key 

            RSAPublicKey host_pub_key = CertDB.getCert("natalya"); 

            m_encrypted_y = RSAUtils.publicEncrypt(plain, 

host_pub_key); 

        } 

 

        DefaultLogger.info(this, "Persisted encrypted y, proceed to 

roam to destination"); 

 

        // hack 

        //continueKeyNegotiationWithNewHost(); 

    } 

 

 // Continue KNP with the next host 

    private void continueKeyNegotiationWithNewHost() throws 

BaseException { 

        if (!SaferConst.USE_SAFER) return; 

        DefaultLogger.info(this, "Trying to reestablish key seed 

after reaching new host"); 

 

        // request host to decrypt 

        Object dh_public_key = 

getCurrentHost().decryptDHPublicKey(m_encrypted_y); 

        if (!SaferConst.USE_NEW_KNP_FORMULA) { 

            // no additional processing required 

        } else { 

            DefaultLogger.info(this, "Using new KNP formula"); 

            Vector v = (Vector) dh_public_key; 

            dh_public_key = v.elementAt(0); 
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            String intendedHostID = (String) v.elementAt(1); 

            String intendedAgentID = (String) v.elementAt(2); 

            // discard timestamp, no need to check 

            // check if host ID matches 

            if (!getCurrentHost().getID().equals(intendedHostID)) { 

                throw new BaseException("Host ID mismatch!"); 

            } 

            // check if agent ID matches 

            if (!getID().equals(intendedAgentID)) { 

                throw new BaseException("Agent ID mismatch!"); 

            } 

        } 

        byte[] key_seed = m_keyExchange.negotiate(dh_public_key); 

        setKeySeed(key_seed); 

        DefaultLogger.info(this, "New Key Seed: " + 

HexUtil.bytesToHex(key_seed)); 

    } 

 // Process KNP reply message (not using SAFER) 

    private void processReplyMessageWithoutSAFER(KNPReplyMessage 

reply) throws BaseException { 

        DefaultLogger.info(this, "Processing reply message without 

SAFER ..."); 

        String msg = (String) reply.getDataAt(0); 

        DefaultLogger.info(this, "Butler message: " + msg); 

        DefaultLogger.info(this, "Proceed to roam to destination."); 

    } 

 

 // Activates agent itself when reaches destination host 

    public void activate() throws BaseException { 

        DefaultLogger.info(this, "Agent is activated in new host"); 

        if (SaferConst.USE_SAFER) continueKeyNegotiationWithNewHost(); 

    } 
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 // Add data provided by host to data segment 

    public void addData(byte[] plain) throws BaseException { 

        if (SaferConst.USE_SAFER) { 

            addDataWithSAFER(plain); 

        } else { 

            addDataWithoutSAFER(plain); 

        } 

    } 

 // Add ata provided by host to data segment (not using SAFER) 

    private void addDataWithoutSAFER(byte[] plain) throws 

BaseException { 

        try { 

            DefaultLogger.info(this, "Adding plain data into agent 

without SAFER ..."); 

            m_agentSuitcase.addData(plain, getCurrentHostID()); 

 

        } catch (Throwable t) { 

            if (t instanceof BaseException) throw (BaseException) t; 

            t.printStackTrace(); 

            throw new BaseException("Exception in Agent addData"); 

        } 

    } 

 

 // Add data into agent’s data segment (using SAFER) 

    private void addDataWithSAFER(byte[] plain) throws BaseException 

{ 

        try { 

            DefaultLogger.info(this, "Adding plain data into agent 

with SAFER ..."); 

            // format data: d + Id(host) + Id(agent) + ts 

            Vector v = new Vector(); 

            v.addElement(plain); 

            v.addElement(getCurrentHostID()); 
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            v.addElement(getID()); 

            v.addElement(new Date()); 

            // encrypt data with DEK 

            byte[] buf = ObjectUtil.objectToBytes(v); 

            buf = CryptoUtils.pad(buf); 

            IEncryptionService encryptor = 

CryptoFactory.getEncryptionService(); 

            byte[] cipher = 

encryptor.encrypt(getDEK(getCurrentHostID()), buf); 

 

            // request host signature 

            //HCP10Cient client = new 

HCP10Client(getCurrentHost().getAddr(), getCurrentHost().getPort()); 

            //byte[] signature = client.requestHostSignature(getID(), 

cipher); 

            byte[] signature = 

getCurrentHost().processDataSignatureRequest(getID(), cipher); 

            // if attack scenario 1 enabled, randomly modify a byte 

of the incoming data 

            if (AttackUtils.isHostAttackEnabled(1, 

getCurrentHost().getID())) { 

                DefaultLogger.info(this, "Byte 0 was: " + cipher[0]); 

                cipher[0] = (byte) (cipher[0] ^ 0x11); 

                DefaultLogger.info(this, "Byte 0 is now: " + 

cipher[0]); 

            } 

 

            // add data and signature into agent suitcase 

            m_agentSuitcase.addData(cipher, signature, 

getCurrentHostID()); 

            DefaultLogger.info(this, "Data added together with 

signature successfully"); 

        } catch (Throwable t) { 
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            if (t instanceof BaseException) throw (BaseException) t; 

            t.printStackTrace(); 

            throw new BaseException("Exception in Agent addData"); 

        } 

    } 

 

 // Send echo data back to agent butler 

    public void echoData() throws BaseException { 

        try { 

            DefaultLogger.info(this, "Displaying data collected ..."); 

            for (int i = 0; i < m_agentSuitcase.getDataSize(); i++) { 

                byte[] data = m_agentSuitcase.getDataAt(i); 

                byte[] signature = m_agentSuitcase.getSignatureAt(i); 

                String hostID = m_agentSuitcase.getHostIDAt(i); 

                DefaultLogger.info(this, "\t" + (i+1) + ": From Host 

" + hostID + "\t" + HexUtil.bytesToHex(data) + "\t" + 

HexUtil.bytesToHex(signature)); 

            } 

        } catch (Throwable t) { 

            if (t instanceof BaseException) throw (BaseException) t; 

            t.printStackTrace(); 

            throw new BaseException("Exception in Agent echo Data"); 

        } 

    } 

 

 // Verifies agent data integrity when the agent reaches a new 

entity 

    public void verifyDataIntegrity() throws BaseException { 

        try { 

            DefaultLogger.info(this, "Verifying data integrity ..."); 

            for (int i = 0; i < m_agentSuitcase.getDataSize(); i++) { 

                byte[] data = m_agentSuitcase.getDataAt(i); 

                byte[] signature = m_agentSuitcase.getSignatureAt(i); 
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                String hostID = m_agentSuitcase.getHostIDAt(i); 

                DefaultLogger.info(this, "\t" + (i+1) + ": From Host 

" + hostID + "\t" + HexUtil.bytesToHex(data) + "\t" + 

HexUtil.bytesToHex(signature)); 

                // get public key of host 

                RSAPublicKey pubKey = CertDB.getCert(hostID); 

                // perform hash on data 

                IMDService md = CryptoFactory.getMDService(); 

                byte[] hash = md.hash(data); 

                byte[] hash2 = RSAUtils.publicDecrypt(signature, 

pubKey); 

                DefaultLogger.info(this, "Hash from storage   :\t" + 

HexUtil.bytesToHex(hash)); 

                DefaultLogger.info(this, "Hash from calculated:\t" + 

HexUtil.bytesToHex(hash2)); 

                if (hash.length != hash2.length) throw new 

BaseException("Signature length mismatch " + hash.length + "\t" + 

hash2.length); 

                for (int j = 0; j < hash.length; j++) { 

                    if (hash[j] != hash2[j]) throw new 

BaseException("Signature value mismatch"); 

                } 

            } 

            DefaultLogger.info(this, "Signature verification 

successful!"); 

        } catch (Throwable t) { 

            if (t instanceof BaseException) throw (BaseException) t; 

            t.printStackTrace(); 

            throw new BaseException("Exception in Agent 

verifyDataIntegrity"); 

        } 

    } 
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 // Get agent data at host i 

    public byte[] getAgentData(int i) throws BaseException { 

        return m_agentSuitcase.getDataAt(i); 

    } 

 

 // Get agent signature at host i 

    public byte[] getAgentSignature(int i) throws BaseException { 

        return m_agentSuitcase.getSignatureAt(i); 

    } 

 

    public void setAgentData(int i, byte[] data) throws BaseException 

{ 

        m_agentSuitcase.setDataAt(i, data); 

    } 

 

    public void setAgentSignature(int i, byte[] signature) throws 

BaseException { 

        m_agentSuitcase.setSignatureAt(i, signature); 

    } 

 

    public int getAgentDataCount() throws BaseException { 

        return m_agentSuitcase.getDataSize(); 

    } 

 

    public void removeAgentRecordAt(int index) { 

        m_agentSuitcase.removeDataAt(index); 

        m_agentSuitcase.removeSignatureAt(index); 

        m_agentSuitcase.removeHostAt(index); 

    } 

 

    public String getHostIDAt(int index) { 

        return m_agentSuitcase.getHostIDAt(index); 

    } 
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 // For attack simulation 

    public void forgeItinerary(byte[] data, byte[] signature, String 

hostID) throws BaseException { 

        m_agentSuitcase.addData(data, signature, hostID); 

    } 

} 
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Source code of Butler.java: 

 

package sg.edu.nus.safer.object; 

 

import java.io.*; 

import java.util.*; 

 

import sg.edu.nus.base.logger.DefaultLogger; 

import sg.edu.nus.base.crypto.CryptoFactory; 

import sg.edu.nus.base.crypto.IKeyExchange; 

import sg.edu.nus.base.crypto.IMDService; 

import sg.edu.nus.base.crypto.IEncryptionService; 

import sg.edu.nus.base.crypto.RSAUtils; 

import sg.edu.nus.base.exception.BaseException; 

import sg.edu.nus.base.util.PauseUtil; 

import sg.edu.nus.base.util.HexUtil; 

import sg.edu.nus.base.util.ObjectUtil; 

import sg.edu.nus.safer.bat.BATProtocolHandler; 

import sg.edu.nus.safer.bcp.BCPProtocolHandler; 

import sg.edu.nus.safer.knp.KNPProtocolHandler; 

import sg.edu.nus.safer.knp.KNPHelloMessage; 

import sg.edu.nus.safer.knp.KNPReplyMessage; 

import sg.edu.nus.safer.knp.KNP10Client; 

import sg.edu.nus.safer.constant.SaferConst; 

import sg.edu.nus.safer.cert.CertDB; 

import sg.edu.nus.safer.util.ItineraryTracker; 

import sg.edu.nus.safer.util.ItineraryObject; 

 

import firefox.crypto.CryptoUtils; 

import firefox.crypto.RSAPublicKey; 

import object.Owner; 

import cana.io.*; 

import crypto.MasterCert; 
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import com.integrosys.base.techinfra.propertyfile.PropertyManager; 

 

 

public class Butler extends Owner { 

 

    private IKeyExchange m_keyExchange = null; 

    private byte[] m_key_seed = 

PropertyManager.getValue("butler.InitialKeySeed", 

"supermanmagicgal").getBytes(); 

    private int m_skey_counter = 0; 

    private Hashtable m_agents; 

    private Hashtable m_agents_roaming; 

 

 // Constructor 

    public Butler(String ID, String description, MasterCert cert) { 

        super(ID, description, cert); 

        init(); 

    } 

 

 // Initialize agent butler 

    private int init() { 

        DefaultLogger.info(this, "Butler " + getID() + " 

initializing ..."); 

        try { 

            // Cache DH parameter for potential KNP request 

            initDH(); 

            m_agents = new Hashtable(); 

            m_agents_roaming = new Hashtable(); 

            return 1; 

        } catch (Throwable t) { 

            t.printStackTrace(); 

            return -1; 

        } 
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    } 

 

 // Initialize for DH key exchange 

    public void initDH() throws BaseException { 

        if (!SaferConst.USE_SAFER) return; 

        DefaultLogger.info(this, "Initializing DH key exchange ..."); 

        m_keyExchange = CryptoFactory.getKeyExchange(); 

        m_keyExchange.initialize(); 

    } 

 

    public int getPort() { 

        return PropertyManager.getInt("butler.Port"); 

    } 

 // Starts to listen for agent requests 

    public void startService() { 

        try { 

            JMessageServer ms = new JMessageServer(); 

            ms.setPort(getPort()); 

            KNPProtocolHandler pHandler = new KNPProtocolHandler(); 

            pHandler.init(); 

            pHandler.setButler(this); 

            BCPProtocolHandler pHandler2 = new BCPProtocolHandler(); 

            pHandler2.init(); 

            pHandler2.setButler(this); 

            BATProtocolHandler pHandler3 = new BATProtocolHandler(); 

            pHandler3.init(); 

            pHandler3.setButler(this); 

            ms.registerProtocolHandler(pHandler); 

            ms.registerProtocolHandler(pHandler2); 

            ms.registerProtocolHandler(pHandler3); 

            ms.start(); 

        } catch (Throwable t) { 

            t.printStackTrace(); 
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        } 

    } 

 // Set key seed with agent 

    public void setKeySeed(byte[] key_seed) { 

        m_key_seed = key_seed; 

        m_skey_counter = 0; 

    } 

 

    public byte[] getKeySeed() { return m_key_seed; } 

    private int nextCounterValue() { 

        DefaultLogger.info(this, "Getting next counter value, 

increasing by one from " + m_skey_counter); 

        return ++m_skey_counter; 

    } 

    public void decreaseCounterValue() { 

        DefaultLogger.info(this, "Decreasing counter value, this 

should be called only if it is necessary to rollback the counter 

value in case of failure!"); 

        m_skey_counter--; 

    } 

 // Derive communications session key 

    public byte[] getSessionKey(String host_id) throws BaseException 

{ 

        IMDService md = CryptoFactory.getMDService(); 

        md.initialize(); 

        if (getKeySeed() != null) md.update(getKeySeed()); 

        if (host_id != null) md.update(host_id); 

        md.update(new Integer(nextCounterValue()).toString()); 

        byte[] hash = md.digest(); 

        byte[] key = new byte[SaferConst.SKEY_LEN]; 

        System.arraycopy(hash, 0, key, 0, SaferConst.SKEY_LEN); 

        return key; 

    } 
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 // get data encryption key 

    public byte[] getDEK(String host_id) throws BaseException { 

        IMDService md = CryptoFactory.getMDService(); 

        md.initialize(); 

        if (getKeySeed() != null) md.update(getKeySeed()); 

        if (host_id != null) md.update(host_id); 

        byte[] hash = md.digest(); 

        byte[] key = new byte[SaferConst.DEK_LEN]; 

        System.arraycopy(hash, 0, key, 0, SaferConst.DEK_LEN); 

        return key; 

    } 

 // Process KNP hello message 

    public KNPReplyMessage processHello(KNPHelloMessage hello) throws 

BaseException { 

        KNPReplyMessage reply = null; 

        String agentID, targetHostID, targetHostAddr; 

        int targetHostPort; 

        if (SaferConst.USE_SAFER) { 

            reply = processHelloWithSAFER(hello); 

            agentID = (String) hello.getDataAt(2); 

            targetHostID = (String) hello.getDataAt(5); 

            targetHostAddr = (String) hello.getDataAt(3); 

            targetHostPort = ((Integer) 

hello.getDataAt(4)).intValue(); 

        } else { 

            reply = processHelloWithoutSAFER(hello); 

            agentID = (String) hello.getDataAt(1); 

            targetHostID = (String) hello.getDataAt(0); 

            targetHostAddr = (String) hello.getDataAt(2); 

            targetHostPort = ((Integer) 

hello.getDataAt(3)).intValue(); 

        } 

        // update agent location 
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        ItineraryTracker.recordAgentMovement(agentID, targetHostID, 

targetHostAddr, targetHostPort, getKeySeed()); 

        return reply; 

    } 

 

    private KNPReplyMessage processHelloWithSAFER(KNPHelloMessage 

hello) throws BaseException { 

        DefaultLogger.info(this, "Processing hello with SAFER ..."); 

        String currentHostID = (String) hello.getDataAt(0); 

        String targetHostID = null; 

        byte[] cipher = (byte[]) hello.getDataAt(1); 

        String agentID = (String) hello.getDataAt(2); 

         

        DefaultLogger.info(this, "Decrypting incoming cipher 

message ..."); 

        IEncryptionService encryptor = 

CryptoFactory.getEncryptionService(); 

        byte[] plain = encryptor.decrypt(getSessionKey(currentHostID), 

cipher); 

        plain = CryptoUtils.unpad(plain); 

        DefaultLogger.info(this, "Plain data size after decryption: " 

+ plain.length); 

        Object dh_public = null; 

        try { 

            Vector v = (Vector) ObjectUtil.bytesToObject(plain); 

            targetHostID = (String) v.elementAt(0); 

            dh_public = v.elementAt(1); 

        } catch (Throwable t) { 

            t.printStackTrace(); 

            throw new BaseException("Exception in Butler 

processHelloWithSAFER ..."); 

        } 
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        DefaultLogger.info(this, "Performing DH key exchange 

protocol ..."); 

        byte[] new_key_seed = m_keyExchange.negotiate(dh_public); 

        dh_public = m_keyExchange.getPublicKey(); 

        PauseUtil.pause(); 

        if (!SaferConst.USE_NEW_KNP_FORMULA) { 

            DefaultLogger.info(this, "Converting dh public param to 

byte array for encryption ..."); 

            plain = ObjectUtil.objectToBytes(dh_public); 

        } else { 

            DefaultLogger.info(this, "Construct a vector with dh 

public, ID host, ID agent, and timestamp"); 

            Vector v = new Vector(); 

            v.addElement(dh_public); 

            v.addElement(targetHostID); 

            v.addElement(agentID); 

            v.addElement(new Date()); 

            plain = ObjectUtil.objectToBytes(v); 

        } 

 

        PauseUtil.pause(); 

        DefaultLogger.info(this, "Encrypting the dh param with the 

target host " + targetHostID + "'s public key ..."); 

        DefaultLogger.info(this, "Plain data length is: " + 

plain.length); 

        RSAPublicKey host_pub_key = CertDB.getCert(targetHostID); 

        cipher = RSAUtils.publicEncrypt(plain, host_pub_key); 

 

        plain = cipher; // the encrypted dh_param will be further 

encrypted by session key 

 

        PauseUtil.pause(); 

        DefaultLogger.info(this, "Encrypting the result with new 
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session key ..."); 

        DefaultLogger.info(this, "Plain data size is: " + 

plain.length); 

        plain = CryptoUtils.pad(plain); 

        cipher = encryptor.encrypt(getSessionKey(currentHostID), 

plain); 

 

        KNPReplyMessage reply = new KNPReplyMessage(); 

        reply.addData(cipher); 

        setKeySeed(new_key_seed); 

        DefaultLogger.info(this, "New Key Seed: " + 

HexUtil.bytesToHex(new_key_seed)); 

        return reply; 

    } 

    private KNPReplyMessage processHelloWithoutSAFER(KNPHelloMessage 

hello) throws BaseException { 

        DefaultLogger.info(this, "Processing hello without 

SAFER ..."); 

        String hostID = (String) hello.getDataAt(0); 

        DefaultLogger.info(this, "Agent heading for " + hostID); 

        KNPReplyMessage reply = new KNPReplyMessage(); 

        reply.addData("OK to roam"); 

        return reply; 

    } 

 

 // Process echo message from agent 

    public void processEcho(String agentID, String hostID, byte[] 

cipher) throws BaseException { 

        DefaultLogger.info(this, "Processing echo message"); 

        byte[] plain = null; 

        if (SaferConst.USE_SAFER) { 

            IEncryptionService encryptor = 

CryptoFactory.getEncryptionService(); 
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            plain = encryptor.decrypt(getSessionKey(hostID), cipher); 

            plain = CryptoUtils.unpad(plain); 

        } else { 

            plain = cipher; 

        } 

        DefaultLogger.info(this, "Agent " + agentID + " says: " + new 

String(plain)); 

    } 

 // Process echo request fro command line 

    public void processEchoRequest(String agentID, String message) 

throws BaseException { 

        DefaultLogger.info(this, "Processing send echo message 

request"); 

        byte[] cipher = null; 

        if (SaferConst.USE_SAFER) { 

            IEncryptionService encryptor = 

CryptoFactory.getEncryptionService(); 

            byte[] plain = CryptoUtils.pad(message.getBytes()); 

            cipher = 

encryptor.encrypt(getSessionKey(getAgentHostID(agentID)), plain); 

        } else { 

            cipher = message.getBytes(); 

        } 

        KNP10Client client = new 

KNP10Client(getAgentHostAddr(agentID), getAgentHostPort(agentID)); 

        client.sendBAEcho(agentID, getAgentHostID(agentID), cipher); 

    } 

 

    public String getAgentHostID(String agentID) throws BaseException 

{ 

        //return "natalya"; 

        return ItineraryTracker.getAgentCurrentHostID(agentID); 

    } 
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    protected String getAgentHostAddr(String agentID) throws 

BaseException { 

        //return "localhost"; 

        return ItineraryTracker.getAgentCurrentHostAddr(agentID); 

    } 

    protected int getAgentHostPort(String agentID) throws 

BaseException { 

        //return 2030;    // address of nat 

        return ItineraryTracker.getAgentCurrentHostPort(agentID); 

    } 

 

    public Agent getAgent(String agentID) throws BaseException { 

        try { 

            Object agent = m_agents.get(agentID); 

            return (Agent) agent; 

        } catch (Throwable t) { 

            t.printStackTrace(); 

            throw new BaseException("Exception from Butler getAgent"); 

        } 

    } 

 // Get all agents with the butler 

    public Vector getAllAgents() { 

        Vector v = new Vector(); 

        Enumeration enum = m_agents.keys(); 

        while (enum.hasMoreElements()) { 

            String agentID = (String) enum.nextElement(); 

            v.addElement(agentID); 

        } 

        enum = m_agents_roaming.keys(); 

        while (enum.hasMoreElements()) { 

            String agentID = (String) enum.nextElement(); 

            v.addElement(agentID); 

        } 
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        return v; 

    } 

 // Process agent return request 

    public void processAgentReturn(Agent agent) throws BaseException 

{ 

        DefaultLogger.info(this, "Processing returning agent " + 

agent.getID()); 

        DefaultLogger.info(this, "Performing itinerary 

verification ..."); 

        // perform itinerary verification 

        if (SaferConst.USE_SAFER) verifyAgentItinerary(agent); 

 

        DefaultLogger.info(this, "Performing data verification ..."); 

        // perform integrity check 

        if (SaferConst.USE_SAFER) agent.verifyDataIntegrity(); 

        m_agents.put(agent.getID(), agent); 

        m_agents_roaming.remove(agent.getID()); 

        DefaultLogger.info(this, "Performing data decryption ..."); 

        PauseUtil.pause(); 

        if (SaferConst.USE_SAFER) decryptAgentData(agent); 

    } 

 // Decrypt data carried by returned agent 

    private void decryptAgentData(Agent agent) throws BaseException { 

        Vector v = ItineraryTracker.getAgentItinerary(agent.getID()); 

        for (int i=0; i<agent.getAgentDataCount(); i++) { 

            byte[] cipher = agent.getAgentData(i); 

            ItineraryObject itinerary = (ItineraryObject) 

v.elementAt(i); 

            byte[] keySeed = itinerary.getKeySeed(); 

            byte[] dek = getDEK(keySeed, itinerary.getHostID()); 

            IEncryptionService encryptor = 

CryptoFactory.getEncryptionService(); 

            byte[] plain = encryptor.decrypt(dek, cipher); 
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            plain = CryptoUtils.unpad(plain); 

            DefaultLogger.info(this, "Plain data at host (" + (i+1) + 

") is: [" + (new String((byte[]) ((Vector) 

ObjectUtil.bytesToObject(plain)).elementAt(0))) + "]"); 

        } 

    } 

 // reconstruct data encryption key at a particular host 

    private byte[] getDEK(byte[] keySeed, String host_id) throws 

BaseException { 

        DefaultLogger.info(this, "Calculating DEK with host ID " + 

host_id + " and key seed: " + new String(keySeed)); 

        IMDService md = CryptoFactory.getMDService(); 

        md.initialize(); 

        if (keySeed != null) md.update(keySeed); 

        if (host_id != null) md.update(host_id); 

        byte[] hash = md.digest(); 

        byte[] key = new byte[SaferConst.DEK_LEN]; 

        System.arraycopy(hash, 0, key, 0, SaferConst.DEK_LEN); 

        return key; 

    } 

 

 // Add agent to roaming list 

    public void addRoamingAgent(String agentID) { 

        m_agents_roaming.put(agentID, agentID); 

    } 

 

 // Verifies agent integrity 

    private void verifyAgentItinerary(Agent agent) throws 

BaseException { 

        Vector itinerary = 

ItineraryTracker.getAgentItinerary(agent.getID()); 

        if (agent.getAgentDataCount() != itinerary.size()) throw new 

BaseException("Agent Itinerary has been compromised - -1"); 
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        for (int i=0; i < itinerary.size(); i++) { 

            String host_id_in_agent = agent.getHostIDAt(i); 

            String host_id_in_butler = ((ItineraryObject) 

itinerary.elementAt(i)).getHostID(); 

            if (host_id_in_agent.equals(host_id_in_butler)) continue; 

            else throw new BaseException("Agent Itinerary has been 

compromised " + i); 

        } 

    } 

} 
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Source code of Host.java: 

 

package sg.edu.nus.safer.object; 

 

import java.util.*; 

 

import sg.edu.nus.base.exception.BaseException; 

import sg.edu.nus.base.crypto.RSAUtils; 

import sg.edu.nus.base.crypto.CryptoFactory; 

import sg.edu.nus.base.crypto.IMDService; 

import sg.edu.nus.base.util.ObjectUtil; 

import sg.edu.nus.base.util.HexUtil; 

import sg.edu.nus.base.util.PauseUtil; 

import sg.edu.nus.base.logger.DefaultLogger; 

import sg.edu.nus.safer.hcp.HCPProtocolHandler; 

import sg.edu.nus.safer.knp.KNPProtocolHandler; 

import sg.edu.nus.safer.bat.BATProtocolHandler; 

import sg.edu.nus.safer.bat.BAT10Client; 

import sg.edu.nus.safer.constant.SaferConst; 

import sg.edu.nus.safer.attack.AttackUtils; 

import sg.edu.nus.safer.demo.Jinx; 

import firefox.crypto.RSAPrivateKey; 

import crypto.MasterCert; 

import cana.io.*; 

 

public class Host extends object.Host { 

 

    private Hashtable m_agents; 

 

 // Constructor 

    public Host(String ID, String description, MasterCert cert, 

String addr, int port) { 

        super(ID, description, cert, addr, port); 
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        m_agents = new Hashtable(); 

    } 

 // Decrypt DH public key for agent 

    public Object decryptDHPublicKey(byte[] cipher) throws 

BaseException { 

        try { 

            RSAPrivateKey key = 

((sg.edu.nus.base.crypto.rsa.RSAPrivateKey) 

getMasterCert().getPrivateKey()).getRSAKey(); 

            DefaultLogger.info(this, "Cipher is " + 

HexUtil.bytesToHex(cipher)); 

            DefaultLogger.info(this, "RSA Private Key is: " + key); 

            byte[] plain = RSAUtils.privateDecrypt(cipher, key); 

            Object dh_pub_key = ObjectUtil.bytesToObject(plain); 

            return dh_pub_key; 

        } catch (Throwable t) { 

            t.printStackTrace(); 

            throw new BaseException("Exception in Host 

decryptDHPublicKey"); 

        } 

    } 

 // Send agent to destination host 

    public void sendAgent(Agent agent, String host, int port) throws 

BaseException { 

        DefaultLogger.info(this, "Agent " + agent.getID() + " 

requests to be sent to host at " + host + ":" + port); 

        try { 

            // to invoke basic agent transport protocol 

            BAT10Client client = new BAT10Client(host, port); 

            client.sendAgent(agent); 

            DefaultLogger.info(this, "Agent departed successfully"); 

            m_agents.remove(agent.getID()); 

        } catch (Throwable t) { 
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            t.printStackTrace(); 

            throw new BaseException("Exception in Host sendAgent"); 

        } 

    } 

 // Add agent into local agent list 

    public void addAgent(Agent agent) throws BaseException { 

        m_agents.put(agent.getID(), agent); 

    } 

 // Process incoming agent 

    public void processIncomingAgent(Agent agent) throws 

BaseException { 

        DefaultLogger.info(this, "Processing incoming agent: " + 

agent.getID()); 

        DefaultLogger.info(this, "Performing integrity check on 

agent ..."); 

        PauseUtil.pause(); 

        // perform integrity check on datas carried by the agent 

        if (SaferConst.USE_SAFER) agent.verifyDataIntegrity(); 

 

        DefaultLogger.info(this, "Integrity check completed, 

accepting agent ..."); 

        PauseUtil.pause(); 

        m_agents.put(agent.getID(), agent); 

        agent.setCurrentHost(this); 

        agent.setCurrentHostID(getID()); 

        agent.activate(); 

        if (SaferConst.GUI_ENABLE) { 

            // Code here is not elegant!!! 

            

sg.edu.nus.safer.gui.host.HostMainFrame.getInstance().update(); 

        } 

    } 
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 // Starting listening for incoming agent 

    public void listenForIncomingAgent() throws BaseException { 

        DefaultLogger.info(this, "Starting to listen for incoming 

agent (blocking call) ..."); 

        try { 

            JMessageServer ms = new JMessageServer(); 

            ms.setPort(getPort()); 

            BATProtocolHandler pHandler = new BATProtocolHandler(); 

            pHandler.init(); 

            pHandler.setHost(this); 

            KNPProtocolHandler pHandler2 = new KNPProtocolHandler(); 

            pHandler2.init(); 

            pHandler2.setHost(this); 

            HCPProtocolHandler pHandler3 = new HCPProtocolHandler(); 

            pHandler3.init(); 

            pHandler3.setHost(this); 

            ms.registerProtocolHandler(pHandler); 

            ms.registerProtocolHandler(pHandler2); 

            ms.registerProtocolHandler(pHandler3); 

            ms.start(); 

        } catch (Throwable t) { 

            t.printStackTrace(); 

            throw new BaseException("Exception from Host 

listenForIncomingAgent"); 

        } 

         

    } 

 

    // Received butler echo message for agent 

    public void processEcho(String agentID, byte[] cipher) throws 

BaseException { 

        Agent agent = (Agent) m_agents.get(agentID); 

        agent.processEcho(cipher); 
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    } 

 

    // Received agent echo request for butler 

    public void processEchoRequest(String agentID, String message) 

throws BaseException { 

        Agent agent = (Agent) m_agents.get(agentID); 

        agent.sendEchoToButler(message); 

    } 

 // Process data signing request 

    public byte[] processDataSignatureRequest(String agentID, byte[] 

data) throws BaseException { 

        // Perform hashing on data 

        IMDService md = CryptoFactory.getMDService(); 

        byte[] hash = md.hash(data); 

        // encrypt hash with private key 

        RSAPrivateKey key = 

((sg.edu.nus.base.crypto.rsa.RSAPrivateKey) 

getMasterCert().getPrivateKey()).getRSAKey(); 

        byte[] signature = RSAUtils.privateEncrypt(hash, key); 

        return signature; 

    } 

 // Process data deposit request 

    public void processDepositDataRequest(String agentID, String data) 

throws BaseException { 

        Agent agent = (Agent) m_agents.get(agentID); 

        agent.addData(data.getBytes()); 

    } 

 // Process echo data request 

    public void processEchoDataRequest(String agentID) throws 

BaseException { 

        Agent agent = (Agent) m_agents.get(agentID); 

        agent.echoData(); 

    } 
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 // Process agent return request 

    public void processAgentReturnRequest(String agentID) throws 

BaseException { 

        Agent agent = (Agent) m_agents.get(agentID); 

        if (AttackUtils.isHostAttackEnabled(2, getID())) { 

            // retrieve agent data collected from jinx at step 1 

            byte[] data = agent.getAgentData(0); 

            // modify agent data 

            data[0] = (byte) (data[0] ^ 0x22); 

            // forge signature with jinx's private key (somehow) 

            byte[] signature = (new 

Jinx()).processDataSignatureRequest(agent.getID(), data); 

            // store information back to the agent 

            agent.setAgentData(0, data); 

            agent.setAgentSignature(0, signature); 

        } 

        if (AttackUtils.isHostAttackEnabled(3, getID())) { 

            // remove data, signature, etc from AgentSuitcase 

            agent.removeAgentRecordAt(0); 

            // actually should reconstruct signature/hash tree as 

well 

        } 

        if (AttackUtils.isHostAttackEnabled(5, getID())) { 

            // add additional itinerary into the agent suitcase 

            byte[] data = agent.getAgentData(0); 

            byte[] signature = agent.getAgentSignature(0); 

            String hostID = agent.getHostIDAt(0); 

            agent.forgeItinerary(data, signature, hostID); 

            // agentSuitcase.addData(data, signature, hostID); 

        } 

        BAT10Client client = new BAT10Client(agent.getButlerHost(), 

agent.getButlerPort()); 

        client.sendAgent(agent); 
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        m_agents.remove(agentID); 

    } 

 

    public Vector getAllAgents() { 

        Vector v = new Vector(); 

        Enumeration enum = m_agents.keys(); 

        while (enum.hasMoreElements()) { 

            v.addElement(enum.nextElement()); 

        } 

        return v; 

    } 

 

    public Agent getAgent(String agentID) { return (Agent) 

m_agents.get(agentID); } 

}
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Appendix B 

Major Source Code for SAT 

 

Source code of MyAgent.java: 

 

package examples; 

import atp.*; 

import stone.*; 

import object.*; 

import crypto.*; 

import func.*; 

import java.io.*; 

import java.util.*; 

 

/** 

 * Demo Agent 

 * 

 * @version 1.0, 25 March 1999 

 * @author Yang Yang (yyeung@usa.net) 

 */ 

public class MyAgent extends IAgent { 

 /** 

  * Constructor 

  * 

  * @param ID Agent ID 

  * @param description Agent description 

  * @param cert Master certificate 

  * @param ownerID Owner ID 
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  * @param ownerEmail Owner's email address 

  * @see stone.IAgent 

  */ 

 public MyAgent(String ID, String description, MasterCert cert, 

String ownerID, String ownerEmail) { 

  super(ID, description, cert, ownerID, ownerEmail); 

 } 

 /** 

  * Overwrite agent invocation 

  */ 

 public void invoke() { 

  super.invoke(); 

  System.out.println("\tThis is invocation implemented by 

MyAgent"); 

  // Invoke open/secret function 

  try { 

   GenericFunction f = getFunction("OPEN"); 

   System.out.println("Function " + f.getFunctionID() 

+ " loaded"); 

   f.invoke(); 

   f = getFunction("SECRET"); 

   System.out.println("Function " + f.getFunctionID() 

+ " loaded"); 

   f.invoke(); 

  } catch (FunctionInvocationException e) { 

   e.printStackTrace(); 

  } 

 } 

 /** 

  * Main routine (for testing) 

  */ 

 public static void main(String[] args) { 

  String ID = "Agent 007"; 
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  String description = "Bond, James Bond"; 

  String ownerID = "M"; 

  String ownerEmail = "yyeung@hotmail.com"; 

  MasterCert cert = null; 

  try { 

   //ObjectInputStream ois = new ObjectInputStream(new 

FileInputStream(new 

File("d:/master/transport/dat/camastercert.dat"))); 

   ObjectInputStream ois = new ObjectInputStream(new 

FileInputStream(new 

File("e:/master/transport/dat/camastercert.dat"))); 

   cert = (MasterCert) ois.readObject(); 

  } catch (Throwable e) { 

   e.printStackTrace(); 

   System.exit(-1); 

  } 

  MyAgent agent = new MyAgent(ID, description, cert, 

ownerID, ownerEmail); 

  GenericFunction f = new MyOpenFunction(); 

  f.setFunctionID("OPEN"); 

  agent.addFunction(f); 

  f = new MySecretFunction(); 

  f.setFunctionID("SECRET"); 

  agent.addFunction(f); 

  /* 

  int i = agent.indirectSend("milan", 2002, "localhost", 

2001); 

  System.out.println("Status: " + i); 

  */ 

  ATP10Client client = new ATP10Client("localhost", 2029); 

  Vector v = client.requestEntryPermit("localhost", 2013, 

agent); 

  System.out.println("Request Entry Permit result: " + 



Secure Agent Transport And Integrity Protection  142 

v.elementAt(0) + "(" + v.elementAt(1) + ")"); 

  v = client.requestRoam("localhost", 2013); 

  System.out.println("Request Roam result: " + 

v.elementAt(0) + "(" + v.elementAt(1) + ")"); 

 } 

} 
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Source code of MyHostA.java: 

 

package examples; 

import atp.*; 

//import stone.*; 

import metal.*; 

import object.*; 

import crypto.*; 

import func.*; 

import java.io.*; 

 

/** 

 * Demo Host A 

 * 

 * @version 1.0, 25 March 1999 

 * @author Yang Yang (yyeung@usa.net) 

 */ 

public class MyHostA extends IHost { 

 /** 

  * Constructor 

  * 

  * @param ID Agent ID 

  * @param description Agent description 

  * @param cert Master certificate 

  * @param addr Host address 

  * @param port Owner service port 

  * @see stone.IAgent 

  */ 

 public MyHostA(String ID, String description, MasterCert cert, 

String addr, int port) { 

  super(ID, description, cert, addr, port); 

 } 

 /** 
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  * Main routine (for testing) 

  */ 

 public static void main(String[] args) { 

  try { 

   String addr = "milan"; 

   String ID = "Host - Singapore"; 

   String description = "This is host Singapore saying 

HI"; 

   //ObjectInputStream ois = new ObjectInputStream(new 

FileInputStream(new 

File("d:/master/transport/dat/host1mastercert.dat"))); 

   ObjectInputStream ois = new ObjectInputStream(new 

FileInputStream(new 

File("e:/master/transport/dat/host1mastercert.dat"))); 

   MasterCert cert = (MasterCert) ois.readObject(); 

   ois.close(); 

   int port = 2029; 

   MyHostA a = new MyHostA(ID, description, cert, addr, 

port); 

   a.startReceptionist(); 

  } catch (Throwable e) { 

   e.printStackTrace(); 

  } 

 } 

}
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Source code of MyHostB.java: 

 

package examples; 

//import stone.*; 

import metal.*; 

import object.*; 

import crypto.*; 

import func.*; 

import java.io.*; 

import java.util.Vector; 

 

/** 

 * Demo Host B 

 * 

 * @version 1.0, 25 March 1999 

 * @author Yang Yang (yyeung@usa.net) 

 */ 

public class MyHostB extends IHost { 

 /** 

  * Constructor 

  * 

  * @param ID Agent ID 

  * @param description Agent description 

  * @param cert Master certificate 

  * @param addr Host address 

  * @param port Owner service port 

  * @see stone.IAgent 

  */ 

 public MyHostB(String ID, String description, MasterCert cert, 

String addr, int port) { 

  super(ID, description, cert, addr, port); 

 } 

 /** 
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  * Main routine (for testing) 

  */ 

 public static void main(String[] args) { 

  try { 

   String addr = "milan"; 

   String ID = "Host - London"; 

   String description = "White Knight, White Knight, 

com'in"; 

   //ObjectInputStream ois = new ObjectInputStream(new 

FileInputStream(new 

File("d:/master/transport/dat/host2mastercert.dat"))); 

   ObjectInputStream ois = new ObjectInputStream(new 

FileInputStream(new 

File("e:/master/transport/dat/host2mastercert.dat"))); 

   MasterCert cert = (MasterCert) ois.readObject(); 

   ois.close(); 

   int port = 2013; 

   MyHostB a = new MyHostB(ID, description, cert, addr, 

port); 

   a.startReceptionist(); 

  } catch (Throwable e) { 

   e.printStackTrace(); 

  } 

 } 

} 
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Appendix C 

Detailed Message Format in SADIS 

Prototype 

 
AB_HELLO: Hello message to initiate key seed negotiation.  This message is sent by 
the agent to the agent butler.  It contains the following: 
 
 
 String currentHostID: ID of the current host (source host) 
 String targetHostID: ID of the destination host 
 byte[] cipher:  Encrypted DH public parameter (for agent butler) 
 String agentID: ID of the agent 
 
BA_REPLY: Reply message in response to KNP_AB_HELLO message.  It is sent by 
the agent butler to the agent.  It contains the following: 
 
 byte[] cipher:  Encrypted DH public parameter (for agent) 
 
AB_ECHO: Echo message from agent to agent butler in order to test encryption using 
communication session key.  It contains the following: 
 
 String agentID: ID of the agent 
 String hostID:  ID of the host where the agent is located 
 byte[] cipher:  Encrypted echo message 
 
BA_ECHO: Echo message from the agent butler to agent in order to test encryption 
using communication session key.  It contains the following: 
 
 String agentID: ID of the agent 
 String hostID:  ID of the current host 
 byte[] cipher:  Encrypted echo message 
 
AB_ECHO_REQ: Request message for agent to butler echo request.  This is sent to 
the agent.  It contains the following: 
 
 String agentID: ID of the agent 
 String message: Plain echo message 
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BA_ECHO_REQ: Request message for butler to agent echo request.  This is sent to 
the butler.  It contains the following: 
 
 String agentID: ID of the agent 
 String message: Plain echo message 
 
DATA_SIGNATURE_REQ: Request from the agent sent to current host for PKI 
signature request.  It contains the following: 
 
 String agentID: ID of the requesting agent 
 byte[] data:  Data to be signed 
 
DATA_SIGNATURE_REP: Reply from the current host in response to a data 
signature request.  It contains the following: 
 
 byte[] signature: Digital signature 
 
DEPOSIT_DATA_REQ: Request message from the current host to deposit data to an 
agent.  It contains the following: 
 
 String agentID: Destination agent ID 
 byte[] data:  Data to be deposited 
 
DEPOSIT_DATA_REP: Reply message in response to a data deposit request.  It 
contains the status: 
 
 String status:  Status of the request.  Should be “OK” if the request is 
successful 
 
ECHO_DATA_REQ: Request to display the data collected from an agent.  This 
message is sent to the agent butler to decrypt and display data collected by a particular 
agent.  It contains the following: 
 
 String agentID: ID of the agent 
 
ECHO_DATA_REP: Reply message to echo data request.  This is sent by the agent 
butler to the requestor.  It contains the status: 
 
 String status: Status of the request.  Should be “OK” if the request is 
successful 
 
AGENT_RETURN_REQ: Request message for an agent to return to butler.  This is 
usually sent to a foreign host to request for the return of a particular agent.  It contains 
the following: 
 
 String agentID: ID of the agent 
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AGENT_RETURN_REP: Reply message in response to an agent return request.  It 
contains the status: 
 
 String status:  Status of the request.  Should be “OK” if the request is 
successful 
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