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Abstract

The Internet provides a large-scale environment for (intelligent) software agents. Agents are
autonomous (mobile) processes, capable of communication with other agents, interaction
with the world, and adaptation to changes in their environment. Current approaches to
support agents are not geared for large-scale settings. The near future holds thousands of
agents, hosts, messages, and migratory movements of agents. These large-scale aspects
require a new approach to facilitate the development of agent applications and support.
AgentScape is a scalable agent-based distributed system described in this paper that aims
at tackling these aspects.
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1 Introduction

Multi-agent systems are subject to much research with a focus mainly on small-
scale homogeneous systems that are developed for specific domains of applica-
tions. In the near future, however, large-scale agent systems will emerge with vast
numbers of agents that communicate, manipulate objects, and move across ma-
chines. Examples of large-scale agent systems include e-business applications (vir-
tual shopping malls and auctions), Internet-wide data warehouses, and navigation
systems. Unfortunately, current systems cannot simply be expanded to cover large
heterogeneous networks such as the Internet, be managed in a distributed fashion
by several administrative organizations at the same time, and support vast numbers
of agents.

When considering scalability, there are a number of key aspects in agent systems
that need further attention. First of all, what exactly is an agent is important. Agents
form the active entities and, from a scalability perspective, should be designed to
operate in very large systems. Related to this issue is the way interaction between
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agents takes place, that is, the communication and coordination among agents. Yet
another key aspect is the ability of an agent to adapt to changes in its environment.
In large-scale systems, an obvious assumption is that the environment changes con-
tinuously, imposing specific requirements on agents.

When dealing with an agent system that is geographically dispersed across a wide-
area network, it is also important to take a look at whether and how agents migrate
between locations. An important assumption is that these systems are not closed.
Instead, they need to operate in an open (and thus extendible) way where agents
from other agent platforms can arrive and leave, leading to security considerations.
Finally, to support the development of agent systems facilitation, tools and plat-
forms to host agents and services for agents, is important as well.

In this paper, agent systems are described from the perspective of two research com-
munities: Artificial Intelligence and Computer Systems. Subsequently, an overview
is given of requirements for large-scale agent systems, and more details on scalabil-
ity issues. Furthermore an outline of AgentScape is presented; a system explicitly
designed to support large-scale agent systems.

The paper is organized as follows. In Section 2 a brief overview is given of current
research on agents. Aspects of large-scale agent systems are described in Section 3.
Current research on a scalable agent operating system, AgentScape, is described in
Section 4. In Section 5 development of large-scale agent systems is discussed and
suggestions for future research are presented.

2 Current Agent Systems

Agents and agent systems have been studied for over a decade, resulting in many
papers from the Artificial Intelligence (AI) community as well as from Computer
Systems (CS) researchers. Research from the perspective of AI focuses on different
aspects than CS-based research. This section describes current research on agent
systems from both disciplines.

2.1 Agents from an AI Perspective

From the AI perspective agents are (1) autonomous and pro-active, (2) may be
mobile, (3) are capable of communication with other agents, (4) are capable of in-
teraction with the outside “world,” and (5) are most often intelligent (meaning that
they may be capable of learning, have knowledge, can perform complex tasks, and
can reason about and with this knowledge). In this respect, a well-known example
of an agent is a human being. An agent (either human or automated) has its own
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environment, consisting of other agents and a (material) world. The agent metaphor
offers a means to model situations with distributive activity on a conceptual level
(e.g., [26]), and is related to research on Distributed Artificial Intelligence.

Different notions of agency have been proposed (e.g., [4,40,60,50]). The character-
istics of weak agency defined by Wooldridge and Jennings [60] provide a means
to reflect on the tasks an agent needs to be able to perform. Pro-activeness and au-
tonomy are related to an agent’s ability to reason about its own processes, goals
and plans. Reactivity and social ability are related to the ability to interact with the
material world and to communicate with other agents. The ability to communicate
and cooperate with other agents and to interact with the material world often relies
on an agent’s ability to acquire and maintain its own knowledge of the world and
other agents. In contrast, the notion of strong agency is based on the characteristics
of mentalistic and intentional notions (related to the notion of intentional stance by
Dennett [14]).

The model of weak agency is widely accepted within the agent community and
forms a useful basis for a discussion on agent models. Most models have a degree
of genericity: the agent model is not fully specified, and may be extended for agents
in a specific application (e.g., the generic agent model [6]). A number of these
specification languages are specifically developed for specifying BDI-agents, which
adhere to the notion of strong agency.

The BDI architecture [46] is organised around the notions of Beliefs, Desires and
Intentions. The beliefs are concerned with information on the environment (the
world and other agents). Desires and intentions are concerned with the goals and
plans of an agent. Specific (formal) agent model have been developed for BDI-
agents [47,34], among which a refinement of the generic agent model for BDI-
agents [5].

Agents typically interact with other agents. Agent communication languages
(ACLs) and cooperation models are actively being researched.

An ACL describes “speech acts” in the form of message exchanges. KQML was
a first attempt to come to a standardized ACL [16]. More recently, FIPA [11] is
providing standards for ACLs and protocols [17]. Interesting is that the semantics
of a message in an ACL is generally left open to the extent that it is associated
with an ontology. For example, in the Semantic Web

�

effort [3] a rich ontology
language is developed by which machines may understand information.

The many different ACLs and ontologies leads to an interoperability problem [61].
Solutions to this problem include the use of intermediary agents that find agents
capable of translating between ontologies. Another approach is to devise informa-
tion brokering agents that essentially act as intermediaries or gateways [32,31,53].

�

See also the article by Klein et al. in this special issue on the Semantic Web.
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Mediating agents have also been the object of study in the area of security and pri-
vacy [58], where they are called “Alter-ego’s”, to emphasize their role as intelligent
carriers of private information of human beings.

A completely different approach to interoperability is to replace message exchange
by specific coordination models. Coordination models may be used to set up and
maintain aggregates of cooperating agents. The purpose of a coordination model
is to enable the integration of a number of agents in such a way that the resulting
ensemble executes as a whole. However, the temporal and referential coupling be-
tween agents in message-based systems is replaced by an associative memory that
decouples communicating parties in time and space [42].

As agent systems grow in complexity the density and diversity of the intercon-
nections between agents increase rapidly. The global behaviour of these complex
systems can be considered to be an emergent property of the interactions between
the different agents. An alternative way to manage this form of agent-based sys-
tem is to utilize emergent properties to make self-organizing and self-regulating
multi-agent systems [24].

Agents operate in a dynamic environment, making it impossible to statically de-
termine an agent’s optimal behaviour in advance. Agents have to learn from and
adapt to their environment. Multi-agent learning and adaptation, that is, the ability
of agents to learn how to cooperate and compete, becomes crucial [29]. Adaptive
and learning agents are often employed to maintain profiles of (human) agents. For
example, a consumer agent maintains a profile of the personal assistant agent, and
adapts this profile on the basis of interaction with the personal assistant agent (e.g.,
as also encountered in negotiation settings [10,12]). Adaptation may entail mobility
of an agent: an agent may migrate to a specific ‘place’ to access locally available
resources.

Agents, as studied within AI, are (to some extent) intelligent, and interact to solve
complex problems. The overall behaviour of multi-agent systems is an important
topic of current research. However in AI, the implementation of agents is not of
great importance, usually only for demonstration purposes. Efficiency and perfor-
mance is not usually considered to be important.

2.2 Agents from a CS Perspective

An agent from a Computer Systems perspective is often considered to be just a
process [54], a piece of running code with data and state. The functionality of these
agents can most often be described in terms of human behaviour, and to which the
predicate intelligent is associated. Agents are processes that are autonomous and
pro-active (capable of making “their own” decisions when they like), interacting,
and may be mobile.
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Agents are often related to objects, where the latter are generally considered to be
passive [27]. In other words, an object needs to be invoked in order to perform
a function, and performs only during an invocation. Agents, on the other hand,
receive messages and autonomously decide if, when, and how to (re)act. The only
way to influence an agent is by sending requests; the agent stays in complete control
and may perform functions even if not requested to do so.

Agents usually interact by exchanging messages, where message delivery is sub-
ject to different “qualities of service.” For example, the message paradigm de-
scribed by FIPA prescribes reliable and ordered point-to-point communication be-
tween agents [18].

Agents in computer systems are often mobile. The decision to migrate is taken
autonomously by the mobile agent itself. The ability of migration provides mobile
agents a means to overcome the high latency or limited bandwidth problem of tradi-
tional client-server interactions by moving their computations to required resources
or services. The current evolution of intelligent and active networks in system and
network management, for example, is based on this technology. A similar tendency
is observed in the search and filtering of globally available information such as in
the electronic marketplaces, e-commerce, and information retrieval on the World
Wide Web [23].

A distinction can be drawn based on whether the execution state is migrated along
with the unit of computation or not [20]. Systems providing the former option are
said to support strong mobility, as opposed to systems that discard the execution
state across migration, and are hence said to provide weak mobility. In systems
supporting strong mobility, migration is completely transparent to the migrated pro-
gram, whereas with weak mobility, extra programming is required in order to save
part of the execution state.

Strong mobility as found in NOMADS [51], Ara [44], and D’Agents [22], requires
that the entire state of the agent, including its execution stack and program counter [25],
is saved before the agent is migrated to its new location. Despite the advantages of
strong mobility, many agent systems support weak mobility (like Ajanta [56] and
Aglets [30]). Most of the agent systems are implemented on top of the Java Vir-
tual Machine (JVM), which provides with object serialization basic mechanisms to
implement weak mobility. The JVM does not provide mechanisms to deal with the
execution state.

Security is of great importance in agent systems, not only in electronic monetary
transactions, but also that mobile agents should not become the next generation of
viruses. Current research on secure agent systems concentrates mainly on protect-
ing hosts against hostile mobile agents. The problem of security stems from the fact
that untrusted code needs to be executed. Modern solutions are based on the notion
of protection domains by which a security policy for accessing local resources can
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be enforced [21]. Only very few systems also provide facilities for protecting mo-
bile agents against hostile hosts [28].

2.3 Agent Systems

Agents are used in a wide variety of applications [27]: process control, manufac-
turing, air traffic control, information management, electronic commerce, business
process management, patient monitoring, health care, games, and interactive the-
ater and cinema. Deploying an agent system (or prototype thereof) includes not
only modelling autonomous, interactive, intelligent agents, but also actually imple-
menting these agents as well as an underlying infrastructure.

Agents can exist only by virtue some kind of agent platform. Such a platform runs
on a relatively small collection of machines and provides basic facilities such as
creating and running an agent, searching for an agent, migrating agents to other
platforms, and enabling the basic communication with other platforms that host an
agent. Platforms and the facilities for modelling agents integrate the AI and CS
perspective of agents, leading to what we refer to as agent systems.

Facilitation of (intelligent) agents commonly includes tools to model and develop
agents, and an agent platform. Most agent frameworks provide some tools for
modelling and developing agents, ranging from code libraries to interactive agent-
design tools, with which AI specifications of agents are transformed into executable
descriptions of agents.

It can be argued that only relatively few agent systems exist that integrate the AI and
CS perspective as discussed above. ZEUS [39], NOMADS [51], Sensible Agents [2]
and Ajanta [56] are approaches to agent systems in which tools for developing
agents are combined with agent platforms. Basic facilities such as communication,
creation and deletion of agents, as well as mobility are provided by most agent
platforms. Aspects such as interoperability, efficiency and performance, but also
security, are part of the current research.

3 Large-Scale Agent Systems

Large-scale agent systems currently do not exist. A number of agent-based simu-
lation systems involves larger numbers of agents, e.g. [37]. Often in agent-based
simulation systems, the agents involved are kept small and/or simple (to facilitate
simulation). However, with the advent of the Internet, large-scale agent systems
will become more prevalent.

Ideally, multi-agent systems are highly dynamic open systems, with an ever-chang-
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ing population of agents: new agents emerge (or are created), existing agents die,
move, learn/forget etc. The dynamics of such systems are hard to predict when con-
sidering the number of messages sent, migrationary movements of agents, birth and
death of agents, etc. The number of agents in large-scale distributed applications
such as e-business applications (virtual shopping malls and auctions), Internet-wide
data warehouses, and navigation systems, can vary considerably over time. The
systems need to be able to scale (in terms of the number of agents and available
resources) almost immediately without noticeable loss of performance, or consid-
erable increase in administrative complexity [38].

This problem of scalability is not an AI problem in itself. It is a problem with
which the distributed computing community is still wrestling. A solution requires
collaboration between these two disciplines. In the next section the topic of scal-
ability in large-scale agent systems is addressed from the Agent’s perspective and
the Systems’ perspective [8].

3.1 Agent-Level Scalability

Scalability is an important, yet under-researched, aspect of agent platforms. A num-
ber of multi-agent frameworks and environments have been developed to construct
multi-agent systems, but not for systems with (very) large numbers of agents. Not
only does the number of agents increase, but also the number of agent interactions,
movements of agents, agents inserted into the system, agents deleted from the sys-
tem, etc. All of these issues require a scalable solution; solutions that may conflict.

One aspect of current research on multi-agent systems is that a large system is
deemed to consist of hundreds of agents, maybe a thousand, but not millions. The
claim that Auctionbot is scalable, for example, is supported by an experiment with
only 90 agents [62]. Larger numbers of agents require scalable development frame-
works and support environments.

The term “scalability” is not always used to refer to architecture, services and per-
formance. In some cases it is used to refer to scalable functionality. For example,
the SAIRE approach [41], claims to be scalable because it supports heterogeneous
agents. Shopbot [15] claims to be scalable because its agents can adapt to under-
stand new websites. In both cases, the term extensible functionality would seem to
be more appropriate.

Researchers and developers of multi-agent frameworks are beginning to realize that
scalability is an issue. Some multi-agent frameworks rely on another framework to
solve the problem of scalability. For example, scalability in the CoABS (DARPA

Control of Agent Based Systems) approach [55] is based on adequate support from
computational grids in providing a plug-in infrastructure for agents [19].
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In other multi-agent frameworks, aspects of scalability are specifically addressed.
In ZEUS [13] scalability is defined to be the growth rate of the maximum communi-
cation load, that is, the number of messages sent across a single link, grows at worst
linearly with the number of agents. This addresses a loss of performance problem,
and is a step towards developing scalable multi-agent frameworks. In OAA (Open
Agent Architecture) [33] matchmaking agents are described that can handle larger
number of agents. The RETSINA MAS infrastructure [52] is designed to support
multi-agent systems that run on a number of LANs and to avoid single-point of
failures (e.g., in agent name services).

Turner and Jennings [57] propose to (automatically) change the organisation of
agents in the multi-agent system as a response to an increase in the population
of a multi-agent system. For example, more middle agents or matchmakers are
introduced to reduce overhead. Their approach is a possible step towards addressing
administrative problems related to scalability.

None of the aforementioned approaches addresses minimizing the loss of perfor-
mance as well as minimizing administrative overhead. Research on fully automated
creation and adaptation of agents, open (extensible) agent systems, or large-scale
agent life-cycle management, has yet to begin.

Research on specific services in multi-agent systems such as directory services also
address scalability. The approach taken by Shehory [49] is an example of a theoret-
ical analysis in which agents locate agents based on each agent’s own caching lists
of agents they know. No experiments have yet been conducted.

3.2 Systems-Level Scalability

A varying number of (heterogeneous) platforms may require some form of auto-
mated linking (and unlinking) of the platform to a large-scale agent system. Plat-
forms, or course, differ extensively in the facilitation of the development of agents,
and the support and functionality offered for agents and objects. Machines may be
added or removed and machines may differ in the availability of resources (con-
sider, e.g., Unix and Windows NT systems versus hand-held devices).

A platform provides services for agents. Location services are used to obtain the
address of an agent (or object) on the basis of the name of the agent (or identifier of
the object). Directory services are used for attribute-based searching and matching
by which names of agents (or identifiers of objects) are acquired. An increase in
the number of agents and objects plus the number of updates requires scalable
solutions [1].

Agents need to be managed with respect to their creation, deletion, and migration.
When needed, agents may be created by other agents, and become part of the agent
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system. The creation service may clone an agent or create an agent on the basis of
an available description. Similarly, an object-creation service is needed. The num-
ber of agents migrating from machine to machine (and possibly across platforms)
is greatly increased.

Within a large-scale agent system, agents are heterogeneous, and so are platforms
supporting agents. Migration of an agent involves migrating its code (and data)
from one platform to another. Four migration scenarios of agents may be distin-
guished [7]. (1) Homogeneous migration is when an agent migrates to another host
without any changes to the format of its executable code or its interfaces to the
agent platform. (2) Cross-platform migration is when an agent migrates to another
host with a different agent platform, but that offers the same (virtual) machine inter-
face. (3) Agent-regeneration migration is when an agent migrates to a host running
a different (virtual) machine requiring that the agent is regenerated, resulting in dif-
ferent executable code. (4) Heterogeneous migration is when an agent migrates to
another host with a different agent platform and offering a different (virtual) ma-
chine. In this case, regeneration of the agent is necessary. The migration scenarios
in which the agent is regenerated may be realized by using an agent factory [9].
Instead of migrating the “code” (including data and state) of an agent, a blueprint
of an agent’s functionality and its state is transferred. An agent factory generates
new code on the basis of this blueprint.

From the systems point of view, scalability problems generally manifest themselves
as performance problems. Three scaling techniques are discussed which may be
used to minimize loss of performance: (1) hiding communication latencies, (2) dis-
tribution, and (3) replication.

Hiding communication latencies is applicable in the case of geographical scala-
bility, that is, when an agent system needs to span a wide-area network. To avoid
waiting for responses to requests that have been issued to remote agents or services
the requesting agent is programmed to do other useful work. This approach does
require that an agent can be interrupted when the expected response (if any) is to
be delivered.

Distribution generally involves partitioning a (large) set of data into parts that
can be handled by separate servers. A well-known example of distribution is the
natural partitioning of the set of Web pages across the approximately 25 million
Web servers that are currently connected through the Internet. Other examples of
distribution include the vertical or horizontal partitioning of tables in distributed
databases [43].

When considering large-scale networks like the Internet it becomes crucial to com-
bine distribution with latency hiding. Unfortunately, this is not always possible, for
example when an agent simply needs an immediate response.

A third, and widely applied technique is to place multiple copies of data sets across
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a network, also referred to as replication. The underlying idea is that by placing
data close to where they are used, communication latency is no longer an issue, so
that agent-perceived performance is high. Having multiple copies means that such
performance is good for all agents, no matter where they are located.

Unfortunately, replication introduces a serious problem. Whenever a replica is up-
dated, that replica becomes inconsistent with the other replicas. Matters become
worse when multiple concurrent updates need to be carried out simultaneously, be-
cause all replicas have to be the same after all updates have been processed. Keep-
ing replicas consistent introduces a consistency problem that can be solved only by
means of global synchronization. However, global synchronization in a large-scale
network is inherently nonscalable, as it requires communication between all parties
that are to be synchronized.

The only solution to the consistency problem is to allow replicas to be somewhat
out of synch with respect to updates. In other words, a weak consistency model
is adopted. The form of, and to what extent weak consistency can be tolerated is
highly application dependent. As a consequence, scalable multi-agent systems will
need to support configurable and perhaps even adaptive replication strategies. No
single strategy will show to be optimal under all conditions. Even for relatively
simple systems such as the Web, differentiating strategies can make a lot of differ-
ence [45].

Scalability in large-scale agent systems is a difficult and challenging problem. Mod-
els for security in large-scale agent systems are not common yet. In fact, security
by itself introduces inherent scalability problems as we often need to set up secure
point-to-point channels, introducing referential and temporal coupling of agents.
When dealing with security within groups, providing scalable solutions turns out
to be even harder (see, e.g., [48]).

4 AgentScape

The aspects of large-scale agent-based systems as described in the previous sec-
tion, form the basis for the design goals of the AgentScape agent platform. The
rationale behind the design decisions are (1) to provide a platform for large-scale
agent systems, (2) support multiple code bases and operating systems, and (3) in-
teroperability with other agent platforms. The consequences of the design rationale
with respect to agents and objects, interaction, mobility, security and authorization,
and services are presented in the next sections.
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4.1 Approach

AgentScape is a middleware layer that supports large-scale agent systems. The
overall design philosophy is “less is more,” that is, the AgentScape middleware
should provide a minimal but sufficient support for agent applications, and “one
size does not fit all,” that is, the middleware should be adaptive or reconfigurable
such that it can be tailored to a specific application (class) or operating system/hard-
ware platform.

Agents and objects are basic entities in AgentScape. Thus any multi-agent appli-
cation in AgentScape is composed of agents and objects. Agents are active entities
in AgentScape that interact with each other by message-passing communication.
Furthermore, agent migration in the form of weak mobility is supported (see Sec-
tion 2.2). Objects are passive entities that are only engaged into computations reac-
tively on an agent’s initiative.

Basic services in AgentScape are naming and location services for agents, objects,
and locations. These services enable agents to find and contact other agents or ob-
jects in the distributed multi-agent system, and to migrate to other locations.

Scalability, heterogeneity, and interoperability are important principles underly-
ing the design of AgentScape. The design of AgentScape includes the design of
agents and objects, interactions, migrations, security and authorization, as well as
the agent platform itself. For example, scalability of agents and objects is realized
by distributing objects according to a per-object distribution strategy, but not agents.
Instead, agents have a public representation that may be distributed if necessary.

4.2 AgentScape Model

The design goal of AgentScape is to define a minimal set of functionality and ser-
vices that should be supported by the middleware of a scalable agent-based dis-
tributed system. However, AgentScape must be extensible and useable as a kernel
for other agent platforms. For development of agent applications, an application
programming interface (API) and a runtime system (RTS) are provided. However,
the default API and RTS can be extended to provide a higher-level application
programming interface with, for example, a model that offers more structure and
semantics to the agent application developer.

4.2.1 AgentScape Model from an AI Perspective

Central entities in AgentScape are agents and objects. An agent may communicate
with other agents and interact with objects. All inter-agent or agent-object interac-
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tion is realized via interfaces that are bound to the calling (or interaction initiating)
agent. Agents and objects reside at a location, which is an abstraction from a phys-
ical location. A location contains a set of resources: host(s), disks, network, main
memory, etc. For a consistent model, a location comprising the AgentScape middle-
ware and resources presents itself as an agent and a set of objects. The AgentScape
middleware is represented by a location manager agent, and the resources by their
respective objects. Hence, the AgentScape middleware interface presents itself as
a normal agent interface on which operations or methods can be called upon. The
difference between the location manager and an arbitrary other agent is the author-
ity of the location manager when it comes to matters such as creating, destroying,
and moving agents and objects.

Figure 1 presents a model of AgentScape from the agent perspective, that is, the
location comprising the middleware and the resources are represented by a loca-
tion manager agent and resource objects. Calls from an agent to the middleware
are modeled by requests to the location manager agent to, for example, create an
agent or move an agent. Information about resources residing at the location can
be retrieved by binding to the resource objects, which are local distributed objects.
These objects can be accessed only within the location they reside, not from outside
the location.

Location: Location Manager + Resources Location: Location Manager + Resources

Agent + Interface(s) Agent + Interface(s)

Fig. 1. The AgentScape model from the perspective of agents.

The terms location manager and middleware are used interchangeably, depending
on the context. We use the term location manager for the agent representation of the
middleware towards the agents, and the term middleware in the context of system
architecture.
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4.2.2 AgentScape Model from a CS Perspective

The basic idea in the AgentScape model is that most of the functionality is provided
by the agent interface implementations such that the middleware (or the agent rep-
resentation of the middleware) can be designed to perform basic functions. This
approach has a number of advantages. First as the middleware must provide basic
functionality, the complexity of the design of the middleware can be kept manage-
able and qualities like robustness and security of the middleware can be more easily
asserted. Additional functionality can be implemented in the agent-specific inter-
face implementation. Figure 2 depicts a model of the agent-specific interface and
the location-manager interface, and how agent interface calls can be broken down
in more basic location-manager (middleware) calls.

- putMessage
- moveMe

- createAgent

Agent specific interface implementation
(can be simple proxy or wrapper routine):

- killMe

- kill
- suspend

- start_agent

Location Manager/Middleware interface:
- create_agent

- killMe

- move

- moveMe

- createAgent

Agent specific interface implementation

- putMessage

(can be simple proxy or wrapper routine):

Agent + Interface

Location Manager/ Middleware

- kill

- move
- suspend

- start_agent

Location Manager/Middleware interface:
- create_agent

Fig. 2. The AgentScape model from the perspective of agents.

For example, the interface call to migrate an agent can have different specific im-
plementations of agent migration. With basic agent migration, the agent can be sus-
pended and be in transit to another location for an arbitrary period of time. However,
if there is a high availability requirement for the agent, another agent-migration in-
terface implementation can be provided that realizes an “instantaneous” move of
the agent to the new location (e.g., by first creating and starting the remote agent,
then informing name and location servers of the new contact address, then start for-
warding messages to the new agent, and finally ask the location manager to cleanup
or kill the old agent).

Agent-agent interaction is exclusively via message-passing communication. Asyn-
chronous message passing has good scalability characteristics with a minimum of
synchronization between the agents. Tuple spaces also provide a mechanism for
communication that does not enforce synchronization between the communicating
partners, but also cannot enforce the actual receipt of the information.

Agent migration between locations is based on weak mobility. The state of the
agent is captured (e.g., the variables referenced by the agent) but not the context
of the agent (e.g., stack pointer and program counter). Requests for migration are
directed by message passing to the agent. Hence, the agent always receives requests
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for migration and has to agree to participate in the migration activities by serializing
its state. The middleware also sends requests for migration to agents, as message
passing is the only supported communication/interaction mechanism.

Global and local distributed objects in AgentScape are Globe objects [59]. Global
distributed objects have their own replication strategy to distribute and replicate
their internal state across multiple locations.

4.3 AgentScape Experimental Framework

AgentScape provides a framework for research on a number of AI and CS topics.
The design and realization of an Internet-scale multi-agent platform should con-
sider scalability as a leading design requirement. With respect to agent and objects,
this implies the support of scalable methods for agent management, including cre-
ation and deletion of agent, migration, and agent name and location services [1].
With the dynamic creation of many agents, effective support is necessary for keep-
ing track of the agents during their lifespan. For example, during a certain phase
of the computation, such as when new results come available, distributed mobile
agents may need to be recalled and may have to either migrate back to the originat-
ing location or may need to be destroyed.

In large-scale systems, latency hiding and loose synchronization are important qual-
ities of agent interaction. Unnecessary blocking and synchronization between dis-
tant agents that communicate over wide-area Internet connections, nullifies the
performance of any multi-agent system. Hence, support for asynchronous (non-
blocking) communication mechanism is essential, although in some situations syn-
chronous interaction is desirable and should be included in the model (e.g., for
service requests to the middleware like name lookup).

Scalable security services can be based on public key infrastructures and autho-
rization delegation (by proxy). Authentication of agents and objects can be verified
by the signatures that are attached to them. With public-key infrastructures this
authentication can be realized locally (once the public key of the entity is locally
available). Delegation of authorization enables other entities (agents) to act on your
behalf such that there is no central entity where all requests have to be directed to.

Within AgentScape, management of large-scale agent systems is an important is-
sue, including not only life-cycle management of agents, but also management of
security and authentication, middleware configuration, and resources. As central-
ized management mechanisms are not applicable (scalability), other approaches
need to be considered such as law-governed coordination mechanisms [36].

The code base and operating system independence requirement implies that agents
can be, e.g., Java, Python, or C programs, and run on, e.g., Unix or Windows NT
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operating systems. The consequence is that the runtime support for the agents must
hide the details of the underlying language and operating system details. The mid-
dleware already abstracts from many aspects of the operating system, for example,
it supports the creation and deletion of agents and objects. Language specific as-
pects are hidden by the runtime support, for example, the runtime support solves the
peculiarities of creating a communication channel with the middleware. Another
consequence of code base and operating system independence is that the system
cannot rely on, for example, the Java security infrastructure. The security architec-
ture should be platform independent. Furthermore, the security architecture must
be an integral part of the design of the AgentScape agent platform, and should not
be regarded as an add-on and of a later concern. With respect to mobility of agents,
the migration of agents (suspend, migration, and restart) must be language inde-
pendent from the middleware perspective. Thus from the middleware concern, an
image of an agent is transported to another location, and at the new location it is
handed over to an appropriate interpreter to recreate and restart the agent.

Interoperability between agent platforms can be realized in two ways. First by
conforming to standards like FIPA [11] or OMG MASIF [35]. These agent plat-
form standards define interfaces and protocols for interoperability between different
agent platform implementations. For example, the OMG MASIF standard defines
agent management, agent tracking (naming services), and agent transport amongst
others. The FIPA standard is more comprehensive in that it defines also agent com-
munication and agent message transport, and even defines an abstract architecture
of the agent platform. A second approach to interoperability is realized by recon-
figuration or adaptation of the mobile agent. This can be accomplished by an agent
factory as described in Section 3.2 (see also [7]), which regenerates an agent given
a blueprint of the agent’s functionality and its state, using the appropriate compo-
nents for interoperability with the other agent platform.

5 Discussion

Multi-agent systems are becoming more prevalent. Although current research on
agent systems is focused on small-scale agent systems, soon vast numbers of agents
will be deployed in large-scale agent systems. The basic infrastructure is already
available: the Internet is a large heterogeneous network managed in a distributed
fashion. Support for large-scale agent systems is not present yet. Large-scale agent
systems pose additional requirements on agents and support for agents.

The main aspects of large-scale agent systems are their extendibility, heterogeneity,
interoperability, and scalability. A large-scale agent system is a highly dynamic
system, in which the numbers and availability of agents, languages, ontologies, etc.
may vary over time. The entities present in a large-scale agent system are very
different from one another, leading to interoperability issues among agents and
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migrationary problems. As not only the number of entities but also the number of
(inter)actions by agents is on a larger scale in large-scale agent systems, scalability
is of paramount importance.

AgentScape addresses some important research issues regarding the realization of
large-scale agent systems, such as scalability, language/platform independence, and
interoperability. From the AI point of view, AgentScape is an extensible framework
for the development of large-scale agent systems, such as more structured models
for the environment of agents. From the CS point of view, AgentScape provides
an experimental framework for studying (validation and verification) of new ap-
proaches in large-scale agent systems, such as scalable directory services, security,
and interaction and coordination models.

The AgentScape model presented effectively supports both AI and CS research
interests. On the AI side: extensible interfaces can be easily adopted to provide
new development models for agent systems. On the CS side: the integrated modu-
lar approach, where platform dependent and independent parts are separated, and
new functionality can be easily integrated or replaced with different designs makes
AgentScape a flexible framework.

Supporting large-scale agent systems involves solving numerous problems on both
the agent-level and the system-level. In this research area, much progress may be
achieved by cooperation between researchers from both the AI and CS communi-
ties.
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