106 research outputs found

    Asymptotic information leakage under one-try attacks

    Get PDF
    We study the asymptotic behaviour of (a) information leakage and (b) adversary’s error probability in information hiding systems modelled as noisy channels. Specifically, we assume the attacker can make a single guess after observing n independent executions of the system, throughout which the secret information is kept fixed. We show that the asymptotic behaviour of quantities (a) and (b) can be determined in a simple way from the channel matrix. Moreover, simple and tight bounds on them as functions of n show that the convergence is exponential. We also discuss feasible methods to evaluate the rate of convergence. Our results cover both the Bayesian case, where a prior probability distribution on the secrets is assumed known to the attacker, and the maximum-likelihood case, where the attacker does not know such distribution. In the Bayesian case, we identify the distributions that maximize the leakage. We consider both the min-entropy setting studied by Smith and the additive form recently proposed by Braun et al., and show the two forms do agree asymptotically. Next, we extend these results to a more sophisticated eavesdropping scenario, where the attacker can perform a (noisy) observation at each state of the computation and the systems are modelled as hidden Markov models

    RSA Power Analysis Obfuscation: A Dynamic FPGA Architecture

    Get PDF
    The modular exponentiation operation used in popular public key encryption schemes, such as RSA, has been the focus of many side channel analysis (SCA) attacks in recent years. Current SCA attack countermeasures are largely static. Given sufficient signal-to-noise ratio and a number of power traces, static countermeasures can be defeated, as they merely attempt to hide the power consumption of the system under attack. This research develops a dynamic countermeasure which constantly varies the timing and power consumption of each operation, making correlation between traces more difficult than for static countermeasures. By randomizing the radix of encoding for Booth multiplication and randomizing the window size in exponentiation, this research produces a SCA countermeasure capable of increasing RSA SCA attack protection

    Sequential Circuit Design for Embedded Cryptographic Applications Resilient to Adversarial Faults

    Get PDF
    In the relatively young field of fault-tolerant cryptography, the main research effort has focused exclusively on the protection of the data path of cryptographic circuits. To date, however, we have not found any work that aims at protecting the control logic of these circuits against fault attacks, which thus remains the proverbial Achilles’ heel. Motivated by a hypothetical yet realistic fault analysis attack that, in principle, could be mounted against any modular exponentiation engine, even one with appropriate data path protection, we set out to close this remaining gap. In this paper, we present guidelines for the design of multifault-resilient sequential control logic based on standard Error-Detecting Codes (EDCs) with large minimum distance. We introduce a metric that measures the effectiveness of the error detection technique in terms of the effort the attacker has to make in relation to the area overhead spent in implementing the EDC. Our comparison shows that the proposed EDC-based technique provides superior performance when compared against regular N-modular redundancy techniques. Furthermore, our technique scales well and does not affect the critical path delay

    Semi-automatic ladderisation : improving code security through rewriting and dependent types

    Get PDF
    Funding: This work was generously supported by the EU Horizon 2020 project, TeamPlay (https://www.teamplay-h2020.eu), grant number 779882, and UK EPSRC, Energise, grant number EP/V006290/1.Cyber attacks become more and more prevalent every day.An arms race is thus engaged between cyber attacks and cyber defences.One type of cyber attack is known as a side channel attack, where attackers exploit information leakage from the physical execution of a program, e.g. timing or power leakage, to uncover secret information, such as encryption keys or other sensitive data. There have been various attempts at addressing the problem of side-channel attacks, often relying on various measures to decrease the discernibility of several code variants or code paths. Most techniques require a high-degree of expertise by the developer, who often employs ad hoc, hand-crafted code-patching in an attempt to make it more secure. In this paper, we take a different approach: building on the idea of ladderisation, inspired by Montgomery Ladders. We present a semi-automatic tool-supported technique, aimed at the non-specialised developer, which refactors (a class of) C programs into functionally (and even algorithmically) equivalent counterparts with improved security properties. Our approach provides refactorings that transform the source code into its ladderised equivalent, driven by an underlying verified rewrite system, based on dependent types. Our rewrite system automatically finds rewritings of selected C expressions, facilitating the production of their equivalent ladderised counterparts for a subset of C. Using our tool-supported technique, we demonstrate our approach on a number of representative examples from the cryptographic domain, showing increased security.Postprin

    Compromising emissions from a high speed cryptographic embedded system

    Get PDF
    Specific hardware implementations of cryptographic algorithms have been subject to a number of “side channel” attacks of late. A side channel is any information bearing emission that results from the physical implementation of a cryptographic algorithm. Smartcard realisations have been shown to be particularly vulnerable to these attacks. Other more complex embedded cryptographic systems may also be vulnerable, and each new design needs to be tested. The vulnerability of a recently developed high speed cryptographic accelerator is examined. The purpose of this examination is not only to verify the integrity of the device, but also to allow its designers to make a determination of its level of conformance with any standard that they may wish to comply with. A number of attacks were reviewed initially and two were chosen for examination and implementation - Power Analysis and Electromagnetic Analysis. These particular attacks appeared to offer the greatest threat to this particular system. Experimental techniques were devised to implement these attacks and a simulation and micrcontroller emulation were setup to ensure these techniques were sound. Each experimental setup was successful in attacking the simulated data and the micrcontroller circuit. The significance of this was twofold in that it verified the integrity of the setup and proved that a real threat existed. However, the attacks on the cryptographic accelerator failed in all cases to reveal any significant information. Although this is considered a positive result, it does not prove the integrity of the device as it may be possible for an adversary with more resources to successfully attack the board. It does however increase the level of confidence in this particular product and acts as a stepping stone towards conformance of cryptographic standards. The experimental procedures developed can also be used by designers wishing to test the vulnerability of their own products to these attacks

    Dynamic Polymorphic Reconfiguration to Effectively “CLOAK” a Circuit’s Function

    Get PDF
    Today\u27s society has become more dependent on the integrity and protection of digital information used in daily transactions resulting in an ever increasing need for information security. Additionally, the need for faster and more secure cryptographic algorithms to provide this information security has become paramount. Hardware implementations of cryptographic algorithms provide the necessary increase in throughput, but at a cost of leaking critical information. Side Channel Analysis (SCA) attacks allow an attacker to exploit the regular and predictable power signatures leaked by cryptographic functions used in algorithms such as RSA. In this research the focus on a means to counteract this vulnerability by creating a Critically Low Observable Anti-Tamper Keeping Circuit (CLOAK) capable of continuously changing the way it functions in both power and timing. This research has determined that a polymorphic circuit design capable of varying circuit power consumption and timing can protect a cryptographic device from an Electromagnetic Analysis (EMA) attacks. In essence, we are effectively CLOAKing the circuit functions from an attacker

    Exploitation of Unintentional Information Leakage from Integrated Circuits

    Get PDF
    Unintentional electromagnetic emissions are used to recognize or verify the identity of a unique integrated circuit (IC) based on fabrication process-induced variations in a manner analogous to biometric human identification. The effectiveness of the technique is demonstrated through an extensive empirical study, with results presented indicating correct device identification success rates of greater than 99:5%, and average verification equal error rates (EERs) of less than 0:05% for 40 near-identical devices. The proposed approach is suitable for security applications involving commodity commercial ICs, with substantial cost and scalability advantages over existing approaches. A systematic leakage mapping methodology is also proposed to comprehensively assess the information leakage of arbitrary block cipher implementations, and to quantitatively bound an arbitrary implementation\u27s resistance to the general class of differential side channel analysis techniques. The framework is demonstrated using the well-known Hamming Weight and Hamming Distance leakage models, and approach\u27s effectiveness is demonstrated through the empirical assessment of two typical unprotected implementations of the Advanced Encryption Standard. The assessment results are empirically validated against correlation-based differential power and electromagnetic analysis attacks

    A DPA Attack against Asymmetric Encryption: RSA Attacks and Countermeasures

    Get PDF
    Abstract This paper discusses side-channel attacks based on Power Analysis. This approach utilizes physical side effects of using cryptographic functions in the real world. A side channel is a source of information that is inherent to a physical implementation of cryptographic functions. Research done in the last half of the 1990s has shown that the information transmitted by side channels, such as execution time, computational faults and power consumption, can be disadvantageous to the security of cryptosystem like RSA or AES. This paper surveys the techniques of Differential Power Analysis presented i

    Remote Attacks on FPGA Hardware

    Get PDF
    Immer mehr Computersysteme sind weltweit miteinander verbunden und ĂŒber das Internet zugĂ€nglich, was auch die Sicherheitsanforderungen an diese erhöht. Eine neuere Technologie, die zunehmend als Rechenbeschleuniger sowohl fĂŒr eingebettete Systeme als auch in der Cloud verwendet wird, sind Field-Programmable Gate Arrays (FPGAs). Sie sind sehr flexible Mikrochips, die per Software konfiguriert und programmiert werden können, um beliebige digitale Schaltungen zu implementieren. Wie auch andere integrierte Schaltkreise basieren FPGAs auf modernen Halbleitertechnologien, die von Fertigungstoleranzen und verschiedenen Laufzeitschwankungen betroffen sind. Es ist bereits bekannt, dass diese Variationen die ZuverlĂ€ssigkeit eines Systems beeinflussen, aber ihre Auswirkungen auf die Sicherheit wurden nicht umfassend untersucht. Diese Doktorarbeit befasst sich mit einem Querschnitt dieser Themen: Sicherheitsprobleme die dadurch entstehen wenn FPGAs von mehreren Benutzern benutzt werden, oder ĂŒber das Internet zugĂ€nglich sind, in Kombination mit physikalischen Schwankungen in modernen Halbleitertechnologien. Der erste Beitrag in dieser Arbeit identifiziert transiente Spannungsschwankungen als eine der stĂ€rksten Auswirkungen auf die FPGA-Leistung und analysiert experimentell wie sich verschiedene Arbeitslasten des FPGAs darauf auswirken. In der restlichen Arbeit werden dann die Auswirkungen dieser Spannungsschwankungen auf die Sicherheit untersucht. Die Arbeit zeigt, dass verschiedene Angriffe möglich sind, von denen frĂŒher angenommen wurde, dass sie physischen Zugriff auf den Chip und die Verwendung spezieller und teurer Test- und MessgerĂ€te erfordern. Dies zeigt, dass bekannte Isolationsmaßnahmen innerhalb FPGAs von böswilligen Benutzern umgangen werden können, um andere Benutzer im selben FPGA oder sogar das gesamte System anzugreifen. Unter Verwendung von Schaltkreisen zur Beeinflussung der Spannung innerhalb eines FPGAs zeigt diese Arbeit aktive Angriffe, die Fehler (Faults) in anderen Teilen des Systems verursachen können. Auf diese Weise sind Denial-of-Service Angriffe möglich, als auch Fault-Angriffe um geheime SchlĂŒsselinformationen aus dem System zu extrahieren. DarĂŒber hinaus werden passive Angriffe gezeigt, die indirekt die Spannungsschwankungen auf dem Chip messen. Diese Messungen reichen aus, um geheime SchlĂŒsselinformationen durch Power Analysis Seitenkanalangriffe zu extrahieren. In einer weiteren Eskalationsstufe können sich diese Angriffe auch auf andere Chips auswirken die an dasselbe Netzteil angeschlossen sind wie der FPGA. Um zu beweisen, dass vergleichbare Angriffe nicht nur innerhalb FPGAs möglich sind, wird gezeigt, dass auch kleine IoT-GerĂ€te anfĂ€llig fĂŒr Angriffe sind welche die gemeinsame Spannungsversorgung innerhalb eines Chips ausnutzen. Insgesamt zeigt diese Arbeit, dass grundlegende physikalische Variationen in integrierten Schaltkreisen die Sicherheit eines gesamten Systems untergraben können, selbst wenn der Angreifer keinen direkten Zugriff auf das GerĂ€t hat. FĂŒr FPGAs in ihrer aktuellen Form mĂŒssen diese Probleme zuerst gelöst werden, bevor man sie mit mehreren Benutzern oder mit Zugriff von Drittanbietern sicher verwenden kann. In Veröffentlichungen die nicht Teil dieser Arbeit sind wurden bereits einige erste Gegenmaßnahmen untersucht
    • 

    corecore