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Abstract

The information leakage of electronic devices, especially those used in cryp-

tographic or other vital applications, represents a serious practical threat to secure

systems. While physical implementation attacks have evolved rapidly over the last

decade, relatively little work has been done to allow system designers to effectively

counter the identified threats. This work addresses the technology gap between

identified problems and potential solutions, and significantly advances the study of

information leakage in two primary areas of investigation:

1. Radio-Frequency “Distinct Native Attribute” (RF-DNA) fingerprinting of in-

tegrated circuits (ICs) for device authentication, and

2. Leakage mapping to assess the information leakage of arbitrary cryptographic

implementations.

First, the RF-DNA fingerprinting technique is used to recognize unique ICs

based on fabrication process-induced variations in unintentional electromagnetic

(EM) emissions in a manner analogous to biometric human identification. The ef-

fectiveness of the technique is demonstrated through an extensive empirical study,

indicating the technique scales well for both identification and verification tasks.

Empirical results are presented for 40 near-identical devices, with correct device

identification success rates of greater than 99.5%, and average verification equal er-

ror rates (EERs) of less than 0.05%. Correct identification success rates exceeding

90% were maintained under analysis conditions of SNR ≥ 15 dB.

Whereas all previously known techniques require device hardware or software

modifications, RF-DNA fingerprinting permits opportunistic passive authentication

using unintentional RF emissions during pre-existing processes and protocols. This

characteristic makes the approach suitable for security applications involving com-

xii



modity commercial ICs, with substantial cost and scalability advantages over previ-

ous approaches.

Second, a systematic leakage mapping methodology is developed and demon-

strated to comprehensively assess the information leakage of arbitrary block cipher

implementations. The proposed framework provides a comprehensive approach to

assess the information leakage of all algorithmically specified key-dependent interme-

diate computations for implementations of symmetric block ciphers. The resulting

leakage assessment quantitatively bounds the resistance of an implementation to the

general class of differential side channel analysis techniques, and provides system

designers and evaluators with a tool to objectively assess whether countermeasures

implemented are justified given the added cost in time, space, and energy compared

to the obtained reduction in exploitable information leakage. Furthermore, the sys-

tematic approach enables evaluators to quickly and efficiently repeat the assessment

process for different variations of implementations, which helps to ensure the addi-

tion of countermeasures does not inadvertently introduce new unexpected sources of

information leakage.

The leakage mapping framework is demonstrated using the well-known Ham-

ming Weight and Hamming Distance leakage models, with recommendations to ex-

tend the technique using more accurate models. The approach effectiveness is demon-

strated through empirical assessment of two typical unprotected implementations

of the Advanced Encryption Standard, and the assessment results are empirically

validated against correlation-based differential power and electromagnetic analysis

attacks.

xiii



EXPLOITATION OF UNINTENTIONAL

INFORMATION LEAKAGE FROM INTEGRATED CIRCUITS

1. Introduction

It is common knowledge that electronic equipment radiates electromagnetic

(EM) energy that can interfere with other nearby devices. It is for this reason

that airline passengers are required to “turn off all portable electronic devices”, and

consumer electronics sold in the U.S. are required to undergo certification testing for

compliance with Federal Communications Commission (FCC) regulations [FCC09].

Digital devices that incorporate clocks, oscillators, or other high frequency pulses are

specifically regulated as known unintentional emitters because they produce radio

frequency (RF) radiation.

Over the past decade there has been a growing realization that the content of

unintentional emissions, in addition to being a source of interference, can also be

a source of information about the emission producing device’s internal state. This

realization has profound implications for the physical security of sensitive electronic

systems since in many instances the “leaked” state information is sufficient to infer

precise details about the operations the device is performing and the data it is

processing. Such details can include extremely sensitive private information such as

cryptographic key material. This research studies the limits of how much information

can be gained by exploiting the unintentional information leaked from secure systems.

1.1 Problem Addressed

When viewed externally, all physical systems produce both intended and un-

intended outputs. The unintended outputs are quantifiable, physically observable

phenomena produced as a side-effect of normal operation. When an unintended

1



Figure 1.1 Side-Channel Leakage from Physical Systems.

observable outcome is correlated to some aspect of the internal state or system op-

eration, a side-channel is said to leak information. The term side-channel was first

introduced by Kelsey et al. [KSWH00]. However, military and government agencies

have been aware of information leakage due to unintentional emissions for decades

prior [Boa73,vL85]—as early as 1914 by some reports [And01].

Definition 1 (Side-Channel) Any unintended physically observable time-varying

phenomenon that is correlated to the internal state, operations, or data being pro-

cessed by a device of interest.

EM radiation, including RF radiation and other regions of the EM spectrum,

is just one of many different side-channels through which electronic devices may leak

information. Other channels include variations in power consumption, variations in

computation time, and even acoustic and thermal emissions. The various known

sources of side-channel emissions are depicted in the block diagram of a notional

two-party communications system shown in Figure 1.1. The underlying phenomena

that cause these emissions are described in further detail in Section 2.2.

2



1.2 Security Implications of Information Leakage

The side-channel information leakage from electronic devices is of intense in-

terest to security researchers since it presents attack vectors through which unau-

thorized parties may gain access to information that is intended to be kept private.

Information leakage may inadvertently reveal the contents of protected data such as

passwords, cryptographic keys, or PIN numbers. Further, it may allow an adversary

to reverse engineer critical aspects of intellectual property or critical technologies

such as proprietary algorithms, circuit designs, or protocols. Therefore, unintended

leakage of information poses a serious practical security threat to electronic systems—

particularly cryptographic systems—when naive designers assume a closed, secure

environment where only the intended outputs are visible [ZF05].

Over the past decade, a significant body of research has been dedicated to

applying side-channel analysis (SCA) as an attack mechanism to defeat the security

of cryptographic devices. Typically, the earlier research has focused on the vulnera-

bility of systems to key recovery attacks—i.e., the extraction of private or secret key

material from a cryptographic system. The existence of SCA techniques means the

security of sensitive information that relies on the secrecy of a cryptographic key as

a primary mode of protection can be greatly reduced in practice if access to side-

channel emissions is realistically possible. The type of information that is typically

protected varies widely, but includes things such as the content of secure commu-

nications, software or firmware code which reveals critical technology or intellectual

property details, and tokens permitting access to secure networks or systems.

The protection of sensitive proprietary algorithms or techniques (i.e., critical

technology or intellectual property) is of particular importance in both military and

commercial applications. Reverse engineering poses a serious threat since it can en-

able competitors or adversaries to bypass years of research and development through

counterfeiting or theft of intellectual property. Commercially, the total global loss in

revenue due to counterfeiting and pirated products is predicted to reach $1.7 trillion

3



by 2015 [Fro11]. This estimate does not account for intangible losses such as brand

deterioration. Likewise, in military applications, compromise of critical technology

degrades weapon system combat effectiveness and useful life expectancy.

Whereas ‘traditional’ techniques for reverse engineering of integrated circuits

(ICs) still require very expensive, specialized equipment (e.g., scanning electron mi-

croscopes) [TJ09], side-channel attacks can be performed using widely available (and

relatively inexpensive) commercial tools. Commercial SCA systems are available

for sale on the open market, to include the Riscure Inspector system used in this

research [Ris09], and source code for carrying out a variety of attacks is readily

available on the Internet [Par10,OT11]. Since it is increasingly common for critical

technologies or intellectual property to be in software or firmware protected by a

cryptographic system, the existence of SCA key extraction techniques must be a

consideration when assessing the security level of any such systems.

1.3 Research Objective

The overall research objective is to investigate various aspects of the infor-

mation leakage of ICs. The study of information leakage from electronic devices,

particularly ICs, is a relatively new area of investigation and researchers are only

beginning to formalize the problem and develop rigorous methods for assessing the

vulnerability of physical devices to SCA techniques. Most research to date has fo-

cused on the exploitation of cryptographic systems, with a particular emphasis on

key recovery attacks. Thus far, very little work has been done that enables system

designers to effectively counter the threat of side-channel attacks or to investigate

alternative, constructive uses of the phenomena. Investigating alternative aspects of

information leakage is the focus of this work, and includes two main thrusts.

First, unintentional emissions are investigated as a source of information to

recognize or verify the identity of a unique IC. The problem of IC authentication has

numerous practical applications, including providing enhanced security for secure

4



access mechanisms (e.g., anti-cloning), detection of unauthorized modifications to

circuit designs (e.g., hardware Trojan detection), or forensic attribution of electronic

evidence in criminal or other cases. Whereas all previously known authentication

techniques require either device hardware or operational software modifications, un-

intentional emissions can be passively analyzed. Thus, an effective authentication

approach based on the unintentional emissions of a device would result in a more

cost-effective and scalable approach to the problem than existing solutions.

The second thrust is to investigate techniques that enable system designers to

effectively and systematically assess the vulnerability of a particular cryptographic

implementation to known side-channel attack techniques. From a cryptographic sys-

tem designer or engineer’s perspective, designing a system that is secure against the

plethora of rapidly evolving physical implementation attacks is daunting. While new

or enhanced attack techniques continue to be published at a rapid pace, very little

work has been done to aid system designers in practically addressing the resulting

security risks. This research investigates the development of a systematic leakage

mapping framework to guide system designers in making sound decisions during

the development process to obtain, with some degree of certainty, a desired level of

resistance to side-channel attacks.

1.4 Dissertation Organization

This document is divided into five chapters. Chapter 2 provides an historical

overview of the relevant work done to date, and introduces fundamental concepts

necessary for the study of side-channel emissions and information leakage. Additional

relevant, but not critical, background information is included as appendices.

The main document body is composed of two chapters containing scholarly ar-

ticles prepared during this research: Intrinsic Physical Layer Authentication of Inte-

grated Circuits (Chapter 3) [CLB+11] and Leakage Mapping: A Systematic Method-

ology for Assessing the Side-Channel Information Leakage of Cryptographic Imple-
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mentations (Chapter 4). Each chapter contains the aricle text, including relevant

background and methodology, as submitted for publication with some editing as re-

quired for incorporation into the format of this document. Because the submitted

versions of each article were constrained by mandatory page limitations, some addi-

tional supplementary explanation is provided at the end of each chapter to expand

on the methodology and results in more detail where appropriate.

Chapter 5 concludes the main document and summarizes the key findings of

this work, and provides several recommendations for future research.

Finally, selected source code developed during this research is included in the

appendices. A full archive of the source code and data sets used to produce the

results are available separately on electronic media.

6



2. Background

2.1 Overview

This chapter introduces the key concepts and techniques investigated in this re-

search. Side channel information leakage by electronic systems is a multi-disciplinary

field that synthesizes a variety of sub-domains of knowledge to include:

• Cryptography,

• Computer architecture and engineering,

• Microelectronic devices,

• Digital and VLSI systems design,

• Electromagnetic theory,

• Probability theory,

• Signal processing and pattern recognition,

• Communications and information theory, and

• Software design.

Where required, the relevant aspects of each field are covered to describe needed

concepts as they are introduced. The remainder of this chapter is laid out as follows.

Section 2.2 describes the principle sources of side channel information leakage and

their underlying causes. Section 2.3 describes the main applications of side channel

analysis to date, with an emphasis on cryptanalytic key recovery attacks. This

section also describes the basic aspects of cryptographic systems which make SCA

analysis techniques feasible in practice. Section 2.5 reviews the primary classes of

cryptanalytic SCA techniques, including so-called simple, differential, and profiling

techniques. Section 2.6 describes a variety of proposed countermeasures to improve

the resistance of physical systems to SCA techniques. Finally, Section 2.7 discusses

important practical aspects of SCA attacks.
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2.2 Emission Sources

Electronic devices create a variety of side channels during the normal course of

operation. Each channel can leak information when the characteristics of the physi-

cally observable behavior are correlated to the electronic circuit’s internal operation

or state. This section reviews the common side channels of electronic devices—

including timing, power, electromagnetic and acoustic (cf. Fig. 1.1).

2.2.1 Variations in Computation Time. The time for a microprocessor or

other electronic device to complete tasks is, in general, variable and depends on the

data processed [Koc96]. The reasons for variations in processing time are unique to

a particular implementation, but may include dependencies on conditional branches

or other conditional execution mechanisms, cache misses, pipeline stalls, waiting on

queries to external devices such as RAM, and so on [Koc96]. For combinational logic

devices, the time required for an output to reach a steady, glitch-free state may vary

depending on the inputs, circuit layout, or other factors [WH05].

A notional example of a simple algorithm with data-dependent computation

time in most implementations is shown in Algorithm 1.

Algorithm 1 Data-Dependence Example

Require: Integers x and y, Control bit b.

1: if b = 1 then return xy

2: elsereturn x+ y
3: end if

The value, b, is some control bit and x and y are operands. If the control bit

is a ‘1’ an exponentiation is performed; if not, the operands are added. Assuming

an exponentiation operation is much more costly in terms of execution time than an

addition (which it would be in any typical implementation) the algorithm will take

longer when b is ‘1’ vs. ‘0’. Thus, an outside observer can infer the value of bit

b from the amount of time the operation takes to complete. The implementation,

therefore, is said to leak the value of the data bit b through a timing side channel.
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Kocher discovered that such unintentional variations in execution time can be

significantly correlated to the data processed by a device [Koc96]. In many cases

the correlation of the unintentional variations leak sufficient information to recover

an entire key from a cryptographic device. The cryptanalytic applications of timing

and other SCA techniques are discussed in Section 2.3.1.

2.2.2 Variations in Power Consumption. Most modern integrated circuits,

including general purpose microprocessors, are based on complementary metal oxide

semiconductor (CMOS) transistor technology.1

The power consumed by CMOS devices has both static and dynamic compo-

nents. Since the static component is nearly constant, it can be neglected for the

purposes of SCA since it is not data or operation dependent and therefore does not

leak information about the internal system state. Dynamic power consumption, on

the other hand, is a function of internal switching activity of individual transistors.

Since the switching activity depends on the operations performed and data manip-

ulated, the resulting variations in dynamic power consumption are a source of side

channel information leakage [MOP07].

Figure 2.1 Dynamic power dissipation of the CMOS inverter [Bak07]

The total current drawn from a constant voltage power supply at any point in

time is the sum of the current drawn by all the individual logic cells. There are two

1Strictly speaking, modern transistor technology is no longer necessarily metal- or oxide-based
since those material layers can be replaced by alternative materials. However, the term CMOS is
overwhelmingly used in the literature and general practice to refer to both true CMOS and other
technologies with similar behavior [WH05]. The differences are irrelevant to this work, and the
term is used to generically refer to all CMOS-like devices.
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primary sources of dynamic power consumption in a CMOS circuit. The first is the

current drawn and dissipated when individual transistors are switched on and off

respectively. Fig. 2.1 illustrates the concept using a simple CMOS inverter. When

the input transitions from 1 to 0, M1 is switched off and M2 is switched on. The

cell draws a charging current from a constant voltage power supply to charge the

intrinsic and extrinsic capacitances (Ctot). When the input transitions from 0 to

1, M1 is switched on and M2 is switched off, and the stored energy is discharged

through the ground line. When the input remains the same, the transistors’ states

do not change and there is no dynamic current flow.

The second primary source of dynamic power consumption in CMOS logic is

the short circuit path between the power rail and ground created during the short

period of time during each transition when both the pMOS and nMOS networks

are partially on. This short-circuit current contributes significantly to the dynamic

power consumption of a circuit.

Combinational CMOS circuits also experience transient signal behavior, known

as glitches or dynamic hazards, as inputs propagate and arrive at different times

through the circuit. In large or complex combinational circuits, dynamic power

consumption is influenced to a large degree by the glitches encountered before the

circuit settles into its intended steady-state output—to the point that glitches may

actually become the dominant source of dynamic power consumption [MOP07].

For microprocessor devices, power consumption is affected by the instruction

being executed, the content of data being manipulated, and the address or location

of memory or data registers being accessed [QS02]. For pipelined architectures, there

may be two or more instructions in the pipeline during a clock cycle, all of which

contribute to power consumption during that cycle [QS02].

The statistical relationship between the activity of a circuit and its total power

consumption can be used to infer information about the data being processed—

including sensitive information such as cryptographic keys used in a ciphering opera-
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tions [KJJ99]. Kocher introduced two key recovery attacks based on this observation—

simple power analysis (SPA) and differential power analysis (DPA). Both passively

extract the entire secret key from implementations of the Data Encryption Standard

(DES) cryptographic algorithm. Kocher’s SPA and DPA techniques are described

in Sections 2.5.2 and 2.5.3.

2.2.3 Electromagnetic Emissions. The electromagnetic emissions (both ra-

diated and conducted) produced by electronic devices during normal operations are

physically caused by the time-varying current drawn by the circuit as the transistors

switch on and off. As current flow varies, it induces many tiny time-varying electro-

magnetic fields. These fields combine through complex interactions and propagate

as time-varying EM waves via both radiation and conduction through the power

supply and ground lines and other conductive materials [Boa73,AARR02,AARR07].

The fundamental nature of these effects is well understood as described by Maxwell’s

equations [AARR02,AARR07]. The idea that EM emanations leak information has

been known for several decades, although it has only recently become the focus of

significant academic research [Boa73,And01].

Most early EM emissions research was related to the eavesdropping risks of

peripheral devices such as video display units (see Section 2.3.1.1). Van Eck and

Laborato’s (1985) eavesdropping attack, described in Section 2.3.1.1, was the first

known research on the topic [vL85]. The first published cryptanalytic applications

were [QS02, GMO01], both of which were extensions of Kocher’s timing and power

attacks.2

Quisquater and Samyde were the first to extend Kocher’s power and timing

attacks to the EM side channel [QS00, QS01]. By observing the EM side channel

data they achieved more precise measurements of circuit activity than would be

possible with power analysis short of physically modifying the circuit. Achieving

2The authors of [QS00] refer to their EM variations of Kocher’s attacks as Simple EM Analysis
(SEMA) and Differential EM Analysis (DEMA).
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the same precision of measurements with power analysis would require an invasive

attack to bypass the filtering effects of the power distribution network and peripheral

components.

In 2001, Gandolfi et al. published the first concrete examples of EM crypt-

analysis by successfully extracting keys from CMOS hardware implementations of

DES, COMP128, and RSA [GMO01]. Gandolfi’s results reinforced Quisquater and

Samyde’s claim that EM emanations allow more efficient DSCA attacks, resulting

in successful key recovery with fewer observations.

Agrawal et al. more recently published and updated an extensive study of

EM information leakage [AARR02, AARR07]. One of their key findings was that

single wide-band EM sensors capture many unique information leakage signals, each

of which carry distinct information. They also noted that a substantial source of in-

formation leakage is the very weak amplitude-modulated EM information conducted

by surfaces or lines attached to the device. The conducted EM leakage propagates

through attached or nearby conductive surfaces to include the power and ground

lines, implying that side channel data collected for power analysis attacks is likely to

contain weaker and higher frequency EM leakage signals due to unintentional power

line modulation.

EM emanations caused by a circuit’s operation fall into two primary categories—

direct and indirect emanations [AARR07]. Direct emanations are created by current

flow through a circuit’s intended current path and the resulting switching activity in

the circuit’s transistors or other devices. Indirect emanations are created when small

couplings between densely packed electronic components modulate existing carrier

signals emitted by the device, and can modulate both unintentional and intentional

EM signals transmitted by a device. Both types of emanations can lead to side

channel information leakage.

Through the analysis of leaked EM information, Agrawal et al. claimed suc-

cessful attacks against various cryptographic implementations. Additionally, they

12



posit the possibility of more powerful attacks using multiple complementary electro-

magnetic sensors with different characteristics to simultaneously collect side channel

information leakage from multiple signals.

Agrawal’s most interesting experimental result is that strong information bear-

ing signals (particularly carriers at multiples of the system’s clock frequency) prop-

agate well beyond the near-field—beyond 50 feet for an unprotected commercial

secure socket layer (SSL) accelerator card operating inside an unmodified, closed

computer server [AARR02, AARR07, Roh06]. Practical template attacks on such

a device with no countermeasures were possible at a distance of approximately 15

feet [AARR02, AARR07]. Mangard reported similar results and demonstrated ex-

traction of a cryptographic key from a smart card at a distance of more than 5 m in

an unshielded environment with an unoptimized measurement setup [Man03]. The

threat from these types of attacks may actually be greater because an adversary

could potentially place an inconspicuous receiver close to the target device (within

5 ft.), which could relay the side channel data of interest to a remote processing

station [Roh06]. The signal strength at that distance may be sufficient to enable

single-observation template attacks and advanced signal processing techniques capa-

ble of defeating some SCA countermeasures.

A potentially even more powerful technique was published by Burnside, et al.

on the illumination of an integrated circuit by an external carrier [BEA08]. The

targeted integrated circuit is illuminated with a low-power external RF source, and

the data-dependent behavior is modulated on the reflected external signal which is

then captured. The authors speculate that this technique may result in effective

side channel attacks at greater distances than those based on the native emissions

produced by the target device, but no experimental results were provided to support

that hypothesis.
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2.2.4 Acoustic Emissions. The acoustic emissions of devices are also a

source of side-channel information leakage. Recently declassified lectures on the

History of Communications Security reveals that intelligence agencies were concerned

with acoustic information leakage from mechanical cryptographic devices as early as

the 1940’s—even over noisy telephone lines when a phone receiver was operated in

the same vicinity as the sensitive equipment [Boa73].

Various peripheral electronic devices also reportedly leak information. For

example, the sound of keyboard (or other keypad) presses is correlated with what a

user is typing [AA04, ZZT05]. However, few other peer-reviewed publications exist

on the subject. Recently, a similar attack was demonstrated using the sound of a

dot matrix printer to identify the characters printed [Gib09]. Dot matrix printers

are still used widely in financial and medical applications which makes the existence

of such a vulnerability a relevant practical concern.

Most surprising, however, is that electronic devices such as general purpose

microprocessors actually leak information through their acoustic emanations. Shamir

and Tromer have performed some initial, unpublished, experiments indicating that

the acoustic emissions of commercial microprocessors are sufficient to determine with

good precision when specific operations begin and end. Further analysis could lead

to effective timing attacks on cryptographic devices [ST04].

2.3 Applications

The vast majority of side channel research to date deals with the security vul-

nerabilities introduced by unintentional information leakage. Side channel vulnera-

bilities range from simple eavesdropping risks of peripherals, such as video displays

or keyboards, to the inadvertent disclosure of the cryptographic keys critical to the

security of entire systems.

Beyond the various cryptanalytic attack modes, side channel analysis has also

been investigated for several other applications including reverse engineering, hard-
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ware covert channel circuitry, and the detection of unauthorized modifications or

additions to circuits (Trojans) during outsourced chip fabrication.

This section provides an overview of the different applications of side channel

analysis investigated over the past three decades of research in this area.

2.3.1 SCA Attacks. The term SCA attack (often just SCA in the litera-

ture3) is commonly used to describe any use of side channel information to either:

1. Bypass or compromise the security mechanisms of a system, or

2. Infer information about the internal state, data or operations of a device that

is not intended to be accessible.

SCA attacks are a subset of the more general class of implementation at-

tacks which exploit vulnerabilities in a device’s physical implementation rather than

attacking, for instance, the mathematical strength of a cryptographic algorithm.

Other common implementation attacks are fault attacks and physical tampering

techniques [ZF05]. SCA attacks differ from many other implementation attacks in

that they are generally passive—meaning they can be implemented without revealing

the attacker’s presence and without damaging or otherwise physically affecting the

system of interest [And01]. This is in contrast to many other known implementation

attacks that are either active—risking disclosure of the attacker’s presence or intent,

or invasive—risking damage or triggering of a circuit’s tamper-resistant features.

The two most prevalent SCA attacks—eavesdropping and key recovery attacks—

are described below.

2.3.1.1 Eavesdropping. Eavesdropping attacks on electronic devices

are analogous to eavesdropping on human conversations. Both involve an adversary,

3The acronym SCA is used interchangeably throughout the literature to refer to both side
channel analysis and side channel attacks. For clarity, the term SCA is used to describe the more
general side channel analysis. Side channel attacks are referred to as SCA attacks.
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Eve, secretly listening to what is intended to be a private conversation between an

originator (Alice) and a recipient (Bob). A typical traditional eavesdropping attack

might involve Eve tapping into video display cabling for a computer monitor or

television display to see the same picture Bob is seeing.

SCA eavesdropping attacks differ from classical eavesdropping in that they do

not target the primary or intended communications channel. For example, returning

to the scenario of a video display signal, in the SCA eavesdropping attack Eve

would not directly tap into the primary video display signal. Rather, she would

attempt to reconstruct the video signal from an alternate, unintended side channel

of information such as EM emanations produced by the system’s cabling. Eve may

prefer a side channel attack to the direct eavesdropping approach for a number of

reasons such as restricted access to the system or tamper-resistant cabling.

The first published eavesdropping attack to exploit unintentional emissions

was by Wim van Eck [vL85]. Cathode ray tube (CRT) video terminals produce

electromagnetic emissions that can be remotely intercepted and reconstructed by an

eavesdropper at a substantial distance—even through walls. The attack is carried

out using inexpensive commercially available receiver technology to passively view

a real-time reproduction of what is being displayed on a remote target computer.

More recently, van Eck’s attack has been extended to show it is still relevant to

modern-day flat panel technology [Kuh04].

Eavesdropping SCA attacks typically target peripherals or human interface

devices. Attacks have been published that target the electromagnetic emanations of

computer displays and keyboards [VP09], the flashing of light-emitting diode (LED)

activity indicators on computer peripherals such as modems [LU02], and the acoustic

activity of keyboards and printers [AA04,ZZT05], among others.

Eavesdropping attacks are not the principal focus of this research, and the

details of these attacks are not covered further here. Additional details can be found

in [vL85,Kuh04,VP09].
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2.3.1.2 Cryptanalysis and Key Recovery Attacks. The term side

channel cryptanalysis refers to the practical application of SCA to break or bypass

cryptographic implementations—with a typical objective being the recovery of a se-

cret key from a device [MOP07, ZF05, LR09]. Whereas SCA eavesdropping attacks

target side channel information leakage that reveals the same information as an

intended input or output, side channel cryptanalysis attacks attempt to gain knowl-

edge of the internal state of a device or the data it is processing by analyzing the

information leakage from the implementation.

SCA cryptanalysis relies on the fact that cryptographic systems are not mani-

fested in physical form as a pure mathematical function. Mathematically, a encryp-

tion operation is a function EK [P ] 7→ C where K is the key, P is the plain-text or

data being encrypted, and C is the intended output or cipher-text [Sch96]. How-

ever, in reality, a physical system implements the encryption algorithm as EK [P ] 7→

(C, S1, S2, . . . , Sn) where Si is any additional information unintentionally leaked by

the system through one of n side channels.

For electronic systems, a fundamental reason that information leakage occurs

is that circuits must perform a variety of intermediate steps to produce a desired

final output value from a particular input. When viewed at the transistor level, even

fundamental logic cells such as an XOR gate produce intermediate signals in the

propagation path to the output.

In general, systems and components are designed in such a manner that only

the final output is intended to be externally visible. However, although the results of

each intermediate computation are not normally observable, some information about

their activity and content is leaked through the side channels they produce.

Definition 2 (Intermediate value) Any non-final result produced during the in-

termediate steps of a computation.
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Consider a system based on Algorithm 2, below. This algorithm can be viewed

as a simple, albeit very weak cipher that encrypts data by adding it to the Hamming

weight of the key, K. The system’s security depends on keeping the contents of the

key, K, a secret from outside observers or malicious agents. Assume K is stored in

some internal memory location inaccessible to outside observers.

Algorithm 2 Example of Intermediate Value Leakage

Require: Input X
1: T ← X
2: for i = 0 to 31 do
3: if Ki = 1 then
4: T ← T + 1
5: end if
6: end forreturn T

There are at least three potential sources of information leakage in this algo-

rithm:

1. The comparison operation at line 3 directly accesses a key bit during each loop

iteration.

2. The algorithm’s execution path during each loop iteration is conditional on a

key bit.

3. The intermediate value T is manipulated at line 4 whenever the key bit is a

‘1’.

Due to a variety of phenomena described in Sections 2.2 and 2.5, each of these

actions may cause variations in the physically observable characteristics of the device

that are statistically related to the operation or data being manipulated. Analysis

of this side channel data may reveal Ki directly, or more subtly the value or change

in state of T which indirectly reveals one bit of K. As a result, the secret key K

may be revealed—compromising the security of the system on which it depends.

For cryptographic or other secure systems, the implications are far-reaching.

Since almost all security mechanisms in electronic and computer systems rely on
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preserving the secrecy of some sensitive information, any attack that can bypass those

mechanisms is of great concern. Whereas many traditional cryptanalytic attacks are

of theoretic interest but are not practical threats, recent research has shown side

channel leakage to be of great practical concern.

In 1996, Kocher proposed the first known attack capable of using side chan-

nel leakage (timing information) to extract an entire key from implementations of

several cryptographic algorithms [Koc96]. Since the publication of Kocher’s orig-

inal paper, numerous new cryptanalytic side channel attacks and improvements

have been published targeting a wide range of cryptographic algorithms and pro-

tocols. Successful practical attacks have been mounted against hardware and soft-

ware implementations of block, stream, and public-private type algorithms includ-

ing DES, AES, Rivest-Shamir-Adleman (RSA), and various elliptic curve schemes

[Koc96,KJJ99,Roh06,And01]. Mangard, et al. published an entire text dedicated to

SCA attacks of AES implementations [MOP07]. Brumley and Boneh demonstrated

a practical remote attack against an OpenSSL-based webserver across a local area

network [BB05].

Recently, a complete practical attack on the KeeLoq encryption scheme has

been published capable of extracting the master key from a device in a single observa-

tion [KKMP09]. KeeLoq is a ubiquitous remote keyless entry protection algorithm

used in a wide variety of commercial keyless entry systems for vehicles and garage

door openers. The publication of a simple and efficient attack against such a widely

used system amplifies the practical threat of SCA.

Section 2.5 reviews the major classes of SCA cryptanalytic techniques devel-

oped to date. In response to these discoveries, a variety of countermeasures have

been introduced to reduce the vulnerability of electronic systems to each new type

of attack. Section 2.6 reviews known countermeasures.

19



2.3.2 Reverse Engineering. The idea of using SCA for reverse engineer-

ing applications dates to Kocher et al.’s original (1998) DPA paper, in which the

authors claim to have used side channel analysis techniques to reverse unknown al-

gorithms and protocols. The authors posited that automation of reverse engineering

of unknown systems might be possible, although no details of such an approach were

given. More recently, some success has been realized using side channel leakage to

manually facilitate reverse engineering and extraction of keys from unknown algo-

rithms. This application of SCA has been termed side channel analysis for reverse

engineering (SCARE) [Nov03].

The first explicit use of SCA for reverse engineering in the academic literature

was by Quisquater et al. [QS02]. The authors show that it is possible to sufficiently

characterize the electromagnetic side channel emissions of a microprocessor to create

an instruction template dictionary. Future observations of the EM emissions from an

identical microprocessor can be automatically classified to determine what operation

was being performed.

Novak (2003) proposed an attack, with later improvements by Clavier (2004,

2007) to reverse engineer non-trivial portions of an unknown A3/A8 cryptographic

algorithm [Nov03]. The targeted algorithm is the COMP128-2 cipher used in cellu-

lar phone SIM cards to authenticate and generate keys in GSM networks [Roh06].

Clavier improved on Novak’s original technique and demonstrated a more prac-

tical reverse engineering approach capable of retrieving lookup tables of an un-

known cryptographic algorithm without requiring any prior knowledge of the secret

key [Cla04,Cla07]. Daudigny, et al. (2005) used SCARE to recover unknown details

of a DES implementation [DLMV05].

Early reverse engineering attempts were applied specifically to software-based

microprocessor implementations. The first extension of the technique to an unknown

hardware implementation was in 2008 [RDG+08].
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In all of these cases domain knowledge is used extensively, but the passive

reverse engineering capability is nevertheless interesting. In many scenarios, the

non-invasive nature of side channel analysis provides clear advantages over more

invasive reverse engineering techniques. Reverse engineering applications of SCA

are still a relatively undeveloped area of investigation, and it is currently unknown

whether it is possible to generalize and automate the process as envisioned by Kocher,

et al. [KJJ99, Roh06]. However, the technique’s existence is another reason system

designers should not rely on security by obscurity.

2.3.3 Covert Channel Engineering. Researchers in high-assurance comput-

ing realized early on—at least by 1973—that timing variations can be used to inten-

tionally pass information across a controlled perimeter [Lam73,van90,Wra91,And01].

For example, a malicious Trojan program can be placed inside the controlled perime-

ter of a secure computing environment where it captures data and re-transmits it via

an encoded communications channel [Lam73,van90,Wra91,And01]. Such a commu-

nications channel can be created by intentionally varying some system characteristic

visible to an observer outside the controlled perimeter. For example, the Trojan

process can cause page faults or variations in CPU demand or disk cache loading. A

receiving process outside the perimeter can monitor the timing variations and decode

the message. This type of scheme is known as a covert timing channel [And01].

Circuit design or embedded software codes can be modified to surreptitiously

broadcast secret information over a covert wireless channel (such as the EM side-

channel) to a nearby receiver [DS06,Dyr07]. There are no concrete examples of such

a hardware-based malware attack having actually occurred in the literature to date,

but there are numerous examples of commercial hardware shipping with software-

based malware. Several recent papers have been published with proof of concept

designs that illustrate the feasibility of such an attack [KTC+08,LKG+09].
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2.3.4 Trojan Detection. The economic realities of semiconductor and mi-

crochip manufacturing have resulted in a large-scale migration of most integrated

circuit (IC) fabrication to facilities outside the United States. In 2005, a special

U.S. Defense Science Board Task Force examined the effects and risks of outsourcing

high performance microchip production to foreign countries [Off05] and concluded

this practice introduces risks that are unacceptable for domestic defense and intelli-

gence applications. The Defense Science Board determined that existing diagnostic

capabilities are insufficient to assure that chips produced by foreign foundries are

unmodified. One particular risk cited is the opportunity for malicious foreign agents

to introduce unauthorized design changes such as Trojan horses into the chips, as

described above, to establish covert channels of communication.

Agrawal, et al. proposed extending side-channel analysis techniques to detect

the presence of hidden or modified circuitry in integrated circuits [ABK+07]. The

approach constructs SCA fingerprints by profiling the power, temperature and elec-

tromagnetic side channel characteristics of an integrated circuit. After fingerprinting,

destructive techniques are used to verify the authenticity of the characterized chips;

i.e., they have not been modified from their original intended design. Remaining

ICs are statistically tested against the fingerprints of the known good chips. The

approach clearly requires that the destructive verification techniques be extremely

reliable in detecting modifications to assure that the baseline is truly an unmodified

chip. This may not be practical in light of the Defense Science Board findings.

2.4 Adversary Models

When discussing SCA attacks, various assumptions must be made about the

capabilities of an adversary. It is common to refer to how powerful a hypothetical

adversary must be to carry out a particular attack in practice. In real world situ-

ations, an adversary’s capabilities can range from having very restricted access to
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the device at one extreme, to having complete control of the device or system being

attacked at the other.

A powerful adversary is one that has complete control of the device or system

being attacked. In this scenario, the adversary can arbitrarily choose the number

and content of inputs the device will process, can capture both the inputs and

outputs of the device, and is assumed to be in an environment (such as a well-

equipped laboratory) where the quality of the side channel data being collected may

be optimized. In the most extreme case, the adversary may even have the capability

to load new keys into the device. The only significant limitation is that stored keys

cannot simply be retrieved as that is prohibited by most cryptographic devices.

A weak adversary has very limited capabilities to control and observe the device

being analyzed. In the context of SCA attacks, Eve still has the capability to collect

side channel data in some form (possibly noisy and otherwise suboptimal). Most

attacks also require that she be able to capture the contents of either the input

or output from the device (typically the plain-text or ciphertext in the case of a

cryptographic device).

Many SCA attacks assume a powerful adversary, which implies some reduction

in practicality under certain conditions. However, this does not negate the real-world

threat since there are many scenarios where such a powerful adversary truly exists,

and the attacks are easily within the reach of a moderately equipped malicious agent.

The publication of actual SPA and DPA attacks on the KeeLoq remote keyless entry

system [KKMP09] and the Xilinx FPGA bitstream protection [MBKP11, MKP11]

amplify this point. Furthermore, many attacks such as profiling techniques (see Sec.

2.5) have very weak assumptions about the adversary from the perspective of access

to the device being attacked.
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2.5 Techniques

Over the past decade, dozens of distinct SCA attacks and countermeasures

have been developed. Most, if not all, are derived from Paul Kocher’s original

timing and power analysis attacks [Koc96, KJJ99]. Because of the large number of

distinct attacks that have been developed, it is impractical to describe each in detail.

However, most of the techniques are similar and can be generally described according

to their basic principles of operation. Two of the most important distinguishing

characteristics used to categorize SCA techniques are the analysis approach and the

number of stages involved in the analysis.

The following definitions are used:

Simple SCA (SSCA). Any technique that directly interprets side channel mea-

surements, typically through visual analysis of a captured signal in the time or

frequency domain [KJJ99]. Generally applied to one or only a small number

of observations. SSCA is a generalization of Kocher’s SPA technique to any

source of information leakage.

Differential SCA (DSCA). Any technique that uses statistical or other mathe-

matical techniques to look for small differences in side channel data that may

be correlated to the data or operations of interest. DSCA is a generaliza-

tion of Kocher’s DPA technique to other sources of information leakage and

statistical analysis techniques [KJJ99]. DSCA is usually applied to a rela-

tively large number of observations—varying from a few dozen to a million or

more [MOP07,Roh06].

Profiling SCA. Any SCA technique that requires multiple data-collection or anal-

ysis steps, such as a profiling stage using a training device followed by an attack

stage on a separate target device.

This section reviews the fundamental SCA techniques developed to date: tim-

ing attacks, simple SCA attacks, differential SCA attacks, and profiling attacks.
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Each published SCA attack is unique in its approach, and most are specific to a par-

ticular algorithm or implementation platform. Timing attacks are presented first and

separately because they provide the initial foundation for the application of SCA to

cryptanalysis, and Kocher’s original attack does not fit neatly into the definition of

the other fundamental techniques that are the subject of widespread research today.

A brief overview of more advanced variations is also provided to include profiling,

higher-order DSCA, and advanced signal processing techniques that can be applied

to aid in pre- or post-processing of captured side channel emissions data.

2.5.1 Timing Analysis. Timing analysis attacks exploit the small varia-

tions in the computation time of a cryptographic implementation described in Sec-

tion 2.2.1. Asymmetric cryptographic algorithms in particular are known to have

non-constant execution times due to their conditional execution of time-consuming

operations such as multiplications [Koc96]. These non-constant times, together with

knowledge of the underlying algorithm or implementation, allow an adversary to

infer information about the sensitive data being processed. Although the idea of

timing attacks is generally applicable to any cryptographic implementation that op-

erates in non-constant time, the details of any particular attack are implementation

specific and there is no generalized process for constructing such an attack.

Kocher’s timing attack [Koc96] on RSA and other asymmetric public-key al-

gorithms is widely considered to be the first side-channel cryptanalysis in the sci-

entific literature. Kocher’s attack targets the non-constant execution time of a

microprocessor-based RSA algorithm implementation. The attack extracts the pri-

vate key from a cryptographic device by analyzing the small variations in computa-

tion time of a large number of decryption operations. Kocher validated the attack

against RSA Laboratories’ reference implementation [Koc96, Lab94]. Kocher’s tim-

ing attack on asymmetric ciphers is described in detail in Appendix B.
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Several practical attacks have also been published to demonstrate the feasibility

of extracting a cryptographic key remotely across a computer network based on the

observed differences in computation or response times, including those variations

introduced by cache misses (cf. [BB05,PH98,Ber05,KSWH98,KSWH00,Pag02]). It

is noteworthy that even lookup-table-based approaches to cryptography, which, on

the surface would appear to take constant time, can be vulnerable to timing attacks

due to variations related to cache misses.

2.5.1.1 Final Notes. Kocher’s original analysis targeted crypto-

graphic algorithms based on modular exponentiation. However, he asserts that any

cryptographic implementation that runs in non-constant time is likely to be vulnera-

ble to timing attacks. The plethora of attacks that have been published over the last

decade reinforces this claim, and investigators continue to identify new examples.

2.5.2 Simple Analysis. In the SSCA class of techniques, an analyst ex-

amines (typically visually) measured side channel data looking for distinct features

that reveal information about the operations being performed or data being pro-

cessed. The analyst is, in effect, performing a high-level reverse engineering based

on knowledge of the algorithm that produced the side channel leakage. The concept

is not limited to the power side channel (e.g., Kocher’s DES attack [KJJ99]), and can

potentially be applied to the data obtained from any of the side channels described

in Section 2.2.

When side channel data is visually analyzed in the time domain, features like

shape and magnitude can look very different for different operations, or for the same

operation performed with different data or outcomes. A well-known example is the

power consumption for conditional branch instructions in micro-controllers, which

often depends on whether the branch is taken or not [KJJ99]. The power trace of

a device that takes a branch may look significantly different than the trace of the

same device when it does not take the branch. By analyzing these differences and

26



applying knowledge of the underlying algorithm, it is possible to deduce the content

of the data being processed—generally some sensitive private data of interest such

as a portion of a cryptographic key.

2.5.2.1 Simple Attack on a DES Parity Check. The level of difficulty

involved in applying SSCA to extract data from a system varies greatly. An extreme

example of a trivial attack on a cryptographic key focuses on the key loading mech-

anism rather than the cryptographic algorithm itself [Roh06]. When a key is loaded

into memory from a storage location, it is desirable to verify the key’s integrity be-

fore it is used. One way to do this is to store a parity bit with each 7 data bits. The

data parity is verified when the key is initially loaded.

Algorithm 3 DES parity-check algorithm [Roh06]

Require: Key K (8 bytes — ea. 7 data bits, 1 parity bit).

1: for i = 8 downto 1 do
2: parity← 0
3: for j = 8 downto 1 do
4: if bit j of Key[i] = 1 then
5: parity← parity + 1
6: end if
7: end for
8: if Even(parity) then
9: ParityError();

10: end if
11: end forreturn ()

Algorithm 3 illustrates an implementation of such a parity checking algorithm.

The algorithm examines the value of each data bit and adds one to the parity if the

bit is a ‘1’. Line four of the algorithm executes a conditional branch decision based

on each data bit.

Figure 2.2 shows how trivial an attack on this type of implementation can be.

The inner and outer loop structure is immediately apparent from the peaks. The data

shown here includes the execution of three outer loops, each of which is composed of
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Figure 2.2 Rohatgi’s SPA Attack Against DES Key Parity Check [Roh06].

eight inner loops. The differences between the inner loop iterations where the data

bit is a ‘1’ and those where it is a ‘0’ are also clearly apparent. When the data bit

is a ‘0’, the addition step on Line 5 is skipped, and the current drawn by the circuit

peaks and drops off rapidly. When the data bit is a ‘1’, however, the current drawn

first drops off and then increases again for a short time. Thus, it is trivial to “read”

the entire secret key by directly examining the current trace and assigning each peak

a value of ‘0’ or ‘1’. It is noteworthy that a timing attack is also possible since

the inner loop appears to take slightly longer when the data bit is a ‘1’ than when

it is a ‘0’.

Despite the simple label, most SSCA attacks are significantly more subtle

and complex than the parity example. Kocher’s DES attack, for instance, requires

substantial insight into the operation of the underlying cryptographic algorithm to

extract the key from a device.

Information may leak from a wide variety of operations and can vary based on

the data being manipulated as well. For example, on some microprocessor-based de-

vices a load register instruction reveals the Hamming weight or Hamming distance

of the data register [MDS99]. For such devices, the power consumed is proportional

to the number of ‘1’ bits being processed, or transferred across a bus.
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Figure 2.3 Hamming distance power leakage from an 8-bit smart-card micro-
controller performing a load register operation [MDS99]

Definition 3 (Hamming weight) is the number of non-zero bits in a binary vec-

tor of finite length [MOP07].

Definition 4 (Hamming distance) between two binary vectors of the same length

is the number of coordinates in which the two vectors differ [Mac03].

Figure 2.3 is the result of an SCA experiment on a vulnerable 8-bit smart-card

that clearly leaks the Hamming distance of the data being loaded into a register. Such

leakage is significant because for some cryptographic implementations, knowledge of

the Hamming weight or distance of a portion of the cryptographic key is sufficient

to make a brute-force key search or mathematical cryptanalysis of the remaining

possibilities computationally practical [MDS99].

2.5.2.2 Practicality of SSCA Attacks. A significant practical consid-

eration for SSCA techniques is they require substantial knowledge of how a particular

cryptographic implementation is implemented. Although the need for implementa-

tion details appears to be a severe limitation, numerous researchers assert that SSCA

techniques are still quite effective in practice unless the system implements specific

countermeasures to prevent them [KJJ99, Roh06, MOP07]. Careful inspection of

the side channel leakage may actually reveal sufficient information about the imple-
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mentation to allow further refinement of an attack, or sufficient information for the

attacker to infer important details about how the system is implemented.

SSCA attacks are most effective against sequential implementations of algo-

rithms. Use of SSCA to attack a fully pipelined hardware implementation of DES,

for instance, would be difficult because the parallel circuit activity would significantly

hinder direct visual interpretation [MOP07]. However, even if SSCA techniques are

insufficient to extract information from a side channel signal directly, they are fre-

quently useful to help guide more advanced techniques and to infer information about

the underlying implementation or algorithm being executed.

2.5.3 Differential Analysis. The second power analysis technique intro-

duced in [Koc96] is known as differential power analysis (DPA). DPA is a statistical

technique that correlates the effects of the data being manipulated to the power con-

sumption trace rather than inferring the data being manipulated from knowledge of

what operations were performed as in SPA. Whereas SPA can be performed using

only a single power trace for an encryption device, DPA requires multiple power

traces to make statistical inferences. DPA is capable of extracting information due

to variations that are too subtle to be identified through direct examination of the

data by SSCA. The technique is not unique to the power side channel, and can

be generalized to the physical leakage due to other phenomena as differential SCA

(DSCA) [KJJ99, ZF05, MOP07, Roh06]. A key assumption of most DPA attacks is

that the attacker has essentially unfettered access to the physical device under attack

and can cause it to perform encryption or decryption operations at will.

DSCA techniques use statistical properties of multiple samples, which reduces

noise from measurement error or non-relevant circuit activity (either intentional or

unintentional) while amplifying the effects of the circuit performing the operation or

manipulating the data of interest. With a sufficiently large number of observations,

it is possible to identify very small correlations between the internal device state and
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the leaked side channel information. Various mathematical techniques are used to

identify these correlations, as described in Section 2.5.3.1.

The common characteristic of all DSCA techniques is they use statistical meth-

ods to find small differences in the leaked side channel information due to variations

in processed data or operations over a relatively large number of operations. The

number of observations required to successfully apply DSCA techniques range from

dozens to millions depending on the implementation, technique, and environmental

factors, and any countermeasures present [MOP07].

A key advantage of DSCA techniques over SSCA techniques, besides their more

robust information recovery capability, is they do not require detailed implementa-

tion knowledge. Rather, basic knowledge of the underlying algorithm is sufficient

to carry out the statistical analysis. In fact, DSCA techniques have the interesting

property (as pointed out in [KJJ99]) that they “automatically” identify the points

in time where the side channel leakage is correlated to the value of some piece of

data that is used by the cryptographic algorithm since the chosen metric indicating

the presence of correlation will be maximized at the relative times in the trace when

the relationship is strongest. The leakage mapping approach developed in Chapter 4

provides a methodology for systematically identifying all such potential points of

key-dependent leakage throughout an entire encryption operation.

Mangard, et al. and other researchers have noted that even if the details of

a particular implementation are unknown, the combination of DSCA and SSCA

techniques can be used together to learn sufficient details about an implementation

to allow a successful SCA attack [MOP07].

The more accurately the leakage model employed characterizes the true re-

lationship of a particular intermediate value to the side channel leakage from the

device, the better the results will be in the final step of the DSCA attack. Various

techniques for modeling the leakage associated with an intermediate computation

are discussed in more detail in Chapter 4.
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2.5.3.1 Statistical Techniques. There is no consensus on an optimal

mathematical technique for the DSCA procedure, although various proposals have

been put forward with claims of optimality. Kocher’s original DPA attack was based

on a difference of means technique [KJJ99, MOP07]. Later works introduced other

approaches including the Pearson correlation coefficient, Distance of Means (a vari-

ation of Kocher’s difference of means), and Bayesian estimation procedures. The

correlation coefficient and Bayesian techniques have received the most attention in

recent research. Mangard, et al. claim the correlation coefficient is the most gen-

eral because it can more easily handle multiple-bit leakage models than some other

techniques [MOP07]. Recent experimental data supports the claim that all of the

commonly used statistical techniques produce, roughly, equivalent results [MOS09].

The basic strategy behind all of these techniques is to identify linear relation-

ships between the predicted leakage under some leakage model and one or more

columns of the actual observed data matrix—where each column corresponds to a

particular sampled instant in time relative to the start of the encryption operation.

When the key hypothesis is correct, there should be a linear relationship between the

hypothesized leakage value and the observed leakage value at the times when that

value was actually manipulated by the circuit. If Pearson’s correlation coefficient

is used, the highest observed correlation indicates the corresponding key hypothesis

most likely to be correct. Furthermore, the relative position of the samples with

the highest correlation coefficients indicate at what relative time(s) the targeted

intermediate value is manipulated. The DSCA procedure is described in detail in

Chapter 4.

The largest correlation coefficients indicate the sub-key most likely to have

produced the observed results. Plotting the rows of the correlation matrix will result

in noticeable peaks in the plot that corresponds to the true key, while incorrect keys

have the appearance of noise within a solid band. A typical DPA result for three key

hypotheses (and reference current trace) is plotted in Fig. 2.4. The trace showing
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a large peak indicates the correct (sub)key hypothesis has likely been found. In

practice, keys similar to the true key may also produce high correlations, leaving

some ambiguity as to what the correct key is—or even resulting in an incorrect key

having the highest correlation coefficient at some point in time. This can sometimes

be overcome directly through additional post-processing or by collecting additional

observations. Furthermore, even if a DSCA attack leaves many possible candidate

sub-keys, the reduction in guessing entropy may be sufficient to allow brute force

computation of the full key.

Figure 2.4 Typical DPA traces, one correct and two incorrect, with power reference
[KJJ99].

2.5.3.2 Practical Limitations of DSCA. Because DSCA techniques

require less implementation knowledge and are typically better than SSCA at ex-

tracting information, they are generally considered to be a more powerful class of

attacks. However, if significant noise is present the statistical techniques used can

require a very large number of observations to be successful. Collecting a large num-

ber of observations in practice may require an attacker to have dedicated access and

control of the device being analyzed. Thus, in practice, the security vulnerabilities

of a system to DSCA techniques may be less of a concern to the system designer

than SSCA vulnerabilities.
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Another practical limitation of standard DSCA techniques is an adversary

must generally have access to obtain either known inputs or outputs from the device,

although some advanced differential techniques (see Section 2.5.5.3) can be applied

in situations when this is not possible. AES, when operating in counter-mode, is

also susceptible to DPA techniques with knowledge of side channel data only (no

knowledge of inputs or outputs is necessary) [Jaf07].

2.5.4 Profiling Techniques. Profiling, or multi-stage attacks were first

introduced by Chari et al. in 2002 [CRR02] in the context of side channel cryptanal-

ysis. In general, profiling techniques are specific applications of the general problem

of pattern recognition, in which a classifier is presented with a pattern or signal

(e.g., the EM leakage from a target device), and must then classify it as belonging

to one of several possible classes [TK09].

These attacks postulate a powerful adversary that possesses a separate identical

(or nearly identical) device over which they have full control. In the variation known

as a template attack, this training device is used for a profiling step, in which an

attacker creates a precise multivariate probability distribution of the device’s side

channel leakage while it operates on known sub-keys [GLRP06]. This phase of the

attack is sometimes referred to as the offline phase.

The results of the profiling stage are used to classify future observations from

a target device over which the adversary does not have full control, but can observe

the side channel leakage. By classifying the new observed trace according to the dis-

tribution they are likely to come from, the most likely sub-key is revealed. Profiling

techniques are considered very powerful because they require only a few (sometimes

just one) observations to extract a key. Additionally, the attack phase does not re-

quire that the adversary control or have knowledge of the device inputs or outputs.

The attack phase is sometimes referred to as the online phase.
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Two specific variations of multi-stage attacks that have been proposed are the

template attack [CRR02] and the stochastic model attack [SLP05]. Template attacks

characterize the side channel leakage from the device by creating a template for each

possible sub-key. The noise distribution is therefore assumed to be key-dependent.

Thus, the profiling stage of a template attack creates covariance matrices for each

possible (sub)key. Schindler et al.’s stochastic model, on the other hand, presumes

the side-channel noise is independent of the (sub)key.

Gierlichs, et al. showed that while stochastic models have a lower up-front

computational cost during profiling, they are less effective at classifying future signals

[GLRP06]. Template attacks are the more effective tool if there are no limitations on

the number of observations that can be collected during profiling and if the workload

for template building is computationally feasible. Schindler’s stochastic model may

be more effective in cases where there is a bound on the number of observations that

can be collected during profiling, or if other considerations mean constructing a full

set of templates is not practical.

In 2005, Agrawal et al. extended template attacks to combine traditional DPA

techniques with template attacks—termed a template-enhanced DPA attack. This

technique is effective at defeating standard masking countermeasures against power

analysis attacks on smart-card implementations of AES and DES produced by two

separate manufacturers [ARRS05]. Recent work has shown in detail how template

attacks can be used in practice to extract a cryptographic key without knowledge

of the system inputs or outputs (plain- or cipher-texts) [HTM09] with only a few

(< 200) observed operations.

A practical limitation of template attacks is the computational cost due to their

reliance on multivariate statistics to characterize the dependencies among the various

temporal locations in the leakage traces. For traces containing a large number of

sample points, this step is very computationally intensive, and it may not be practical

to consider all the sampled data. In practice, most of the published techniques
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overcome this limitation by selecting a subset of the data points for use in the

profiling / template building stage. Typically, some heuristic is used to select a subset

of points of interest that correspond to the same relative times in each observation

[MOP07,APSQ06].

Several rules of thumb have been used including selecting the subset of sam-

ples that correspond to the relative time where the observations show the maximal

variance [MOP07] or maximal difference between mean traces when observations are

partitioned according to a classical Kocher-style DSCA attack [CRR02]. Additional

criteria are sometimes applied such as limiting the number of selected points to one

per clock cycle to eliminate redundancy of the selected data points [APSQ06]. A

primary objective is to compress the data set that must be manipulated while main-

taining the most important information—which then takes on the role of character-

izing the features of different signal classes. Recent research to find more optimal

techniques for identifying leakage points is discussed below.

2.5.5 Advanced Techniques.

2.5.5.1 Principal Component Analysis. Principal component analy-

sis (PCA) is a linear transformation that reduces the dimensionality of a data set

while retaining the majority of the important information from the original data.4 A

well-known application of PCA is automatic facial recognition. The PCA transfor-

mation is such that each coordinate (component) is orthogonal to the others and is

a linear combination of many individual samples. By using PCA to select the points

of interest in profiling attacks, the n dimensions (components) that account for a

largest percentage of the overall variance between the sample classes are identified.

In template attacks, PCA maximizes the inter-class variance between possible op-

erations (typically the same operation performed using each possible sub-key). The

4PCA and its variations are also known as the empirical/discrete Karhunen-Loève transform,
the Hotelling transform, and proper orthogonal decomposition (POD) in various academic circles.
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magnitude of the resulting eigenvalues associated with each component indicates

the relative importance of the component, and normally a small number of prin-

cipal components are sufficient to capture the majority (80-90%) of the inter-class

variance.

Archambeault et al. introduced a systematic technique using PCA for selection

of leakage points of interest that can subsequently be used to build templates as an

improvement on previous heuristic techniques [APSQ06]. Archambeault experimen-

tally demonstrated a case where 7 components chosen by PCA produce better classi-

fication results (93.3% vs. 91.8% correct) than a template built from 42 points using

a difference of means heuristic. The paper does not, however, assess the computa-

tional efficiency of performing the combined PCA and template-building procedure to

previous techniques using larger numbers of sample points for the template-building

phase.

Archambeault’s PCA technique has two notable advantages over heuristic tech-

niques for selecting points of interest. First, it provides superior classification results

with a smaller computational effort during the template-building phase although

the computational load of the PCA transformation itself may negate this benefit.

Secondly, PCA provides a quantitative measure of the number of components (trans-

formed data points) to adequately capture the majority of the data’s variability. A

key assumption that has thus far resulted in effective attacks in practice is that the

side-channel variability is a good indicator of the temporal location of information

leakage.

A weakness of the PCA technique is that although the resulting subspace max-

imizes the inter -class variance between possible classes (sub-keys in most template

attacks), the technique neglects the effect of intra-class variance on classifier per-

formance. This is because the principal components are computed from the mean

traces for each possible signal class (generally an operation performed for a given
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sub-key in most SCA template attacks).5 As a result, if there is a large degree of

variance in the side-channel leakage for a single class (sub-key or intermediate value),

it could result in degraded classifier performance.

2.5.5.2 Fisher’s Linear Discriminant Analysis (LDA). Standaert

and Archambeau proposed applying an alternate technique known as Linear Dis-

criminant Analysis (LDA) to address the possible effects of intra-class variance on

classifier performance [SA08]. LDA seeks a linear transformation of sample points

into a subspace that maximizes the ratio between the inter-class distance and the

intra-class variance after projection. Experimental data shows that LDA, as intu-

itively expected, provides a more optimal characterization of the target signal classes

than does PCA. However, computation of the LDA solution is substantially more

expensive than PCA, and thus limits the number of samples per observation that

can be handled. Although more expensive, the authors demonstrated that LDA

is an effective tool for dimensionality reduction for use in device profiling. In this

work, an n−class variant of LDA known as Multiple Discriminant Analysis (MDA)

is employed for dimensionality reduction in Chapter 3.

2.5.5.3 Higher-Order DSCA. The DSCA techniques described to this

point are first-order DSCA attacks. The attack order refers to the number of samples

from the trace that are simultaneously considered [MOP07]. If more than one sample

is considered, then the attack is known as a higher-order DSCA attack (HO-DSCA).

A dth-order DSCA attack is one which simultaneously considers d samples of the

side-channel trace. HO-DSCA attacks were first proposed by Kocher in his original

DPA paper, and have been investigated extensively since [KJJ99,Roh06,MOP07].

5PCA could be performed directly on the raw data, but instead of capturing the components of
maximal variance between classes, it would result in components that capture the components of
maximal variance across all data (irrespective of the classes).
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The motivation for HO-DSCA attacks is to overcome masking countermeasure

described in Section A.4. To be effective against masking, HO-DSCA considers d

separate points that correspond to d different sensitive intermediate values, each of

which is protected by the same mask. Theoretically, a dth-order DSCA attack is

capable of bypassing (d− 1)th-order masking scheme [CJRR99].

The precise time when the d sensitive intermediates are manipulated is gener-

ally unknown a priori by the adversary, although most of the available literature on

HO-DSCA attacks assumes these locations are known [PRB09]. However, for practi-

cal implementation reasons, masking implementations usually generate two sensitive

intermediates using the same mask in the first and last rounds. Therefore, in prac-

tice, attacking intermediates in the first and last round has been shown to be effective

against many masking implementations [OMPR05,MOP07]. Frequency-domain sig-

nal processing techniques have also been proposed as a technique to identify the

manipulation times [WW04]. In the context of profiling techniques, an adversary

has control of a training device and can identify relative times by carefully profiling

the device’s behavior.

Once the times of the sensitive data manipulations are identified, the data is

pre-processed to combine the multiple sensitive variables through some combining

function (typically additive or multiplicative), which maps the multi-variate problem

to a uni-variate problem [MOP07]. After pre-processing, the DSCA attack proceeds

as normal.

Because of the practical issues involved in locating the sensitive manipula-

tions and the complexity of carrying out such an attack is believed to increase ex-

ponentially with the attack order, HO-DSCA attacks are sometimes dismissed as

impractical [MOP07,PRB09]. Oswald et al. published a practical attack on an 8-bit

smart-card micro-controller protected by a 2nd-order masking scheme with under 400

observations, without any a priori knowledge of the times when sensitive data would

be manipulated [OMPR05]. Other recent work indicates sub-exponential complex-
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ity growth attacks are possible [GBPV10]. Additionally, Mangard et al. found that

hardware masking implementations are frequently easier to attack than software im-

plementations because of the unintentional effects of parallel implementations that

simultaneously process both random masks and masked values [MOP07].

2.5.5.4 Multi-channel Attacks. Agrawal et al. proposed combining

information leakage from multiple simultaneous side channels [ARR03]. Their ap-

proach is a generalization of standard DSCA techniques and requires leakages from

the combined channels be very “similar” at the times when the side channel signal is

correlated to the underlying data or operations of interest. For the particular DES

implementation studied, a multi-channel EM and power attack is significantly more

efficient than either single-channel attack alone. The number of traces required to

successfully extract the DES key using a maximum-likelihood based DPA attack is

substantially reduced—in some extreme cases by more than 80%. The initial ap-

proach does not allow for combination of leakages that occur at different relative

times in the side channel trace.

Standaert and Archambeau later extended the concept of a multi-channel at-

tack to the creation of multi-channel templates [SA08]. In their technique, the power

and EM side channel measurements (taken simultaneously during a single operation)

are simply concatenated together to create a combined power / EM feature vector.

Templates are then built normally, as described in Section 2.5.4. The authors found

that the combined power and EM template attack performed significantly better

than either technique alone (and that EM alone performed significantly better than

power alone) for the 8-bit micro-controller evaluated.

2.5.5.5 Combination of SCA with Other Techniques. Although gener-

ally outside the scope of this research (with the exception of the algebraic cryptanal-

ysis technique described below), a related research area combines SCA techniques

with other attacks, including invasive or semi-invasive attacks [SA03,Roh06,Sko06]
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and mathematical cryptanalysis techniques to augment SCA attacks (or vice versa)

[Roh06]. For example, side channel information can be used to precisely time the

injection of faults [Roh06].

For secure cryptographic algorithms, mathematical cryptanalysis is not a cred-

ible threat in itself since the required computational effort makes it impractical

assuming the mathematical basis has no flaws. Implementation attacks such as side-

channel attacks, on the other hand, exploit the vulnerabilities introduced by the

physical realization of the cryptographic algorithm—which is not a pure black-box

representation of the cipher. Even if an SCA attack is unsuccessful at extracting

a full cryptographic key from a physical system, it may be successful at identifying

a portion of the key or eliminating some class of possibilities. In such a case, the

problem complexity may be reduced enough to make a brute force or other direct

cryptanalytic attack practical [Roh06].

One of the most interesting and effective techniques published to date is the

recent work by Renauld and Standaert to combine profiling SCA attacks with alge-

braic cryptanalysis [RSVC09]. Rather than focusing on a single intermediate value,

algebraic SCA techniques use extensive profiling of a device to exploit the infor-

mation leakage of as much information about the various intermediate values as

possible. Standard SCA template-based techniques are used for the profiling and

intermediate value extraction from the target device. The extracted intermediates

become known values in an over-defined system of boolean equations that can be

solved for the unknown key using an automated boolean satisfiability (SAT) solver.

The results achieved using this technique are compelling, in that this appears to be

the first technique to claim the ability to extract an AES key with a single target

trace and no knowledge of plain- or cipher-text. The technique currently depends

on very accurate extraction of the intermediate values used in the solution, although

the authors suggest several ways this dependency can be reduced in practice.
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2.6 Countermeasures

All SCA countermeasures have a common objective—the elimination of dis-

cernible linkages between sensitive internal circuit behavior (data manipulation and

operations) and one or more external, physically observable phenomena. In practice,

completely eliminating information leakage from a single side channel is an extremely

difficult problem. The problem becomes more difficult when all possible side channels

are considered. Various researchers have asserted that it is fundamentally impossi-

ble to make the side channel emissions of a device completely independent of the

underlying computations [MOP07,Roh06].

As is the case when security measures are implemented for any type of sys-

tem, all of the countermeasures discussed in this section carry with them associated

implementation costs. Typical costs are slower performance, increased circuit size,

increased power consumption, and/or increased design time and expense. For this

reason, in the complex trade-space of real systems, designers may focus on the most

sensitive or critical circuit areas, and attempt to prevent information leakage only

from those subcomponents. In practice, system designers and architects balance

side-channel leakage resistance and other security measures with required system

cost and performance. Rather than attempting to build an impenetrable system, a

suitable goal is a design secure enough to deter would-be adversaries from applying

the necessary resources to defeat it. For a rational adversary, this is achieved in

practice if the costs of carrying out an attack outweigh the perceived benefits of

defeating the system’s protections.

At the highest level, countermeasures are classified as either procedural or phys-

ical design countermeasures. Procedural countermeasures include security practices

put in place to improve the security of a system. For example, a system architect

may understand that a device is vulnerable to various SCA attacks. Knowing this,

the architect may impose a restriction on the number of times a unique key can be
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used before it must be changed so that if a particular key is compromised, it will not

negatively effect the security of future transactions [And01,CJRR99].

Physical design countermeasures can be sub-divided into two primary ap-

proaches: reduce the signal and increase the noise. Both approaches degrade the

signal-to-noise ratio of information leakage during intermediate computations to the

point where it becomes impractical (in terms of number of required observations or

pre- and post-processing time) to extract information of concern from the physically

observable phenomenon. The actual implementation of either of these approaches

can take place at various levels of system design such as the protocol, system archi-

tecture, operating system, software (algorithm) or hardware levels [RO04a].

For each of the two general approaches, a large number of specific techniques

have been proposed. Most counter a specific side-channel threat, e.g., power or

timing information leakage since they have been the subject of the majority of the

SCA research to date. Notably, no perfect countermeasure exists to date, and most

of the proposed countermeasures still have significant SCA vulnerabilities. Some of

the most popular and promising countermeasures in theory have been shown to be

inadequate in practice soon after their introduction. Likewise, some widely used

countermeasures such as masking can be broken almost completely in the context

of profiling scenarios where the adversary has access and full control of a separate

training device [OM07]. However, in a well-designed system the countermeasures

may be sufficient as part of an integrated defense-in-depth strategy to deter less

determined adversaries—or at least be sufficient to protect a cryptographic key or

secure device for its useful life [CJRR99].

The principle SCA countermeasures that have been proposed to date are de-

scribed in Appendix A.
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2.7 Practical Considerations

Numerous publications have documented the nuances of implementing side

channel attacks in practice, with the book by Mangard et al. being the most thor-

ough treatment [MOP07]. This section briefly reviews techniques for experimentally

collecting side channel data and pre- and post-processing of the data to align traces.

Each side channel attack is unique and dependent on the specific device implemen-

tation being targeted. However, the approach outlined below is mostly generic and

should apply to most situations.

There are several ways side channel data can be experimentally collected. The

experimental setup used in this research to collect EM data is described in Section

3.11.1. The most common technique for capturing power consumption data is for

an attacker or security evaluator to insert a small resistor (1-100 Ohms) in series

with either the primary power supply line or the ground line, and sample the voltage

difference across the resistor using a digital oscilloscope [MOP07]. If the resistor size

is too small, it makes measuring the voltage drop difficult, and if it is too large it

may cause the circuit to malfunction. The time-varying voltage is proportional to

the current drawn from the power supply, and to the power consumed by the circuit

(thus the name power analysis). The procedure is semi-invasive since it requires

circuit or power supply modifications. A typical power analysis setup is shown in

Fig. 2.5.

An alternate technique preferred by some is to use a contact-less current probe

to collect the power consumption data. This technique is less invasive, and only

requires passing the power supply line through the measurement device. However,

Mangard et al. state that such a setup will have lower sensitivity than the former

direct measurement technique.

A block diagram of a typical experimental setup, representative of the setups

used for this research, is shown in Fig. 2.6. The steps involved in this experimental

setup are [MOP07]:
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Figure 2.5 A typical power analysis experimental setup [MOP07]

1. Supply the cryptographic device with power and a clock signal.

2. Configure and arm the oscilloscope from the controlling PC.

3. Command the target cryptographic device to begin execution and trigger data

collection by the oscilloscope.

4. Digitally sample the voltage variations across the resistor.

5. Collect the output of the cryptographic operation.

6. Retrieve the recorded side-channel data.

Power Supply 
Measurement 

circuit or EM probe 
Digital sampling 

oscilloscope 

Clock generator 
Cryptographic 

device 
Personal computer 

1 

1 

1 4 

4 

3 

5 

2 6 

Figure 2.6 Block diagram of typical experimental setup for side-channel analysis
(adapted from [MOP07]).
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Even if the target system has its own source, it may be more effective to

substitute more precise components to provide the power and clock signal. The data

collection technique may be adapted by the attacker to meet the unique objectives of

a particular SCA attack against the system of interest—which may be driven by, for

example, what countermeasures the system has implemented and the accessibility

of any internal circuitry. Modern chips often have several power and ground pins

as well as complex power distribution networks with filtering capacitors that reduce

the effectiveness of power analysis attacks. To achieve better results, it may be

necessary to target a specific pin rather than attempting to perform power analysis

on the noisy global power source.

Quisquater and Samyde were the first to report application of DPA-like exper-

iments on EM emissions [QS01]. Their initial collection were taken from a circuit

using a small (less than 2 cm) diameter flat coil of copper wire attached to a digi-

tal oscilloscope as the measuring device. The original experiments were conducted

inside a Faraday cage to minimize received noise from external sources of electro-

magnetic energy. However, most recent EM attacks have reported minimal noise as

a result of conducting EM measurements even without such a device. The work of

Quisquater is also the first to report using a motorized table to precisely position the

EM probe over the device under test. Using this technique, they demonstrated the

ability to create a three-dimensional map of the EM leakage (magnitude) produced

by the device. Similar capabilities, including the Riscure Inspector system used for

this work [Ris09], are now commercially available.

2.7.0.6 Signal Processing Techniques. In practical SCA attacks, sig-

nal alignment and countermeasures can make straightforward application of the

DSCA techniques impossible or at least very time consuming. In some cases, the

collected signals must be pre- or post-processed to make an attack possible. Sig-

nal (mis-)alignment can severely impact the results of a DSCA attack, and several

proposed countermeasures intentionally induce temporal misalignment. If all of the
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collected side channel traces do not begin at precisely the same relative time, noise

is introduced into the process, which requires many more measurements to mount a

successful attack. In experimental setups, initial alignment is achieved by asserting

a signal that tells the digital oscilloscope to begin collecting data at the instant the

ciphering operation begins. In real-world applications of SCA techniques, there is

obviously no trigger signal present. Certain commercial systems (e.g., the icWaves

subsystem of the Riscure Inspector side channel analysis system) can recognize, in

real-time, the signal features that indicate an encryption operation of interest is be-

ginning [Ris09]. These systems obtain traces that are nominally aligned at the start

of the encryption operation. Mangard et al. discuss a number of techniques that

can be used to statically align trace data when the digital sampling does not begin

at the precise same time [MOP07].

Several techniques can overcome temporal desynchronization countermeasures.

Mangard et al. discuss a number of techniques to align trace data [MOP07]. Akkar et

al. suggested pre-processing signals where temporal desynchronization is present and

normalizing the individual traces by stretching or compressing the samples within

each clock period [ABDM00]. After pre-processing, DSCA techniques are applied

as normal. One technique for accomplishing this was introduced by Woudenberg

under the name elastic alignment [vWWB11]. Some investigators have also indicated

that simply pre-processing the captured traces to convert time-domain signals to

the frequency domain (via Fast Fourier Transform) and performing all subsequent

analysis in the frequency domain will significantly reduce any impact of misalignment

[RO04b,GHT05,PHF09].

Clavier introduced an attack variation that overcomes the randomization of

operation duration, which he termed sliding window DPA [CCD00]. The attack

works by conducting a DPA attack as normal, and post-processing the resulting sta-

tistical measure (e.g., correlation coefficients) over a fixed window of time, effectively
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restoring the amplitude of the characteristic peak values which indicate a correct key

hypothesis.

Numerous other applications of signal processing have been investigated. Since

SCA is, in essence, a signal detection/estimation/classification problem, it is likely

that well-known signal processing techniques from other fields (communications sys-

tems, biomedical signal processing, etc.) can be adapted for SCA.

2.8 Summary

This chapter summarized the relevant work and technical background necessary

to the study of side channel analysis and information leakage from integrated circuits.

This information supports the subsequent material presented in the remainder of this

document.
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3. Intrinsic Physical Layer Authentication of Integrated Circuits

This chapter contains the text of an article that was submitted and accepted for pub-

lication to the Institute of Electrical and Electronic Engineers (IEEE) Transactions

on Information Forensics and Security [CLB+11]. This article was co-authored by

Mr. Eric Laspe, Dr. Rusty Baldwin, Dr. Michael Temple, and Dr. Yong Kim.

3.1 Abstract

RF distinct native attribute (RF-DNA) fingerprinting is adapted as a physical

layer technique to improve the security of integrated circuit (IC)-based multi-factor

authentication systems. Device recognition tasks (both identification and verifica-

tion) are accomplished by passively monitoring and exploiting the intrinsic features

of an IC’s unintentional RF emissions without requiring any modification to the

device being analyzed. Device discrimination is achieved using RF-DNA finger-

prints comprised of higher-order statistical features based on instantaneous ampli-

tude, phase and frequency responses as a device executes a sequence of operations.

The recognition system is trained using Multiple Discriminant Analysis to reduce

data dimensionality while retaining class separability, and the resultant fingerprints

are classified using a linear Bayesian classifier. Demonstrated identification and ver-

ification performance includes average identification accuracy of greater than 99.5%

and equal error rates of less than 0.05% for 40 near-identical devices. Depending on

the level of required classification accuracy, RF-DNA fingerprint based authentica-

tion is well-suited for implementation as a countermeasure to device cloning, and is

promising for use in a wide variety of related security problems.

3.2 Introduction

Physical implementation attacks on secure electronic systems have evolved

rapidly in the past few years making it increasingly difficult for new countermea-
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sures and security practices to keep pace [BMV05, TJ09]. In contrast to math-

ematical cryptanalytic attacks which are typically hypothetical in nature, imple-

mentation attacks present a serious and immediate threat since the strength of

the underlying algorithms and protocols is rendered largely irrelevant. Examples

of implementation attacks range from complex techniques requiring expensive and

highly specialized equipment (e.g., laser fault injection or focused ion beam manip-

ulation) to surprisingly simple, low-cost attacks targeting the unintentional infor-

mation leakage produced by devices during normal operation (e.g., simple power

analysis) [BMV05,TJ09].

An extensive body of academic and commercial research has been dedicated to

examining the physical security of cryptographic and other secure devices. This work

has emerged in the last decade under the titles side channel analysis and fault analy-

sis (cf. [BMV05,AARR02,KJJ99,ZF05]). Given that many implementation attacks

are well within the reach of even modestly funded and minimally equipped individ-

uals, they should be given serious practical consideration when designing modern

systems. A prudent design approach is to 1) assume that secure tokens or other

essential system components are subject to counterfeiting, cloning, or sensitive data

extraction, and 2) take appropriate steps to mitigate the associated risks as part of

an integrated, multi-tiered system security architecture.

RF “distinct native attribute” (RF-DNA) fingerprinting (cf. [SITMM08,KTM09,

RTM10,RPT11,HBK06,WMTM10,WTR10,CGB+10]) is adopted herein as a way to

augment existing multi-factor authentication schemes via physical layer authentica-

tion at the device level to counter cloning and related threats. The term RF-DNA is

used to embody the coloration of RF emissions (both intentional and unintentional)

induced by the intrinsic physical attributes of a unique device. Only RF emissions

produced by unintentional emitters such as integrated circuits (ICs) are considered

in this study.
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Using the RF-DNA approach, semiconductor-based IC devices are passively

recognized based on discriminating features (RF-DNA fingerprints) extracted from

their intrinsic physical properties in a manner analogous to biometric human iden-

tification. Because this technique exploits emissions caused by intrinsic inter-device

variability, it is suitable for a variety of security applications involving commodity

commercial ICs, and does not require any physical device modifications. Moreover,

our initial results indicate the technique can be adapted to work with existing pro-

cesses and protocols, and is likely suitable for use with a wide variety of IC devices,

e.g., general purpose microcontrollers, programmable logic devices such as FPGAs,

and custom ASICs. To our knowledge, the work presented here and in [CGB+10]

is the first to propose using the intrinsic DNA of unintentional emissions for IC

recognition.

This work makes a number of distinct contributions while expanding on the

initial proof-of-concept results in [CGB+10] with an extensive empirical evaluation.

In particular, previous RF-DNA work has predominantly considered device identi-

fication tasks. However, the primary use case envisioned for IC fingerprinting is to

counter cloning and related threats, which requires identity verification. Herein, a

systematic approach is developed and introduced to evaluate RF-DNA fingerprinting

effectiveness in the context of both identification and verification tasks for arbitrary

n-class problems. Performance of the proposed technique is evaluated under a wide

range of simulated noise conditions, and empirical results are presented indicating

the RF-DNA technique performance scales well for identification and verification

tasks involving 40 near-identical devices.

3.3 Problem Definition

This work assesses the suitability of RF-DNA fingerprinting for two distinct,

but closely related device recognition tasks: identification and verification. These
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tasks are analogous to human recognition tasks for which biometric-based pattern

recognition systems are frequently used [JRP04]:

1. Device identification. The recognition system determines a device’s identity by

comparing a captured device fingerprint with reference fingerprint templates

for all known devices. Identification requires a one-to-many comparison and is

considered more difficult than verification.

2. Device verification. The recognition system checks the authenticity of a de-

vice’s claimed identity (by virtue digital credentials presented) using a one-to-

one comparison. As with biometric verification, the objective of physical layer

device verification is to prevent two devices from using the same identity.

Previous RF-DNA fingerprinting work predominantly focused on the one-to-

many identification task in the context of wireless network security, where a device

entering a network needs to be verified as belonging to a pool of authorized devices.

However, detection of cloned security tokens such as smart-card based identification

cards or payment devices, requires one-to-one verification that the claimed identity

of the device matches its physical fingerprint. Herein, the suitability of RF-DNA

fingerprints for use by physical layer device recognition systems is assessed for both

identification and verification tasks.

3.4 Notional Physical Layer Device Authentication System Design

This section describes a system design for applying RF-DNA fingerprinting to

the device identification and verification problems described above. The basic design

is modeled after a typical biometric system [JRP04], and includes five modules:

• Sensor module. The sensor module captures unintentional RF emissions, and

is composed of an RF receiver and a near-field probe. Details of the particular

sensor module used to obtain the experimental data are described in Sec. 3.8.2.
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• Feature extraction module. Features are generated based on the statistical

behavior of one or more instantaneous response(s) within pre-defined fixed

signal regions. Both the device enrollment and the feature matching processes

use the feature extraction module to generate a statistical fingerprint for each

captured signal as described in Sec. 3.7.

• Classifier training module. Extracted features are post-processed using dimen-

sionality reduction and probability density estimation techniques to generate

a reference template for each enrolled device.

• System database module. As each device is enrolled, the set of training finger-

prints and associated reference template are stored in a verification database.

As each device is issued or associated with a particular digital identity, the

database is updated to reflect the pairing (e.g., device A1 belongs to John

Smith).

• Classification / feature matching module. For recognition tasks, one or more

fingerprints are extracted from the presented device. The extracted finger-

print(s) are compared to the stored reference templates in the system database

to either identify the device or verify its presented identity.

The basic steps involved in fingerprinting each device at enrollment are:

1. Command the device to execute a short pre-defined sequence of operations (the

challenge).

2. Capture the unintentional near-field RF emissions produced by the device as

it executes the operation sequence (the response).

3. Extract discriminating features from the captured emissions to produce an

RF-DNA fingerprint.

4. Repeat the above steps NFP times to obtain a set of training fingerprints.

5. Process the set of extracted training fingerprints to generate a reference tem-

plate for each enrolled device.
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6. Repeat the above steps for each of NCR challenge-response sequences.

7. Store each set of training fingerprints and generated reference template in a

database.

8. When the physical device is issued to an individual or paired with a set of digital

credentials, update the database to associate the stored reference template with

those digital credentials.

In the context of a cryptographic challenge-response system, the command to

execute a particular operation sequence is the challenge and the unintentional RF

emissions produced by the device while executing the sequence is the response.

The operation sequence used can be composed of any fixed, repeatable process.

For general purpose microcontrollers, the operation sequence would be a series of

microcode instructions (e.g., some combination of loop, branch, control, or arithmetic

commands) on known (fixed) data. For programmable logic devices or ASICs, the

sequence could be composed of several clock cycles where different combinational

logic paths are activated, starting from a known fixed configuration. When possible,

device configuration (clock rate, on-chip peripheral status, etc.) should be held or

reset to a known state prior to beginning the operation sequence.

After enrollment, subsequent device recognition tasks are performed by re-

peating the challenge-response protocol to obtain an authentication fingerprint. The

authentication fingerprint is processed by the classification / feature matching mod-

ule for identification or verification. Although the experiments conducted herein are

limited to a single challenge-response sequence (NCR = 1), extension of the approach

to an arbitrary number of challenge-response pairs is straightforward.

An explicit RF-DNA challenge-response procedure is unnecessary for many en-

visioned applications because the RF-DNA fingerprinting procedure can be be piggy-

backed on existing protocols. For example, it is typical to initiate communications

with smart-cards by issuing a reset command to the card and parsing the resulting
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answer to reset (ATR) response. A straightforward RF-DNA implementation might

generate a fingerprint from a small portion of the ATR response. Other opportunis-

tic responses for fingerprinting of smart-card authentication include PIN verification

or credential retrieval. Similar opportunistic approaches can be envisoned for identi-

fication and verification tasks based on microcontrollers, programmable logic devices

such as FPGAs, and ASIC-based devices.

3.5 Unintentional RF Emissions of ICs

It is common knowledge that electronic equipment radiates electromagnetic

(EM) energy that can interfere with nearby devices. It is for this reason that airline

passengers are required to “turn off all portable electronic devices,” and consumer

electronics undergo certification testing for compliance with Federal Communications

Commission (FCC) [FCC09] or other regulating standards. Digital devices that

incorporate high frequency clocks, oscillators, etc. are specifically regulated as known

unintentional emitters and require strict testing to ensure emissions do not exceed

tolerable levels.

Variations in current flow through a device due to clock distribution, transistor

switching, and other IC component activity produce EM fields that combine through

complex interactions and propagate via both radiation and conduction in the form of

time-varying EM waves. The fundamental nature of these effects is well understood

and is described by Maxwell’s equations [AARR02].

In the past decade there has been a growing realization that unintentional

emissions are not only a source of interference, but also a useful source of information

about the internal state of the emission producing device [KJJ99,AARR02,BMV05,

ZF05, PEK+09]. This has had profound implications for the physical security of

sensitive electronic systems since in many instances the leaked state information is

sufficient to infer precise details about the operations the device is performing and/or

the data it is processing. More recently, it was shown in [CGB+10] that in addition
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to data and operation-dependent characteristics, the unintentional near-field RF

emissions of individual ICs also exhibit significant device-dependent characteristics.

The most likely source of inter-device emission variability is the random process

variations introduced during die fabrication and packaging [Ver10]. Although IC

fabrication processes are necessarily precise, structural variations are still introduced

in the final device structure on a very small scale (deep sub-micron in modern IC

technology). As a result, no two chips are exactly alike. As long as process-induced

variations are within acceptable tolerances, the device will operate correctly from a

black-box functional perspective.

For this study, the hypothesis is that the fabrication process-induced variations

in each individual chip’s electrical properties color the unintentional RF emissions

from the circuit, and that the resultant coloration is sufficient to uniquely identify

the emissions’ source. Although only unintentional RF emissions are studied herein,

the approach used is believed to be applicable to other side channel emissions such

as variations in the power consumption of the device.

3.6 Related Work

Various methods have been proposed to use the uniqueness of inter-device pro-

cess variations to enhance security. Previously proposed physical layer device recog-

nition techniques include physical unclonable functions (PUFs) [Ver10, PRTG02],

RF certificates of authenticity (RF-COAs) [DK07], and the exploitation (i.e, RF

fingerprinting) of unique signal coloration within intentional emissions produced by

wireless networking [SITMM08,KTM09,RTM10,HBK06,RPT11,DC09] and RFID-

based devices [DHBČ09].

3.6.1 Physical Unclonable Functions (PUF). PUF techniques refer to two

distinct approaches for device authentication. The first augments an IC with special-

ized internal measurement circuitry that computes a one-way function from glitch
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counts, propagation delays, or other electrical properties that vary randomly with

intrinsic process variations of the IC [Ver10,MKP09]. A second approach combines

a grid of capacitive sensors integrated into the top metal layer of the IC with a con-

formal coating doped with randomly distributed dielectric particles applied on top of

the IC’s passivation layer. The conformal coating requires active interrogation (i.e.,

application of a specified voltage with known amplitude and frequency) and internal

measurement of the response by the circuit [Ver10].

3.6.2 RF Certificates of Authenticity (RF-COA). The RF-COA technique

attaches a three dimensional constellation of small randomly shaped conductive or

dielectric objects to an RFID device. This is similar to a PUF coating except that

both the interrogation and response measurement are carried out by an external

RFID reader. The RFID reader is modified to include a dense matrix of patch

antennae to transmit and receive high-frequency RF signals. The reader interrogates

a modified RFID object and extracts a fingerprint to compute a COA [DK07].

3.6.3 RF-DNA Fingerprinting. RF fingerprinting has been proposed as a

physical layer technique to enhance the security of various wireless communications

devices (e.g., RFID [DHBČ09], 802.11 WiFi [RPT11], 802.15 WPAN [HBK06,DC09],

802.16 WiMAX [WMTM10], GSM [WTR10]. The device fingerprinting methodol-

ogy developed herein is specifically based on previous RF-DNA work in [SITMM08,

KTM09, RTM10]. The preliminary results in [CGB+10] confirmed that the general

approach was promising for recognition of ICs based on their unintentional emissions.

A significant advantage of RF-DNA fingerprinting compared to PUF and RF-

COA techniques is its applicability to the authentication of any commodity IC with-

out modifications to the internal circuitry or application of an external coating.

Additionally, measurement of the device response is passive and does not require a

transmitter.
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Figure 3.1 RF-DNA statistical fingerprint generation process.

To implement RF-DNA fingerprinting, the sensor module described in Sec. 3.4

would be integrated into the terminal or device reader. This approach is believed to

be reasonable given that space and power constraints are generally less restrictive

in a reader (e.g., smart-card reader or ATM machine) than in the secure token or

device itself.

3.7 RF-DNA Fingerprint Generation and Classification

3.7.1 RF-DNA Feature Extraction and Statistical Fingerprint Generation.

The statistical fingerprint generation methodology used herein is based on [SITMM08]

with modifications made to 1) extend the process from the limited 3-class to general

N -class problems, and 2) to enable both identification and verification device recog-

nition tasks. RF-DNA statistical fingerprint feature vectors, F, are extracted from

real-valued time-domain samples based on the statistical behavior of instantaneous

signal response(s) within pre-selected response regions. The complete fingerprint

extraction and generation process is shown in Fig. 3.1.
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Three instantaneous signal responses are generated from the real-valued time

domain samples: instantaneous amplitude (IA) given by a (n), instantaneous phase

(IP) given by φ (n), and instantaneous frequency (IF) given by f (n). To calculate

φ (n) and f (n), the real-valued signal samples are first converted to I–Q samples,

sC(n) = sI(n)+sQ(n), using a Hilbert transform [Lyo04]. The IP samples are calculated

using

φ (n) = tan−1

[
sQ(n)

sI(n)

]
, (3.1)

with the corresponding IF (Hz) given by

f (n) =
1

2π

[
dφ (n)

dt

]
. (3.2)

The resultant IA and IF responses are “centered” using the amplitude (µa)

and frequency (µf ) means to remove potential collection biases

ac (n) = a (n)− µa, (3.3)

fc (n) = f (n)− µf . (3.4)

Finally, the centered responses in (3.3) and (3.4) are normalized by their re-

spective maximum magnitudes to compensate for power variation.

3.7.1.1 Statistical Fingerprint Generation. After centering and nor-

malization, Nf = 4 statistical features are generated within each selected region of

each instantaneous response: standard deviation (σ), variance (σ2), skewness (γ)
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and kurtosis (κ) [SITMM08]. For an arbitrary centered and normalized sequence

{x̄c (n)} having Nx samples, these features are

σ2 =
1

Nx

Nx∑
n=1

(x̄c (n)− µ)2, (3.5)

γ =
1

Nxσ3

Nx∑
n=1

(x̄c (n)− µ)3, and (3.6)

κ =
1

Nxσ4

Nx∑
n=1

(x̄c (n)− µ)4, (3.7)

where standard deviation (σ) is
√
σ2.

For all results presented in Sec. 4.6, each statistic was calculated over NR = 32

equal length, contiguous sub-regions spanning a total region of interest (ROI). The

ROI was empirically selected from the collected signal and contains NCL = 32 clock

cycles of device operations. Extensive pilot studies confirmed that for the parameter

combinations studied, partitioning samples into sub-regions corresponding to integer

multiples of the number of clock cycles in the ROI yielded statistically superior results

relative to partitioning based on fractional clock cycles. The full ROI encompassing

all NCL = 32 clock cycles was used as an additional “total” region giving (NR + 1) =

33 total regional contributions for each device. Fig. 3.2 illustrates the sub-region

allocation process used herein.

For each subregion and the “total” region, the four statistics are concatenated

to form a regional RF-DNA marker vector

FRi =
[
σRi σ

2
Ri
γRi κRi

]
1×4

, (3.8)
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Figure 3.2 Mean amplitude response of signals collected for all devices from part
numbers A and B (see Tab. 3.2). The x-axis shows sub-region al-
location using NR = (NCLK + 1) = 33 sub-regions for calculation of
RF-DNA statistical fingerprints as described in Sec. 3.7.1.1.

where i ∈ {1, 2, . . . , (NR + 1)}. The RF-DNA marker vectors (3.8) are concatenated

to form a composite characteristic vector for each selected characteristic

FC =

[
FR1

... FR2

... FR3 . . . FRNR+1

]
1×[4(NR+1)]

, (3.9)

where the superscripted C denotes a specific characteristic response, i.e., a, φ, or f .

Considering IA, IP, and IF the final statistical fingerprint for each signal is a vector

of Nf · (NR + 1) ·Ni = 4 · 33 · 3 = 396 total elements, or

F =

[
Fa ... Fφ ... Ff

]
1×396

. (3.10)
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Figure 3.3 Average of 500 RF-DNA fingerprints for each of the 40 tested devices.
Fingerprints are composed of statistical features extracted from NCL =
32 clock cycles (at collected SNR). The x-axis is the alpha-numeric
designator for each chip (see Table 3.2).

Finally, the training matrix composed of NFP separately collected statistical

fingerprints is

FT =


F1

F2

...

FNFP


NFP×396

, (3.11)

which is input to the classification training process described in Sec. 3.7.2.

The RF-DNA fingerprints shown in Fig. 3.3 illustrate intra- and inter -part

number variability in the statistical features generated for 40 unique devices. For

visual clarity, the RF-DNA markers in F are scaled, compressed and/or expanded,

and quantized such that the plotted data spans the interval [0, 1] within each statistic.

The quantized markers are stacked vertically to create an electrophoresis-like plot.

The RF-DNA plot is helpful in developing an intuitive understanding of which

statistical features exhibit the most variance both within and across part numbers. It
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is expected that the classifier will have the greatest difficulty distinguishing between

parts that have visually similar RF-DNA fingerprints. For example, the RF-DNA

plots for devices A4, A6, and A8 appear to be very similar across all features. These

devices are expected to be confused more frequently than devices that look substan-

tially different across one or more statistical features. Device A9, on the other hand,

appears quite unique and would generally be expected to be less confused with other

devices. Likewise, the large apparent differences between the Class A chips and the

chips in all other classes implies that a classifier should be able to distinguish Class

A chips from the other classes more easily.

3.7.2 Classifier Training. Consistent with previous RF-DNA fingerprinting

work, training of the classification system is accomplished using multiple discrimi-

nant analysis (MDA) to reduce feature dimensionality and improve class separability.

MDA is an extension of Fisher’s (two-class) linear discriminant analysis (LDA) to

N -classes that linearly transforms the sample points into an (N − 1)-dimensional

subspace without reducing the class separability power [TK09]. The MDA projec-

tion maximizes the ratio between inter-class distance and intra-class variance. For

all results presented herein, input fingerprint data is projected from the original

396-dimensional data into a compressed (ND − 1) = 39-dimensional space.

Given input data matrix X, the MDA transformation first finds the within

(intra-) (Sw) and between (inter-) (Sb) class scatter matrices [TK09]

Sw =

ND∑
i=1

PiΣi, (3.12)

Sb =

ND∑
i=1

Pi (µi − µ0) (µi − µ0)T . (3.13)

where Σi is the covariance matrix for class Ci, and Pi is the prior probability of class

Ci (assumed to be equal for all classes).
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Projection matrix W is formed from the (N − 1) eigenvectors of S−1
w Sb. The

formation of W optimally maximizes the ratio of inter-class distance to intra-class

variance [TK09]. Individual fingerprints are projected onto the (N − 1)-dimensional

MDA space by

FW
i = WTF. (3.14)

For all results presented herein, the full MDA-projected fingerprint training

matrix, FW
T is a combination of NFP MDA-projected training fingerprints, each with

(ND − 1) = 39 elements

FW
T =


FW

1

FW
2

...

FW
NFP


NFP×39

. (3.15)

Classifier training is completed by fitting a multivariate normal distribution to

the MDA-projected data and saving the estimated distribution parameters (mean

vector, µ̂W
i , and covariance matrix, Σ̂W

i ) for each class. For the linear Bayesian

classifier used herein, a pooled estimate of the covariance matrix is used in lieu of

individual covariance matrices for each class [TK09]. Note these parameters are for

the distribution fit to the training data after MDA projection, as indicated by the

superscripted W.

The complete training process produces the following:

• MDA projection matrix (W)

• ND sets of MDA-projected training fingerprints (FW
ci

) (one set for each device)

• ND estimated mean vectors (µ̂W
ci

)

• A pooled estimate of the covariance matrix (Σ̂W)
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The pair of parameters composed of the mean vector and covariance matrix

for each device is the reference template for that device.

3.7.3 Fingerprint Classification. As described in Sec. 3.3, RF-DNA statis-

tical fingerprints can be used for both identification and verification tasks. For both

applications, the unintentional RF emissions of a target device are collected and the

relevant statistical features are extracted and projected into the MDA space using

(3.14) to generate a projected device fingerprint (FW). The classification technique

and performance measures used to evaluate system performance are different for

each application and are described below.

3.7.3.1 Device Identification. For device identification, a captured

fingerprint is compared to the reference templates of all devices in a verification

database (one-to-many comparison) using some similarity criterion. The identity

of the target device is determined by computing the similarity score for each com-

parison and selecting the best match. The similarity measure used herein is the

Bayesian posterior probability under assumptions of equal prior probabilities and

equal costs. This approach is optimal for the minimization of classification error

probability [TK09].

Stated formally, for the case with ND devices, a device fingerprint FW is as-

signed to class ωi, where i ∈ {1, 2, . . . , ND} if

P
(
ωi |FW) > P

(
ωj |FW) ∀j 6= i, (3.16)

where P
(
ωi |FW

)
is the conditional posterior probability that FW belongs to class

ωi. According to Bayes’ rule, the conditional probability is [Mac03]

P
(
ωi |FW) =

P
(
FW |ωi

)
P (ωi)

P (FW)
. (3.17)
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For a given fingerprint FW the denominator is constant across all ωi and can be

neglected when evaluating the relative probabilities in (3.16). Assuming equal prior

probabilities for all classes, P (ωi) = 1/ND is likewise constant, and the decision

criteria in (3.16) reduces to maximizing the likelihood P
(
FW |ωi

)
for all ωi. The

likelihood is estimated from the multi-variate Gaussian distribution defined by each

device reference template [TK09]

P
(
FW |ωi

)
=

1

(2π)(ND−1)/2
∣∣∣Σ̂∣∣∣1/2 · exp (Fe), (3.18)

where

Fe = −1

2

(
FW − µ̂i

)T
Σ̂
−1 (

FW − µ̂i

)
. (3.19)

System identification performance is evaluated based on the overall correct

identification percentage, calculated as the percentage of time the classifier correctly

identifies the true class of an observed fingerprint over all trials. Confusion matrices

are generated to facilitate analysis of identification errors, but are not presented in

the interest of space.

3.7.3.2 Device Verification. For device verification, the captured

fingerprint need only be compared with the specific template corresponding to the

device’s claimed identity to determine authenticity. Again, the similarity measure

used is the Bayesian posterior probability assuming equal priors and equal costs. The

decision for device verification is a binary result, where the device is deemed authentic

when the posterior probability exceeds a pre-determined threshold; otherwise, it is
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classified as an impostor. Stated formally, a newly observed device fingerprint FW

is considered authentic when

P
(
ωc |FW) ≥ t, (3.20)

where ωc is the class to which the device claims to belong, and t is the decision

threshold.

For each verification decision the system can make two types of errors (see

Table 3.1) [JRP04]:

1. incorrectly accepting an impostor as authentic (false accept)

2. incorrectly rejecting an authentic device as an impostor (false reject)

The threshold, t, used for accept/reject decisions can be adjusted to tune

system performance to increase security (reduce false accept errors) or increase ac-

cessibility (reduce false reject errors).

Verification performance is assessed herein by plotting the receiver operating

characteristic (ROC) curve and corresponding equal error rate (EER) for each curve.

The ROC curve is generated by plotting the true accept rate (TAR) vs. false accept

rate (FAR) as t is varied across the interval [0, 1] [JRP04]. EER corresponds to the

point on the ROC curve where the false reject rate (FRR = 1−TAR) and FAR are

equal, and is frequently used as a summary statistic to compare the performance of

various classification systems. In general, lower EERs indicate better system clas-

sification performance. The EER achieved for each plotted ROC curve is provided

herein to facilitate future comparisons.
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Table 3.1 Verification Error Types.

System Decision

Reality Authentic Imposter

Authentic True Accept False Reject
Imposter False Accept True Reject

3.8 Experimental Methodology

All results were obtained by analyzing features of empirically collected unin-

tentional RF emissions from a given number of tested devices. A description of the

experimental setup and analysis methodology used herein is provided below.

3.8.1 Experimental Setup. The unintentional RF emissions of a total of

ND = 40 individual 16-bit PIC24F micro-controllers are evaluated [Inc10]. These

devices include ten unique chips from each of four different part numbers as shown in

Table 3.2. The part numbers were intentionally selected to provide varying degrees

of similarity in device architecture. All ten chips within each part number are from

the same manufacturing lot.

One of the PIC parts (Part A) shares the same basic architecture as the others

but has several on-chip peripherals not present on the other three parts. The other

three PIC parts (B, C, and D) have minimal architectural differences and are identi-

cal except for the amount of on-board flash RAM (64, 48, and 32 kbit respectively).

Hereafter, individual chips are referenced by an alphanumeric designator correspond-

ing to their respective part number and unique chip number, i.e., A1, A2, ..., D9, D10

as in Table 3.2.

The PIC devices are representative of the low cost micro-controllers used in

a variety of real-world commercial embedded systems, including various security

applications [PEK+09] and are easy to obtain through normal commercial channels.

All of the chips were fabricated using an unspecified 180 nm process. Since all chips

within a part number are from the same manufacturing lot, layout and architectural
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Table 3.2 Tested PIC micro-controller device classes.

Part
Class Device Numbers PIC Part Number

A A1-A10 PIC24FJ64GA102 I/SP
B B1-B10 PIC24FJ64GA002 I/SP
C C1-C10 PIC24FJ48GA002 I/SP
D D1-D10 PIC24FJ32GA002 I/SP

features are identical; the only anticipated physical differences between chips with

the same part number are those resulting from random (uncontrolled) variations in

the die fabrication and packaging processes.

For device control and measurement, the micro-controllers were mounted on

a single evaluation board and programmed to respond to commands sent over an

RS-232 serial interface. The circuit board was fixed in place on a measurement table

using a custom jig to minimize any lateral movement during or between collections,

and was powered from a standard lab DC power supply (Agilent E3631A) to reduce

effects due to uncontrolled supply voltage fluctuations. A detailed description of the

experimental setup used can be found in [CGB+10].

The average amplitude response of the RF signals captured from all chips

in part classes A and B are shown in Fig. 3.2. As might be intuitively expected

given the architectural differences, the average signal response produced by the Class

A chips is noticably different from the response produced by Class B. The mean

amplitude responses produced by classes C and D are omitted from the plot because

they were visually indistinguishable from the average response of class B at the scale

shown.

3.8.2 Signal Collection. The emissions from each micro-controller were

collected using a near-field probe connected to a Lecroy 104-Xi-A oscilloscope as

shown in Fig. 3.4. The probe acts as an antenna to receive the unintentional

emissions from the device under test and does not directly contact the chip. All
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Figure 3.4 Signal collection and pre-classification processing process.

data was collected at a sample rate of fs = 2.5 GSa/sec with a WLP = 1 GHz low

pass anti-aliasing filter inserted between the probe and the oscilloscope.

The high sampling rate used is excessive for the devices under test, which op-

erate at FCLK = 29.48 MHz, but allows post-collection simulation of various receiver

configurations. All results are based on post-processed signals with an effective sam-

ple rate of 208 MSa/sec, which was achieved by passing all collected signals through

a low-pass Butterworth filter having a -3dB bandwidth of WBB = 100 MHz, and dec-

imating them by a factor of 12 using proper decimation (i.e., every twelfth sample

is retained, all others are discarded).

To simulate the enrollment process in Section 3.4, each micro-controller is

repeatedly commanded to perform an identical sequence of operations on known

(constant) data. At the start of the operation sequence, the micro-controller asserts

a trigger signal to begin the data acquisition process. In practice, devices intended

for authentication could easily be configured to generate the required trigger. Use

of this technique for non-cooperative recognition tasks would require either precise
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detection of the event to be fingerprinted or post-processing to extract the relevant

portion of the captured signal.

For this study, environmental effects (e.g., temperature and supply voltage)

were controlled by warming-up each device for approximately 20 minutes to stabilize

the operating temperature and using a bench power supply to provide a stable supply

voltage. After warm-up, NFP = 500 signals were collected from each chip as the

challenge-response sequence was repeatedly executed. For practical implementations,

training over the range of expected operating temperatures and supply voltages has

been shown to be an effective technique to deal with environmental fluctuations

[TSU04].

For all collections, acquisition order for the chips was randomly generated

to prevent any collection-order dependent variance. No measures were taken to iso-

late the data collection system from background environmental noise—all collections

were performed in an office building environment with numerous co-located PCs and

wireless devices.

3.8.3 K-Fold Cross Validation. Classification performance is evaluated

using K-fold cross validation. Consistent with common practice [TK09], K = 10

is used such that each collection of NFP = 500 statistical fingerprints (one for each

sequence of operations) per device is divided into ten blocks each having NK =

50 fingerprints per block. Nine blocks from each device are used for training and

one block is “held out” for classification. The training and classification process is

repeated ten times until each of the ten blocks has been “held out” and classified.

Thus, each block of statistical fingerprints is used once for classification and nine

times for training. Final cross-validation performance statistics are calculated by

averaging the results of all K = 10 folds and calculating 95% confidence intervals to

determine statistical significance.
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3.8.4 Noise Simulation. Signal collection occurred in a controlled office

environment while limiting outside influences where possible. To assess performance

under less ideal conditions (noisier integrated systems, poor probe positioning, in-

creased separation between sensor and system under test, etc.), captured signals

are power-scaled for analysis. To evaluate performance under lower SNR conditions

the collected signals were combined with like-filtered additive white Gaussian noise

(AWGN) to achieve desired analysis SNRs of −50 ≤ SNR ≤ 50 dB in 1 dB incre-

ments as shown in Fig. 3.4. During pre-classification processing, the baseband signal

and AWGN were digitally filtered using the same filter, i.e., a low-pass Butterworth

filter with a -3 dB bandwidth of WBB = 100 MHz.

For each Monte Carlo iteration, a total of NZ independent AWGN realiza-

tions are generated, filtered, scaled and added to the collected signals prior to fin-

gerprint generation. After NZ Monte Carlo iterations at each SNR, K = 10 fold

cross-validation results are averaged to calculate summary classification performance

statistics. All results are based on NFP = 500 empirically collected signals per de-

vice and NZ = 100 simulated AWGN realizations at each analysis SNR for a total

of (ND ×NZ ×NFP = 2 000 000) classification decisions.

3.9 Results

Extensive pilot studies were performed using all ND = 40 devices to assess

1) the influence of various system parameters on overall performance, 2) the abil-

ity of the classification approach to deal with the large number of devices, and 3)

the sensitivity of fingerprint performance to various arbitrarily selected response se-

quences. Performance was evaluated by varying the system parameters over NCL =

{2, 3, ..., 64}, NR = {NCL/2, NCL, NCL·2}, and WBB = {25, 50, 100, 250, 500} (MHz).

All pilot studies analyzed signals at the collected SNR (no noise scaling). The effect

of including each of the instantaneous responses (IA, IP, and IF) was also assessed

during the pilot studies. The results used NR = NCL = 32 and WBB = 100 MHz
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Figure 3.5 Average identification performance results (classification success rate)
for K=10 fold cross-validation with NZ = 100 random noise realizations
at each analysis SNR.

for statistical fingerprints composed of all three instantaneous responses (IA, IP,

and IF). This combination of parameters and signal responses provides a reasonable

trade-off between system performance and computation time.

Fig. 3.5 shows overall average, best, and worst-case observed identification

performance for the ND = 40 tested devices in Table 3.2. The 95% CIs were cal-

culated for the average performance data. However, they are omitted from the plot

for visual clarity since they are approximately the width of the data markers. As

indicated in Fig. 3.5, the classifier achieved an overall average identification success

rate of of 99.7% (σ = 0.892) at the collected SNR (no added noise), and maintained

average identification success rates of 90% or better for simulated SNRs ≥ 15 dB.

Perfect identification (100% classification success rate) was achieved for 27 of the 40

tested devices when analyzed at the collected SNR. The worst observed identification

73



performance was exhibited by device A6, which was successfully identified 95.7% of

the time at the collected SNR. The confusion matrices (not presented) show that the

majority of identification errors for device A6 are associated with misclassifying de-

vice A6 as either A8 or A4. As discussed in Sec. 3.7.1.1, this is due to the similarity

evident from visual inspection of the device statistical fingerprints depicted in Fig.

3.3. Likewise, the most unique looking fingerprint in Fig. 3.3 (device A9) yields the

best identification performance of all tested devices across the range of simulated

SNRs. As expected, identification performance degrades as the input signals are

corrupted with noise, and approaches the accuracy of a random guess (1/40 = 2.5%)

at the lowest analysis SNRs.

While it is anticipated that the achievable SNR for the envisioned applications

will be very high in practice since emissions are captured using a near-field probe,

it is important to note that the identification accuracies are representative of what

is achievable by extracting a single fingerprint from the device being identified. Ex-

tension of the Bayesian classification approach for multiple extracted fingerprints is

straightforward, and should provide considerable improvement in identification ac-

curacy. Such improvement may be required for specific applications not considered

here.

To evaluate system verification performance, a total of 40 ROC curves were

generated at each analysis SNR, again using K-fold cross-validation. The ROC curves

were generated by sequentially treating each tested device as the claimed identity and

testing the verification performance against the known true identity associated with

each fingerprint. Each individual curve shows the achievable trade-space between

system security and accessibility as a function of the selected decision threshold for

a particular device. Figs. 3.6 and 3.7 show the ROC curves for the worst-performing

device identity (A6) at selected analysis SNRs.

At the collected SNR, the system achieved an average EER across all tested

identities of 0.044% (σ = 0.12); 32 of the 40 tested identities exhibited EERs of
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< 0.01%. The worst four EERs were 0.19, 0.33, 0.50, and 0.53%. As with the iden-

tification task, worst case verification performance was associated with the template

for device A6, followed closely by device A8. Again, this is due to the similarity

between the statistical fingerprints of the two devices as shown in Fig. 3.3. Fig.

3.6 shows the behavior of device verification performance as the input signal quality

degraded, i.e. performance decreases significantly as the collected signal is corrupted

with additional simulated noise, eventually reaching near “random” verification ac-

curacy at SNR = −40 dB. Again, if higher performance is required for a specific ap-

plication, verification accuracy can be improved by extracting multiple fingerprints

from the device.

In this study, steps were taken to ensure that the device being authenticated

is as isolated from external effects as practical. In operational systems, it is likely

that a particular chip is permanently integrated into a larger system component or

board. For instance, in embedded systems or smart-cards, the micro-controller is

likely to be soldered or otherwise packaged internally to the authentication device.

Since the process controls for integration and packaging may not be as stringent as

those for fabrication of the IC itself, it is believed that fingerprinting of the integrated

device may actually prove to be more effective than fingerprinting of isolated ICs as

considered here.

While the raw data acquired for this study was obtained using a high speed

digital sampling oscilloscope, sample rate and bandwidth were intentionally limited

using the procedure described in Sec. 3.8.2 to simulate a less capable receiver setup

(e.g., a low-cost data acquisition card). Furthermore, preliminary experiments us-

ing a simulated tuned receiver setup show that a substantial amount of the overall

discriminatory information is carried in narrow sidebands around harmonics of the

device clock frequency. Thus, it is believed that more practical, low-cost receiver

architectures are likely to remain highly effective.
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A final observation is that the results suggest acceptable performance may be

achieved for some devices without the need for extensive optimization of the re-

sponse sequence. The results herein were obtained by arbitrarily designating several

clock cycles of an overall operation sequence as the response region. No statistical

difference in performance was observed during limited trials when the designated re-

sponse region was varied to include sub-regions containing very different microcode

instruction sequences. This suggests that the technique can be implemented in an

opportunistic manner, where the challenge-response sequence can be conveniently

selected from a portion of other authentication procedures or protocol communica-

tions. Additional improvements in performance might be obtained by more carefully

choosing or defining a response that emphasizes device sub-circuitry that exhibits

high inter-device variability. However, it is believed that for many applications the

opportunistic approach will provide sufficient performance without the need for fur-

ther performance improvement through response optimization.

Although obtained under controlled conditions using a single sensor module,

the results thus far are very promising and the proposed technique merits additional

investigation. These results also suggest that RF-DNA fingerprinting is suitable

for other applications such as Trojan or counterfeit device detection and forensic

attribution for criminal or other investigations.

A considerable amount of work remains to fully understand the suitability

of RF-DNA fingerprinting for practical security implementations. Intuitively, the

nature of the intrinsic characteristics that induce inter-device variations suggests

a fingerprint based on those variations will be extremely difficult to impersonate.

However, further analysis and experimentation are needed to confirm this. Other

areas for additional study include:

• Permanence and robustness of RF-DNA features under varying environmental

conditions.
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Figure 3.6 Worst case (device A6) observed ROC curves showing verification per-
formance across the full range of simulated noise conditions.
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• Sensitivity of fingerprint performance to variations due to different sensor mod-

ules or sensor positioning.

• Scalability to very large databases.

• Optimization of the device response sequence in the challenge-response phase

to maximize device discriminability.

• Suitability for low-cost implementations through bandwidth optimization and

investigation of alternative sensor module architectures.

• Effectiveness for programmable or custom logic ICs such as FPGAs or ASICs.

Finally, recent research [KTM09,WTR10] has demonstrated significant perfor-

mance gains using spectral Fourier-based and wavelet-based RF-DNA fingerprints

for intentional emissions. Application of these approaches to recognition of uninten-

tional IC emissions remains an area of future research.

3.10 Conclusion

RF “distinct native attributes” (RF-DNA) possessed by the unintentional emis-

sions of ICs are a rich source of discriminatory information for device recognition.

Empirical results demonstrate the suitability of RF-DNA fingerprinting for both

identification and verification device recognition tasks. For experimentally collected

emissions, the technique correctly identifies devices greater than 99.5% of the time,

with average verification EERs of less than 0.05% using a single extracted finger-

print. Correct identification success rates of better than 90% were maintained under

analysis conditions of SNR ≥ 15 dB. Thus, RF-DNA fingerprinting is promising for

anti-cloning and related security applications requiring unique IC device recognition.

Furthermore, the impressive performance indicates the technique may be adaptable

to less ideal conditions while still providing acceptable performance. Finally, these

results were obtained using a single extracted fingerprint, and a substantial improve-
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ment in performance is believed to be realizable through a straightforward extension

of the approach for multiple extracted fingerprints.

3.11 Supplementary Discussion

This section contains an expansion of the material submitted as part of this

article that could not be included due to mandatory space limitations.

3.11.1 Experimental Setup. This section includes additional information

on the experimental setup used to acquire the data for all experiments conducted

during this research. The primary source of data used for this research (unintentional

EM signals) was collected using AFIT’s commercial Riscure Inspector side channel

analysis system. The experimental setup closely follows the setup described in Sec.

2.7 as shown in Fig. 2.5.

The system is configured to collect unintentional RF emissions from the device

under test using a near-field probe (1 GHz bandwidth) connected to a Lecroy 104-Xi-

A oscilloscope. The probe acts as an antenna to receive the unintentional emissions

from the device under test, and does not directly contact the chip. The oscilloscope

has a 1 GHz bandwidth, a maximum sample rate of 10 GSa/sec, and four channels

with 12.5 MBits of sample memory each. Depending on the device technology and

clock rate of the device under test, hardware low-pass filters (either built-in to the

oscilloscope, or in-line filters inserted between the H-field probe and the oscilloscope

input) are used as necessary to prevent signal aliasing due to the analog-to-digital

sampling process.

The near-field probe is mounted on a computer-controlled motorized XYZ table

for consistent placement of the probe relative to the device under test. Initial probe

position for measurements is established by performing a two-dimensional scan of

the surface of the tested chip as it repeatedly executes the operation of interest.

The results of the scan are processed with a digital bandpass filter and analyzed
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to determine the location of maximal RF energy in the band corresponding to the

known internal clock frequency. The probe and relative device positions remained

fixed for all subsequent collections. Custom jigs are fabricated for each test board to

help stabilize the device being measured and to ensure consistent placement of the

probe for subsequent measurements.

Figure 3.8 Riscure Inspector Side Channel Analysis System [Ris09]

To improve collection efficiency and reduce post-processing for signal align-

ment, the training devices are controlled by a PC over an RS-232 serial interface.

Devices are programmed to assert a trigger signal on one of the general purpose

input/output (GPIO) pins at the start of the operation sequence. The oscilloscope

is configured through a PC interface to collect the RF signal for a fixed time interval

each time the trigger is asserted. This enables precise identification and alignment of

the individually collected signals without the need for extensive post-processing. As

described in Chap. 4, triggering based on known features that indicate the start of

the encryption operation using real-time EM emissions is also feasible, but requires

substantial post-processing of the acquired signals to achieve similar alignment.
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4. Leakage Mapping: A Systematic Methodology for Assessing the

Side Channel Information Leakage of Cryptographic Implementations

This chapter contains the text of an article that has been submitted for publication

to the Association of Computing Machinery (ACM) Transactions on Information

and System Security [CBL11]. This article was co-authored by Dr. Rusty Baldwin

and Mr. Eric Laspe.

4.1 Abstract

We propose a generalized framework to quantify the side-channel information

leakage from arbitrary cryptographic implementations. The framework provides a

comprehensive methodology to assess the information leakage from all algorithmically-

specified key-dependent intermediate computations for implementations of symmet-

ric block ciphers. The leakage assessment quantitatively bounds the resistance of an

implementation to the general class of differential side channel analysis techniques.

The leakage mapping framework is demonstrated using the well-known Hamming

Weight and Hamming Distance leakage models, with recommendations for exten-

sion of the technique to more accurate models. The approach is applied to two

typical unprotected implementations of the Advanced Encryption Standard, and the

assessment results are empirically validated against a correlation-based differential

power analysis attack.

4.2 Introduction

Over the last several years, there has been an extensive effort in academia

and industry to address physical implementation attacks on cryptographic systems,

to include both side channel and fault attacks [KJJ99, MOP07, AARR02, ARRS05,

BCO04, SLP05, Sko06, SMY09, GBTP08]. However, relatively little work has been
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done to aid cryptographic system designers in practically addressing the identified

security risks.

From a security perspective, it is näıve and dangerous to assess implementa-

tion security based on the results of limited testing. For instance, the failure of a

differential power analysis (DPA) attack based on the Hamming Weight of an S-Box

output should not be the basis for concluding the implementation is secure against

DPA or other side channel analysis techniques in general.

It is also dangerous to assess the overall strength (or weakness) of an implemen-

tation’s security based on analysis of a small subset of the overall implementation

(e.g., one S-box), particularly for complex FPGA or ASIC circuits where various

portions of the algorithm may be implemented in completely separate physical areas

of a die, with very different layouts and routing in each area.

From a cryptographic system designer or engineer’s perspective, designing a

system that is secure against the plethora of rapidly evolving physical implemen-

tation attacks is daunting. Nevertheless, to sufficiently characterize the leakage of

an implementation against the full spectrum of tools that may be employed by a

real adversary, it is essential that a systematic evaluation of an implementation be

conducted against the widest variety of attacks possible. In particular, the effec-

tiveness of countermeasures cannot be adequately understood unless their effects are

comprehensively assessed against the full spectrum of available attack techniques.

The work by Standaert, et al. [SMY09] is the first concerted effort to provide a

practice-oriented framework for a fair comparative evaluation of side channel attacks

and implementation leakage. The work provides a solid foundation for the compari-

son of attack effectiveness as well as a standard method for quantitatively bounding

the leakage from a particular device.

However, to assess the worst-case leakage of an implementation, Standaert’s

methodology essentially relies on an evaluator’s skill in the subtle art of building an
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optimal template attack. Furthermore, the results are only applicable to the targeted

portion of the overall cryptographic algorithm, which may neglect to identify other

exploitable leakages. In light of techniques such as algebraic SCA [RSVC09, RS09],

assessing the overall security of a system based on the leakage from a limited portion

of an overall implementation is simply insufficient.

Herein, we expand on the objectives of [SMY09] by introducing a systematic

approach to comprehensively quantify the leakage characteristics of a given imple-

mentation. We provide a practical tool set for making sound decisions during the

system design process to achieve, with some certainty, a desired level of resistance

against differential side channel attacks.

The contributions of this work include a generalized framework for leakage

assessment of block ciphers, and a method to bound the resistance of an imple-

mentation against the general class of differential SCA techniques. The approach

is applied to two typical unprotected implementations of the Advanced Encryp-

tion Standard (AES), and the assessment results are empirically validated against a

correlation-based DPA attack.

4.3 Background

4.3.1 Side Channel Emissions of ICs. All physical systems, viewed exter-

nally, produce both intended and unintended outputs. The unintended outputs are

quantifiable, physically observable phenomena produced as a side-effect of normal

operation. When an unintended observable outcome is correlated to some aspect

of the internal state or operation of the system, the resulting side channel is said

to leak information. Herein, the term information leakage generically refers to any

such phenomena that exhibits a statistical relationship to the underlying operations

being performed or data being manipulated.

Information leakage can result from a variety of side channel emission sources.

Known sources include variations in power consumption, radiated electromagnetic
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(EM) energy, computation time, and even acoustic or thermal emissions. The various

known sources of side-channel emissions are shown in the block diagram of a notional

two-party communication system in Fig. 1.1.

4.3.2 Information Leakage and Side Channel Analysis. The objective of

side channel analysis is to infer details about internal data or operations based on the

observation of a side channel while that data is being processed. Various mathemat-

ical techniques have been introduced [KJJ99, SLP05, BCO04, GBTP08] that permit

an adversary to exploit relationships between the data manipulated internally to a

device and the externally observable side channels. Even if the underlying data has

a very small influence on the external observable, it is often possible to recover secret

key material from a cryptographic system using these techniques.

Side channel attacks have profound implications for the physical security of

sensitive electronic systems since cryptographic algorithms form the very foundation

of virtually all modern secure systems—with applications ranging from remote key-

less entry systems to secure payment technologies to the protection of various forms

of intellectual property. Because cryptographic key secrecy plays such a central role

in security, preserving that secrecy and understanding the practical implications

of any vulnerabilities that may lead to the disclosure of key material is of critical

importance. Thus, although side channel techniques are generic in the sense that

they can be used to infer a wide variety of information about the internal activity

of an integrated circuit, the majority of the research in this area has been on key

recovery attacks (i.e., side channel attacks) of cryptographic systems.

We develop a framework of techniques that permit a cryptographic engineer

or security evaluator to systematically assess, investigate, and counter the numerous

sources of information leakage that can lead to unintentional disclosure of sensitive

key material.
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Hereafter, we focus on symmetric block ciphers, with particular attention to

the Advanced Encryption Standard (AES) [Nat01]. Application of leakage mapping

to other symmetric block ciphers is straightforward, and the general approach intro-

duced herein can be adapted to most other classes of cryptographic algorithms (e.g.,

stream ciphers, asymmetric algorithms, etc.) with minimal modifications.

4.3.3 Structure of Symmetric Block Ciphers. Symmetric cryptographic

algorithms are typically made up of repetitive sequences called rounds, where each

round is composed of a sequence of primitive operations. A cryptographic operation

is denoted Ck (m) where k is a fixed key drawn from the key space K and m is the

input message (either plain-text or cipher-text depending on the cryptographic mode

of operation) drawn from the message space M.

To enable efficient implementation on a wide variety of hardware and software

platforms, cryptographic algorithm designers often constrain the underlying primi-

tive operations to function on small sub-blocks of data no larger than the data bus

width of potential target platforms. In practice, this means that data sub-block sizes

for many algorithms are limited to eight or fewer bits to permit implementation on

low-cost micro-controllers or embedded processors. Throughout this work, the term

data is used generically to include all inputs to an operation, including the key.

A practical implication of the constrained input size for each intermediate

computation is that the intermediate result of each primitive operation step can be

exhaustively predicted with low computational effort. The dependence of an imple-

mentation’s behavior on these data sub-blocks is one of the key concepts exploited

by many SCA attacks.

For example, consider a typical 8-bit substitution box (S-Box) such as the one

used in the AES Rijndael algorithm. Each AES S-Box produces an output that

depends only on an 8-bit input and an 8-bit portion of the round key. A common

attack scenario involves a known input, i.e., a known plain-text for an encryption
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operation. The output can, then, be exhaustively predicted for each of the 28 = 256

possible round sub-keys. Thus, although both the AES state array and key are 128

bits resulting in 2128×2 ≈ 1.2 × 1077 possible combinations1, the modular structure

of the algorithm enables prediction of all intermediate results after each S-Box stage

with only 16× 28 = 4096 computations.

The bit-wise exclusive-or (XOR) function commonly employed in cryptographic

algorithms further exemplifies this point. An XOR operation effectively yields a data

sub-block size of 1-bit since each bit of the output only depends on two input bits.

Thus, to compute all possible hypothetical states given knowledge of half the input to

an XOR stage (assuming the key bit is the only unknown) requires only 128×2 = 256

total computations.

4.3.4 Advanced Encryption Standard (AES). The AES is a public and

thoroughly documented symmetric block cipher. The reader is referred to [DR01,

Nat01] for an in depth discussion of the design and mathematics of the algorithm

which are beyond the scope of this work. A brief overview of the algorithm and the

specific notation employed herein are described below. The notation and algorithm

description have been tailored to allow a more natural description in the context of

SCA attacks and the leakage mapping technique introduced in Sec. 4.4.

4.3.4.1 Notation. Throughout this work, vector representations of

data are denoted by an over-arrow and matrix forms are denoted by bold type. Ex-

cept where explicitly specified, each element of a vector or matrix represents one byte

(8 bits) of data. Various other representations of data (e.g., bit- or word-oriented)

are sometimes employed to more naturally match the actual machine representation

used for an arbitrary implementation. Such representations are distinguished by an

1AES can also be implemented with a 192 or 256 bit key. Individual round keys are 128 bits for
all FIPS 197 approved variants of the Rijndael algorithm.
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underset (n) where n is the number of bits represented by each vector or matrix

element, i.e.,

~x A vector of bytes where ~xi ∈ {0, 1, . . . , 255} is the ith element of the vector.

~x
(n)

A vector of n−bit elements where ~xi
(n)
∈ {0, 1, . . . , 2n − 1}.

x A matrix of bytes where xi,j ∈ {0, 1, . . . , 255} is the element at the ith row and

jth column of the matrix.

X An n-dimensional matrix, where n ≥ 3. The notation used to denote individual

elements of the matrix differ, but in general superscripts (e.g., Xi) are reserved

to denote round indices, and subscripts (e.g., Xi,j) denote individual elements

within a round.

4.3.4.2 AES State Representation. All FIPS 197 approved variants

of the AES algorithm operate on 128-bit data blocks, represented algorithmically as

a (4×4) state array composed of 16 bytes of data [Nat01]. Using the above notation,

the bit-vector of the state is formed from the individual state bits is

~s
(2)

= [b0 b1 b2 · · · b127][1×128] , (4.1)

where bi ∈ {0, 1} represents the ith bit of data. Each byte of the state array is formed

from 8 bits of the 128-bit data block or

s0 = b7b6b5b4b3b2b1b0

s1 = b15b14b13b12b11b10b9b8

...

s15 = b127b126b125b124b123b122b121b120,
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s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3


︸ ︷︷ ︸

Matrix Element Order

⇔


~s0 ~s4 ~s8 ~s12

~s1 ~s5 ~s9 ~s13

~s2 ~s6 ~s10 ~s14

~s3 ~s7 ~s11 ~s15


︸ ︷︷ ︸

Vector Element Order

Figure 4.1 Illustration of mapping between AES state matrix (indexed by row and
column) and corresponding elements of the equivalent byte-vector.

where si ∈ {0, 1, . . . , 255}. The (byte-oriented) AES state vector, ~s, is then formed

from the 16 bytes of AES state information

~s = [s0 s1 . . . s15][1×16] , (4.2)

where ~si denotes the ith byte, and i ∈ {0, 1, . . . , 15}. The equivalent AES state

matrix 2 is formed from the bytes of the state vector in column order. The linear

indices of the state vector, ~s, can be translated to or from equivalent row and column

indices of the state matrix s, using the mapping in Fig. 4.1.

The AES master key (in byte-vector form) is denoted ~K, and is formed from

the NB bytes of the key

~K = [k0 k1 . . . kNB−1][1×NB ] , (4.3)

where ki is the ith byte for i ∈ {0, 1, . . . , NB − 1}, and NB is determined from the

key size as shown in Table 4.1. As with the AES state information, the equivalent

bit-vector representation is denoted ~K
(2)

.

The master key is expanded into a full key schedule composed of (Nr + 1)

individual 128-bit (16-byte) round keys, where Nr = 10, 12, or 14 for implementations

2Throughout this work, the term state matrix is used interchangeably with the state array
defined in [Nat01].
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Table 4.1 Number of intermediate result states computed during AES encryption
and key scheduling (inclusive of input and output states).

# Intermediate Steps

Key Size Nr NB # Rnd Keys Cipher Key Sched.

128 10 16 11 41 70

192 12 24 13 49 70

256 14 32 15 57 79

using 128, 192, or 256-bit keys, respectively (see Tab. 4.1). The ith round-key (in

byte-vector form) is denoted ~ki, where i ∈ {0, 1, . . . , Nr}.

Each of the (Nr + 1) individual 16-byte round keys, Ki, for round i (in byte-

matrix form) is formed from the individual round key bytes

Ki =



~ki0
~ki4

~ki8
~ki12

~ki1
~ki5

~ki9
~ki13

~ki2
~ki6

~ki10
~ki14

~ki3
~ki7

~ki11
~ki15


4×4

, (4.4)

for i ∈ {0, 1, . . . , Nr}. The full key schedule is constructed as a three-dimensional

matrix denoted K[4×4×(Nr+1)], where the individual matrix elements are

Ki
r,c The element (byte) of the full AES key schedule at row r, column c of the ith

round key, where i ∈ {0, 1, . . . , Nr}.

4.3.4.3 AES Round Structure. Each round of the AES is composed

of a sequence of four primitive operations that manipulate the byte-oriented state

matrix, s. The AES primitive operations are

• AddRoundKey (ARK): Combines the input data with the round key using a bit-

wise XOR operation.
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• SubBytes (SB): Independently processes each byte of the state using a non-

linear substitution (S-box).

• ShiftRows (SR): Cyclically shifts (byte-oriented rotation) the rows of s by

incremental offsets.

• MixColumns (MC): Independently mixes the data within each column (4 bytes)

of s.

A detailed description of each AES primitive operation can be found in the

AES specification [Nat01].

One full round of an AES encryption as defined herein is illustrated in Fig.

4.3. This definition is slightly different from that in [Nat01]. The two descriptions

are semantically equivalent, as depicted in Fig. 4.2, but the round definition herein

allows a more natural mathematical description of side channel attacks and clari-

fies the dependency between each individual round key and the locally dependent

intermediate results.

The first (NR − 1) rounds of an AES encryption are identical and composed

of a sequential application of the ARK, SB, SR, and MC primitive operations. The

final round omits MC, instead applying an additional ARK operation to produce the

cipher-text output, c.

The AES state after completing the jth intermediate computation step of round

i is denoted si,j, and the individual elements of the AES state matrix after each step

are indexed by their matrix indices, i.e.

si,j AES state matrix after completing jth intermediate computation step of round i,

si,jr,c The element (byte) of the AES state matrix at row r and column c after

completing jth intermediate computation of round i.
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Figure 4.2 Comparison of (a) FIPS 197 round definition to (b) the round defini-
tion used herein. The two definitions are semantically equivalent, but
the modified description in (b) allows a more natural mathematical
description of intermediate result dependencies on round keys.

Thus, s0,0 and sNr−1,4 represent the plain-text, m, and cipher-text, c, of an

AES encryption operation, respectively. Since the output of each round is the input

to the next, si,4 ≡ si+1,0 for any two adjacent rounds i and (i+ 1).

4.3.5 Modeling Leakage. The information leakage from a cryptographic

implementation can be modeled at various levels of abstraction depending on how

much is known about the implementation’s internal design architecture (to include

both hardware and software aspects).

Herein, a leakage model is defined to include a minimum of two components

• A leakage function FL(·) used to transform one or more intermediate results

into hypothetical leakage values, and
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Figure 4.3 Byte-oriented depiction of one round of an AES encryption for round
i ∈ {0 . . . NR−1}, based on the round definition in Fig. 4.2b.
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• A parameter, ND, that defines the assumed data sub-block size used for model

predictions.

The leakage function, FL, can operate on a single static state value or on two

different states. The latter definition is used to create models based on the transistor

switching activity or other underlying physical phenomena influenced by the change

from one state to another.

The term leakage model, when considered in combination with the particular

mathematical technique used in a differential side-channel analysis (DSCA) attack,

is closely related to the concepts of side channel distinguisher and selection function

employed in other works (e.g., [SGV08]). Herein, the leakage model is considered

separately from the mathematical tools used to analyze the relationship between the

modeled data and actual leakage data.

4.3.5.1 Algorithmic Leakage Models. In general, cryptographic sys-

tem designers have a great deal of flexibility in how they implement an algorithmic

specification. It is common, for example, for designs to combine primitive operations

or other steps to efficiently use the resources available on the target platform, e.g.

the T-Table implementation commonly used in 32-bit software implementations of

the AES [DR01].

Theoretically, given sufficient resources, a symmetric algorithm with a 128-bit

key and a 128-bit data block size could be implemented as a one-step lookup table

with 2128×2 ≈ 1.16 × 1077 entries. In practice, this is clearly infeasible, and designs

can be expected to substantially follow the algorithmic specification—at a minimum

producing the same outputs as the reference implementation after each round.

Because implementations of cryptographic algorithms generally follow the algo-

rithmic specification to some degree, algorithmic leakage models can be constructed

even if no details of the underlying implementation architecture are known.
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Because generality of the systematic approach was an important objective of

this research, such models are the basis of our work as they can be applied to any

implementation with minimal modification. Supplementing these techniques with

additional implementation knowledge is straightforward, and would lead to a more

conservative leakage assessment relative to the worst-case scenario where an adver-

sary is able to obtain substantial information about the underlying implementation.

4.3.5.2 Common Leakage Models. A variety of leakage models have

been suggested [KJJ99,MOP07,BCO04] with varying degrees of complexity. In prac-

tice, even very simple algorithmic leakage models have been shown to be adequate

to carry out a wide variety of side channel attacks. Such simple models also pro-

vide a solid basis for a systematic leakage assessment of most implementations while

maintaining the generality of the technique. Two common leakage transformations

proposed in previous work, Hamming Weight and Hamming Distance of intermediate

results, are described below.

The Hamming Weight leakage transformation assumes a relationship between

the number of non-zero bits in an intermediate result of interest and the result-

ing data-dependent variance leaked through a side channel. The Hamming Weight

leakage transformation, HW(·), for an arbitrary bit-vector, ~x
(2)

, with n-elements is

HW
(
~x
(2)

)
=

n−1∑
i=0

~xi
(2)
, (4.5)

where

0 ≤ HW (·) ≤ n.

For data representations other than bit-vectors, it is assumed that each group-

ing of ND bits is computed by converting each individual element to an equivalent

bit-vector representation before computing the Hamming Weight. In the interest
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of conciseness, we omit the details of these conversions. Herein, the HW leakage

transformation operates on vectors or matrices as well as individual elements, i.e.

s′ = HW (s)

denotes the Hamming Weight leakage transformation of the state matrix s, where

each matrix element’s Hamming Weight is computed independently. The Hamming

Weight transformation results in an output matrix with the same dimensionality as

the input.

Hamming Distance is related to the Hamming Weight, but measures the num-

ber of bits that differ between two bit-vectors of the same length. The Hamming

Distance, denoted HD(·, ·), between two n-element bit-vectors, ~x
(2)

and ~y
(2)

, is

HD

(
~x
(2)
, ~y

(2)

)
=

n−1∑
i=0

(
~xi
(2)
⊕ ~yi

(2)

)
(4.6)

where ⊕ denotes the bit-wise exclusive-or operator, and

0 ≤ HD (·, ·) ≤ n. (4.7)

In practice both the Hamming Weight and Hamming Distance models effec-

tively account for a significant portion of the variance in side channel emissions during

certain operations. For example, the Hamming Weight model is normally highly ac-

curate for operations involving a pre-charged data bus such as those commonly used

on micro-controllers.

Likewise, the Hamming Distance model has been found quite accurate for

operations that toggle the state of the bits stored in a hardware register or latch.

An appropriately constructed Hamming Distance model can effectively account for
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virtually all variance in the side channel emissions of even an iterative FPGA-based

hardware implementation of the AES [SÖP04,SMPQ06].

4.3.5.3 Improved Leakage Models. In addition to the simple models

described above, more complex (and accurate) models can also be constructed. For

example, a straightforward improvement to the Hamming Distance model, known

as a switching distance model, distinguishes between 0 → 1 and 1 → 0 bit transi-

tions [PSQ07] by assigning different weights to each transition. Application of the

switching distance model within the leakage mapping framework is straightforward.

If details of the hardware architecture (i.e., the net-list) are available, the

switching activity of the device can be simulated at the transistor level. Although

such models are highly accurate, their employment requires access to detailed design

information that is difficult to obtain for commercial hardware devices. Furthermore,

the time required to simulate the full circuit over a large number of random inputs

makes such models inappropriate for our use.

A more promising technique for integration into a systematic leakage assess-

ment methodology is linear regression based models [SLP05]. Although not con-

sidered in this initial study, such models can be constructed relatively efficiently.

Furthermore, whereas the Hamming Weight and Distance models assume a fixed

leakage transformation across all sampled instants in time, a regression-based ap-

proach could adapt the model for each sample. Models constructed using regression

techniques might be considered leakage agnostic since they can adaptively capture

the statistical relationship between the variance of the observed signal at each sample

and the data of interest. It is believed that such an approach would be substantially

more robust at the expense of significantly increased computational effort.

4.3.6 Measures of Information Leakage. Various approaches are used

to quantify information leakage. The most frequent include Kocher’s difference

of means [KJJ99], Pearson’s product-moment correlation [BCO04], and Shannon’s
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entropy and mutual information [GBTP08, SMY09, BGP+11]. Correlation is used

herein based on its computational efficiency and effectiveness in practical attacks as

demonstrated through numerous empirical studies [MOP07,SGV08]. Other measures

such as the entropy or mutual information-based approach could also be used given

sufficient computational resources, and may prove to be more suitable for implemen-

tations that exhibit leakages that do not conform to the Gaussian assumptions that

underly the correlation approach.

Pearson’s correlation coefficient measures the strength of a positive or nega-

tive linear relationship between two random variables. Although independent ran-

dom variables will have a correlation of ρ = 0, the converse does not guarantee

independence since the measure is only sensitive to linear relationships.

The population correlation coefficient, ρXY , between two real-valued random

variables X and Y is

ρXY =
Cov (X, Y )√

Var(X) · Var(Y )
(4.8)

where −1 ≤ ρ ≤ 1 [RN88]. The sample correlation coefficient, rXY, for Nt observa-

tions of the random variables, X and Y, is

rXY = Corr(X,Y) =

Nt∑
i=1

(Xi −X)(Yi −Y)√√√√ Nt∑
i=1

(Xi −X)2·
Nt∑
i=1

(Yi −Y)2

, (4.9)

where X and Y are the observed sample means over the Nt traces. This formula-

tion has the practical advantage of allowing the correlation coefficient to be updated

incrementally by adding new observations (rows) to each matrix. The sample cor-

relation coefficient will approach its true value given a sufficiently large number of

sample observations.
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4.4 Leakage Mapping

Our leakage mapping procedure is a systematic approach which characterizes

the information leakage from an implementation throughout an entire cryptographic

operation, including intermediate results computed during 1) all rounds of the cipher,

and 2) related activities such as key-scheduling. This is done by carrying out a known

key SCA analysis procedure for all algorithmically specified intermediate results,

inclusive of input and output, under the assumption of various selected leakage

models.

As described above, Pearson’s correlation coefficient quantifies the magnitude

of the identified leakages. The overall procedure is composed of the following steps

1. Acquire a sufficiently large number of side channel leakage traces while ran-

domizing key and input data,

2. Pre-compute all algorithmically specified intermediate results,

3. Model the data-dependent leakage variations based on the known intermediate

results,

4. Use a known-key correlation procedure to identify and quantify all potentially

exploitable leakages, and

5. Interpret the results to bound the number of traces required for key inference

based on maximum observed correlations, and prepare summary statistics and

visual representations of the data to aid in qualitative leakage assessment.

Each step of the leakage mapping procedure is described in detail below.

Step 1. Acquire profiling side channel data. The first step of the leakage map-

ping procedure is to collect a suitable number of side channel traces while the eval-

uated device performs cipher operations on known (random) input/key pairs. The

number of traces, Nt, required to sufficiently characterize side channel leakage is

highly implementation dependent.
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Ideally, the leakage from a device would be measured under replications of

all possible input/key combinations to adequately characterize the noise induced by

non-cipher related sources (e.g., ambient or environmental noise, unrelated circuit

activity, nearby off-die electronic components, etc). Since this is clearly impractical

(it would be quicker to brute force the key), a more reasonable approach is to choose

the number of profiling traces, Nt, based on the desired SCA-resistance of the imple-

mentation. For example, the design objective might be to achieve DPA-resistance

for up to Nt ≤ 1E6 traces.

The side-channel signal observed during each of the Nt encryption operations

is digitally sampled at a fixed rate, typically using a high-speed digital sampling

oscilloscope (DSO) or similar data acquisition device. For each measured trace, Ns

samples of side channel data are acquired. The vector ~L composed of the digital

samples from a single observed cryptographic operation is referred to as a trace. The

vector containing the samples from the ith trace is then

~Li = [L0 L1 . . . LNs ]1×Ns . (4.10)

For analysis, a measurement matrix, L, composed of traces corresponding to

the Nt individual (m, k) pairs is formed as

L =


~L0

~L1

...

~LNt−1

 =


~L0,0 · · · ~L0,Ns−1

~L1,0 · · · ~L1,Ns−1

...
. . .

...

~LNt−1,0 · · · ~LNt−1,Ns−1


Nt×Ns

, (4.11)

where Li,j corresponds to the jth sample of trace i. Thus, each row of the measure-

ment matrix corresponds to a trace taken for the ith (m, k) pair, and each column

corresponds to the sample taken at a particular instant in time relative to the start

of each encryption operation, across all observed traces.
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For each trace, the corresponding input and master key are also stored in

byte-matrices for later use, i.e.,

M =


~m0

~m1

...

~mNt−1

 =


~m0,0 · · · ~m0,16

~m1,0 · · · ~m1,16

...
. . .

...

~mNt−1,0 . . . ~mNt−1,16


[Nt×16]

. (4.12)

and,

KKK =


~K0

~K1

...

~KNt−1

 =


~k0,0 · · · ~k0,NB−1

~k1,0 · · · ~k1,NB−1

...
. . .

...

~kNt−1,0 . . . ~kNt−1,NB−1


[Nt×NB ]

, (4.13)

The result of the acquisition phase is composed of three sets of data:

1. The (Nt × Ns) measurement matrix, L, containing the digitally sampled side

channel data,

2. The (Nt× 16) input matrix, M, containing the plain-text associated with each

captured leakage trace, and

3. The (Nt × NB) master key matrix, KKK, containing the master key associated

with each captured leakage trace.

Step 2. Intermediate result computation. To characterize the security of a

particular cryptographic implementation against the range of possible SCA attacks,

it is necessary quantify information leakage for the duration of the full cryptographic

operation. Most published SCA attacks target the outer rounds of the cipher since

the intermediate results of those rounds can be exhaustively predicted if the input or
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1: function AESComputeIntermediates(m,K)
2: s0,0 ←m
3: for i← 0, Nr − 2 do
4: si,1 ← AddRoundKey

(
si,0,Ki

)
5: si,2 ← SubBytes

(
si,1
)

6: si,3 ← ShiftRows
(
si,2
)

7: si+1,0 ← MixColumns
(
si,3
)

8: end for
9: sNr−1,1 ← AddRoundKey

(
sNr−1,0,KNr−1

)
10: sNr−1,2 ← SubBytes

(
sNr−1,1

)
11: sNr−1,3 ← ShiftRows

(
sNr−1,2

)
12: sNr,0 ← AddRoundKey

(
sNr−1,3,KNr

)
return s

13: end function

Figure 4.4 Pseudo code to calculate and store all algorithmically specified inter-
mediate results computed during the full AES encryption operation for
a given input, m, and key schedule, K.

output is known. Standaert, et al. introduced the notion of predictability to describe

intermediate results that meet this requirement [SÖP04].

However, more recent techniques such as algebraic side channel analysis and

chosen or adaptive input techniques [RS09, RSVC09, LPdH10] have demonstrated

the ability to directly target multiple leaked intermediate results from the middle

rounds. Therefore, limiting an evaluation to better-known outer-round attacks ne-

glects important exploitable leakages. This is particularly true for implementations

that implement protective countermeasures based on the assumption that only outer

rounds will be attacked, leaving the inner-rounds unprotected.

The AESComputeIntermediates algorithm in Fig. 4.4 executes an AES encryp-

tion algorithm as described in [Nat01] while preserving the state after each AES

primitive operation. The retained intermediate state information is combined to

construct a five-dimensional intermediate cipher state matrix, S[Nt×4×4×4×(4·Nr)+1]

(Fig. 4.5). The individual elements of the full matrix for the tth trace are denoted

Si,jt,r,c.
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Figure 4.5 Construction of the intermediate cipher state matrix, S, for a single
AES encryption operation. For an AES encryption operation there are
Ns = (4 ·Nr) + 1 separate states computed, inclusive of the plain-text
and cipher-text.

The same basic process is repeated to construct the full intermediate key sched-

ule state matrix, T[Nt×Nks×4], based on the intermediate results computed during a

straightforward implementation of the AES key expansion algorithm. Since a dif-

ferent (random) key is associated with each trace, one T matrix is computed and

saved for each acquired profiling trace. Individual matrix elements are denoted Ti,jt
where t is the trace index, i is the loop counter as defined in the key expansion

algorithm in [Nat01], and j is an index corresponding to the individual intermediate

computational step within each loop iteration.

Step 3. Model data-dependent leakage variations. To discover all potentially

exploitable data-dependent variability in side channel emissions, several different

leakage models should be considered. Although some general observations have been

made in previous work about which models are best suited for specific architectures,

focusing too narrowly on a particular leakage model and corresponding attack is likely

to neglect other important sources of information leakage. Rather than choosing one

specific leakage model that may not be well-suited to the particular implementation

being considered, a more systematic approach is taken to avoid any inadvertent

oversights.
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The results herein were prepared by considering leakage models based on Ham-

ming Weight and the Hamming Distance of the states separated by 1 to 4 computa-

tional steps, for all algorithmically specified intermediate computation results. The

Hamming Distance between the result of two states is denoted HDn(·, ·) where n is

the number of intermediate computation steps separating the initial and final state

values used in the computation. For example, the hypothetical leakage matrix, H,

modeled as the Hamming Distance between the AES plain-text and the output of

round 0 (input to round 1) is

H = HD4
(
S0,0, S1,0

)
,

since the input to each round is separated by four primitive computational steps.

The leakage assessments conducted to validate the approach introduced herein

considers each of the following leakage transformations

• HW : HW (S0,0), . . . , HW
(
SNr,0

)
• HD1: HD1 (S0,0, S0,1), . . . , HD1

(
SNr−1,3,SNr,0

)
• HD2: HD2 (S0,0, S0,2), . . . , HD2

(
SNr−1,2,SNr,0

)
• HD3: HD3 (S0,0, S0,3), . . . , HD3

(
SNr−1,1,SNr,0

)
• HD4: HD4 (S0,0,S1,0), . . . , HD4

(
SNr−1,0,SNr,0

)
Finally, for each considered leakage transformation, the data sub-block size

is varied over ND ∈ {1, 8, 16, 32, 64, 128} to account for differing natural machine

representations that might be present on an arbitrary hardware or software AES

implementation. Although it is impractical to directly exploit (predict) the larger

(ND ≥ 64) data sub-block sizes using exhaustive techniques such as standard DPA

attacks, the information gleaned from analysis of leakages based on models of the

the larger data block sizes aid in understanding what aspects of an implementation

are causing leakages.
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This semi-comprehensive approach allows the technique to be applied to vari-

ous implementations of the AES that optimize the algorithm for a particular hard-

ware or software architecture (e.g., use of T-Tables) without loss of generality.

The result of this step is the hypothetical leakage matrices containing the

predicted leakages under each assumed model, i.e.

H
(ND)

= FL
(

S
(ND)

)
(4.14)

for HD models, where ND is the data sub-block size and FL is the leakage transfor-

mation function. The individual elements of a byte-oriented (ND = 8) hypothetical

leakage matrix are denoted Hi,j
t,r,c where i is the AES round, j is the computational

step within the round, t is the trace index, and (r, c) are the row and column of the

AES state matrix. Note that for Hamming Distance models, (i, j) corresponds to

the first argument in the HD(·, ·) leakage transformation.

Leakages related to the key scheduling procedure are modeled in a similar

manner. The details of the procedure are omitted here in the interest of space.

Step 4. Known-Key Correlation. The final step of the leakage mapping pro-

cedure is to quantify the leakage from an implementation under the assumptions of

each considered leakage model. The objectives of this step are two-fold:

1. To identify potentially exploitable leakages (data-dependent variations) of all

intermediate results, and

2. To quantify the magnitude of all identified leakages.

To identify and quantify leakages, we use a known key correlation procedure

based on the correlation power analysis (CPA) technique [BCO04, MOP07]. The

primary difference between a CPA attack and our technique is that herein the ob-

jective is not to infer a key (which is known a priori to the evaluator) but rather to
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identify leakages and quantify their magnitudes. Therefore, only the correct (known)

sub-keys need be considered.

Although the evaluator may have detailed knowledge of precisely when each

intermediate computation occurs, this technique does not rely on any such infor-

mation. This keeps the approach as general as possible while reducing the risk of

an evaluator inadvertently overlooking leakages that occur outside of the expected

times.

The basic procedure involves computing pairwise correlation coefficients be-

tween each column of the hypothetical leakage matrix, H, and each column of mea-

surement matrix, L. The AESKnownIVCorrelation algorithm in Fig. 4.6 illustrates

the procedure for a byte-oriented leakage model.

A variation of this known-key correlation procedure is exhaustively performed

for the intermediate results of the AES encryption and key scheduling algorithms

under each considered leakage model, adjusting the procedure as necessary to ac-

count for the varying data sub-block size. Correlation results are also computed

directly for the full key schedule matrix, K, to identify any leakages due to direct

key manipulation not captured in modeling of the specified algorithm.

The output of this step is a correlation matrix, R, for each considered leakage

model. Each element of R represents the correlation between a) the hypothetical

leakage modeled from a particular computational step or intermediate result of the

cipher and b) the observed side-channel signal sampled at some instant in time

(relative to the start of the cipher), computed across all traces.

The overall result is subjectively (through visual analysis of the graphical rep-

resentation) and statistically analyzed to identify aspects of the implementation that

exhibit problematic leakages.

It is assumed that the start of each trace is temporally aligned, i.e., the first

sample of each trace corresponds to the same instant in time relative to the actual
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1: function AESKnownIVCorrelation(H,L)
2: for r ← 0, 3 do
3: for c← 0, 3 do
4: for i← 0, Nr − 1 do
5: for j ← 0, 3 do
6: for s← 0, Ns − 1 do

7: Ri,jt,r,c ← Corr
(
Hi,j

(),r,c , L(),s

)
8: end for
9: end for

10: end for
11: end for
12: end for

return R
13: end function

Figure 4.6 Pseudo code to perform a known-key correlation between a byte-
oriented hypothetical leakage matrix, H and the measurement ma-
trix, L.

start of the encryption operation. For evaluations conducted by a system designer

this can easily be accomplished by designing the implementation to supply a trig-

ger signal to the acquisition system at the appropriate time. For systems where

precise triggering is not possible, alternate approaches are to use a real-time signal-

monitoring device such as the commercially available Riscure icWaves device [Ris09]

or temporal alignment through post-acquisition signal processing.

Step 5: Interpretation of results. For a given ρ, the number of traces needed

to determine whether the correlation is statistically significant (different from zero)

can be determined using [MOP07]

N = 3 + 8

(
Z(1−α)

log 1+ρ
1−ρ

)2

. (4.15)

where Z is the critical value for 1−α statistical confidence, which can be computed

using statistical software or looked up in most statistical textbooks. Mangard, et al.

suggest using α = 0.0001 (99.99% confidence) which gives Z = 3.719 to estimate the

number of traces required to mount a successful DPA attack [MOP07].
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This same relationship can estimate the maximum tolerable leakage (in terms

of correlation coefficient) to achieve DSCA resistance for a specified number of traces.

Solving (4.15) for ρ yields

ρmax =
exp (

Z(1−α)√
N−3

8

)− 1

exp (
Z(1−α)√

N−3
8

) + 1
. (4.16)

If the comprehensive leakage assessment reveals any correlations that exceed

the maximum threshold, ρmax, then there is a high likelihood that the implementa-

tion fails to meet the desired security objective. Table 4.2 illustrates the relationship

between the maximum tolerable ρ for a given objective number of traces, Nt, as a

function of the required statistical significance, α. For example, to achieve DSCA

resistance for up to Nt = 100, 000 traces using α = 0.0001, the leakage should meet

the condition of ρ ≤ 0.0166 for all considered leakage models.

Our results during extensive pilot studies suggest that α = 0.0001 provides

a good guideline for estimating the number of traces necessary for a completely

successful differential CPA attack, i.e., one that successfully eliminates all guessing

entropy. However, in many scenarios, a CPA attack can be considered successful if

the key candidates are sufficiently reduced to make brute forcing the remaining search

space computationally feasible. Thus, we suggest using a more conservative α = 0.1

when using (4.16) as a test of DSCA resistance. Returning to the previous example,

under this more conservative guideline an implementation should not exhibit any

correlations that exceed 0.0057 to claim DSCA resistance for up to Nt = 100, 000

traces.

Note that any claim of SCA resistance under this test is valid only under

the evaluated combinations of leakage model parameters. More accurate leakage

models may enable an adversary to successfully extract key material with less traces

than indicated by this test. Additionally, it is important to keep in mind that this
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Table 4.2 Maximum tolerable correlation (ρmax) to achieve Nt-trace DSCA-
resistance as a function of α, predicted using (4.16).

Conf. Level (α)

Nt 0.1 0.01 0.001 0.0001

1, 000 0.0573 0.1038 0.1375 0.1650

10,000 0.0181 0.0329 0.0437 0.0526

100,000 0.0057 0.0104 0.0138 0.0166

1,000,000 0.0018 0.0033 0.0044 0.0053

1,000,000,000 0.0006 0.0010 0.0014 0.0017

10,000,000,000 0.0002 0.0003 0.0004 0.0005

procedure does not directly evaluate resistance to advanced profiling techniques such

as template attacks.

4.5 Experimental Methodology

To evaluate the effectiveness of our techniques, the full leakage mapping ap-

proach was carried out against several different hardware and software AES imple-

mentations. We present results from two representative implementations (Imp. A

and Imp. B) are presented; the characteristics of the two studied implementations

are summarized in Table 4.3.

4.5.1 Implementation A. Imp. A was implemented on a low-cost 16-bit

PIC micro-controller unit (MCU) representative of the type used extensively in com-

mercial security applications (e.g., smart-cards, garage door openers, remote key-less

entry systems, etc.), and fabricated using an unspecified 180-nm process technology.

For device control and measurement, the PIC was mounted on an evaluation board

and controlled through a serial interface. The development board was powered from

a standard lab DC power supply to reduce effects of uncontrolled supply voltage

fluctuations.
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The radiated EM data from Imp. A was collected using a specially designed

RF near-field probe with a wide-band preamplifier connected to a Lecroy 104-XI-

A high speed digital sampling oscilloscope. The EM data was collected from an

unmodified PIC MCU. The chip was not specially prepared or decapsulated, and all

EM measurements were taken by placing the probe directly over the area of the chip

that exhibited maximal energy in a narrow band around the known clock rate.

All data was collected at a sample rate of fS1 = 5 GSa/sec with a WLP = 1 GHz

low pass anti-aliasing filter inserted between the probe and the oscilloscope. The ac-

quired data was down-sampled to an analysis sample rate of fS2 = 200 MSa/sec

using proper decimation (i.e., every 25th sample is retained and all others are dis-

carded). The higher sample rate was chosen to permit post-acquisition simulation

of various receiver configurations using data collected under identical environmental

conditions.

For leakage mapping, a total of 100, 000 traces were acquired using random

key and plain-texts drawn from the uniformly distributed key and message spaces.

The signals were analyzed in their raw-acquired form without any averaging or other

noise reduction post-collection processing steps. For attack validation, additional

measurements were taken from the same device under fixed key conditions for Nk =

100 random keys, and Nt = 1000 traces per key.

4.5.2 Implementation B. The data for Imp. B is the publicly available

power consumption data from the second DPA Contest [Par10]. The DPA Contest

data set was chosen to demonstrate the feasibility of exhaustive leakage mapping for

a device fabricated using the more modern 65 nm process technology and to allow

reproduction of the results presented herein.

The Imp. B data set was collected from a Virtex 5 FPGA, which is a modern re-

programmable logic device fabricated using a 65 nm process technology [Xil11]. The

Virtex 5 was mounted on the commercially available SASEBO-GII board [fISR11]
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Table 4.3 Summary of characteristics for evaluated implementations.

Implementation ID

Imp. A Imp. B

Algorithm AES AES

Key Size 128 128

Mode Encryption Encryption

Type Software Hardware

Device Microchip PIC24 MCU Xilinx Virtex 5 FPGA

Clock Rate 29.5 MHz 24.0 MHz

Side Channel EM (Near-field RF) Power

Sample Rate 200 MSa/sec 5 GSa/sec

# Profiling Traces 100, 000 1, 000, 000

which is specially designed to facilitate control and side channel measurements of

cryptographic designs.

For leakage mapping, the DPA Contest template data set was used. The tem-

plate data set includes 1, 000, 000 traces collected using random keys and plain-

texts. For attack validation, we used the DPA Contest public data set, composed of

Nt = 20, 000 traces for each of Nk = 32 random keys. According to the available doc-

umentation, each trace in these data sets was averaged 10 times during acquisition

to reduce the effect of external noise sources.

Additional details on the experimental setup and acquisition procedures for

Imp. B are available on the DPA Contest [Par10] and SASEBO [fISR11] websites.

4.5.3 Data Alignment. For experimental efficiency, both sets of data were

acquired with the aid of a trigger signal asserted by the target device at the start of

each encryption operation of interest. This allows for near perfect alignment with-

out requiring extensive post-collection processing of the acquired data. No further
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alignment was performed on the Imp. A data set prior to processing. The DPA

Contest data sets used for Imp. B are also nearly perfectly aligned.

In practice, a trigger is not required, and we successfully demonstrated acquisi-

tion setups with real-time triggering using only the monitored side channel emissions

of both device types. Thus, the lack of an available trigger signal does not prohibit

employment of our techniques, but does increase the required data processing time.

The data from each target implementation was collected using random plain-text /

key combinations for the number of profiling traces indicated in Table 4.3.

4.5.4 Resource Requirements. All results were obtained on a standard

scientific workstation equipped with dual quad-core Xeon processors, a two terabyte

hard-drive, and 72 GB of RAM. A comparable workstation can be obtained or built

for approx $5,000 U.S. in 2011. All code was written in Matlab and optimized for

computation speed (vice memory efficiency).

Execution of the full leakage mapping procedure for either implementation,

across all considered parameter combinations, takes approximately 12 hours on this

workstation. Although the memory requirements are high, the same results should be

obtainable using a workstation with significantly less available memory by optimizing

the computations to work primarily from disk.

4.6 Results

This section contains a representative sample of the results obtained by apply-

ing the full leakage mapping procedure to the two AES implementations described

in Sec. 4.5.

The technique introduced in Sec. 4.4 was applied to selected data sets to assess

the overall leakage from each implementation. The resulting data is evaluated to

identify the maximal exhibited leakages, and the resulting leakage maps were studied

to determine how much detail about the implementations a näıve adversary would
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Table 4.4 Summary of correlation results for all considered byte-oriented leakage
models.

Implementation A Implementation B

Leakage Model Min Max Mean Min Max Mean

HW 0.77 0.91 0.84 0.00 0.08 0.01

HD1 0.63 0.87 0.73 0.01 0.11 0.04

HD2 0.01 0.63 0.17 0.00 0.07 0.01

HD3 0.01 0.02 0.02 0.04 0.07 0.05

HD4 0.01 0.07 0.03 0.04 0.07 0.05

be able to obtain from the application of typical differential attack techniques under

common leakage models.

Some selected results of these analyses are presented below. Note that although

the results obtained through analysis of non-byte oriented leakage models are highly

informative, the results presented herein are restricted to the more common byte-

oriented model in the interest of space.

4.6.1 Intermediate Cipher Leakages. The information leakage from each

implementation was evaluated using the procedure in Sec. 4.4 for both cipher and

key expansion intermediate computations under all considered leakage models. Table

4.4 summarizes the minimum, maximum, and mean correlation results observed for

the considered byte-oriented (ND = 8) leakage models.

As expected, the observed leakage from Imp. A (software) is much stronger

than the leakage observed from Imp. B (FPGA). This can be attributed primarily

to the architecture of the FPGA implementation, which processes all 16 bytes of

the AES state in parallel. The uncorrelated parallel activity has the effect of acting

as a noise generator and reducing the effective signal-to-noise ratio for the targeted

intermediate result(s).
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In contrast, the software implementation is constrained by the limited size of

the data path, and all circuit activity (with the exception of other on-chip house-

keeping or peripheral activity) within a particular clock cycle is thus dedicated to a

single AES primitive operation.3

4.6.2 Leakage Maps. Although a tabular summary of the leakage assess-

ment can capture the overall results, a visual presentation of the results permits a

much more natural and efficient interpretation given the large number of considered

parameter variations.

The visual presentation also aids the evaluator in drawing intuitive conclu-

sions about what the most problematic leakages are, when and under what model

parameters they occur, as well as quickly highlighting the presence of any unex-

pected leakages. Because the visual representation can be thought of as a mapping

of the observed leakages in terms of time and intermediate results, we refer to them

as leakage maps.

4.6.2.1 Temporal Leakage Maps. A temporal leakage map is con-

structed as a two-dimensional plot where the x-axis represents the sample time, and

the y-axis corresponds to the intermediate step being modeled. Each correlation coef-

ficient is represented as a single pixel, where the pixel intensity represents the relative

strength of the identified correlation at a particular instant in time, normalized to

the maximum observed correlation for the currently considered leakage model. One

temporal leakage map is prepared for each data sub-block under each combination

of model parameters, i.e., (NM = 128/ND) separate leakage maps are prepared for

each leakage model, where ND is the number of bits in each data sub-block.

3Because the PIC24 has a 16-bit data path, some operations are actually optimized to manipulate
two bytes of state information or intermediate results at a time.
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Because the leakage characteristics of sequential software and parallel hardware

implementations are very different, the results of the assessments for Imp. A and B

are each presented slightly differently.

For Imp. A the leakage due to each modeled intermediate step is sparse com-

pared to the dimensionality of the correlation result matrices. As a result, it is diffi-

cult to visually discern the leakages if each correlation coefficient is simply mapped

to a pixel intensity. Therefore, the correlation results for Imp. A are prepared using

contour plots, which highlights the sparse leakages. A typical example of a temporal

leakage map for Imp. A is shown in Fig. 4.7. This figure shows the magnitude of the

correlation observed between the modeled leakages of all AES intermediate results

under a byte-oriented Hamming Weight leakage model.

Several interesting observations can be made about the leakage from Imp. A

based on a visual inspection of Fig. 4.7. First, the Nr = 10 encryption rounds

and four primitive operations within each round are immediately obvious. Second,

the EM side channel significantly leaks the Hamming Weight of all algorithmically

specified intermediate results computed throughout the entire encryption operation.

Thus, it can be inferred that this particular implementation closely follows the AES

specification. Note that the similarity between the correlation of steps 2− 3 during

each round is expected under a Hamming Weight model since the SR operation does

not actually change any intermediate results.

For Imp. B, the observed leakages are no longer sparse in comparison to the

dimensionality of the results matrices, and a direct mapping from the correlation

matrix to the temporal leakage map is possible. A typical example of a temporal

leakage map for Imp. B is shown in Fig. 4.8.

The example shown is the result of the leakage assessment for a byte-oriented

HD4 leakage model. Although direct exploitation of the HD4 model has until re-

cently been considered impractical for the standard DPA-class of attacks, analysis

of the results from the HD4 leakage model reveals a great deal of information about
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Figure 4.7 Temporal leakage map for Imp. A. under the byte-oriented HW model.
The intensity represents the maximum observed magnitude of the leak-
age observed at each sampled instant across all 16 bytes of the AES
state matrix.

what an adversary could discern about the underlying implementation architecture

through the application of similar techniques. Furthermore, recent results indicate

advances in computing technology are now making direct attacks on 32-bit key hy-

pothesis feasible [MKP11], which makes consideration of such leakage models even

more relevant.

The round structure of Imp. B is, again, immediately obvious from a cursory

inspection of Fig. 4.8. However, in contrast to the leakage from Imp. A, Imp.

B does not show high correlations for all computed intermediate results under the

HD4 model. Rather, the higher relative correlations are isolated to the Hamming

Distance between intermediate results following the ARK steps (i.e., HD(Si,1,Si+1,1))

in adjacent rounds. This strongly implies the use of registers at that point in the

algorithm.

Examination of the source code of Imp. B confirms this, and provides ex-

perimental confirmation that the HD4 leakage transformation is a suitable abstrac-
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Figure 4.8 Temporal Leakage Map for Imp. B under a byte-oriented HD4 leakage
model. The x-axis represents sample time, and each band along the
y-axis represents one of the 37 initial states used in the Hamming Dis-
tance computation. Close examination reveals the variations between
individual bytes are also visible within each band. The intensity repre-
sents the magnitude of the observed correlation at each instant in time,
normalized to the maximum observed under this leakage model.
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Figure 4.9 Typical correlation plot for Imp. B under a byte-oriented HD4 leakage
model, illustrating the damped oscillatory nature of the correlation well
beyond the originating clock cycle. The x-axis represents sample time,
and the y-axis represents the observed correlation coefficient.

tion of the physical leakages produced by register updates for this implementation.

These basic observations suggest that while the leakage of information under the

HD4 model may not lead directly to successful key recovery attacks, the information

leaked could be used by an adversary to craft more powerful techniques that take

advantage of the particular implementation architecture.

Another interesting observation is that the leakages of Imp. B appear as a

damped oscillatory response that continues well beyond the clock cycle in which the

modeled computation is carried out. Fig. 4.9 shows a typical plot of the correlation

between a modeled leakage and the power consumption of the circuit observed over

the the duration of the encryption operation. It was confirmed through numerous

pilot experiments that the leakages in the later clock cycles do lead to successful DPA

attacks, and can be combined through various techniques to improve the effectiveness

of standard DPA approaches.

4.6.2.2 Summary Leakage Maps. Whereas a temporal leakage map

provides a visual summary of an implementation’s leakage over time, a more useful

tool for summarizing the leakage of each individual data sub-block is the summary

leakage map. The summary leakage map is a concise graphical representation of

the maximum leakages identified for each data sub-block, computational step, and
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leakage model. The graph is constructed by determining the maximum observed

(magnitude) correlation for each combination of parameters. The resulting tabular

data is then graphically represented by mapping each correlation coefficient to a

color intensity, normalized to the maximum observed correlation across all of the

considered leakage models.

Summary leakage maps for Imp. A are depicted in Fig. 4.10. The summary

maps for the HD2, HD3, and HD4 models are omitted since, as expected, the soft-

ware implementation exhibits no statistically significant leakage under those models.
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Inspection of Fig. 4.10 immediately reveals the extent of the problematic

leakages associated with this implementation. As already noted, Imp. A significantly

leaks the Hamming Weight of every intermediate value computed.

Additionally, there is also strong leakage associated with HD1(Si,0,Si+1,0),

which corresponds to the ARK primitive operation in each round. Although this

could be due to a register update, the observed leakage is more likely the result of

the relationship between the HD1 model and the AES round keys. Note that the

Hamming Distance across the ARK operation is determined by the number of bits tog-

gled during the XOR operation with the associated portion of the round sub-key, which

in turn is determined by the number of ‘1’ bits in the key. Thus HD1(Si,0,Si+1,0) is

equivalent to HW(Ki).

Given this, it appears likely that this implementation leaks the Hamming

Weight of the round keys. In fact, our results indicate that the key leakage ex-

hibited is sufficient to permit key extraction from this particular implementation

without knowledge of the plain-text or cipher-text.

One final note related to Imp. A is that although it is not evident from theHD1

summary leakage map, significant (exploitable) leakage is also caused by intermediate

steps other than ARK. However, the relative strength of the ARK has the effect of

masking the presence of these smaller leakages due to the normalization of the color

intensity to the maximum observed correlation. Note that any masked leakages can

be readily identified by a direct examination of the tabular results.

In general, it is assumed that system designers will address the strongest leak-

ages first since they are presumably the easiest to exploit. It is recommended that

the full leakage mapping procedure be repeated after implementing any SCA coun-

termeasures, since any changes could incidentally introduce new sources of leakage.

Once the stronger leakages have been eliminated or managed, any remaining leakages

are more easily identified in the graphical leakage maps. In general, it is assumed that

system designers will address the strongest leakages first since they are presumably
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the easiest to exploit. It is recommended that the full leakage mapping procedure

be repeated after implementing any SCA countermeasures, since any changes could

incidentally introduce new sources of leakage. Once the stronger leakages have been

eliminated or managed, any remaining leakages are more easily identified in the

graphical leakage maps.
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Comparing the summary leakage map from Imp. A (Fig. 4.10) to that of

Imp. B (Fig. 4.8) shows how different the leakage characteristics of the two im-

plementations are. Whereas the PIC micro-controller shows strong leakage of the

Hamming Weight across all intermediate computations, the FPGA implementation

only exhibits strong leakage under the HD1, HD3, and HD4 models. Such leakages

are characteristic of hardware implementations. Here, it is noteworthy that the HD3

leakage model only exhibits strong (relative) leakage for HD3(s9,1, s10,0). This is at-

tributed to the replacement of the MC step in the final round with an additional ARK,

as illustrated in Fig. 4.2. This bears additional scrutiny because the register update

at this location meets the criteria of predictability using standard DPA techniques.

It is believed that the presence of strong HD1 leakage can be attributed to

direct leakage of the round keys, K, generated during real-time key scheduling—

similar to the direct key leakage exhibited by Imp A. Again, examination of the

source code supports this hypothesis since the generated round key is stored in a

temporary register for each round. Additional experimentation would be necessary

to confirm whether key expansion is the root cause of this leakage, and whether or

not the leakage is vulnerable to direct key extraction.

4.6.3 Attack Validation. Using (4.16), the correlation results from each

implementation are used to estimate the number of traces a standard correlation

SCA attack would require to correctly extract the full master key. These predictions

were compared to the number of traces actually required using standard correlation-

based DSCA attacks. For Imp. A, the targeted intermediate for the DEMA attack

was the output of the initial (Round 0) SB operation under a Hamming Weight

model, i.e. HW(S0,2). For Imp. B, the target was the Hamming Distance across the

last three states, i.e., HD3 (S9,1,S10,0). Both attacks were carried out using a single

sample taken at the instant found to exhibit the largest magnitude leakage under

the corresponding leakage model.
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Table 4.5 Comparison of number of traces required for successful attack as pre-
dicted by (4.15) vs. actual results of a correlation-based DPA attack on
Imp. B using a HD3(s9,1, s10,0) leakage model.

Predicted (α) Actual

0.1 0.001 0.0001 Indiv. Byte Full Key GE < 32 bits

Min. 758 3,054 6,362 300 9,400 2,200

Mean 1,469 5,927 12,352 6, 8614 17, 2724 3,883

Max. 2,490 10,051 20,950 > 20, 000 > 20, 000 4,237

Table 4.5 shows the results of the attack validation for Imp. B.4 The attack

was attempted against each of the 32 available trace-sets in the DPA Contest public

database, where each trace-set corresponds to a different secret key. Traces used for

the attack were drawn from each available trace set in a randomly determined order.

The minimum number of traces required to extract an individual key byte was 300.

Out of the 32× 16 = 512 byte extractions attempted, the attack failed to extract 11

of the key bytes after the available trace set (Nt = 20, 000) was exhausted. Thus,

the standard attack fails to achieve a first-order success rate of 1 [SMY09] given the

limited number of traces.

Unfortunately for cryptographic engineers, the failure of an attack to extract

the correct key with 100% certainty does not imply that the key will not be found.

A more practical measure of attack success in scenarios where one or more single

plain-text-cipher-texts pair is available is the remaining Guessing Entropy [SMY09]

which provides a measure of the remaining cost of a brute-force attack given the

current ranking of the true key in the list of key hypotheses.

Fig. 4.12 shows the maximum, average, and mean guessing entropy for the

attacks against all 32 keys as a function of the number of traces used in the CPA

4The mean values shown are estimates since all available Nt = 20, 000 traces were exhausted
before all key bytes were successfully extracted.
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Figure 4.12 Guessing entropy of Imp. B as a function of the number of traces

used in a correlation-based DPA attack on HD3(s9,1, s10,0).

attack. Clearly, although the attack occasionally fails on the basis of extracting the

full key, the information leakage is sufficient to enable a practical brute force attack

given a much smaller number of traces. If it is assumed, very conservatively, that

it becomes practical to brute force the key when the Guessing Entropy is reduced

to ≤ 32 bits, an average of approximately 4000 traces are required for an attack to

succeed against this implementation.

Once again, it is extremely important to note that the abstract algorithmic

model used in this particular attack is very likely to be sub-optimal, and more

accurate models will probably succeed with fewer traces. Thus, when using (4.16) to

predict DSCA-resistance based on the leakage model assessment, it is recommended

to use a conservative α = 0.1 or 0.2.

4.6.4 Suitability for Protected Implementations. Initial results indicate

our approach is an effective tool for assessing the leakage from both protected and

unprotected implementations. Several pilot studies, not presented herein, success-

fully used leakage mapping to assess the leakage from a software-based smart-card

implementation using common countermeasures. We note that use of the leakage

mapping methodology to effectively assess masked implementations would require
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supplementing the simple Hamming Weight and Hamming Distance leakage models

with more complex multi-variate leakage models, however the procedure required to

do this is straightforward.

In general, the introduction of countermeasures significantly reduces the corre-

lation at a particular instant in time by introducing various forms of noise or reducing

the signal strength. Our systematic approach enables an evaluator to quickly and

efficiently repeat the assessment process to identify how much more resistant an im-

plementation is after adding a countermeasure. Perhaps more importantly, it also

allows a designer to ensure that the implementation of one countermeasure does not

introduce new unexpected sources of information leakage. The preliminary results

indicate that the leakage mapping assessment methodology is well suited to assess

whether a particular countermeasure is justified given the added cost in time, space,

and energy.

4.7 Conclusion

We have developed a systematic, efficient process through which cryptographic

engineers can assess the resistance of a particular implementation against differential

SCA techniques. While our technique does not guarantee an implementation will be

secure against all future side channel attacks, it does provide an efficient mechanism

through which system designers and testers may gain substantial insight into the level

of security of a particular implementation. Additionally, as illustrated throughout

this paper, examination of the leakage maps permits insights that are not at all

obvious if testing is carried out in a less thorough manner.

Our techniques can be adapted to incorporate more advanced statistical tools

(e.g. mutual information or linear regression models)—in particular those capable

of capturing non-linear leakages. However, the inclusion of any such techniques

must be weighed in terms of the added benefit obtained compared to the addi-

tional computational effort required. Additionally, our studies to date have been
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focused exclusively on signals in the time domain. Various other work has suggested

that spectral-domain techniques may be even more effective, particularly against

implementations which implement basic countermeasures such as random process

interrupts.

For devices where the template attack scenario [CRR02, ARRS05] is deemed

a legitimate threat, designers must also consider the multivariate leakage from the

device in terms of profiled attacks. The methodology introduced by Standaert, et

al. [SMY09] provides a solid foundation on which to evaluate whether a sound leakage

model can be formed to attack the device using profiled attacks. However, an efficient

methodology for formulating the leakage models to be tested in this context remains

an open problem.

4.8 Supplementary Discussion

This section contains additional relevant material that could not be included

in the submitted paper due to mandatory space limitations. It is assumed that most

readers of this article will be familiar with the procedure of DSCA attacks in general,

and correlation-based DSCA attack in particular. However, for completeness, the

procedure employed in this research is described below.

4.8.1 Correlation-Based DSCA. The procedure used to carry out the

correlation-based DSCA attacks is based on the correlation DPA described in [MOP07].

The general approach is shown in Fig. 4.13. Each step of the procedure is described

below:

Step 1. Choose a target intermediate computation and corresponding

leakage model . The chosen intermediate computation must depend on some

small portion of the key and some observable or controllable input or out-

put data t, and can be one or more bits. The results herein are based on

byte-oriented leakage models. For Imp. A, the targeted intermediate was the
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Figure 4.13 Block diagram of a generalized DSCA attack procedure for one byte
of the key, assuming a HW leakage model. Note that steps 3-4 re-
quire minor modifications for use with leakage models that consider
transitions between two states, e.g., HD3 (·, ·).

output of the SB operation for Round 0 under a Hamming Weight model, i.e.

HW(s0,2). For Imp. B, the target was the Hamming Distance across the last

three states, i.e., HD3 (s9,1, s10,0). Note that the first attack assumes an observ-

able or controllable plaintext, while the second attack assumes an observable

ciphertext.

Step 2. Record side channel data. Record Ns samples of side channel data (e.g.,

strength of the EM field near the circuit) during each of Nt cryptographic op-

erations performed using an unknown fixed key. Construct the leakage matrix,

L, and known-message matrix, M as described in Step 1 of Sec. 4.4. Note
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that in the attack scenario, the adversary has no knowledge of the secret key,

which is the objective of the attack.

Step 3. Considering one byte of the AES state at a time, compute the

hypothetical intermediate state matrices for the states considered

under the targeted leakage model for all possible (hypothetical) sub-

keys, k̂i, where i ∈ {0, 1, . . . , 255}. The hypothetical results are computed

by considering each possible subkey as the true subkey, and computing the

intermediate computation results for each known byte of the observed message

matrix, M. For the byte-oriented attack, there are 28 = 256 possible subkeys

associated with each byte of the intermediate result. The result of this step is

the (256×Nt × 4× 4) hypothetical intermediate result matrix, V.

Step 4. Map each hypothetical intermediate result to a predicted side

channel leakage value under the selected leakage model. In this step,

each element of the matrix V, from Step 3 is mapped to an estimated side

channel leakage using the leakage model, i.e., HW(V) for Imp. A. The result

of this step is the hypothetical leakage matrix, H[256×Nt×4×4].

Step 5. Compute the correlation between predicted hypothetical values

and observed side channel data. In the final step, the hypothetical side

channel leakages H computed in Step 4 are compared to the actual data L

captured in Step 2 using (4.9), i.e., R = Corr (H,L). Each column of the

H[(),(),r,c] sub-matrix corresponds to one of the 256 hypothesized subkeys for

key byte K0
r,c (for Imp. A) or K10

r,c (for Imp. B). The columns of L represent

the side channel leakage from the device at a particular point in time. At any

particular point in time, it is not known in advance whether information leak-

age is present in the side channel signal due to the targeted intermediate value.

Thus, the adversary must search over all sampled instants to find times when

information about the intermediate value is leaked. The most probable correct

key is the one that exhibits the maximum correlation coefficient between the
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modelled leakages under all hypothetical keys and the observed side channel

measurements at any of the considered instants in time. Alternatively, subkey

candidates can be ranked in descending order of their maximum observed cor-

relation. An adversary with access to a single known plaintext-ciphertext pair

can then attempt to bruteforce the true key by trying the keys in order of like-

lihood. Note that an evaluator with knowledge of the true key can determine

the remaining guessing entropy by computing the product of the rank of each

of the 16 correct subkeys at the end of the attack procedure.
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5. Conclusion

This chapter concludes the main document and provides an overall summary of the

research activities and key findings, followed by several recommendations for future

research.

5.1 Research Summary

The information leakage of electronic devices, especially those used in cryp-

tographic or other vital applications, represents a serious practical threat to secure

systems. While physical implementation attacks have evolved rapidly over the last

decade, relatively little work has been done to allow system designers to effectively

counter the identified threats. This work addresses the technology gap between the

identified problems and potential solutions, and makes significant contributions to

the study of information leakage in two primary areas of investigation:

1. RF-DNA fingerprinting of integrated circuits for device authentication, and

2. Leakage mapping to assess the information leakage from arbitrary crypto-

graphic implementations.

The results and major contributions related to each area of investigation are

described below.

5.1.1 RF-DNA Fingerprinting of Integrated Circuits. Unintentional elec-

tromagnetic (EM) emissions were investigated as a source of information to recognize

or verify the identity of a unique integrated circuit (IC). The technique investi-

gated, known as radio frequency distinct native attribute (RF-DNA) fingerprinting,

was adapted from previous work (cf. [SITMM08, KTM09, RTM10, RPT11, HBK06,

WMTM10, WTR10]) on intentional EM emissions. The technique was successfully

adapted herein to recognize individual microchips based on fabrication process-
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induced variations in each chip’s unintentional RF emissions in a manner analogous

to biometric human identification.

The problem of IC authentication has numerous practical applications, includ-

ing 1) providing enhanced security for secure access mechanisms (e.g., anti-cloning),

2) detection of unauthorized modifications to circuit designs (e.g., hardware Trojan

detection), and 3) forensic attribution of electronic evidence in criminal or other

cases. It is believed that this work is the first to propose and demonstrate the

feasibility of using the unintentional emissions for IC recognition.

Whereas all previously known IC recognition techniques require either hard-

ware or software modifications to the device being recognized, the RF-DNA finger-

printing technique permits passive authentication based on analysis of the uninten-

tional emissions produced during pre-existing processes and protocols. Because it

is passive, it is suitable for security applications involving commodity commercial

ICs without requiring any modifications to the device being authenticated. Thus,

the proposed approach is very promising for security applications such as those re-

quiring detection of cloned, copied, or counterfeited devices. Furthermore, because

the technique does not require any modifications to the ICs, the approach is more

cost-effective and scalable than other known techniques for applications involving

commodity commercial ICs.

In addition to being the first application of RF-DNA fingerprinting techniques

to the unintentional emissions of ICs, this research extends the previous work related

to the intentional emissions of wireless networking equipment, in two new ways.

Previous RF-DNA work has predominantly considered device identification tasks.

However, the primary use case envisioned for IC fingerprinting is to counter cloning

and related threats, which requires identity verification. A systematic approach was

developed and introduced to evaluate the effectiveness of RF-DNA fingerprinting in

the context of both identification and verifications tasks. Additionally, the RF-DNA
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fingerprinting technique was extended from a fixed 3-class approach to one capable of

identifying or verifying the fingerprints of devices for an arbitrary N−class problem.

An extensive empirical study was conducted and the performance of RF-DNA

fingerprinting was evaluated under a wide range of simulated noise conditions. Em-

pirical results indicate the technique scales well for both identification and verifica-

tion tasks involving 40 near-identical devices. For experimentally collected emissions,

the technique correctly identifies devices greater than 99.5% of the time, with aver-

age verification equal error rates (EERs) of less than 0.05% achieved using a single

extracted fingerprint. Correct identification success rates of better than 90% were

maintained under analysis conditions of SNR ≥ 15 dB.

The impressive performance indicates that RF-DNA fingerpinting is adaptable

to less ideal conditions while still providing acceptable results. Finally, these results

were obtained using a single extracted fingerprint. A substantial improvement in

performance is believed to be realizable through a straightforward extension of the

approach for multiple extracted fingerprints.

5.1.2 Leakage Mapping. The second major contribution of this work is

the development and demonstration of a leakage mapping methodology for assessing

the information leakage from arbitrary block cipher implementations. Prior to this

work, [SMY09] provided the only proposed methodology to enable system evaluators

to quantitatively bound the leakage from an evaluated implementation. However,

this earlier work relies on the evaluator’s ability to build an optimal template attack,

and the end result is limited in focus to a small portion of the overall cryptographic

algorithm.

The framework proposed here provides a comprehensive approach to assess

the information leakage from all algorithmically specified key-dependent intermedi-

ate computations for implementations of symmetric block ciphers. The resulting

leakage assessment quantitatively bounds the resistance of an implementation to
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the general class of differential side-channel analysis (SCA) techniques, and provides

system designers and evaluators with a tool that can be used to objectively assess

whether countermeasures implemented are justified given the added cost in time,

space, and energy compared to the obtained reduction in exploitable information

leakage. Furthermore, the systematic approach enables evaluators to quickly and

efficiently repeat the assessment process for different variations of implementations,

which helps to ensure the additions of countermeasures does not inadvertently in-

troduce new unexpected sources of information leakage.

While using this technique does not guarantee an implementation will be secure

against all future side-channel attacks, it does provide an efficient mechanism through

which system designers and testers may gain substantial insight into the level of

security of a particular implementation. Examination of the leakage maps permits

insights that are not at all obvious when testing is carried out in a less thorough

manner.

The framework was demonstrated using the well-known Hamming Weight and

Hamming Distance leakage models, with recommendations for extension of the tech-

nique to more accurate models. The approach was applied to two typical unprotected

implementations of the Advanced Encryption Standard (AES), and the assessment

results were empirically validated against correlation-based differential power and

electromagnetic analysis (DPA/DEMA) attacks.

5.2 Recommendations for Future Research

A number of recommendations for future research were made in each article

in the main body of this work. Those recommendations are revisited here with

additional discussion.

5.2.1 RF-DNA Fingerprinting of ICs. Although the results of the empir-

ical studies conducted thus far are very promising, a considerable amount of work
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remains to fully understand the suitability of RF-DNA fingerprinting for practical

security implementations. Intuitively, the nature of the intrinsic characteristics that

induce inter-device variations suggests a fingerprint based on those variations will be

extremely difficult to impersonate. However, further analysis and experimentation

are needed to confirm this. Particular areas for additional study include:

5.2.1.1 Permanence and robustness of RF-DNA features under varying

environmental conditions. It is likely that normal operation of an IC over its

lifespan will affect the physical device structure and resulting RF-DNA fingerprints.

More studies are necessary to assess the sensitivity of RF-DNA fingerprinting to such

physical changes over long periods of time. If structural changes are found to cause

the fingerprint to change significantly in a way that adversely affects fingerprint per-

formance, one solution might be to design the authentication system to update the

training database and reference fingerprints each time a device is successfully authen-

ticated. In practical implementations, uncontrolled environmental fluctuations (e.g.,

temperature or supply voltage) are also expected to effect the fingerprints. Previous

work has shown that environmentally-induced fingerprint variations for intentional

emitters can be compensated for effectively by conducting the enrollment training

procedure over the range of expected operating temperatures and voltages [TSU04].

Additional studies should be conducted to assess the suitability of this approach for

application to the unintentional emissions of ICs.

5.2.1.2 Sensitivity of fingerprint performance to variations due to dif-

ferent sensor modules or sensor positioning. Another anticipated source of per-

formance degradation is variations in the physical sensor characteristics, receiver

components, and sensor positioning relative to the IC. The experiments conducted

in this work used a single sensor and receiver module and controlled the sensor posi-

tioning over each IC. In practice, each device reader introduces its own unique effects

on the fingerprint characteristics. Thus, the fingerprinting procedure must select fea-
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tures that are insensitive to receiver and sensor induced variations. The sensitivity

of RF-DNA fingerprints to such variations should be studied further to determine if

performance is still acceptable for different sensor and receiver modules under more

realistic operating conditions. A logical test case is smart-card based authentica-

tion tokens, where the amount of variation in the positioning of the smart-card and

an embedded EM sensor in the reader could be controlled in practical applications.

Variations due to card positioning in a contact smart-card reader could be simulated

very realistically using a motorized XY stage to control probe positioning.

5.2.1.3 Scalability to larger databases. The RF-DNA fingerprinting

technique performed very well for the 40 near-identical devices tested in this work

for both verification and identification tasks. It is believed that the MDA approach

employed is scalable to much large databases of devices, at least for the verification

task. One limitation of the MDA technique employed herein is that it requires

an initial number of features that exceeds the number of total potential classes.

For identification, the straightforward MDA implementation will encounter practical

limits as the number of classes exceeds the number of available (or computationally

feasible) features. However, for identity verification applications of IC fingerprinting,

many smaller databases can be used to ensure a single verification set does not

violate the MDA requirements. Since in an authentication scenario the claimed

device identity is known prior to attempting the classification, only the sub-database

containing the claimed identity need be considered. Investigation of this solution

could be tested using simulation to reduce the manual workload and cost associated

with fingerprinting a large number of devices.

5.2.1.4 Challenge-response sequence optimization. The results herein

were obtained by arbitrarily designating several clock cycles of an overall operation

sequence as the response region. Although no statistical difference in performance

was observed during limited trials when the designated response region was varied to
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include different sub-regions, additional performance improvements may be obtained

by more carefully choosing or defining the response. Future research into this area

might focus on a rigorous investigation into the performance of fingerprints based

on microcode instruction sequences that exercise different device subcircuitry.

5.2.1.5 Effectiveness for programmable or custom logic ICs such as FP-

GAs or ASICs. This work evaluated the effectiveness of the RF-DNA finger-

printing technique for low-cost commercial microcontrollers typical of those used

in a wide-variety of modern security applications. However, the ICs tested were

fabricated using a 180nm lithography process. An interesting extension of this work

would be to conduct additional experiments to confirm the technique’s suitability for

other classes of devices such as FPGAs or custom ASICs, as well as those fabricated

using more modern fabrication processes with much smaller features sizes.

5.2.1.6 Performance improvement through use of multiple fingerprints.

Although it is anticipated that achievable SNRs for most applications of this tech-

nique will be very high in practice since the emissions are captured using a near-field

probe, it is believed that identification and verification accuracies could be substan-

tially improved over the results herein by considering multiple extracted fingerprints

for the classification decision. It would be worthwhile to examine how much further

performance could be increased, particularly for degraded SNR conditions, by either

averaging multiple signals or by extending the Bayesian classification technique by

iteratively classifying additional fingerprints until a desired confidence in the decision

is reached.

5.2.1.7 Investigation of alternate side-channels. It is believed that

the same techniques employed in Chapter 3 would be similarly effective if the RF

emissions were replaced by other side-channel emissions such as variations in power

consumption. If the power side-channel is found to have similar performance, it may
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be more suitable in some situations such as those where precise probe positioning is

difficult to achieve reliably. The experiments in Chapter 3 could easily be replicated

for alternative side-channels by simply replacing the measured RF signal with the

variations in power consumption. Power consumption variations can be obtained

using a typical power-based side-channel analysis setup where the voltage drop is

measured across a resistor placed in-line with the circuit’s supply and/or ground line

as illustrated in Sec. 2.7.

5.2.2 Leakage Mapping. Future work related to leakage mapping should

focus on continuing to enhance the procedure to provide a more robust overall leak-

age assessment for arbitrary cryptographic implementations. A number of possible

improvements to the procedure were suggested in Chapter 4, and are expanded on

here.

5.2.2.1 Advanced Statistical Techniques. In particular, the techniques

should be adapted to incorporate more advanced statistical tools such as mutual in-

formation or linear regression models rather than depending on the fixed Hamming

Weight or Hamming Distance Models. The non-parametric mutual information ap-

proach is interesting because of the potential to capture non-linear information leak-

ages, but the computational complexity is high. Thus, any efforts to employ such an

approach would need to focus on identifying efficient techniques for computing the

required non-parametric statistical distributions to make the systematic application

of MIA feasible. This problem may be suitable for the application of parallel pro-

cessing techniques using scientific high performance computing clusters or graphical

processing unit (GPU) acceleration.

Linear regression based techniques (e.g., [SLP05]) are also highly promising

because they can automatically adapt the leakage model to each considered sam-

ple or instant in time. Thus, models constructed using regression techniques might

be considered to be leakage agnostic since they can adaptively capture the statisti-
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cal relationship between the observed signal variance at each sample and the data

of interest. It is believed that such an approach would be substantially more ro-

bust at the expense of significantly increased computational effort. An assessment

conducted using leakage mapping augmented with regression-based models would

be much more representative of the types of DSCA attacks a persistent, adaptive

adversary might employ. Although the computational requirements would increase

significantly, limited initial experiments suggest that a regression-based approach is

feasible for the leakage mapping framework.

5.2.2.2 Suitability for Assessing Protected Implementations. Al-

though some pilot studies were conducted to evaluate the suitability of leakage

mapping against protected cryptographic implementations, the results so far are

very limited due to the limited availability of protected implementations for study.

To truly assess the suitability of the leakage mapping approach as a tool for making

appropriate design decisions in the development of a protected implementation, it

should be used directly in that enviornment. That is, it should be employed in an

iterative fashion as a cryptographic implementation is designed and various counter-

measures are applied to determine how well it guides the decision making process.

At each step, it is also recommended that the leakage mapping results be validated

against well-known attack techniques as in Chapter 4.

5.2.2.3 Frequency Domain Leakage Mapping. For this research, the

leakage mapping approach was applied exclusively to signals in the time domain.

However, various other work has suggested that spectral-domain techniques may be

even more effective, particularly against some implementations that implement basic

countermeasures such as random process interrupts [RO04b]. In general, the only

change that would be necessary to apply leakage mapping to signals in the frequency

or time-frequency domains would be input signal pre-processing and interpretation of

the resulting correlation matrices. Spectrogram or similar pre-processing techniques
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would be particularly interesting since the leakage assessment produced from time-

frequency domain signals would identify both problematic instants in time as well

as the frequency bands containing the majority of the leaked information.

5.2.3 Related Future Research Recommendations. In the course of this

work, a large number of experiments were conducted that led to a variety of in-

teresting observations that have not yet been fully investigated. One observation

in particular—discovered during development of the leakage mapping procedure—

merits further investigation.

It was emphasized in Section 4.4 that a significant advantage of the systematic

leakage mapping approach is that it can help to prevent the inadvertent oversight of

important leakages. Because leakage is assessed across all intermediate computations

during the entire cryptographic algorithm, any unexpected leakages are highlighted

when the full assessment results are reviewed.

The software-based AES implementation (Imp. A) studied in Chapter 4 ex-

hibits such unexpected leakages. For this software implementation, direct key corre-

lation would typically be expected twice in each round. This is because each round

key is manipulated during the ARK operation and during on-the-fly key scheduling.

Strangely, several bytes of the master key exhibit leakage during rounds other than

the first round during which the master key also serves as the round key. Based on

knowledge of the AES algorithm, this leakage is unexpected since the master key is

not typically manipulated, directly or indirectly, at those times. Examination of the

available source code for this implementation confirmed that the master key was not

manipulated at the times when the unexpected leakage occurred.

The source of the key leakages was identified by estimating the clock cycle

that corresponds to each unexpected leakage (using the MPLAB PIC simulator)

and determining which instructions are being executed at those times. This analysis

indicated that the source of the observed leakage is ARK operations that mix each
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round’s input with the associated round key. Further investigation revealed that

the temporary round key is stored in a block of memory addresses that immediately

preceeds the memory addresses where the master key is stored. This suggests that the

content of the master key memory addresses is being leaked without ever explicitly

accessing the addresses that contain the leaked information. The physical cause of

this leakage is currently unknown, and additional experimentation is necessary to

determine the root cause. Notably, even without identifying the cause, these leakages

could easily be avoided by adding a buffer around the sensitive data in memory to

prevent any accesses to adjacent memory locations.
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Appendix A. Side Channel Analysis Countermeasures

A.1 Constant Time

Kocher, in his original paper on timing attacks, suggested a number of possible

approaches system developers can take to reduce the vulnerability of their systems

to similar attacks [Koc96]. The most obvious approach to counteract timing attacks

is to make all operations take constant time.

Realizing this approach has proven to be difficult in practice, and some opera-

tions that were long thought to resist timing attacks (e.g., table lookups) have later

proven to be vulnerable, as described in 2.5.1. When candidates algorithms were

evaluated for selection as the new AES algorithm, vulnerability to SCA attacks was

one of the criteria considered but table lookup based implementations were consid-

ered to be resistant to timing attacks. It has since been shown that, at least on

general purpose microprocessor implementations, cache architectures make that an

invalid assumption as described in Section 2.5.1 [Ber05].

Additionally, as Kocher originally noted, ensuring the intended output is pro-

duced in constant time is insufficient to prevent timing attacks since other measurable

phenomenon can reveal the time taken by intermediate operations [Koc96]. Finally,

constant time countermeasures have the undesirable effect of making all operations

take the longest time, effectively de-optimizing the performance to the lowest com-

mon denominator [Roh06,MOP07].

A.2 Constant Power Countermeasures

One way to reduce the information signal produced through the power con-

sumption side channel is for all operations to require constant power. If operations

take precisely the same amount of power without regard for the data being processed,

then power analysis attacks are no longer possible and the adversary must seek an

alternate (hopefully less informative) source of information leakage. This approach,
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unlike some of the others, must be implemented at the hardware level, and is there-

fore not applicable to software-based implementations that run on general purpose

devices such as microprocessors. The term commonly used for constant-power logic

design styles is secure logic.

Several secure logic variations have been proposed, which fall into two pri-

mary categories: transistor-level [TAV02,BGLT06], and gate-level logic styles [TV04,

PM05]. Transistor-level logic styles typically perform better in the sense that they

are more effective at reducing power consumption fluctuations. However, they typi-

cally can’t be implemented using existing commercial design flows and standard cell

libraries. Therefore, the cost and time required to develop systems based on these

logic styles is much higher than for a standard CMOS design. In contrast, gate-level

secure logic assembles compound constant-power logic cells from existing standard

CMOS logic cells (e.g., AND and OR gates). These logic styles can generally be im-

plemented using existing design flows, commercial tools, and standard cell libraries

but are less effective at reducing variations in power consumption. In general, all of

the proposed secure logic styles sacrifice power, size, and / or performance to reduce

the side-channel information leakage of the circuit’s power consumption.

Both the transistor and gate-level logic styles are based on the idea of dual

or multi-rail logic. Figure A.1 illustrates a transistor-level pre-charged dual-rail

domino style that achieves near constant power consumption profiles for all inputs

and outputs.

The logic cell requires an input pair of both the true signal and its complement

for each input. Likewise, it produces an output signal pair consisting of both true

and complementary output values of the logic function, where Y h represents the

output and Y l is its complement. While the the clock φ is low (or logical ‘0’), both

output signals are being pre-charged to low voltage. When the clock φ goes high,

the circuit evaluates and one (and only one) of the two output signals is asserted.

During proper operation, both output signals should never be ‘1’ simultaneously.
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Figure A.1 Dual Rail Domino Logic Style with Completion Detection for Asyn-
chronous Design. [WH05]

Table A.1 summarizes the states for a dual-rail domino logic cell. An example of an

XOR gate implemented in dual-rail domino logic is shown in Figure A.2.

Table A.1 Dual-rail domino signal encoding [WH05]

sig h sig l Meaning
0 0 precharged
0 1 ‘0’
1 0 ‘1’
1 1 invalid

The idea behind the dual-rail design as a countermeasure is since the logic cell

always calculates both the true and complementary outputs, either one half or the

other of the complementary paths will be exercised during any particular operation.

Thus, the power the logic cell draws should be basically independent of the inputs

and output.

Note that the dual-rail logic style means that the logic can signal completion

by tying both un-inverted outputs to a NAND gate as shown in Figure A.1. In

this manner, domino dual-rail can be used for asynchronous logic, which has been

proposed as a further countermeasure to DSCA attacks.
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Figure A.2 Dual Rail Domino XOR/XNOR gate (without completion detection
explicitly shown). [WH05]

A limitation of this approach is that routing can create capacitive imbalances

in the cell, which can bias the power consumption. Several specific variations on the

dual-rail logic concept have been proposed in the literature.

• Sense amplifier based logic (SABL) [TAV02]. A transistor-level custom syn-

chronous logic style with a single switching event each clock cycle, during which

it “...discharges and charges the sum of all the internal node capacitances to-

gether with one of the balanced output capacitance” [TV04]. SABL requires

the design of an all-new custom cell library.

• Wave dynamic differential logic (WDDL) [TV04]. A gate-level semi-custom

logic style that combines logic gates from a standard cell library into compound

secure gates with constant power characteristics similar to SABL. WDDL can

be implemented for both ASIC and FPGA-based designs. In general, WDDL is

less effective than SABL at hiding power consumption variations due to internal

computations and unbalanced routing of complementary wires can render the

countermeasure less effective at reducing data-dependent power fluctuations.

The technique can be integrated into an existing design flow using commercial

EDA tools and commercially available complementary CMOS standard cell

libraries with some modifications (semi-custom design flow) [TV06].

• Masked dual-rail pre-charge logic (MDPL) [PM05]. Another gate-level semi-

custom logic style formed from the combination of standard cells that attempts
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to overcome routing constraints. MDPL combines power equalization with

intermediate value masking (see Section A.1).

• Three-phase dual rail power (DRP) logic (TDPL) [BGLT06]. A transistor-

level enhancement to SABL intended to provide constant-power consumption

without restrictive routing restraints. TDPL also requires the design of a

custom cell library.

Another area of active research is the efficient integration of full- or semi-

custom logic styles into existing design workflows. Baddam and Zwoliniski proposed

a technique to effectively route circuits following the divided WDDL logic style using

backend duplication [BZ08]. Their technique is interesting because it can reportedly

be applied to FPGAs as well as custom ASIC designs. The authors presented ex-

perimental results from a 130nm technology FPGA demonstrating the technique’s

effectiveness.

Although hardware-based secure logic styles are promising in theory, achieving

equalized power has proven to be very difficult to do in practice. Suzuki and Saeki

showed that slight variations in gate input arrival times result in the complementary

paths switching at different times, which results in exploitable power consumption

leakage [SS06]. Mangard, Popp and Gammel showed that all of the fully comple-

mentary CMOS-based logic styles exhibit glitching behavior that exhibits similar

characteristics [MPG05]. Schaumont and Tiri have recently shown that the combi-

nation of masking and dual-rail logic (e.g. MDPL), which was thought to be one

of the most promising hardware countermeasures to prevent DPA, is fundamentally

insecure [ST07]. Small differences in the routing of complementary wire pairs leads

to imbalanced capacitances. Though these implementations are not directly vul-

nerable to traditional DSCA-type attacks, the routing imbalances induce a bias in

the probability density function of the power consumption which can be filtered to

remove the mask, resulting in a much lower DPA resistance than originally thought.

The authors were able to extract the key from their AES implementation, originally
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believed to be highly resistant to standard DPA attacks, with approximately 2,000

observations.

A.3 Temporal Desyncronization

Noise addition is an intuitive way to cover up information leakage of a circuit.

The concept is that if noise can be increased enough, the attacker will be unable to

identify and extract the underlying information signal. One way of increasing the

noise in a side channel is to desynchronize the time when sensitive data manipulations

take place from one operation to another. This can be accomplished by, for instance,

randomizing the clock period, the order of operations, or the number of cycles taken

for a microprocessor instruction [Koc96,Roh06,MOP07].

The theory behind these randomization techniques is that DSCA attacks are

sensitive to the temporal alignment of the side channel traces. Variations in the

start time of individual traces, or variations in the time when subsequent sensitive

operations or data manipulations occur relative to that start will introduce noise

into the corresponding side-channel signal. The effect on DSCA techniques is that

the peaks in the correlation coefficients (or whatever statistical tool is used) which

normally indicate a correct key are spread across a number of points in time. In

digital signal processing this is known as incoherent averaging [CCD00]. If the start

of traces are not temporally aligned, the adversary must either collect more samples

or use sophisticated signal processing techniques to align them (see Section 2.7)

[MOP07].

An alternate technique to achieve temporal descynchronization is to implement

circuits using asynchronous or self-timed logic styles. Removing the clock as a source

of information makes the task of side-channel analysis much more difficult and has

the added benefit of countering clock-based fault attacks [FMP03]. In addition to

the properties of constant power consumption that can be achieved through care-

ful logic design, the dual-rail logic styles introduced above also lend themselves to
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asynchronous design since each cell inherently signals the completion of an opera-

tion [FMP03].

A.4 Masking countermeasures

Masking countermeasures are a class of techniques that protect sensitive infor-

mation from side channel attacks by making the physically observable phenomena

independent of sensitive data. Masking of asymmetric ciphers is commonly referred

to as blinding in the cryptographic literature [Koc96,MOP07].

Kocher first proposed applying blinding as a countermeasure to timing at-

tacks [Koc96], but the technique is also effective at reducing vulnerability of systems

other side channel attacks [CJRR99, Roh06, MOP07]. Kocher’s blinding technique

for protecting the private key is described in detail in Appendix D.

The generalized application of masking to side channel attacks was proposed

by Chari, et al. as a derivative of the already known secret sharing technique from

the cryptographic literature [CJRR99]. Masking, in general, is accomplished by

randomizing sensitive intermediate values processed by the device. The idea is to

randomly split sensitive intermediate values into a number of shares, each of which

is independent of the original sensitive data. Each sensitive unmasked intermediate

value, v, is split into d shares where the relation

m1 ? m2 ? · · · ? md = v (A.1)

holds for some group operation ?. The shares m1 . . .md−1 are the random masks,

and md is the masked intermediate value. The shares m1 . . .md−1 are assumed to

be mutually independent random variables uniformly distributed over v. Typical

choices for the masking operation, ?, are the logical XOR (boolean masking) and

modular addition or multiplication (arithmetic masking) [MOP07,PRB09].
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Masking does not make physically observable phenomena independent of the

device operations, but rather randomizes the data on which the device is operat-

ing. Thus, the device still leaks information about the intermediate values being

processed, but those intermediate values are independent of the secret or private

key. An adversary with no knowledge that the masking countermeasure has been

implemented will be unable to attack the device using standard SCA techniques.

Even with knowledge that masking is used the difficulty of mounting an attack is

significantly increased.

Most of the masking schemes proposed use a single random mask to split

the sensitive intermediate value into just two shares, although higher-order mask-

ing schemes have also been proposed to provide further security against HO-DSCA

techniques [CJRR99,MOP07,PRB09]. The complexity of both implementing higher-

order masking schemes and attacking grows quickly with the order, so most research

has focused on 2nd order masking and 2O-DSCA attacks [PRB09].

Masking countermeasures are sometimes combined with constant-power logic

styles, but that combination has been found to be fundamentally insecure as de-

scribed in A.2.

A.4.1 Masking of complex ciphers. A key characteristic of masking coun-

termeasures is they require changes to the underlying algorithm to handle the masked

intermediate values properly. For RSA, the changes are straightforward due to the

properties of modular arithmetic, but masking schemes can be substantially less

straightforward for more complicated ciphers. For example, masking S-box lookups

introduces significant overhead (performance and memory) since the masked equiv-

alent of the entire table would have to be calculated for each new mask [MOP07].

More efficient implementations are possible if the S-box functions are computed

dynamically using finite field arithmetic since the entire table doesn’t have to be

recomputed for each new mask value [OMPR05].
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A.4.2 Implementation levels for masking. In addition to masking inter-

mediate values at the algorithmic level (in either hardware or software), it is also

possible to mask operations at higher system levels. Mangard et al. describe sev-

eral techniques for masking hardware multipliers, combinational logic, and data

buses [MOP07]. Various proposals have been made for masked logic styles to be

implemented at the custom hardware design level for both ASIC and FPGA imple-

mentations.

A.4.3 Practical considerations. The security benefits of masking counter-

measures can be easily lost if the technique is implemented carelessly. Mangard, et

al. warns of several possible pitfalls when implementing masking schemes in prac-

tice. Consecutively storing a masked value and its corresponding mask in the same

register or inadvertently consecutively transferring them across a data bus may leak

the Hamming distance between the two and reveal the unmasked intermediate value.

Likewise, intermediate values that are concealed by the same mask and processed

consecutively can leak the Hamming distance between the two unmasked interme-

diate values. Simultaneously processing a masked value intermediate value and the

mask used to protect it can unintentionally occur in parallel hardware implementa-

tions, effectively leaking the un-masked intermediate value. Finally, implementation

tools (compilers, hardware synthesis tools, etc.) may inadvertently optimize away

countermeasures if care is not taken [MOP07].

To be effective random masks should be changed frequently enough to prevent

the masks themselves from introducing exploitable side-channel leakage. However,

every mask change reduces performance of the system, and thus the frequency of

changes must be balanced to achieve acceptable performance and security [MOP07].
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A.5 Power Supply Shielding

A countermeasure to power analysis techniques is to isolate the internal time-

varying requirements of a circuit from easily probed terminals. Shamir was the

first to propose physically isolating a circuit’s power supply from a circuit by using

large shielding capacitors [Sha00]. Others have noted that capacitors used in power

distribution networks of complex integrated circuits such as FPGAs filter some of

the higher-frequency activity of the internal switching activity [MOP07]. Shamir’s

approach used two capacitors in tandem so that one could supply the circuit while

the other recharged.

Ratanpal, Williams and Blalock pointed out that Shamir’s technique can be

bypassed by probing the power supplied by the capacitors instead of the global power

supply (assuming the capacitors are off-chip or accessible), and reconstructing a full

power consumption trace by combining the power traces from the two capacitors

and applying standard DPA attack techniques against the combined trace [RWB04].

The authors proposed a more effective active signal suppression circuit. A key disad-

vantage of all power supply shielding techniques is that the are only effective against

power analysis and do not protect against attacks on the EM or other side channels.

A.6 EM Shielding

There are few specific countermeasures that specifically address the problem

of EM leakage. Quisquater et al. suggest several possible ways to reduce the vulner-

ability of systems to EM analysis, including reducing the magnitude of the radiated

electromagnetic field through shielding (such as thick metal packaging), imprisoning

the circuitry inside a Faraday cage to prevent EM radiation from escaping, reduc-

ing the power consumption of the device (and thus the resulting EM radiation),

asynchronous logic, or using one of the various dual-rail power logic styles proposed

elsewhere as a countermeasure to power analysis attacks [QS00,QS01]. Introducing

temporal or spatial jitter with techniques such as the ones described in Sections
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A.3 and A.8 may also improve resistance to EM-based DSCA attacks. The Fara-

day cage approach is likely to be effective, but may not be realistic for practical

implementations of many systems.

A.7 Leakage-Resistant Arithmetic

Bajard, et al. proposed a leakage-resistant arithmetic (LRA) style based

residue number system (RNS) as a countermeasure to timing, SSCA and DSCA

attacks [BILT04]. In the RNS representation, large integers are represented by a

series of smaller integers. The system is defined by a set of relatively prime moduli,

{m1,m2, . . . ,mN}. Any arbitrary integer, X, is represented as a set of N smaller

integers {x1, x2, . . . , xN} such that xi = X mod mi. The LRA system randomizes

data, order of computations, and the function of individual logic cells by randomly

selecting the initial set of moduli used and/or randomly changing the base moduli

before and during an arithmetic operation.

The countermeasure is most suitable for public-key ciphers that operate over

large finite fields such as RSA or ECC. The authors developed a reference implemen-

tation of a reconfigurable logic design to implement LRA for the RSA encryption

algorithm. The resulting implementation takes approximately 5-7 times more gates

than a standard modular exponentiation implementation, but the inherently paral-

lel nature of the arithmetic operations offers potential performance improvements

at larger key sizes (≥ 2048 bits). Although the approach presents some intuitive

degree of protection against SCA attacks, no experimental results were presented to

validate the claim of improved SCA resistance.

A.8 Dynamic Reconfiguration

One interesting new area of countermeasures research is the idea of dynami-

cally reconfiguring FPGAs or other devices in real-time, as introduced by Mentens

et al. [MGV08]. The countermeasure creates temporal and spatial jitter by ran-
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domly inserting delay registers into the computation path and changing the location

where the logic that processes sensitive operations is instantiated. The temporal

jitter descynchronizes the timing of sensitive operations as previously discussed in

Section A.3. Spatial jitter increase resistance to EM attacks, which typically at-

tempt to localize the area of maximal EM leakage. Fixed configuration spatial jitter

was also previously introduced by Bajard, et al. and Ciet et al., but requires multi-

ple dedicated instantiations of the elementary computational cells, which increases

overhead [BILT04, CNPQ03]. Dynamic reconfiguration may achieve similar spatial

protection with improved area and resource utilization efficiency.
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Appendix B. Kocher’s Timing Attack on RSA

B.1 Overview

The seminal paper on cryptanalytic SCA attacks, published by Kocher in 1996,

targets the timing variations of several asymmetric ciphers including the popular

RSA algorithm. This section describes Kocher’s attack on RSA.

B.2 Overview of RSA

RSA use is widespread because of its strong computational security and ease of

implementation [Sch96]. Asymmetric ciphers such as RSA are typically much slower

than block ciphers such as DES or AES, but the key lengths are typically much

larger—1024 bits or higher for RSA vs. 256 bits maximum for AES. Because they

are relatively slow, asymmetric ciphers are not generally used for sustained transfers

of large amounts of data, but are commonly used for applications such establishing a

secure session between two parties over a computer network (e.g., the Secure Sockets

Layer (SSL) protocol used for secure Internet browser sessions) or for encrypting or

signing emails.

In RSA and other asymmetric ciphers, the ciphering process is based on the

mathematical properties of modular exponentiation:

R = dk mod m (B.1)

where d is the data being operated on, m is a publicly known modulus, and k is the

cryptographic key.

In RSA and other asymmetric ciphers, cryptographic keys are generated in

pairs—a public key kpub which is used to encrypt data and a corresponding private

key kpri which can decrypt the data that was encrypted using kpub. A public key is

published as the set (kpub,m) and is shared freely with anyone from whom the key’s
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owner would like to be able to receive secure messages. Asymmetric ciphers used in

this manner are typically referred to as public-key encryption schemes [Sch96].

The mathematical details of how RSA keys are generated how/why the ci-

phering process works are irrelevant to Kocher’s timing attack and therefore are not

discussed here, but are described in detail by a number of references [Sch96]. It is

noteworthy that many of the RSA implementations in use today are based largely

on the ‘C’ source code from the original RSA laboratories reference implementa-

tion [Lab94].

B.2.1 Implementation of RSA. In practice, the modular exponentiation

operations used in RSA and other similar ciphers are generally implemented using

one of several well-known techniques. One common algorithm, which is used as an

example in Kocher’s paper, is the binary square and multiply method (also known

as addition chaining) shown in Algorithm 4 [Koc96,Sch96].

Algorithm 4 Square and Multiply Modular Exponentiation—Adapted from [Koc96]

1: s0 ← 1
2: for i = 0 to w − 1 do
3: if ki = 1 then
4: Ri ← (si × y) mod n
5: else
6: Ri ← si
7: end if
8: si+1 ← R2

i mod n
9: end forreturn (Rw−1)

B.2.2 Information Leakage Modular Exponentiation. There are at least

two sources of potential information leakage in this algorithm [Koc96]. The first,

which is the focus of Kocher’s timing attack, is the conditional execution of the the

modular multiplication on Line 4. The multiplication is executed only if ki = 1. This

data dependency results in variations in computation time—the effect of which is to

leak information about the value of the key. Kocher’s attack is based on analysis of
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this first source of information leakage. A second source of information leakage is

due to variations within the modular multiplication step itself.

B.3 Key Assumptions of Kocher’s Attack

With all side channel attacks, it is important to be aware of the underlying

assumptions that can limit the attack’s practicality. Kocher’s timing attack makes a

number of assumptions about the attacker’s capabilities, which are described here:

1. The attacker (Eve) has the ability to monitor the decryption operations of her

target (Bob), and to accurately record the computation time for each decryp-

tion.

2. Eve is able to eavesdrop on and capture the encrypted messages that are sent

to Bob. (Alternatively, in some scenarios an active adversary could actually

be the source of the encrypted messages.)

3. Eve is able to do the above for a large number of decryption operations where

Bob is using the same private key.

4. Eve must have knowledge of the amount of time required by Bob to perform

the modular multiplication that occurs when a key bit is ‘1’. One way for

Eve to accomplish this is to create a simulator using the same source code

as the targeted implementation, running on a similar hardware platform. She

can then precisely simulate the amount of time each partial calculation should

have taken on her target platform.1

1Realistically, this is not an impractical constraint from the perspective of an attacker. A
scenario where Eve may have this capability is if she is attacking one of the many widely used RSA
implementations that are based on the original RSAREF reference implementation (which is freely
available) or use open-source implementations of other cryptographic libraries.
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5. Measurement error, loop overhead, and other computation time contributions

not directly attributable to the mathematical operations of modular exponen-

tiation are negligible.2

6. Modular multiplication computation times are approximately normally dis-

tributed. Kocher illustrates that this is the case for his targeted implementation

(RSAREF toolkit running on 120MHz Pentium computer, MSDOS operating

system) [Koc96].

7. Modular multiplication computations times are independently distributed. In

fact, it has been shown that there is some correlation between multiplication

times in a straightforward square and multiply implementation, but the ap-

proximations used for this attack are still useful in practice [Roh06].

B.4 The Attack

The actual attack is an iterative process whereby Eve attempts to guess the

bits ki of the full w-bit private key in the order they are used by the modular

exponentiation algorithm. The basic steps of Kocher’s timing attack are:

1. Eve observes Bob’s decryption of n cipher-texts.

2If these factors are not negligible, it does not render Kocher’s attack ineffective, but does
increase the noise. The result is that the attacker must gather more samples in order to average
out the underlying noise.
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2. For each decryption operation j = 1, 2, ..., n, Eve records the total computation

time, Tj. The total computation time for each individual observation can be

decomposed as:

Tj =
w−1∑
i=0

ti,j + ej =


T1

T2

...

Tn

 =


t0,1 + t1,1 + · · ·+ tw−1,1 + e1

t0,2 + t1,2 + · · ·+ tw−1,2 + e2

...

t0,n + t1,n + · · ·+ tw−1,n + en

 (B.2)

where ti,j is the time attributable to pass i through the square and multiply loop

for observation j and e represents the remaining timing and error components

including loop overhead and measurement error. Each ti,j depends on the

value of the key bit ki and the value of the cipher-text dj. Initially, all ti,j are

unknown.

3. Beginning with the LSB (k0), Eve iteratively considers each bit ki of the key.

For subsequent iterations, it is assumed that all previous key bits (ki−1..k0) are

known. Eve makes two hypotheses about ki, namely

H0 : ki = 0, H1 : ki = 1

Given her knowledge of the implementation, Eve simulates the partial compu-

tation for the first i key bits and determines the time
∑i−1

q=0 tq,j attributable to

that portion of the modular exponentiation for each observation. The remain-

ing time, which is attributable to the unknown key bits for which Eve cannot

yet simulate the computation is:

T
H0|H1
j = e+

w−1∑
p=0

tp,j −
i−1∑
q=0

tq,j. (B.3)
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The result of this step is two new lists of adjusted timings TH0
j and TH1

j for

all observations (j = 1, 2, ..., n).

4. Eve then calculates the variance for TH0
j and TH1

j from the previous step.

Whichever hypothesis (H0 : ki = 0 or H1 : ki = 1) resulted in the largest

reduction in the variance over all adjusted computation times is chosen as the

next key bit.

5. Eve repeats steps 3-4 for each bit of the key until the entire key is known.

Under the assumptions of independence and normal distribution of multipli-

cation times, Kocher derived the probability that a wrong hypothesis will result

in a greater reduction in variance of the adjusted computation times. When this

does occur, the variance calculated in subsequent steps will actually begin to grow,

indicating that an incorrect key bit was selected and that some backtracking is re-

quired to correct the error [Koc96,Roh06]. Kocher refers to this as an error-detection

property of the timing attack.

In the general case, the probability at each step of selecting the correct hy-

pothesis for the current key bit (given all previous key bits were chosen correctly) is

given:

= P
[
Ki = 0|

(
V ar

(
TH0
j

)
< V ar

(
TH1
j

))]
= P

[
Ki = 1|

(
V ar

(
TH1
j

)
< V ar

(
TH0
j

))]
= Φ

(√
n(i− c)
2 (w − i)

)
where c is the index of the first incorrectly guessed key bit.

Thus, Eve can make trades between the number of observations and the post-

processing time (including backtracking for wrong guesses) to optimize the efficiency

of her attack.
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Appendix C. Kocher’s SPA Attack on DES

Kocher’s original SPA attack illustrates a typical application of SSCA. The principle

of the analysis is that the power consumption of a micro-controller looks different

for different operations. For instance, the side channel leakage may look significantly

different when a conditional branch is taken compared to when the branch is not

taken. Figure C.1 shows the current drawn by a micro-controller-based DES im-

plementation for two sets of operations over a period of seven clock cycles [KJJ99].

Close examination of the traces reveals that they have very similar (nearly identical)

current profiles until they reach clock cycles 6-7. Clock cycles 6-7 correspond to the

micro-controller’s execution of a conditional branch instruction. In one of the traces

the branch is taken, and in the other trace the branch is not taken.

Figure C.1 Variations in Current Drawn Due to Different Conditional Branch De-
cisions (Adapted from [KJJ99])

In this example, the device being analyzed is a micro-controller running DES

code, and the differences in current drawn by the device occur at times when the

micro-controller is making a conditional branch decisions based on a portion (one

bit in this case) of the cryptographic key. By applying publicly available knowledge

of the DES algorithm and domain knowledge of how the algorithm would be imple-
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mented in practice, it is possible to deduce the value of the cryptographic key from

these differences.

In Kocher’s example, the target is a (software, microprocessor-based) smart-

card implementation of the Data Encryption Standard (DES).

Listing C.1 Assembler Code for DES Conditional Branch [?]

;==============================

M SHIFT C MACRO

;==============================

CLR C

MOV A, PB 4 C

RLC A

MOV PB 4 C , A

MOV A, PB 3 C

RLC A

MOV PB 3 C , A

MOV A, PB 2 C

RLC A

MOV PB 2 C , A

MOV A, PB 1 C

RLC A

MOV PB 1 C , A

JC M SHIFTC1

CLR PB 4 C . 4

JMP M SHIFTC2

M SHIFTC1 :

SETB PB 4 C . 4 , #1

M SHIFTC2 :
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ENDM

The attack begins by analyzing the DES algorithm to identify some intermedi-

ate value that, if known, would reveal a portion of the key. For DES, examining the

publicly available specification reveals that the generation of the sub-key used in each

round of ciphering requires the rotation of two 28-bit key registers. Applying domain

knowledge of how a rotation is likely to be implemented for a micro-controller-based

implementation, it is expected that most implementations will optimize the 28-bit ro-

tation operation and only copy the most-significant bit (MSB) to the least-significant

bit (LSB) if it is a ‘1’. Otherwise, the code will probably perform a less costly shift

operation—which would automatically fill the LSB with a ‘0’ value. Thus, it is

anticipated that straightforward implementations of DES will make a conditional

branch decision based on the MSB of the key register before each rotation.

For the micro-controller-based smart-card device targeted, the power trace

data looks significantly different for operations where a conditional branch is taken

vs. operations where it is not taken (Figure C.1). Therefore, it is possible to tell

whether the MSB of the key register is a ‘1’ or a ‘0’ by examining the power trace

for the moment when the conditional decision is made.

Furthermore, according to the Federal Information Processing Standard 46-

3 [Nat99], a total of 28 left rotations of each 28-bit key register are used in the DES

algorithm. Therefore, every bit in the 56-bit DES key is subject to the above analysis

over the course of a full 16 round ciphering process, permitting extraction of the full

secret key by analyzing whether or not the jumps were taken.

A key point of SPA is that an attacker requires substantial knowledge of the

algorithm being implemented in order to effectively use the technique. Since the

detailed specifications of many encryption algorithms are publicly available, and in

most cases the manufacturers of encryption devices advertise the type of encryption

being used, this information is frequently easy to obtain. Kocher’s second type
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of attack, DPA, and improvements made later are not as dependent on detailed

knowledge of the implementation.

The series of operations for both traces include an instruction that rotates the

contents of a register left by one bit. If the most significant bit in the register (before

the rotation) is a ‘1’ then a special carry register is set to ‘1’. If the MSB is a ‘0’

then the carry register is set to ‘0’.

A branch decision is then made based on the value of the carry register. If

the carry register is set, the branch is taken. Likewise, if the carry register is not

set, the branch is not taken. The two traces depict the current drawn by the device

for each case (branch taken vs. branch not taken). Close examination of the traces

reveals that both have almost identical current profiles until they reach clock cycles

6-7, which corresponds to the location of the conditional branch operation. Thus,

by visually examining the power consumption side channel data, it is possible to

determine whether or not a conditional branch was taken or not—and in doing so,

to infer the value of the manipulated register’s MSB.
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Appendix D. RSA Message Blinding

To protect the private key kpri during RSA decryption one option (known as message

blinding) is to choose a random pair of numbers (mi,mf ) such that

mf
−1 = m

kpri
i mod n (D.1)

where n is used to represent the public modulus to prevent confusion with the mask

value m. To do this, mf can initially be chosen as a random number that is relatively

prime to n. Then,

mi = (mf
−1)kpub mod n. (D.2)

The input message (the cipher-text, C) is then masked prior to computing the RSA

modular exponentiation by first multiplying it by mi mod n or

Cm = C ×mi mod n. (D.3)

Decryption is performed as normal to recover the plain-text

Pm = (Cm)kpri mod n. (D.4)

However, since the decryption was performed on the masked cipher-text, the resulting

plain-text is also masked. To recover the original plain-text, the masked plain-text

is multiplied by mf

P = Pm ×mf . (D.5)
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Appendix E. AES Object Source Code

This appendix contains the source code for a Matlab AES implementation that will

pre-compute and preserve all FIPS 197 specified algorithmically specified interme-

diate results. This source code supports all FIPS 197 approved variants of AES,

including all key sizes (128, 192, and 256-bit) and modes (encryption and decryp-

tion). The supported parameters are documented in AESObject.m.

Listing E.1 AESObject.m

1 % =========================================================================

2 % ======== AES Object =========

3 % =========================================================================

4 %

5 % Created: Jun 2010

6 % By: Maj Will Cobb

7 % Last Modified: 28 Jul 2011

8 % By: Cobb

9

10 % Implements FIPS 197 Advanced Encryption Standard (AES). Supports all

11 % FIPS 197 specified key sizes and operation modes.

12 %

13 % This class will compute the output and all algorithmicly specified (per

14 % FIPS 197 specification) intermediate values of the AES encryption /

15 % decryption given a specific input (plain or ciphertext depending on

16 % mode) and key.

17 %

18 % Modified:

19 %

20 % 19 Jul 10 -- made drastic improvements to speed by

21 % going to a lookup -table based approach for AES polynomial

22 % multiplication.

23 %

24 % 14 Sep 10 -- Updated comments , prettied up hex output display

25 %

26 % 28 Jul 11 -- Moved lookup tables to separate .mat file to improve

27 % code readability.

28 %

29 % 18 Aug 11 -- Added get.HexKeySchedule & get.BinKeySchedule.

30 %

31 % Examples using Test Vectors from FIPS 197 Appendix C:
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32 %

33 % myAES = AESObject;

34 % myAES.HexInput = ’00112233445566778899 aabbccddeeff ’;

35 % myAES.HexKey = ’000102030405060708090 a0b0c0d0e0f ’;

36 % myAES.Encrypt;

37 % myAES.HexOutput

38 %

39 % ans =

40 %

41 % 69 C4E0D86A7B0430D8CDB78070B4C55A

42 %

43 % myAES.HexInput = myAES.HexOutput;

44 % myAES.Decrypt;

45 % myAES.HexOutput

46 %

47 % ans =

48 %

49 % 00112233445566778899 AABBCCDDEEFF

50 %

51 % % Get Key Schedule:

52 % myAES.w

53 %

54 % ans =

55 %

56 % [0 ,1 ,2 ,3;4 ,5 ,6 ,7;8 ,9 ,10 ,11;12 ,13 ,14 ,15;214 ,170 ,116 ,253;210 ,175 ,114 ,250;

57 % 218 ,166 ,120 ,241;214 ,171 ,118 ,254;182 ,146 ,207 ,11;100 ,61 ,189 ,241;

58 % 190 ,155 ,197 ,0;104 ,48 ,179 ,254;182 ,255 ,116 ,78;210 ,194 ,201 ,191;

59 % 108 ,89 ,12 ,191;4 ,105 ,191 ,65;71 ,247 ,247 ,188;149 ,53 ,62 ,3;249 ,108 ,50 ,188;

60 % 253 ,5 ,141 ,253;60 ,170 ,163 ,232;169 ,159 ,157 ,235;80 ,243 ,175 ,87;

61 % 173 ,246 ,34 ,170;94 ,57 ,15 ,125;247 ,166 ,146 ,150;167 ,85 ,61 ,193;

62 % 10 ,163 ,31 ,107;20 ,249 ,112 ,26;227 ,95 ,226 ,140;68 ,10 ,223 ,77;78 ,169 ,192 ,38;

63 % 71 ,67 ,135 ,53;164 ,28 ,101 ,185;224 ,22 ,186 ,244;174 ,191 ,122 ,210;

64 % 84 ,153 ,50 ,209;240 ,133 ,87 ,104;16 ,147 ,237 ,156;190 ,44 ,151 ,78;%

65 % 19 ,17 ,29 ,127;227 ,148 ,74 ,23;243 ,7 ,167 ,139;77 ,43 ,48 ,197;]

66 %

67 % % Get hex representation of key schedule (1 round key / row)

68 % myAES.HexKeySchedule

69 %

70 % ans =

71 %

72 % 000102030405060708090 A0B0C0D0E0F

73 % D6AA74FDD2AF72FADAA678F1D6AB76FE

74 % B692CF0B643DBDF1BE9BC5006830B3FE
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75 % B6FF744ED2C2C9BF6C590CBF0469BF41

76 % 47 F7F7BC95353E03F96C32BCFD058DFD

77 % 3CAAA3E8A99F9DEB50F3AF57ADF622AA

78 % 5E390F7DF7A69296A7553DC10AA31F6B

79 % 14 F9701AE35FE28C440ADF4D4EA9C026

80 % 47438735 A41C65B9E016BAF4AEBF7AD2

81 % 549932 D1F08557681093ED9CBE2C974E

82 % 13111 D7FE3944A17F307A78B4D2B30C5

83 %

84 % % Get intermediate values:

85 % AES_Intermediates = myAES.IV

86 %

87 % ans =

88 %

89 % temp: [70x4 double]

90 % S: [41 x4x4 double]

91 %

92 % % Note that temp is the intermediates calculated in key

93 % % schedule generation

94 % % S is the 4x4 AES state array at each intermediate point in

95 % % the calculation. The first dimension is the designator

96 % % for the intermediate value in order of computation. Size of

97 % % this dimension will determine on AES key size (128 ,192 ,256)

98

99 classdef AESObject < hgsetget

100

101 properties(Constant)

102

103 cENCRYPT_MODE = 1;

104 cDECRYPT_MODE = 0;

105

106 Nb = 4;

107

108 binLookup = de2bi (0:255 , ’left -msb’);

109

110 end;

111

112 properties

113

114 KeyObjectHandle;

115 IV = {};

116

117 % *** Default input / keys are FIPS 197 test vectors ***
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118 HexInput = {’32’ ’88’ ’31’ ’e0’; ...

119 ’43’ ’5a’ ’31’ ’37’; ...

120 ’f6’ ’30’ ’98’ ’07’; ...

121 ’a8’ ’8d’ ’a2’ ’34’};

122

123 HexKey = {’2b’ ’7e’ ’15’ ’16’ ’28’ ’ae’ ’d2’ ’a6’ ...

124 ’ab’ ’f7’ ’15’ ’88’ ’09’ ’cf’ ’4f’ ’3c’};

125 % HexKey = {’8e’ ’73’ ’b0’ ’f7’ ’da ’ ’0e’ ’64’ ’52’ ...

126 % ’c8’ ’10’ ’f3 ’ ’2b’ ’80’ ’90’ ’79’ ’e5 ’ ...

127 % ’62’ ’f8’ ’ea ’ ’d2’ ’52’ ’2c’ ’6b’ ’7b’};

128 % HexKey = {’60’ ’3d’ ’eb’ ’10’ ’15’ ’ca’ ’71’ ’be ’ ...

129 % ’2b’ ’73’ ’ae’ ’f0 ’ ’85’ ’7d’ ’77’ ’81’ ...

130 % ’1f’ ’35’ ’2c’ ’07’ ’3b’ ’61’ ’08’ ’d7’ ...

131 % ’2d’ ’98’ ’10’ ’a3 ’ ’09’ ’14’ ’df ’ ’f4 ’};

132

133 BinOutput = logical(zeros(1, 64));

134 DecOutput = uint8(zeros(1, 8));

135

136 % S is current AES State matrix

137 S = zeros( 4, 4);

138

139 % These lookup tables are loaded from a pre -computed .mat file

140 RotWord = [];

141 P = [];

142 ShiftRows = [];

143 InvShiftRows = [];

144 SBox = [];

145 InvSBox = [];

146 RCon = [];

147 PM = [];

148

149 end;

150

151 properties(Dependent = true)

152 Nk; % Valid values are 4, 6, 8 for AES -128, 192, 256

153 Nr; % Valid values are 10, 12, 14 for AES -128, 192, 256

154 HexOutput;

155 IntInput;

156 IntOutput;

157 IntKey;

158 HexKeySchedule;

159 BinKeySchedule;

160 Mode;
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161 w;

162 end;

163

164 properties(Access = private)

165 priMode = 1;

166 priKeyScheduleValid = 0;

167 priKeySize = 128;

168 priKeySchedule;

169 end;

170

171

172 methods

173

174 function UpdateOutput(a)

175 if (a.Mode == a.cENCRYPT_MODE)

176 a.Encrypt;

177 elseif (a.Mode == a.cDECRYPT_MODE)

178 a.Decrypt;

179 else

180 error(’Invalid AES Mode Specified. Must be 1 (encrypt) or 0 (←↩

decrypt)’);

181 end;

182 end;

183

184 function Nk = get.Nk(a)

185 Nk = a.priKeySize / 32;

186 end;

187

188 function Nr = get.Nr(a)

189 Nr = (a.priKeySize / 32) + 6;

190 end;

191

192 function HexOutput = get.HexOutput(a)

193 HexOutput = reshape (( dec2hex(a.S, 2))’, 1, []);

194 end

195

196 function IntKey = get.IntKey(a)

197 IntKey = hex2dec(a.HexKey)’;

198 end

199

200 function IntInput = get.IntInput(a)

201 IntInput = hex2dec(a.HexInput);

202 end
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203

204 function IntOutput = get.IntOutput(a)

205 IntOutput = reshape(a.S, 1, []);

206 end

207

208 function HexKeySchedule = get.HexKeySchedule(a)

209

210 HexKeySchedule = [];

211 for i = 1:a.Nr+1

212 HexKeySchedule = [HexKeySchedule; reshape(dec2hex(reshape(a.w(4*(i←↩

-1) +1:4*(i-1)+4,:) ’, 1, []), 2)’, 1, 32)];

213 end

214

215 end

216

217 function BinKeySchedule = get.BinKeySchedule(a)

218

219 BinKeySchedule = [];

220 for iRnd = 1:a.Nr+1

221 rnd_key = reshape(a.w(4*(iRnd -1) +1:4*( iRnd -1)+4,:) ’, 1, []);

222 tmp = [];

223 for iByte = 1:16

224 if iByte > 1

225 tmp = [tmp ’ ’];

226 end

227 tmp = [tmp dec2bin(rnd_key(iByte), 8)];

228 end

229 BinKeySchedule = [BinKeySchedule; tmp];

230 end

231

232 end

233

234 % AESObject constructor.

235 function a = AESObject(hexinput , hexkey , mode)

236

237 load AESObject_lookup_tables;

238

239 a.InvSBox = InvSBox; clear InvSBox;

240 a.PM = PM; clear PM;

241 a.RCon = RCon; clear RCon;

242 a.SBox = SBox; clear SBox;

243 a.ShiftRows = ShiftRows; clear ShiftRows;

244 a.InvShiftRows = InvShiftRows; clear InvShiftRows;
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245 a.P = P; clear P;

246 a.RotWord = RotWord; clear RotWord;

247

248 if nargin

249 a.HexInput = hexinput;

250 a.HexKey = hexkey;

251 end

252

253 if nargin > 2

254 a.Mode = mode;

255 else

256 a.Mode = a.cENCRYPT_MODE; % Default is ’encrypt ’ mode

257 end

258

259 end;

260

261 function set.HexInput(a, hexinput)

262

263 if iscellstr(hexinput)

264 if ( length(hexinput) ~= 16 )

265 error(’Invalid hexadecimal input representation. Must be 16 ←↩

bytes ’);

266 end;

267 a.HexInput = hexinput;

268 else

269 if ( length(hexinput) ~= 32 )

270 error(’Invalid hexadecimal input representation. Must be 16 ←↩

bytes ’);

271 end;

272 for idx = 1:( length(hexinput)/2)

273 a.HexInput(idx) = cellstr(hexinput (2*idx -1:2* idx));

274 end

275 end;

276

277 end;

278

279 function set.HexKey(a, hexkey)

280

281 if iscellstr(hexkey)

282 if isempty(find ([16 24 32] == length(hexkey), 1))

283 error(’Invalid hexadecimal key representation. Must be 16, ←↩

24, or 32 bytes long.’);

284 end;
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285 a.HexKey = hexkey;

286 else

287 if isempty(find ([32 48 64] == length(hexkey), 1))

288 error(’Invalid hexadecimal key representation. Must be 16, ←↩

24, or 32 bytes long.’);

289 end;

290 for idx = 1:( length(hexkey)/2)

291 a.HexKey(idx) = cellstr(hexkey (2*idx -1:2* idx));

292 end

293 end;

294

295 a.priKeySize = length(a.HexKey) * 8;

296 a.priKeyScheduleValid = 0;

297

298 end;

299

300 function mode = get.Mode(a)

301

302 mode = a.priMode;

303

304 end;

305

306 function set.Mode(a, mode)

307

308 if (a.Mode == a.cENCRYPT_MODE)

309 a.priMode = mode;

310 elseif (a.Mode == a.cDECRYPT_MODE)

311 a.priMode = mode;

312 else

313 error(’Invalid AES Mode Specified. Must be 0 or 1’);

314 end;

315

316 a.UpdateOutput;

317

318 end;

319

320 %% Implement the AES Key Expansion algorithm per FIPS 197.

321 % Verified working for FIPS 197 test keys (all sizes)

322 function keyschedule = get.w(a) %

323

324 if a.priKeyScheduleValid

325

326 keyschedule = a.priKeySchedule;
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327

328 else

329

330 keyschedule = zeros (4*(a.Nr+1) ,4); % 44, 52, or 60 rows for ←↩

128/192/256 bit

331 keyschedule (1:a.Nk ,:) = (reshape (a.IntKey , 4, a.Nk)) ’;

332

333 % Pre -allocate memory to store intermediate values from key ←↩

scheduling

334 if (a.priKeySize == 128) || (a.priKeySize == 192)

335 a.IV.temp = zeros (70,4);

336 else

337 a.IV.temp = zeros (79,4);

338 end

339

340 i = a.Nk;

341 hist_idx = 1;

342

343 while i < ( a.Nb * (a.Nr + 1) )

344 temp = keyschedule(i,:); % Remember ... base 1 not base 0

345 a.IV.temp(hist_idx , :) = temp;

346 hist_idx = hist_idx + 1;

347

348 if (mod(i, a.Nk) == 0)

349 temp = temp(a.RotWord);

350 a.IV.temp(hist_idx , :) = temp;

351 hist_idx = hist_idx + 1;

352

353 temp = a.SBox(temp + 1);

354 a.IV.temp(hist_idx , :) = temp;

355 hist_idx = hist_idx + 1;

356

357 temp = bitxor( temp , a.RCon((i / a.Nk), : ) );

358 a.IV.temp(hist_idx , :) = temp;

359 hist_idx = hist_idx + 1;

360

361 elseif (a.Nk > 6 && (mod(i, a.Nk) == 4))

362

363 temp = a.SBox(temp + 1);

364 a.IV.temp(hist_idx , :) = temp;

365 hist_idx = hist_idx + 1;

366

367 end % if
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368

369 keyschedule(i+1,:) = bitxor(keyschedule ((i+1) - a.Nk ,:), temp)←↩

;

370

371 i = i + 1;

372

373 end; % while

374

375 a.priKeySchedule = keyschedule;

376 a.priKeyScheduleValid = 1;

377

378 end; % if

379 end

380

381 end;

382 end

Listing E.2 Encrypt.m

1 function out = Encrypt(a)

2

3 Nr = a.Nr;

4 Nb = a.Nb;

5 w = a.w;

6

7 IV_S = zeros (5+4*(Nr -1) ,4,4);

8 MCIVs = zeros(Nr -1,4,4,4,2);

9

10 S = reshape(a.IntInput , 4, 4);

11 a.S = S;

12 IV_S(1,:,:) = S;

13

14 S = bitxor(S, w(1:4 ,:) ’); % AddRoundKey

15 IV_S(2,:,:) = S;

16

17 for round = 1:(Nr -1)

18 S = a.SBox(S + 1); % SubBytes

19 IV_S (3+4*( round -1) ,:,:) = S;

20 S = S(a.ShiftRows); % ShiftRows

21 IV_S (4+4*( round -1) ,:,:) = S;

22 a.S = S;

23 a.MixColumns; % MixColumns

24 % MCIVs(round ,:,:,:,1) = a.MC_IV_1;

25 % MCIVs(round ,:,:,:,2) = a.MC_IV_2;
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26 S = a.S;

27 IV_S (5+4*( round -1) ,:,:) = S;

28 S = bitxor(S, w((1+4* round):(4+4* round) ,:) ’); % AddRoundKey

29 IV_S (6+4*( round -1) ,:,:) = S;

30 end

31

32 S = a.SBox(S + 1); % SubBytes

33 IV_S (3+4*(Nr -1) ,:,:) = S;

34 S = S(a.ShiftRows); % ShiftRows

35 IV_S (4+4*(Nr -1) ,:,:) = S;

36 S = bitxor(S, w(Nb*Nr+1:Nb*Nr+4, :) ’); % AddRoundKey

37 IV_S (5+4*(Nr -1) ,:,:) = S;

38

39 a.S = S;

40 out = a.HexOutput;

41 a.IV.S = IV_S;

42 a.IV.MC = MCIVs;

43

44 end

Listing E.3 Decrypt.m

1 function out = Decrypt(a)

2

3 % Don ’t recalc these each time ...!

4 Nr = a.Nr;

5 Nb = a.Nb;

6 w = a.w;

7

8 IV_S = zeros (5+4*(Nr -1) ,4,4);

9

10 % Set initial state to input

11 S = reshape(a.IntInput , 4, 4);

12 IV_S(1,:,:) = S;

13

14 S = bitxor(S, w(Nb*Nr+1:Nb*Nr+4, :) ’); % AddRoundKey

15 IV_S(2,:,:) = S;

16

17

18 for round = (Nr - 1):-1:1

19 S = S(a.InvShiftRows); % InvShiftRows

20 IV_S (3+4*( Nr - round - 1) ,:,:) = S;

21 S = a.InvSBox(S + 1); % InvSubBytes

22 IV_S (4+4*( Nr - round - 1) ,:,:) = S;
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23 S = bitxor(S, w((1+4* round):(4+4* round) ,:) ’); % AddRoundKey

24 IV_S (5+4*( Nr - round - 1) ,:,:) = S;

25 a.S = S;

26 a.InvMixColumns; % InvMixColumns

27 S = a.S;

28 IV_S (6+4*( Nr - round - 1) ,:,:) = S;

29 end

30

31 S = S(a.InvShiftRows); % InvShiftRows

32 IV_S (3+4*(Nr -1) ,:,:) = S;

33 S = a.InvSBox(S + 1); % InvSubBytes

34 IV_S (4+4*(Nr -1) ,:,:) = S;

35 S = bitxor(S, w(1:4 ,:) ’); % AddRoundKey

36 IV_S (5+4*(Nr -1) ,:,:) = S;

37

38 a.S = S;

39 out = a.HexOutput;

40 a.IV.S = IV_S;

41

42 end

Listing E.4 MixColumns.m

1 %

2

3 function MixColumns(a)

4

5 % Commented out for efficiency. This version is SLOW! Using table lookup

6 % of polymul instead.

7 %

8 % function out = polymul(x,y)

9 %

10 % [~, r] = deconv(conv(x, y), a.P);

11 % tmp = mod(r, 2);

12 %

13 % % Binary to decimal conversion ... much faster than bi2de!

14 % out = [128 64 32 16 8 4 2 1] * tmp(end -7:end)’;

15 %

16 % end

17

18 S = a.S;

19

20 for col = 1:4

21

177



22 s0 = S(1,col);

23 s1 = S(2,col);

24 s2 = S(3,col);

25 s3 = S(4,col);

26

27 S(1, col) = bitxor(bitxor(a.PM(2+1, s0+1), a.PM(3+1, s1+1)), bitxor(s2, s3←↩

));

28 S(2, col) = bitxor(bitxor(s0, a.PM(2+1, s1+1)), bitxor(a.PM(3+1, s2+1), s3←↩

));

29 S(3, col) = bitxor(bitxor(s0, s1), bitxor(a.PM(2+1, s2+1), a.PM(3+1, s3+1)←↩

));

30 S(4, col) = bitxor(bitxor(a.PM(3+1, s0+1), s1), bitxor(s2, a.PM(2+1, s3+1)←↩

));

31

32 % This version is SLOW!

33 % a.S(1, col) = bitxor(bitxor(polymul ([1 0], s0b), polymul ([1 1], s1b)), ←↩

bitxor(s2, s3));

34 % a.S(2, col) = bitxor(bitxor(s0, polymul ([1 0], s1b)), bitxor(polymul ([1 ←↩

1], s2b), s3));

35 % a.S(3, col) = bitxor(bitxor(s0, s1), bitxor(polymul ([1 0], s2b), polymul←↩

([1 1], s3b)));

36 % a.S(4, col) = bitxor(bitxor(polymul ([1 1], s0b), s1), bitxor(s2, polymul←↩

([1 0], s3b)));

37

38 end

39

40 a.S = S;

41

42 end

Listing E.5 InvMixColumns.m

1 function InvMixColumns(a)

2

3 % Commented out for efficiency. This version is SLOW! Using table lookup

4 % of polymul instead

5 %

6 % function out = polymul(x,y)

7 %

8 % gfx = de2bi(x, ’left -msb ’);

9 % gfy = de2bi(y, ’left -msb ’);

10 %

11 % [~, r] = deconv(conv(gfx , gfy), a.P);

12 % tmp = mod(r, 2);
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13 %

14 % out = bi2de(tmp , ’left -msb ’);

15 %

16 % end

17

18 S = a.S;

19

20 for col = 1:4

21

22 s0 = S(1,col);

23 s1 = S(2,col);

24 s2 = S(3,col);

25 s3 = S(4,col);

26

27 S(1, col) = bitxor(bitxor(a.PM(14+1,s0+1), a.PM(11+1 ,s1+1)), ...

28 bitxor(a.PM(13+1,s2+1), a.PM(9+1,s3+1)));

29 S(2, col) = bitxor(bitxor(a.PM(9+1,s0+1), a.PM(14+1 ,s1+1)), ...

30 bitxor(a.PM(11+1,s2+1), a.PM(13+1 ,s3+1)));

31 S(3, col) = bitxor(bitxor(a.PM(13+1,s0+1), a.PM(9+1,s1+1)), ...

32 bitxor(a.PM(14+1,s2+1), a.PM(11+1 ,s3+1)));

33 S(4, col) = bitxor(bitxor(a.PM(11+1,s0+1), a.PM(13+1 ,s1+1)), ...

34 bitxor(a.PM(9+1,s2+1), a.PM(14+1 ,s3+1)));

35

36 % This version is SLOW!

37 %

38 % a.S(1, col) = bitxor(bitxor(polymul (14,s0), polymul (11,s1)), ...

39 % bitxor(polymul (13,s2), polymul(9,s3)));

40 % a.S(2, col) = bitxor(bitxor(polymul(9,s0), polymul (14,s1)), ...

41 % bitxor(polymul (11,s2), polymul (13,s3)));

42 % a.S(3, col) = bitxor(bitxor(polymul (13,s0), polymul(9,s1)), ...

43 % bitxor(polymul (14,s2), polymul (11,s3)));

44 % a.S(4, col) = bitxor(bitxor(polymul (11,s0), polymul (13,s1)), ...

45 % bitxor(polymul(9,s2), polymul (14,s3)));

46

47 end

48

49 a.S = S;

50

51 end
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Appendix F. MemMapTRS Source Code

This appendix contains the source code for to wrap the Riscure Inspector ‘.trs’

format with a Matlab memory-mapped interface. This allows the very large data

files to be manipulated from disk in a manner similar to native Matlab matrices.

This code is used extensively by the RF DNA Fingerprinting and Leakage Mapping

procedures. See the Matlab help files for general information on memory-mapping.

Listing F.1 MemMapTRS.m

1 %% Class to access to Riscure ’s .trs format via Matlab memmapfile

2 %

3 % Syntax:

4 %

5 % memmap = MemMapTRS(TracePath , TRSFileName)

6 % new_memmap = MemMapTRS(TracePath , TRSFileName , TraceDataMat , ...

7 % PTCTDataMat , XDelta)

8 %

9 % First two arguments (directory & filename) are mandatory. Others

10 % are only needed if creating a new .trs file from an existing matrix

11 % and data. To create a new .trs , use the second syntax along with

12 % an (N_t X N_s) matrix containing the trace data. N_t is the number

13 % of traces (rows); N_s is the number of samples per trace (columns).

14 % XDelta is the time per sample or 1/ SampleRate , used for scaling

15 % X-Axis.

16 %

17 % This class allows direct access to the Riscure ’.trs ’ trace set file

18 % format using Matlab ’s memmapfile capability. Allows efficient

19 % manipulation of -very - large data sets.

20 %

21 % Current weakness is the inability to fully treat it like a matrix.

22 % It ’s not currently possible to index across specific columns and

23 % multiple rows of the traceset.

24 %

25 % ! *TODO* ! -- Look into using Riscure ’s Java API to improve this aspect

26 %

27 % Author: Maj Will Cobb

28 % Created: 28 Feb 2010

29 % Last Modified: 28 Jul 2010 - added writeable flag to allow file

30 % 31 Aug 2010 - added capability to create a .trs file from

31 % a matrix and associated PT/CT/KY data
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32 % 9 Sep 2010 - updated comments to better document

33 % functionality.

34

35 classdef MemMapTRS < handle

36

37 properties (Constant) % Constants used in .trs header structure

38 NT = hex2dec(’41’); % Number of traces

39 NS = hex2dec(’42’); % Number of samples per trace

40 SC = hex2dec(’43’); % Sample coding: ’000ABBBB ’ where A indicates ←↩

integer (0) or floating point (1); B is length in bytes (must be in ←↩

{1,2,4})

41 DS = hex2dec(’44’); % Length of cryptographic / supplementary data

42 TS = hex2dec(’45’); % Title space reserved for each trace

43 GT = hex2dec(’46’); % Global trace title

44 DC = hex2dec(’47’); % Description

45 XO = hex2dec(’48’); % Offset in X-axis for trace representation

46 XL = hex2dec(’49’); % Label of X-axis

47 YL = hex2dec(’4A’); % Label of Y-axis

48 XS = hex2dec(’4B’); % Scale value for X-axis

49 YS = hex2dec(’4C’); % Scale value for Y-axis

50 TO = hex2dec(’4D’); % Trace offset for displaying trace numbers

51 LS = hex2dec(’4E’); % Logarithmic scale

52 TB = hex2dec(’5F’); % Trace block marker; ’5f 00’ marks end of header

53 end; % properties (Constant)

54

55 properties (Access = public)

56 NumTraces = 0;

57 NumSamples = 0;

58 SampleCoding = 0;

59 INTEGER_CODING = 1; % Default is int8 coding

60 FLOAT_CODING = 0;

61 SampleLength = 1; % Default is int8 coding

62 DataLength = 0;

63 TitleLength = 0;

64 GlobalTitle = ’’;

65 Description = ’’;

66 XOffset = 0;

67 XLabel = ’’;

68 YLabel = ’’;

69 XDelta = 0;

70 YDelta = 0;

71 TraceOffset = 0;

72 LogScaleFlag = 0;
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73 coding_type = 0;

74 data_format = {};

75

76 memmap;

77

78 end; % public properties

79

80 properties (Access = private)

81 idx = 0;

82 end; % private properies

83

84 methods

85

86 %←↩

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%←↩

87 %%% Constructor -- pass in directory (TracePath) and name of

88 %%% TRS file to be memory mapped

89 %←↩

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%←↩

90 function m = MemMapTRS(TracePath , TRSName , TraceDataMat , PTCTDataMat , ←↩

XDelta)

91

92 filepath = fullfile(TracePath , TRSName);

93

94 if ~exist(filepath , ’file’)

95 if nargin < 3

96 error(’Specified file:\n\n %s\n\n does not exist!’, filepath);

97 end

98 m = CreateTRSFile(m, filepath , TraceDataMat , PTCTDataMat , XDelta);

99 end;

100

101 m = ParseHeader(m, filepath);

102 m = MakeFormat(m);

103

104 % Call memmap constructor

105 m.memmap = memmapfile(filepath , ...

106 ’offset ’, m.idx , ... % This offset ←↩

is 0 based !!

107 ’format ’, m.data_format , ...

108 ’repeat ’, m.NumTraces , ...

109 ’Writable ’, true);

182



110

111 end; % MemMapTRS method

112

113 function m = ParseHeader (m, filepath)

114

115 %% Open the file and parse the header

116 try

117 fid = fopen(filepath , ’r’);

118

119 data_loc_found = 0;

120 m.idx = 0;

121

122 while (data_loc_found == 0)

123

124 tmp = fread(fid , 1, ’int8’);

125

126 if (tmp == m.NT)

127 trash = fread(fid , 1, ’int8’);

128 m.NumTraces = fread(fid , 1, ’int32’, ’l’);

129 m.idx = m.idx + 6;

130 elseif (tmp == m.NS)

131 trash = fread(fid , 1, ’int8’);

132 m.NumSamples = fread(fid , 1, ’int32’, ’l’);

133 m.idx = m.idx + 6;

134 elseif (tmp == m.SC)

135 trash = fread(fid , 1, ’int8’);

136 m.SampleCoding = fread(fid , 1, ’int8’);

137 if (bitget(m.SampleCoding , 5) == 0)

138 m.INTEGER_CODING = 1;

139 m.FLOAT_CODING = 0;

140 else

141 m.INTEGER_CODING = 0;

142 m.FLOAT_CODING = 1;

143 end;

144 m.SampleLength = bitand(m.SampleCoding , 7);

145 % switch bitand(SampleCoding , 7)

146 % case 1

147 % SampleLength = 1;

148 % case 2

149 % SampleLength = 2;

150 % case 4

151 % SampleLength = 4;

152 % otherwise
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153 % display(’ERROR: INVALID SAMPLE CODING DETECTED←↩

’);

154 % break;

155 % end;

156 %m.idx = m.idx + 2;

157 m.idx = m.idx + 3; % I think 2 was WRONG ...?? should be 1←↩

byte for code , 1 byte for length , 1 byte for sample ←↩

coding

158 elseif (tmp == m.DS)

159 trash = fread(fid , 1, ’int8’);

160 m.DataLength = fread(fid , 1, ’int16’);

161 m.idx = m.idx + 4;

162 elseif (tmp == m.TS)

163 % IMPORTANT: THIS WON ’T CORRECTLY HANDLE TITLE

164 % LONGER THAN 127 CHARACTERS (YET)!!!!!

165 trash = fread(fid , 1, ’int8’);

166 m.TitleLength = fread(fid , 1, ’int8’);

167 m.idx = m.idx + 3;

168 elseif (tmp == m.GT)

169 length = fread(fid , 1, ’int8’);

170 m.GlobalTitle = char(fread(fid , length , ’int8’));

171 m.idx = m.idx + length + 2;

172 elseif (tmp == m.DC)

173 length = fread(fid , 1, ’uint8’);

174 m.Description = char(fread(fid , length , ’int8’));

175 m.idx = m.idx + length + 2;

176 elseif (tmp == m.XO)

177 trash = fread(fid , 1, ’int8’);

178 m.XOffset = fread(fid , 1, ’int32 ’);

179 m.idx = m.idx + 6;

180 elseif (tmp == m.XL)

181 length = fread(fid , 1, ’int8’);

182 m.XLabel = char(fread(fid , length , ’int8’));

183 m.idx = m.idx + length + 2;

184 elseif (tmp == m.YL)

185 length = fread(fid , 1, ’int8’);

186 m.YLabel = char(fread(fid , length , ’int8’));

187 m.idx = m.idx + length + 2;

188 elseif (tmp == m.XS)

189 trash = fread(fid , 1, ’int8’);

190 m.XDelta = fread(fid , 1, ’float32 ’, ’l’);

191 m.idx = m.idx + 6;

192 elseif (tmp == m.YS)
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193 trash = fread(fid , 1, ’int8’);

194 m.YDelta = fread(fid , 1, ’float32 ’, ’l’);

195 m.idx = m.idx + 6;

196 elseif (tmp == m.TO)

197 trash = fread(fid , 1, ’int8’);

198 m.TraceOffset = fread(fid , 1, ’int32 ’);

199 m.idx = m.idx + 6;

200 elseif (tmp == m.LS)

201 trash = fread(fid , 1, ’int8’);

202 m.LogScaleFlag = fread(fid , 1, ’int8’);

203 m.idx = m.idx + 3;

204 elseif (tmp == m.TB)

205 data_loc_found = 1;

206 m.idx = m.idx + 2; % *** Not sure why this is 7, but ←↩

trial & error found this works ...

207 else

208 m.idx = m.idx + 1;

209 end;

210

211 end;

212

213 catch SomeException

214

215 SomeException % Display any error information

216 error(’Error parsing .trs file header for file: %s’, filepath);

217

218 end;

219

220 % Done parsing header ... close the file and prepare to map to memory

221 fclose(fid);

222

223 end; % ParseHeader method

224

225 function m = CreateTRSFile(m, filepath , trace_data , PTCT_data , XDelta)

226

227 m.NumTraces = size(trace_data , 1);

228 m.NumSamples = size(trace_data , 2);

229 m.SampleCoding = bin2dec(’00010100 ’); % Floating point (bit 5 = ’1’), ←↩

4 bytes/sample (bits 3..0 = ’4’)

230 m.DataLength = 48;

231 m.TitleLength = 0;

232 m.GlobalTitle = ’Global Title Goes Here’;

233 m.Description = ’Description Goes Here’;
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234 m.XOffset = 0;

235 m.XLabel = ’Seconds ’;

236 m.XDelta = XDelta;

237 m.YLabel = ’Volts’;

238 m.YDelta = 1;

239 m.TraceOffset = 0; % What is this?

240 m.LogScaleFlag = 0;

241 m.FLOAT_CODING = 1;

242 m.SampleLength = 4;

243

244 try

245

246 %% Open the file and write the header

247 fid = fopen(filepath , ’w’);

248

249 fwrite(fid , m.NT , ’int8’);

250 fwrite(fid , 4, ’int8’);

251 fwrite(fid , m.NumTraces , ’int32’, ’l’);

252

253 fwrite(fid , m.NS , ’int8’);

254 fwrite(fid , 4, ’int8’);

255 fwrite(fid , m.NumSamples , ’int32’, ’l’);

256

257 fwrite(fid , m.SC , ’int8’);

258 fwrite(fid , 1, ’int8’);

259 fwrite(fid , m.SampleCoding , ’uint8 ’);

260

261 fwrite(fid , m.DS , ’int8’);

262 fwrite(fid , 2, ’int8’);

263 fwrite(fid , m.DataLength , ’int16’);

264

265 fwrite(fid , m.TS , ’int8’);

266 fwrite(fid , 1, ’int8’);

267 fwrite(fid , m.TitleLength , ’int8’);

268

269 fwrite(fid , m.GT , ’int8’);

270 fwrite(fid , length(m.GlobalTitle), ’int8’);

271 fwrite(fid , uint8(m.GlobalTitle), ’uint8’);

272

273 fwrite(fid , m.DC , ’int8’);

274 fwrite(fid , length(m.Description), ’int8’);

275 fwrite(fid , uint8(m.Description), ’uint8’);

276
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277 fwrite(fid , m.XO , ’int8’);

278 fwrite(fid , 4, ’int8’);

279 fwrite(fid , 0, ’int32’, ’l’);

280

281 fwrite(fid , m.XL , ’int8’);

282 fwrite(fid , length(m.XLabel), ’int8’);

283 fwrite(fid , uint8(m.XLabel), ’uint8’);

284

285 fwrite(fid , m.YL , ’int8’);

286 fwrite(fid , length(m.YLabel), ’int8’);

287 fwrite(fid , uint8(m.YLabel), ’uint8’);

288

289 fwrite(fid , m.XS , ’int8’);

290 fwrite(fid , 4, ’int8’);

291 fwrite(fid , m.XDelta , ’float32 ’);

292

293 fwrite(fid , m.YS , ’int8’);

294 fwrite(fid , 4, ’int8’);

295 fwrite(fid , m.YDelta , ’float32 ’);

296

297 fwrite(fid , m.TO , ’int8’);

298 fwrite(fid , 4, ’int8’);

299 fwrite(fid , m.TraceOffset , ’int32’, ’l’);

300

301 fwrite(fid , m.LS , ’int8’);

302 fwrite(fid , 1, ’int8’);

303 fwrite(fid , m.LogScaleFlag , ’uint8 ’);

304

305 fwrite(fid , m.TB , ’int8’);

306 fwrite(fid , 0, ’int8’);

307

308 % Write each row with PTCTData ....

309 for trace_idx = 1:size(trace_data , 1);

310 fwrite(fid , PTCT_data(trace_idx ,:), ’uint8’);

311 fwrite(fid , trace_data(trace_idx ,:), ’single ’);

312 end

313

314 % Done writing file ... close

315 fclose(fid);

316

317 catch SomeException

318

319 SomeException % Display any error information
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320 error(’Error creating file header for specified file: %s’, ←↩

filepath);

321

322 end;

323

324 end; % CreateHeader method

325

326

327 % After reading the appropriate parameters from the file header ,

328 % construct the format that will be used to map the file to memory

329 function m = MakeFormat (m)

330

331 if (m.FLOAT_CODING == 1)

332 m.coding_type = ’single ’;

333 elseif m.SampleLength == 1

334 m.coding_type = ’int8’;

335 elseif m.SampleLength == 2

336 m.coding_type = ’int16’;

337 elseif m.SampleLength == 4

338 m.coding_type = ’int32’;

339 else

340 error(’ERROR: INVALID CODING TYPE DETECTED ’);

341 end;

342

343 % Four possible combinations for actual trace data block ... must have ←↩

actual

344 % tracedata , but Title and Data are optional.

345 if ((m.DataLength > 0) && (m.TitleLength > 0))

346

347 m.data_format = { ’uint8 ’ ...

348 [1 m.TitleLength] ’Title’; ...

349 ’uint8’ ...

350 [1 m.DataLength] ’PTCTData ’; ...

351 sprintf(m.coding_type) ...

352 [1 m.NumSamples] ’tracedata ’};

353

354 elseif (m.DataLength > 0)

355

356 m.data_format = { ’uint8 ’ ...

357 [1 m.DataLength] ’PTCTData ’; ...

358 sprintf(m.coding_type) ...

359 [1 m.NumSamples] ’tracedata ’};

360
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361 elseif (m.TitleLength > 0)

362

363 m.data_format = { ’uint8 ’ ...

364 [1 m.TitleLength] ’Title’; ...

365 sprintf(m.coding_type) ...

366 [1 m.NumSamples] ’tracedata ’};

367

368 else % No title or data areas allocated ...

369

370 m.data_format = { sprintf(m.coding_type) ...

371 [1 m.NumSamples] ’tracedata ’};

372

373 end;

374

375 end; % MakeFormat method

376

377 end; % Methods

378 end
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In João José Neto, editor, Communications and Computer Networks,
pages 108–113. IASTED/ACTA Press, 2006.

HTM09. Neil Hanley, Michael Tunstall, and William P. Marnane. Unknown plain-
text template attacks. In Heung Youl Youm and Moti Yung, editors,
WISA, volume 5932 of Lecture Notes in Computer Science, pages 148–
162. Springer, 2009. Available from: http://dx.doi.org/10.1007/

978-3-642-10838-9_12.

Inc10. Microchip Technology Inc. PIC24F Family Reference Manual,
2010. Available from: http://www.microchip.com/stellent/idcplg?
IdcService=SS_GET_PAGE&nodeId=2575.

Jaf07. Joshua Jaffe. A first-order dpa attack against AES in counter mode with
unknown initial counter. In Pascal Paillier and Ingrid Verbauwhede, ed-
itors, CHES, volume 4727 of Lecture Notes in Computer Science, pages
1–13. Springer, 2007. Available from: http://dx.doi.org/10.1007/

978-3-540-74735-2_1.

JRP04. A.K. Jain, A. Ross, and S. Prabhakar. An introduction to biometric
recognition. Circuits and Systems for Video Technology, IEEE Trans-
actions on, 14(1):4–20, 2004.

KJJ99. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture
Notes in Computer Science, pages 388–397. Springer, 1999. Available
from: http://dx.doi.org/10.1007/3-540-48405-1_25.

KKMP09. Markus Kasper, Timo Kasper, Amir Moradi, and Christof Paar. Break-
ing textscKeeLoq in a flash: On extracting keys at lightning speed. In
Bart Preneel, editor, AFRICACRYPT, volume 5580 of Lecture Notes
in Computer Science, pages 403–420. Springer, 2009. Available from:
http://dx.doi.org/10.1007/978-3-642-02384-2_25.

Koc96. Paul C. Kocher. Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems. In Neal Koblitz, editor, CRYPTO, volume
1109 of Lecture Notes in Computer Science, pages 104–113. Springer,
1996. Available from: http://dx.doi.org/10.1007/3-540-68697-5_

9.

KSWH98. John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side
channel cryptanalysis of product ciphers. In Jean-Jacques Quisquater,
Yves Deswarte, Catherine Meadows, and Dieter Gollmann, editors, ES-
ORICS, volume 1485 of Lecture Notes in Computer Science, pages 97–

195

http://dx.doi.org/10.1007/978-3-642-10838-9_12
http://dx.doi.org/10.1007/978-3-642-10838-9_12
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2575
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2575
http://dx.doi.org/10.1007/978-3-540-74735-2_1
http://dx.doi.org/10.1007/978-3-540-74735-2_1
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-642-02384-2_25
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-68697-5_9


110. Springer, 1998. Available from: http://dx.doi.org/10.1007/

BFb0055858.

KSWH00. John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side chan-
nel cryptanalysis of product ciphers. Journal of Computer Security,
8(2,3):141–158, 2000.

KTC+08. Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier, Weihang
Jiang, and Yuanyuan Zhou. Designing and implementing malicious
hardware. In Fabian Monrose, editor, LEET. USENIX Association,
2008. Available from: http://www.usenix.org/events/leet08/tech/
full_papers/king/king.pdf.

KTM09. Randall W. Klein, Michael A. Temple, and Michael J. Mendenhall. Ap-
plication of wavelet-based RF fingerprinting to enhance wireless net-
work security. Journal of Communications and Networks, 11(6, Sp. Iss.
SI):544–555, DEC 2009.

Kuh04. Markus G. Kuhn. Electromagnetic eavesdropping risks of flat-panel dis-
plays. In 4th Workshop on Privacy Enhancing Technologies, 23–25 May
2004, Toronto, LNCS 3424, pages 23–25. Springer, 2004.

Lab94. RSA Laboratories. Rsaref: A cryptographic toolkit. [On-
line], 1994. Available from: ftp://ftp.funet.fi/pub/crypt/

cryptography/rpem/ripem/rsaref/doc/rsaref.txt.

Lam73. Butler W. Lampson. A note on the confinement problem. Commu-
nications of the ACM, 16(10):613–615, 1973. Available from: http:

//doi.acm.org/10.1145/362375.362389.

LKG+09. Lang Lin, Markus Kasper, Tim Güneysu, Christof Paar, and Wayne
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