
A DPA Attack against Asymmetric Encryption:
RSA Attacks and Countermeasures

Lesky D.S. Anatias

April 18, 2008

Abstract

This paper discusses side-channel attacks based on Power Analysis. This approach
utilizes physical side effects of using cryptographic functions in the real world. A
side channel is a source of information that is inherent to a physical implementation
of cryptographic functions. Research done in the last half of the 1990s has shown that
the information transmitted by side channels, such as execution time, computational
faults and power consumption, can be disadvantageous to the security of
cryptosystem like RSA or AES. This paper surveys the techniques of Differential
Power Analysis presented in [1] and [2] and shows how side channel information can
be used to break implementations of RSA public key cryptosystem. Possible defenses
against this type of side channel attacks are also discussed.

Keywords: Public key cryptography, asymmetric encryption, exponentiation, RSA,
side-channel analysis, DPA

1 Introduction

In the last fifteen years, many kinds of cryptanalytic attack have begun to appear in
the literature which targets a specific implementation details. Both timing attacks [3]
and differential fault analysis [4] make assumptions about the implementation, and
use additional information gathered from attacking certain implementations. In
addition, failure analysis assumes a one-bit feedback from the implementation in
order to break the underlying cryptographic primitive. More recently, differential
power analysis or DPA [5] has been developed and applied to a number of
cryptographic implementations.

This paper will discuss a side-channel attack based on differential power analysis.
A side-channel attack occurs when an attacker is able to use some additional
information leaked from the implementation of a cryptographic algorithm to analyze
the function. Clearly, given enough side-channel information, it is trivial to break a
cipher. An attacker who can, for instance, learn every input into every S-box in every
one of DES's rounds can trivially calculate the key.

In addition, this paper also focuses on techniques applied to RSA asymmetric
algorithms or public key cryptography. Public key cryptography has been widely used
since its introduction by Diffie-Hellman and today’s most famous applications are
RSA embedded.

The first power analysis attacks on the RSA algorithm were published by Thomas
S. Messerges et al. [6]. Attack scenarios such as SEMD (“Single Exponent, Multiple
Data”), MESD (“Multiple Exponent, Single Data”) and ZEMD (“Zero Exponent,
Multiple Data”) were introduced. The ZEMD attack uses DPA techniques to
compromise the bits of the private RSA exponent successively. This ZEMD attack is

 1

applied on the intermediate results during modular exponentiation. DPA attacks
against RSA are considered as ‘chosen ciphertext’ attacks if applied at the RSA
decryption and ‘chosen plaintext’ attacks if the DPA attacks are applied against the
RSA signature.

Nevertheless this paper is also aimed to discuss dangerous security effect of this
cryptanalytic type. In real-world systems, attackers obviously can cheat. Exploiting
weaknesses in cryptographic implementations either by monitoring some “side-
channel” of information out of the mechanism implementing the cryptographic
primitive (such as timing or power consumption), or by altering some internal data
inside that mechanism may feel like cheating, but that just makes their effects more
devastating.

This paper starts with some background information on DPA, modular
exponentiation, and RSA on Chinese Remainder Theorem (CRT) implementation in
section 2. In the following section DPA Attack on Modular Exponentiation is
described and discussed. In Section 4 DPA Attack on CRT Implementation is
discussed. The countermeasures against these attacks are found in section 5. Finally,
this paper is concluded in section 6.

2 Background

2.1 Differential Power Analysis

Differential power analysis or DPA is probably the most threatening attack to result
from Kocher's research. To carry out a DPA attack, an adversary must have a number
of power traces collected from a token as it repeatedly executes a cryptographic
operation. The attack proceeds by deducing bits of the secret key, used in each
operation, from the observed power consumption. An adversary must also have
knowledge of either the inputs or outputs processed by the device during each
operation. Usually, an encryption token will use the same key over multiple
operations and any generated ciphertext can be freely obtained by an adversary.

The basic technique of DPA is as follows. Suppose an adversary is able to
partition power traces from several cryptographic operations into two groups
according to the intermediate value of some bit, b, which is calculated during each
operation. This bit is manipulated during each operation and its value may affect the
observed power consumption. If this is the case then the two groups of traces should
show respectively different power biases at locations when b is manipulated.
Averaging the traces in each group helps reduce any noise that may be obscuring
these usually small biases. Plotting the difference of the two average traces reveals
any locations in the traces where these biases occur.

As an example, Figure 1 below shows four traces prepared using known plaintexts
entering a DES encryption function on another smart card. On top is the reference
power trace showing the average power consumption during DES operations. Below
are three differential traces, where the first was produced using a correct guess for Ks.
The lower two traces were produced using incorrect values for Ks. These traces were
prepared using 1000 samples (i.e. m = 103). Although the signal is clearly visible in
the differential trace, there is a modest amount of noise.

 2

Figure 1: DPA traces, one correct and two incorrect, with power reference.

For a discussion and further explanation of differential power analysis attacks the
reader is referred to their paper ([6]).

2.2 Modular Exponentiation

RSA cryptosystem is the most famous public-key cryptosystem in practical use, and it
is implemented in many security applications. Especially, security solutions with
smart cards have been focused because of its flexibility and security. To describe the
previously mentioned RSA cryptosystem, this section and the following one will
discuss the underlying algorithms of this cryptosystem. For more information on the
basic of RSA algorithm the reader is referred to appendix A.

The main computational operation of RSA without the Chinese Remainder
Theorem or CRT is the modular exponentiation of a message, m. The RSA without
CRT scheme has more computational loads than other signature schemes, DSS and
ECDSA. In order to perform a modular exponentiation c = ab mod m in m, the
bitwise representation b = [bn−1bn−2 ・ ・ ・ b1b0] is used. The ’square - multiply’
algorithm evaluates this representation either starting from the least significant bit b0
(algorithm 1) or from the most significant bit bn−1 (algorithm 2).

 3

Algorithm 2:
c := 1
for k := n-1 down to 0 do {
c := c*c mod m
if b[k]=1 then c := c*a mod m
}
return c

Algorithm 1:
t := a
c := 1
for k := 0 to n-1 do {
if b[k]=1 then c := c*t mod m
t := t*t mod m
}
return c

2.3 RSA on CRT Implementation

The RSA with CRT algorithm was proposed to speed up the original RSA signature
or decryption computation [7]. To reduce calculation time of a RSA exponentiation
with the secret key one can solve a simultaneous system of modular congruencies.
The existence of such a solution is ensured by the Chinese Remainder Theorem
(CRT).

Based on Fermat’s little theorem, the precalculation of the reduced secret
exponent values dp = d mod (p − 1) and dq = d mod (q − 1) is performed. Using
Algorithm 1 or Algorithm 2 one calculates then v1 = xdp mod p and v2 = xdq mod q. For
the CRT algorithm according to Garner [1] (Algorithm 3) one precalculated
multiplicative inverse Pq = p−1 mod q is needed:

Algorithm 3:
u := (v2-v1)*Pq mod q
y := v1+u*p
return y

Alternatively, the CRT algorithm according to Gauss [1] (Algorithm 4) uses the

two precalculated multiplicative inverses Pq = p−1 mod q and Qp = q−1 mod p and a
final reduction modulo N:

Algorithm 4:
y := (v1*q*Qp + v2*p*Pq) mod N
return y

Note that during exponentiation a modular reduction modulo a secret value instead

of a public one takes place. This is used for the attack described below.

3 DPA Attack on Modular Exponentiation

At first, in order to apply DPA to RSA the attacker should have the possibility to
randomly vary the input data x of the RSA implementation. Single power
consumption measurements P(x, t) of the cryptographic module are typically carried
out with a digital oscilloscope and can be stored on a server.

 4

3.1 Hypothesis

If the RSA implementation uses a ’top-down square-multiply’ algorithm as in
Algorithm 2, the key hypotheses are set up on the next bits of the exponent to
proceed. The intermediate results of the exponentiation algorithm preceding these bits
can be determined offline. In case that the second hypothesis is correct, correlations
are present for both key hypotheses as the result of the first hypothesis is an
intermediate result of the second hypothesis. The correlations for the correct key
hypothesis appear last.

Generally, it is even more useful to set up the key hypotheses on the sequence of
elementary operation (squarings ‘S’ and multiplications ‘M’). The simplest
hypotheses would be

1. ‘the next 2 modular multiplication units are composed of ‘SM’,
2. ‘the next 2 modular multiplication units are composed of ‘SS’, and – in case

that the previous correct hypothesis ends up with a ‘S’ – additionally
3. ‘the next 2 modular multiplication units are composed of ‘MS’.

In general, this set-up of key hypotheses is of interest if we deal with a greater number
of key hypotheses.

3.2 Selection Function and Correlation

In a power analysis the attacker knows or assumes a model for a dependency of the
power consumption on the value of intermediate data. A common model is that the
power consumption correlates with the Hamming weight of intermediate data (see [1],
[5]).

The selection function has to be calculated on the intermediate result of each key
hypothesis that is applied. Intermediate results of the RSA exponentiation are
generally of the same bit length as the modulus used. The n-bit bus architecture of the
RSA coprocessor used determines the number of bits that are taken into account for
the Hamming weight.

DPA selection functions d(x) should use the bit-width of the bus architecture to
setup functions on the Hamming weight W(x) of intermediate data. A simple selection
function d(x) assesses all intermediate data values that have a greater Hamming
weight than the n-bit expectation value E(n) = n/2 with 1, all values with smaller
Hamming weights than E(n) with −1 and to ignore all values that meet the
expectation value E(n).

The selection function d(x) can be refined in the linear model below

 5

The easiest selection function is the Hamming weight of intermediate data, or for
example the Hamming weight of just a byte of transported data. In this case, DPA
identifies the correct key hypothesis by assessing the absolute maximum of the
correlation coefficients for each key hypothesis. The correlation is carried out
between the result of the selection function d(x, j) on the base of the key hypothesis j
and the input data x and the power consumption P(x, t) of the single measurements as
a function of x and the time t. The variable t could be narrowed to a small time
interval if simple power characteristics of the implementation are observable. The
number i runs through all single measurements. The correlation coefficient c(t, j) has
to be assessed for each key hypothesis j as presented below.

It will be near zero if there aren’t any correlations between the selection function

d(x, j) and P(x, t) and will approaches 1 in case of a strong correlation c(t, j) at some
specific points in time.

For a discussion and further explanation of differential power analysis attacks
against non-CRT implementation the reader is referred to their paper ([1] and [8]).

4 DPA Attack on CRT Implementation

4.1 Hypothesis

In contrast to the RSA implementation of ’top-down square-multiply’ algorithm that
has to correlate on the intermediate results of the modular exponentiation algorithm,
the attack on the CRT implementation attacks the modular reduction modulo one of
the primes performed prior to the CRT exponentiation. It exploits power consumption
signals that are caused by the processing and data bus transfers of the residue.

As mentioned in [1] the DPA attack on the CRT implementation uses
measurement series with input values of RSA that are equidistant. It assumes that
input values can be chosen by the attacker. At the first measurement series a starting
value x0 is chosen and the following input values are generated by decrementing the
previous input value by 1. It also assumes that each series contains m elements. Series
are numbered with k. Within the second series the input values have a distance of 256:
x0, x0 − 1 ・ 256, x0 − 2 ・ 256, x0 − 3 ・ 256, ..., x0 − m ・ 256. Other series follow
with step size 256k until the exponent k reaches the size of the prime to be attacked.
Thus, for each series k it defines the i-th value as follow

xi = x0 − i ・ (256)k

The DPA attack on the modular reduction sets up hypotheses on the remainder r

after the reduction modulo the prime q. The aim of the first measurement series with
the distance 1 of the input values is to compromise the least significant byte of the
remainder r0 that fulfills

 6

r0 ≡ x0 mod q

Then it also defines

ri = xi mod q

The further measurement series aim to compromise the k-th byte of the remainder
r0, correspondingly.

As presented in [1], to demonstrate the usage of the measurement series with an
equal distance of 1, it assures that all input values xi of the first measurement series
have a remainder with the prime (in the following we assume that the prime q is going
to be attacked) that does not equal zero. Then it excludes the unlikely case of crossing
a multiple of q by calculating the GCD with the public modulus N and all input values
xi of the first measurement series: gcd(xi,N).

There are 256 hypotheses Hj0(0 ≤ j ≤ 255) on the value of the least significant byte
of r0

Hj0 is {r0 mod 256 = j}

that are going to be analysed with DPA.

All values of ri are related to the value r0. As the input values xi are equally distant
the difference between r0 and ri directly gives the value of the last byte of the
remainder for each hypothesis

Hji is {ri mod 256 = (j − i) mod 256}

The corresponding value of Hji i can be read out from the Table 1.

Table 1: Table of hypotheses Hji

The correlation is carried out with the Hamming weight W(x) for each hypothesis

Hji.The selection function d(x, j) is therefore based on 8 bit (see Table 2).
The strongest results are expected for that value of j where the hypothesis

corresponds to the reality. This value is called f0 from now on. The cyclic property of
Hji yields secondary correlation peaks. The second strongest correlations are expected
at the hypothesis Hj±128. The third strongest correlations should be at the two
hypotheses Hj±64. Therefore there are additional indices of the correct hypothesis.

Table 2: Table of the selection functions d(xi, j) on the base of hypotheses Hji using
the 8-bit Hamming weight W(x).

 7

As result of the first measurement series it is found that (x0 − f0) mod q is divisible by
256.

For a further explanation of the above general DPA attack that is referred as
“MRED” (Modular Reduction using Equidistant Data) the reader is referred to their
paper ([1]).

4.2 Result

In [1] the results that are expected using this DPA attack on the CRT implementation
are demonstrated using simulated measurement data. The generation of these data is
based on the power leakage model that the power consumption P(x, t) at a certain
point in time t can be split into a power contribution that varies with the Hamming
weight of the data x processed, into a power consumption that represents a constant
portion and a power consumption that is caused by noise.

In this paper, the underlying bus-architecture is chosen to be 8 bit. The generation
of simulated measurement data gives an output file for each exponentiation that
contains the Hamming weight of all intermediate data processed. These output files
replace the single measurement data files. The number of bits used for the calculation
of the Hamming weight is given by the bus-architecture.

The starting value x0 was chosen randomly as 128 byte value. The value of prime
q was 63 byte long.

The test values used are the following.

 8

The correct value f0 of the least significant byte of x0 mod q is in this example 42h
represent 66 in decimal representation.

The DPA calculation reveals a list of the best 17 candidates (out of 256
candidates) for the correct value of f0 on the base of 256 single measurements. Besides
to the correct value 66 (decimal notation) secondary positive correlation signals with
decreasing amplitudes appear at the relative displacements of +128, +64, +32, +16,
+8, +4, +2 and +1 of the correct hypothesis 66. If the number of single
measurements is not a multiple of 256 the correlation coefficients of the secondary
positive correlation coefficients differ slightly.

In the Figure 2 both positive and negative correlation coefficients are taken into
account. Negative correlation coefficients occur mainly at small correlation
amplitude. Strong correlation signals are caused by positive correlation coefficients.

Figure 2: Graphical representation of the correlation coefficients on the base of 256
single measurements.

For a discussion and further result of differential power analysis attacks against
CRT implementation of RSA on 32-bit architecture the reader is referred to their
paper ([1]).

5 Countermeasures

Countermeasures against physical attacks range among a large variety of solutions.
However, in the present, no single technique allows to provide perfect security, even
considering a particular attack only. Protecting implementations against physical
attacks consequently intends to make the attacks harder. In this context, the
implementation cost of a countermeasure is of primary importance and must be
evaluated with respect to the additional security obtained. The exhaustive list of all

 9

possible solutions to protect cryptographic implementations from physical opponents
would deserve a long survey in itself.

In this section, we will only discuss a few exemplary countermeasures in order to
illustrate that security can be added at different levels. We refer the reader to [1] and
[2] for a more comprehensive review of existing countermeasures.

In general, the mechanism described in [5] and [8] can be used to prevent these
types of power analysis techniques. Message blinding would prevent the MESD and
ZEMD attack, but not the SEMD attack. Therefore one would also have to blind the
secret parameter. However, when dealing with MRED attack, we have to consider
three basic assumptions, namely

1. a sufficient number of single measurements can be collected,
2. the input data x can be varied arbitrarily to construct equidistant input data, and
3. (x0 −i ・(256)k) mod q holds (r0 −i ・ (256)k) at least for a subgroup of single

measurements.

5.1 Counter Usage

The first assumption deals with the number of single measurements that are needed
for this DPA attack. A DPA attack against 1024 bit RSA key demands for about
30.000 < n < 300.000 single measurements. The upper boundary of single
measurements may conflict with physical constraints of smart cards. A general
countermeasure to prevent these kind of statistical attacks is an usage counter for the
number of RSA exponentiations. To secure the RSA decryption an additional failure
counter can be implemented if a check of padding formats fails.

5.2 Padding Format

The second assumption affects RSA signing (“chosen plaintext”), but not the RSA
decryption (“chosen ciphertext”). The second assumption fails if the attacker has to
deal with padding formats in case of digital signature applications. Typical padding
formats used limit the range of variable data to the least significant 20 bytes of data
that is the outcome of a hashing function. At the presence of padding formats MRED
will reveal at maximum the least significant 20 bytes of the remainder of both primes
p and q.

5.3 Message Blinding

The third assumption can be destroyed by message blinding. Multiplicative message
blinding scheme as e. g. proposed by [3] use pairs (νi, νk) that are used for the blinding
of the input data and unblinding of the result. This multiplicative blinding is
applicable to prevent the likeliness of the third assumption. Another approach uses
random blinding technique on message as proposes by [2].

 10

6 Conclusion

This paper discusses a number of DPA attack on the remainder that can be applied at
a CRT implementation of RSA to compromise one of the secret RSA primes. The
basic assumption for MRED is that (x0 −i ・(256)k) mod q holds (r0 −i ・ (256)k) at
least for a subgroup of single measurements. The results of this MRED attack are
shown on the base of simulated measurement data. One of the countermeasures
against MRED should include the use of multiplicative blinding schemes to protect
the reduction modulo a secret prime.

The discussion clearly underlines that side-channel attacks especially DPA
constitute a very significant threat for actual designers. However, it must be noted that
the actual implementation of physical attacks (and more specifically, their efficiency)
may be significantly platform-dependent. Moreover, the presented techniques usually
require a certain level of practical knowledge, somewhat hidden in our abstract
descriptions.

In conclusion, good security may nevertheless be obtained by a merely
combination of these countermeasures. However, it is more an engineering process
than a scientific derivation of provably secure schemes. Theoretical security against
physical attacks is a large scope for further research.

References

[1] Bert den Boer, K. Lemke, and G. Wicke, “A DPA attack against the

modularreduction within a CRT implementation of RSA,” CHES’02, LNCS 2523,
Springer-Verlag, 2002, pp. 228 – 243.

[2] C. Kim, J. Ha, S. Moon, S. Yen, and S. Kim, “A CRT-Based RSA

Countermeasure Against Physical Cryptanalysis”, HPCC 2005, LNCS 3726,
Springer-Verlag Berlin Heidelberg 2005, pp. 549 – 554.

[3] P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,

and Other Systems”, Advances in Cryptology CRYPTO '96 Proceedings, Springer-
Verlag, 1996, pp. 104 – 113.

[4] E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key

Cryptosystems”, Advances in Cryptology CRYPTO '97 Proceedings, Springer-
Verlag, 1997, pp. 513 – 525.

[5] P. Kocher, J. Jaffe and B. Jun, “Differential Power Analysis”, Proceedings of

Advances in Cryptology – CRYPTO ’99, Lecture Notes in Computer Science, Vol.
1666, Springer, Berlin 1999, pp. 388–397.

[6] T. S. Messerges, E. A. Dabbish and R. H. Sloan, “Power Analysis Attacks of

Modular Exponentiation in Smartcards”, Proceedings of Workshop on
Cryptographic Hardware and Embedded Systems, Springer, Lecture Notes in
Computer Science, Vol. 1717, Springer, Berlin 1999, pp. 144–157.

 11

[7] A.J. Menezes, P.C.van Oorchot, and S.A. Vanstone, “Handbook of applied

cryptography”, CRC Press, 1997.

[8] M. Aigner and E. Oswald, “Power Analysis Tutorial”, Institute for Applied

Information Processing and Communication University of Technology Graz,
Austria, 2000.

A RSA

RSA, named after the initials of its authors, Rivest, Shamir and Adleman is probably
the most famous asymmetric encryption primitive. It works as follows:

1. Alice chooses two large prime numbers p and q and computes their product n = pq

and φ(n) = (p − 1)(q − 1).
2. She also chooses a value e that has no common factor with φ(n) and computes d =

e−1 mod φ(n).
3. Alice publishes (n, e) as her public key, and keeps d as her private key.
4. To send her a message m (with 0 ≤ m< n), Bob computes c = me mod n.
5. Alice decrypts c by computing cd mod n. By Euler’s theorem, it can easily be

shown that the result is equal to m.

We refer the reader to [7] for more information on RSA.

 12

