125,230 research outputs found

    Axiomatizations of arithmetic and the first-order/second-order divide

    Get PDF
    It is often remarked that first-order Peano Arithmetic is non-categorical but deductively well-behaved, while second-order Peano Arithmetic is categorical but deductively ill-behaved. This suggests that, when it comes to axiomatizations of mathematical theories, expressive power and deductive power may be orthogonal, mutually exclusive desiderata. In this paper, I turn to Hintikka’s (Philos Top 17(2):69–90, 1989) distinction between descriptive and deductive approaches in the foundations of mathematics to discuss the implications of this observation for the first-order logic versus second-order logic divide. The descriptive approach is illustrated by Dedekind’s ‘discovery’ of the need for second-order concepts to ensure categoricity in his axiomatization of arithmetic; the deductive approach is illustrated by Frege’s Begriffsschrift project. I argue that, rather than suggesting that any use of logic in the foundations of mathematics is doomed to failure given the impossibility of combining the descriptive approach with the deductive approach, what this apparent predicament in fact indicates is that the first-order versus second-order divide may be too crude to investigate what an adequate axiomatization of arithmetic should look like. I also conclude that, insofar as there are different, equally legitimate projects one may engage in when working on the foundations of mathematics, there is no such thing as the One True Logic for this purpose; different logical systems may be adequate for different projects

    Classical Predicative Logic-Enriched Type Theories

    Get PDF
    A logic-enriched type theory (LTT) is a type theory extended with a primitive mechanism for forming and proving propositions. We construct two LTTs, named LTTO and LTTO*, which we claim correspond closely to the classical predicative systems of second order arithmetic ACAO and ACA. We justify this claim by translating each second-order system into the corresponding LTT, and proving that these translations are conservative. This is part of an ongoing research project to investigate how LTTs may be used to formalise different approaches to the foundations of mathematics. The two LTTs we construct are subsystems of the logic-enriched type theory LTTW, which is intended to formalise the classical predicative foundation presented by Herman Weyl in his monograph Das Kontinuum. The system ACAO has also been claimed to correspond to Weyl's foundation. By casting ACAO and ACA as LTTs, we are able to compare them with LTTW. It is a consequence of the work in this paper that LTTW is strictly stronger than ACAO. The conservativity proof makes use of a novel technique for proving one LTT conservative over another, involving defining an interpretation of the stronger system out of the expressions of the weaker. This technique should be applicable in a wide variety of different cases outside the present work.Comment: 49 pages. Accepted for publication in special edition of Annals of Pure and Applied Logic on Computation in Classical Logic. v2: Minor mistakes correcte

    Reflexion Principle on Second order Arithmetic(Logic and the Foundations of Mathematics)

    Get PDF

    An institution for Alloy and its translation to second-order logic

    Get PDF
    Publicado em "Integration of reusable systems". ISBN 978-3-319-04716-4Lightweight formal methods, of which Alloy is a prime example, combine the rigour of mathematics without compromising simplicity of use and suitable tool support. In some cases, however, the verification of safety or mission critical software entails the need for more sophisticated technologies, typically based on theorem provers. This explains a number of attempts to connect Alloy to specific theorem provers documented in the literature. This chapter, however, takes a different perspective: instead of focusing on one more combination of Alloy with still another prover, it lays out the foundations to fully integrate this system in the Hets platform which supports a huge network of logics, logic translators and provers. This makes possible for Alloy specifications to “borrow” the power of several, non dedicated proof systems. The chapter extends the authors’ previous work on this subject by developing in full detail the semantical foundations for this integration, including a formalisation of Alloy as an institution, and introducing a new, more general translation of the latter to second-order logic.(undefined

    Descriptive Complexity, Computational Tractability, and the Logical and Cognitive Foundations of Mathematics

    Get PDF
    In computational complexity theory, decision problems are divided into complexity classes based on the amount of computational resources it takes for algorithms to solve them. In theoretical computer science, it is commonly accepted that only functions for solving problems in the complexity class P, solvable by a deterministic Turing machine in polynomial time, are considered to be tractable. In cognitive science and philosophy, this tractability result has been used to argue that only functions in P can feasibly work as computational models of human cognitive capacities. One interesting area of computational complexity theory is descriptive complexity, which connects the expressive strength of systems of logic with the computational complexity classes. In descriptive complexity theory, it is established that only first-order (classical) systems are connected to P, or one of its subclasses. Consequently, second-order systems of logic are considered to be computationally intractable, and may therefore seem to be unfit to model human cognitive capacities. This would be problematic when we think of the role of logic as the foundations of mathematics. In order to express many important mathematical concepts and systematically prove theorems involving them, we need to have a system of logic stronger than classical first-order logic. But if such a system is considered to be intractable, it means that the logical foundation of mathematics can be prohibitively complex for human cognition. In this paper I will argue, however, that this problem is the result of an unjustified direct use of computational complexity classes in cognitive modelling. Placing my account in the recent literature on the topic, I argue that the problem can be solved by considering computational complexity for humanly relevant problem solving algorithms and input sizes.Peer reviewe

    Independence in Model Theory and Team Semantics

    Get PDF
    The subject of this doctoral thesis is the mathematical theory of independence, and its various manifestations in logic and mathematics. The topics covered in this doctoral thesis range from model theory and combinatorial geometry, to database theory, quantum logic and probability logic. This study has two intertwined centres: - classification theory, independence calculi and combinatorial geometry (papers I-IV); - new perspectives in team semantics (papers V-VII). The first topic is a classical topic in model theory, which we approach from different directions (implication problems, abstract elementary classes, unstable first-order theories). The second topic is a relatively new logical framework where to study non-classical logical phenomena (dependence and independence, uncertainty, probabilistic reasoning, quantum foundations). Although these two centres seem to be far apart, we will see that they are linked to each others in various ways, under the guiding thread of independence

    Kriesel and Wittgenstein

    Full text link
    Georg Kreisel (15 September 1923 - 1 March 2015) was a formidable mathematical logician during a formative period when the subject was becoming a sophisticated field at the crossing of mathematics and logic. Both with his technical sophistication for his time and his dialectical engagement with mandates, aspirations and goals, he inspired wide-ranging investigation in the metamathematics of constructivity, proof theory and generalized recursion theory. Kreisel's mathematics and interactions with colleagues and students have been memorably described in Kreiseliana ([Odifreddi, 1996]). At a different level of interpersonal conceptual interaction, Kreisel during his life time had extended engagement with two celebrated logicians, the mathematical Kurt Gödel and the philosophical Ludwig Wittgenstein. About Gödel, with modern mathematical logic palpably emanating from his work, Kreisel has reflected and written over a wide mathematical landscape. About Wittgenstein on the other hand, with an early personal connection established Kreisel would return as if with an anxiety of influence to their ways of thinking about logic and mathematics, ever in a sort of dialectic interplay. In what follows we draw this out through his published essays—and one letter—both to elicit aspects of influence in his own terms and to set out a picture of Kreisel's evolving thinking about logic and mathematics in comparative relief.Accepted manuscrip

    Hilbert's Program Then and Now

    Get PDF
    Hilbert's program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to "dispose of the foundational questions in mathematics once and for all, "Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, "finitary" means, one should give proofs of the consistency of these axiomatic systems. Although Godel's incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial successes, and generated important advances in logical theory and meta-theory, both at the time and since. The article discusses the historical background and development of Hilbert's program, its philosophical underpinnings and consequences, and its subsequent development and influences since the 1930s.Comment: 43 page
    • …
    corecore