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INTRODUCTION

GIANLUCA PAOLINI
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This thesis consists of the following seven articles, referred to in the text by
their Roman numerals. The papers are reproduced with the permission of their
respective copyright holders.
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V Gianluca Paolini. A Finite Axiomatization of G-Dependence. Submitted, De-
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VI Tapani Hyttinen, Gianluca Paolini and Jouko Väänänen. Quantum Team Logic
and Bell’s Inequalities. Review of Symbolic Logic, 08(04):722-742, 2015.

VII Tapani Hyttinen, Gianluca Paolini and Jouko Väänänen. A Logic for Arguing
About Probabilities in Measure Teams. Submitted, September 2015.

Some words about contributions. Paper I is entirely based on my Master Thesis,
written under the supervision of Väänänen. The topic and open questions were
introduced to me by Väänänen. Most of the work is due to me. The introduction
was written by him. Theorem 3.13 of Paper II is due to Hyttinen. Paper III is the
answer to a question posed by me to Hyttinen. The main idea (the reduction to
dividing) is due to Hyttinen, but all the details have been elaborated by me. Paper
IV is the paper with the most intricate history. The study of geometric lattices and
of the relative construction of principal extension arises from my attempts to work
on a problem in geometric model theory. The idea to frame this work under the
perspective of abstract elementary classes is due to Hyttinen. Most of the technical
work has been done by me, but the help of Hyttinen was fundamental. Section 6
is mostly due to Hyttinen, a part from the details of some of the technical lemmas,
such as 6.2-6.9. Paper V is the solution of an open question posed by Väänänen.
The main idea behind paper VI (quantum teams) is due to me, and so are the
connections with the work of Abramsky and the choice of syntax and deductive
system. The completeness theorem is due to Hyttinen. The details of the proof
have been elaborated by me. The final version of the paper is due to Väänänen,
who improved it substantially. Also, the introduction was written by him. Finally,
paper VII is the result of a long process of formulation of a probabilistic version of
dependence logic. The notion of measure team is the outcome of several discussions
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on the matter between Hyttinen, Väänänen and me. The choice of syntax and the
completeness theorem are due to Hyttinen. The details of the proof have been
elaborated by me. Section 4 (the examples) is due to Hyttinen-Väänänen, a part
from Example 4.5, which is due to me. The introduction is due to Väänänen. All
the papers have been written by me. In all the paper but I, II and V, the guidance
of Hyttinen was essential.

2. Introduction

The subject of this doctoral thesis is the mathematical theory of independence,
and its various manifestations in logic and mathematics. The topics covered in this
doctoral thesis range from model theory and combinatorial geometry, to database
theory, quantum logic and probability logic. This study has two intertwined centres:

(1) classification theory, independence calculi and combinatorial geometry (pa-
pers I-IV);

(2) new perspectives in team semantics (papers V-VII).
The first topic is a classical topic in model theory, which we approach from

different directions (implication problems, abstract elementary classes, unstable
first-order theories). The second topic is a relatively new logical framework where to
study non-classical logical phenomena (dependence and independence, uncertainty,
probabilistic reasoning, quantum foundations). Although these two centres seem to
be far apart, we will see that they are linked to each others in various ways, under
the guiding thread of independence.

3. Classification Theory, Independence Calculi and Combinatorial
Geometry

The post-Morley era of model theory is dominated by what is known as clas-
sification theory. In a few words, classification theory aims at the determination
of structural properties of a class of structures, e.g. the association of cardinal
invariants, in terms of logical properties of this class, e.g. the number of types or
the categoricity in a certain power. The research questions in this area lead to the
elaboration of a highly sophisticated theory of independence: the theory of inde-
pendence calculi. This theory (and its associated notions) is now one of core fields
of research in model theory, and, despite its generality, it has had applications in
many areas of mathematics, such as algebra, combinatorics and geometry.

The theme of model-theoretic independence is the center of the first part of the
thesis. In Articles I-IV we treat this theme from several perspectives, stressing its
relation with combinatorial geometry (Articles I and IV), and establishing a two-
way connection between model-theoretic independence and database dependency
theory (Articles I-III). The notion of database and the related field of database
dependency theory represents also the link between the first part of the thesis and
the second. For this reason we will treat this topic in a certain detail in this
introduction.

We now give an overview of the articles forming the first part of the thesis,
and then introduce the reader to the articles one by one, stressing the connections
between them. In Article I we analyse the notions of independence coming from
combinatorial geometry and first-order model theory from the perspective of data-
base dependency theory, specifically the study of implication problems. In Article
II we generalise the results of Article I to the context of abstract elementary classes
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and abstract independence relations. In Article III we analyse one of the most im-
portant database dependencies, called embedded multivalued dependence or simply
database independence, from the perspective of model theory, showing that this no-
tion of independence is reducible to the first-order dividing calculus in the theory of
atomless boolean algebras. Article IV is by far the most technical and elaborated
paper of the whole thesis. In this article we develop the model theory of geometric
lattices (of finite rank) from the perspective of abstract elementary classes. Based
on a fundamental combinatorial result due to Crapo, we find various classes of geo-
metric lattices that behave very well from the point of view of stability theory. One
of them, (K3,4), is ω-stable, it has a monster model and an independence calculus
that satisfies all the usual properties of non-forking. On the other hand, the class
(K3,4) is not an abstract elementary class, in fact the Smoothness Axiom fails.

3.1. Implication Problems in Model Theory
In this section we will describe the work of Articles I and II. We now introduce

the setting of database dependency theory. We first define what is a database.

Definition. Let Var be a countable set of symbols, called attributes or individual
variables. A relation schema is a finite set R = {x0, ..., xn−1} of attributes from
Var. Each attribute xi of a relation schema is associated with a domain dom(xi)
which represents the set of possible values that can occur as values of xi. A tuple
over R is a function t : R → ⋃

i<n dom(xi) with t(xi) ∈ dom(xi), for all i < n. A
database r over R is a set of tuples over R. For x ⊆ R and t ∈ r we let t(x) to be
the restriction of the function t to x.

Given a database r it is often of crucial importance to know which constraints
the database r is subject to, in order to deduce further information about it. For
this end, one introduces so-called database dependencies. To give an example, we
introduce what is probably the most well-known database dependency: functional
dependence.

Definition (Functional dependence [2]). Let R be a relation schema, x and y tuples
of attributes from R, and r a database over R. We define

r satisfies x→ y ⇔ ∀t0, t1 ∈ r(t0(x) = t1(x)⇒ t0(y) = t1(y)).

If r satisfies x→ y we say that r manifests the functional dependency x→ y.

One of the main goals of database dependency theory is to axiomatise given
forms of dependence D, i.e. finding a set of rules that govern D completely. These
kind of problems are also called implication problems, since the question is to find a
set of rules that determines completely when a given dependency σ is implied by a
set of dependencies Σ. The canonical example of this line of research is Armstrong’s
axiomatization of functional dependence [2].

This way of approaching the study of a given form of dependence can be exported
from database dependency theory to any well-defined notion of dependence. The
object of Article I is the study of implication problems with respect to the notions
of dependence arising from combinatorial geometry (cfr. e.g. [7]) and the first-order
forking calculus (cfr. e.g. [22]).

When we refer to a notion of dependence D we are intentionally vague, in fact
we want to subsume as many cases as possible. This may lead to certain confusions,
as among the accepted forms of dependence D there are notions that may more
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meaningfully be referred to as independencies. This is the case for the well-known
embedded multivalued dependence (cfr. e.g. [21]), which we will refer to simply as
database independence. As already mentioned, this form of independence is also
the topic of Article III.

Definition (Database independence [21]). Let R be a relation schema, x, y and z
tuples of attributes from R, and r a database over R. We define

r satisfies z � x | y
⇔

∀t0, t1 ∈ r(t0(z) = t1(z)⇒ ∃t2 ∈ r(t2(z) = t0(z) & t2(x) = t0(x) & t2(y) = t1(y))).

If r satisfies z � x | y we say that r manifests the database independency z � x | y.
Notice that database independence generalizes functional dependence, as r sat-

isfies x → y iff r satisfies x � y | y. We refer to expressions of the form z � x | y
as conditional independence atoms, while to expressions of the form ∅� x | y sim-
ply as independence atoms. Parker and Parsaye-Ghomi [18] proved that it is not
possible to find a finite complete axiomatization for the conditional independence
atoms. Furthermore, in [15] and [16] Hermann proved that the implication problem
for these atoms is undecidable. On the other hand, the independence atom admits a
very natural finite axiomatization (see [12] and [11]). The main question of Article I
and II is the Completeness Question for independence atoms under semantics based
on combinatorial geometry and the first-order forking calculus. That is, when is the
deductive system that axiomatizes database independence complete with respect to
these different semantics? The way the new semantics are given is straightforward.
Given a pregeometry (M, cl) and an assignment s from the set of variables Var into
M we say that (M, cl) |= ∅� x | y if s(x) is independent from s(y) in the sense of
combinatorial geometry. Similarly, given an ω-stable first-order theory T , a model
M of T and an assignment s from Var into M we say thatM |= ∅ � x | y if s(x)
is independent from s(y) in the sense of the first-order forking calculus. The main
results of Article I are the following.

Theorem. Suppose C is a class of pregeometries including a pregeometry (M, cl)
satisfying (P1)-(P3)1. Then the Completeness Question forC has a positive answer,
i.e. if Σ is a set of independence atoms and φ is an independence atom, then

Σ `I φ ⇐⇒ Σ |=C φ.

Theorem. Let T be an ω-stable first-order theory T such that there existsM |= T
satisfying the following requirement: there exists a strongly minimal set F =
φ(M, ∅) such that (F, cl) has properties (P1), (P2) and (P3). Then the Com-
pleteness Question for T has a positive answer, i.e. if Σ is a set of independence
atoms and φ is an independence atom, then

Σ `I φ ⇐⇒ Σ |=T φ.

Article I had left several questions open. On the one hand, there was the
Completeness Question for first-order theories beyond ω-stability and for classes
of structures non-axiomatizable in first-order logic. On the other hand, there was
the question of when exactly the Completeness Question had a positive answer. In

1Conditions (P1)-(P3) are three natural conditions. They are satisfied in the case of vector
spaces and algebraically closed fields, see Article I for details.
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Article II we answer both questions. Before introducing the statement of the main
theorem of Article II, we introduce the setting of abstract elementary classes [23]
and abstract independence relations, which will be relevant also in Article IV.

The framework of abstract elementary classes is a very general platform where
to study model-theoretic phenomena that go beyond first-order logic. An abstract
elementary class is a pair (K,4) such that K is a class of structures of the same
similarity type and 4 is a binary relation satisfying a certain set of axioms, which
generalise some of the properties satisfied by the relation of elementary submodel
of first-order logic. In its full generality the theory is very abstract and, usually,
in order to develop the classification theory for abstract elementary classes further
assumptions are made on (K,4), e.g. finitary, type-short, tame, etc. Under fur-
ther assumptions, concrete independence calculi have been defined for an abstract
elementary class (K,4), on the style of the forking calculus of first-order logic, but
there is at the moment no general theory of independence for an arbitrary abstract
elementary class.

In the context of Article II we work with an arbitrary abstract elementary class
(K,4) admitting a monster model, and we define an abstract notion of (pre)-
independence on (K,4), denoted as |̂ . The resulting setting is consequently very
general. Interestingly, it is exactly this high level of abstraction that allowed us to
realise which were the conditions sufficient and necessary to prove a completeness
theorem with respect to the deductive system arising from database theory, i.e.
what we call federation (following [3]) and admissibility of an algebraic point.

Theorem. Let (K,4) be an abstract elementary class with amalgamation prop-
erty, joint-embedding property and arbitrary large models. Let also |̂ be a pre-
independence relation for (K,4). Then

Σ `I φ ⇐⇒ Σ |=(K, |̂ ) φ

if and only if |̂ is federated and admits an algebraic point.

3.2. Database Independence and Boolean Algebras
The theory of independence calculi is the result of a far-reaching process of gen-

eralisation of well-known forms of independence such as linear independence (vector
spaces) and algebraic independence (algebraically closed fields). The development
of so-called applied model theory has further shown that many other naturally
arising forms of independence can be subsumed by the general theory of indepen-
dence as formulated in model theory. Among these forms of independence there is
a notion of independence which is crucial in probability theory: stochastic indepen-
dence. In [6] Itai Ben-Yaacov shows that the class of atomless probability algebras
is elementary in continuous logic and that in this class non-forking corresponds to
the familiar notion of independence of probability algebras, which, as well-known,
corresponds to independence of random variables, i.e. stochastic independence.

In various papers on statistics and database theory, e.g. [19], [21] and [24], sto-
chastic independence has been put in tight connection with database independence.
In these papers it is shown that these two forms of independence agree on a large
group of axioms, which resemble very closely some basic axioms satisfied by non-
forking in simple first-order theories, e.g. monotonicity, symmetry and transitivity.

The motivating question of Article III is then the following: how does database
independence relate to the theory of independence calculi? Is there a way to make
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sense of the noticed similarities between stochastic independence and database in-
dependence from the point of view of model theory?

The answers to these questions go through the identification of database inde-
pendence with an independence notion between boolean algebras, and the further
reduction of this notion to the dividing calculus in the theory of atomless boolean
algebras (ABA). This reduction shows that both database independence and sto-
chastic independence are essentially based on the same independence relation, i.e.
free amalgamation, considered in the category of boolean algebras and probability
algebras, respectively.

To this extent, in Article III we first prove a partial characterization of dividing
in ABA, based on the above-mentioned notion of free amalgamation of boolean
algebras. Secondly, given a database r over the relation schema R, and a tuple of
attributes x from R, we associate a boolean algebra π(ẋ), and show that indepen-
dence between tuples of attributes corresponds to free amalgamation between the
respective boolean algebras (see Definition 2.9 of Article III for C 6∗ A).
Theorem. Let M be the monster model of ABA, and A,B, C 6M, with C atomic
and C 6∗ A,B. Then

A |̂
C
B ⇔ ∀a ∈ A and b ∈ B

[
a

d
|̂
C
b

]
.

Theorem. Let R be a relation schema, x, y and z tuples of attributes from R, and
r a database over R. Then

r satisfies z � x | y ⇔ ẋ |̂
ż
ẏ ⇔ π(ẋż) |̂

π(ż)

π(ẏż)

⇔ ∀a ∈ At(π(ẋż)) and b ∈ At(π(ẏż))

[
a

d
|̂

π(ż)

b

]
.

3.3. Geometric Lattices
The interaction between combinatorial geometry and model theory dates back

to the birth of classification theory, and it is now an established field of research
known as geometric model theory (see e.g. [20]). In this line of research results
from combinatorial geometry are used to establish structural results on certain
well-behaved classes of structures, the canonical example being the class of models
of a strongly minimal theory, as well-known. On the other hand, the analysis of
combinatorial geometries using model-theoretic tools (as it is done for example in
the study of algebraically closed fields) is an underdeveloped field of study. This
fact, paired with the familiarity with combinatorial geometry coming from the work
of Article I, lead us to the attempt of delineating a model theory of combinatorial
geometries from the point of view of abstract elementary classes (cfr. Section 3.1).
This attempt has proven to be a fruitful one, in fact we were able to find various
classes of geometries that, although rather unusual, are very well-behaved from the
point of view of classification theory.

Combinatorial geometries are usually defined as sets with a closure operator
subject to certain specific requirements (most notably the satisfaction of the Ex-
change Axiom). Under the assumption of finite dimensionality, there are several
equivalent characterizations of these mathematical objects, e.g. via independence
sets, closed sets, circuits, etc. Among these, there is the perspective of geometric
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lattices (cfr. [7]). Geometric lattices are classical ordered algebraic structures, and
thus, unlike sets with a closure operator, they fit perfectly with the model-theoretic
perspective. Consequently, we develop our analysis of combinatorial geometries
from the algebraic perspective of geometric lattices, under the assumption of finite
dimensionality.

The motivating question of Article IV is the search for good classes of geometric
lattices with respect to the framework of abstract elementary classes. For a class
to be good our minimum requirements are that the class has a monster model
and that it is stable. The most obvious classes fail to satisfy these requirements.
Specifically, the class Kn

0 of geometric lattices of a fixed rank n > 3 with the
submodel relation 4L in the vocabulary L = {0, 1,∨,∧} as the strong submodel
relation, yields an abstract elementary class with a monster model, but (Kn

0 ,4L)
has the independence property, and so it is unstable.
Theorem. (K3

0,4L) is an abstract elementary class with amalgamation property,
joint embedding property and arbitrary large models2. Furthermore, (K3

0,4L) has
the independence property.
Corollary. (K3

0,4L) is unstable.
So one needs to look elsewhere to find good classes of geometric lattices. This

is achieved by a certain use of a fundamental result on geometric lattices, known
as Crapo’s theorem on one-point extensions of combinatorial geometries [8]. Based
on this result, we were able to find a class of geometric lattices, denoted as (K3,4),
which, although stable and admitting an independence calculus, fails one of the cru-
cial axioms of abstract elementary classes, namely the Smoothness Axiom, making
this class a unique phenomenon in the model-theoretic universe.
Theorem. (1) (K3,4) satisfies all the axioms of abstract elementary classes but

the Smoothness Axiom.
(2) (K3,4) has amalgamation property, joint embedding property and arbitrary

large models.
(3) (K3,4) is stable in every infinite cardinality.
(4) (K3,4) admits an independence calculus |̂ .

The reason behind the failure of smoothness is that the relation 4 in (K3,4)
is based on a well-foundedness notion of construction, which resembles the notion
of constructible sets for (abstract) isolation notions of classification theory (see e.g.
[9]). In the last part of Article IV, we show that, with some non-trivial work,
lifting the well-foundedness requirement from 4, and further loosening up this
relation so as to impose coherence, we do get an abstract elementary class (denoted
as (K3

+,4+)), but (K3
+,4+) may not be ω-stable anymore. However, (K3

+,4+)
remains at least stable.
Theorem. (K3

+,4+) is an abstract elementary class with amalgamation property,
joint embedding property and arbitrary large models. Furthermore, (K3

+,4+) is
stable in every cardinal κ such that κω = κ.

4. New Perspectives in Team Semantics

We now come to the second part of the thesis, which is centred around the notion
of team and generalisations thereof. The key link between this part of the thesis

2These three properties ensure the existence of a monster model for (K3
0,4L).
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and the first is represented by Articles I and III, in particular the latter. We will
see in fact that the perspective of Article III leads team semantics from the world
of database dependency theory to the world of probability and quantum logic. We
will make this point clear soon, we first introduce the setting of team semantics,
and explain the motivations that lie behind it.

By team semantics we mean the study of logical systems whose semantics are
not based on single assignments to the propositional or individual variables (as
in propositional and first-order logic), but with respect to sets of assignments. To
avoid ambiguities we state the exact definition of a team, where with Var we denote
the set of propositional or individual variables.

Definition (Team). A team X with values in A and domain dom(X) ⊆ Var is a
set of assignments from dom(X) into A.

Team semantics was originally defined by Väänänen (following pioneering work
of Hodges [17]) in order to give a purely logical treatment of the notions of depen-
dence and independence. In [25] Väänänen builds an extension of first-order logic
with an extended set of atomic formulas, known as dependence atoms, denoted as
=(x, y). He calls this logic dependence logic. The key idea behind the choice of team
semantics for the semantics of this logic is that the concept of dependence can not
be given meaning with respect to a specific state of affairs, but only with respect
to a multiplicity of states of affairs, i.e. a team. The semantics of the dependence
atom is defined as follows.

Definition. Let M be an L-structure, X a team with values in M , and x, y ⊆
dom(X). We let

M |=X =(x, y) ⇔ ∀s, s′ ∈ X (s(x) = s′(x)⇒ s(y) = s′(y)).

Evidently, given R = {x0, ..., xn−1} ⊆ Var, each database r over R can be seen
as a team Xr with values in

⋃
i<n dom(xi) and domain R. On the other hand, each

team X with values in
⋃
i<n dom(xki) and domain R can be seen as a database

rX over R. That is, a team is nothing but a database and a database is nothing
but a team. Using this identification, we immediately see that the way we give
meaning to the dependence atom is exactly as in the case of functional dependence
(cfr. Section 3.1).

Remark. Let M be a first-order structure, X a team with values in M , and
x, y ⊆ dom(X) ⊆ Var. Then

M |=X =(x, y) ⇔ rX satisfies x→ y.

In [13] Väänänen and Grädel undertake an analysis of the notion of independence
in line with the analysis of the notion of dependence undertaken in [25]. In this
paper, they introduce a new atom, which they call independence atom, denoted as
x ⊥z y. The semantics for this atom is given as follows.

Definition. LetM be an L-structure, X a team with values in M , and x, y, z ⊆
dom(X). We let

M |=X x ⊥z y
⇔

∀s, s′ ∈ X(s(z) = s′(z)⇒ ∃s′′ ∈ X(s′′(z) = s(z)&s′′(x) = s(x)&s′′(y) = s′(y))).
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Also in the case of the independence atom we have a correspondence with a
form of independence coming from database dependency theory, i.e. the database
independence of Article III (cfr. Section 3.1).

Remark. Let M be a first-order structure, X a team with values in M , and
x, y, z ⊆ dom(X) ⊆ Var. Then

M |=X x ⊥z y ⇔ rX satisfies z � x | y.
It is then clear that (in)dependence logic is based on a database-theoretic notion

of (in)dependence, i.e. functional dependence and database independence. The
crucial point in understanding the developments in team semantics explored in this
thesis is how the work of Article III relates to this observation.

In Article III we saw that database independence can be reduced to the general
theory of independence as developed in model theory, and specifically that this
reduction establishes a parallelism between database independence and stochastic
independence, since these two forms of independence can be seen as essentially
based on the same independence relation.

The crucial technical detail in this reduction is to treat a database or a team
not as a set of tuples, but as a vector of functions. Specifically, given a team X
with values in M , and x ⊆ dom(X) we let ẋ to be the function with domain X
and range M such that ẋ(s) = s(x), for every s ∈ X. Clearly, for x = (xkj )j∈J
and s ∈ X, we have that ẋ(s) = (ẋkj (s))j∈J , and so we can identify the objects
ẋ and (ẋkj )j∈J . That is, a team X becomes nothing but the “random” vector ẋ
for x = dom(X). Thought in these terms it is now natural to associate a boolean
algebra to a finite tuple of variables x = (x0, ..., xk−1), in the following sense (see
Section 2.2 of Article III for details).

Definition. Let f = (f0, ..., fk−1) be a tuple of functions from I to M , and F the
finite-cofinite field of sets on M . We let the boolean algebra generated by f , in
symbols π(f), to be the field of sets {f (−1)(A) : A ∈ (F)n}.

The point of Article III is then to show that the relation x ⊥z y can be reduced to
an algebraic relation between the respective boolean algebras. What is important
here is not these algebraic details, but the insights that this reduction brings into the
play. One crucial insight is the following. Because of the very same definition of ẋ,
the function ẋ arising from a team X will necessarily be an injective function. What
happens if we drop the injectivity requirement? The dropping of this requirement
leads to an interesting new notion: the notion of multi-team3.

Definition (Multi-team). A multi-team X with values in A and domain dom(X) ⊆
Var is a pair (I, τ) such that I is a set and τ : I → Adom(X) is a function.

The main additional feature of a multi-team with respect to a simple team is that
given a finite multi-team X there is a canonical way to associate probabilities to X,
in fact we can talk about the frequency of the occurrence of a given assignment s in
X, i.e. the number of rows of X in which the assignment s occurs, divided by the
total number of rows of X. I.e. we can compute probabilities using the normalized
counting measure. This brings team semantics towards the field of information
theory, where these kind of probabilities are of crucial interest. In Article VI we

3Although this notion is not explicitly introduced in Article III, the idea of a multi-team (and
the perspective it brings) originates there.
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will see how the notion of multi-team can be generalized to a new notion, the
notion of quantum team, so as to take into account the non-classical phenomena
arising from quantum information theory, where one deals with correlations between
probabilities which violate the basic axioms of probability theory.

But the insights of Article III are not limited to this. As it is clear to anybody
familiar with the basics of probability theory, the idea behind Article III is simply
to bring ideas from the theory of random variables into the world of database
theory, or team semantics. I.e. a multi-team is nothing but a random vector after
dropping the measurability requirements. And, as we associate to random vectors
probability algebras, we associate to multi-teams boolean algebras, using the inverse
image operator. The discrete nature of multi-teams allows us to talk about “discrete
probabilities”, i.e. probabilities in the sense of the normalized counting measure.
But what about using an arbitrary probability measure? I.e. is it possible to devise
a version of team semantics where we evaluate formulas with respect to random
vectors whose domain is an arbitrary probability space? This question motivates
the introduction of a new notion: the notion of measure team. This is the topic of
Article VI, where based on this notion we devise a very expressive logic, with many
areas of applications, most notably biology.

We then saw how the abstract perspective of Article III lead to concrete de-
velopments in team semantics, with applications in biology and quantum physics,
through the introduction of ideas extraneous to the original setting of the field.
This motivates a strong connection between the second part of the thesis and the
first.

Before introducing the specifics of Article VI and VII, we talk about Article V,
where a new form of database dependency is studied, known as G-dependence. The
focus of this paper is again on the solution of implication problems, as in Article I.
Article V can in fact be read in direct continuity with Article I, where the notions
and motivations behind the study of implication problems are treated in particular
detail. This establishes another clear connection between the first and the second
part of this thesis.

4.1. G-Dependence
In [14] Kurt Grelling lays the foundations of a mathematical theory of depen-

dence, isolating several notions of dependence and noticing various properties that
they satisfy. Among them, there is the notion of functional dependence, already
mentioned above, and other notions of dependence familiar in combinatorics, specif-
ically in the study of closure operators. Grelling also introduces a notion of depen-
dence that fails to fit with any of the currently known forms of dependence. He
calls this form of dependence varequidependence, but we will refer to it simply as G-
dependence. In [26] Väänänen, commenting the above-mentioned paper of Grelling,
frames G-dependence in the context of database theory and team semantics. From
the perspective of multi-teams, G-dependence is defined as follows.

Definition (G-dependence). Let X = (I, τ) be a multi-team and x and y finite
sets of variables. We say that y G-depends on x, in symbols X |= m(x, y), if for
every s, s′ ∈ I, if there exists exactly one xi ∈ x such that τ(xi)(s) 6= τ(xi)(s

′),
then there exists at least one yj ∈ y such that τ(yj)(s) 6= τ(yj)(s

′).

The notion of G-dependence is motivated by experimental scientific practice, in
accordance with the general philosophical interests of Grelling, and it has a strong
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intuitive appeal (think of the price of an hotel room as a function of its size and
number of beds). In [26] Väänänen notices several properties of G-dependence,
leaving open the problem of finding a complete axiomatization for this form of
dependence, i.e. solving its implication problem, in the terminology of Section
3.1. In Article V we show that G-dependence admits a very natural finite complete
axiomatization, in the style of Armstrong’s axiomatization of functional dependence
[2]. Furthermore, we prove that G-dependence admits Armstrong relations, in the
sense of [2], [5] and [4].

Theorem. Let Σ ∪ {σ} a set of G-dependence atoms. Then

Σ ` σ if and only if Σ |= σ

I.e. the G-dependence axioms (and rules) are complete. Furthermore, G-dependence
admits Armstrong relations. I.e. given a set Σ of G-dependence atoms, there exists
a team X such that

X |= σ iff Σ ` σ.
4.2. Quantum Teams

By definition, multi-teams can get values in any set A, but with respect to
applications in information theory the context of multi-teams with values in {0, 1}
is already highly non-trivial. This is the context of Article VI, where, following the
work of [1], team semantics meets the field of quantum information theory.

As mentioned above, there is a canonical way to associate probabilities to a finite
multi-team, i.e. using the normalized counting measure. Specifically, given a finite
multi-team X with values in {0, 1}, and a propositional formula φ we can define
the probability of φ in X as

[φ]X =
|{i ∈ Ω : τ(i)(φ) = 1}|

|Ω| = P ({i ∈ Ω | τ(i)(φ) = 1}).

In this way multi-teams allow for the modelling of many interesting information-
theoretic phenomena, but multi-teams have a strong inherent feature, i.e. they are
classical. That is, when we define a multi-teamX as a multiset of assignments to the
propositional variables in dom(X), we assume that the variables in dom(X) are a set
of compatible observables, i.e. we can simultaneously give a value to every variable
in dom(X). But this is very far from being an innocuous assumption. In fact,
under this hypothesis we have strong constrains on the possible correlations between
probabilities arising from a multi-team (so-called Bell’s inequalities), which are
violated by the mathematical formalism of quantum mechanics and by experimental
verifications thereof. Thus, if we want to account for the “quantum world” we have
to generalise the notion of multi-team to a new notion, what we call quantum teams.

Definition (Quantum team). Let Ω be a finite set and Q = (Qi)i∈Ω a sequence
of finite non-empty sets of proposition symbols. A quantum team on Q is a pair
X = (Ω, τ) such that τ(i) is a truth-value assignment to the proposition symbols
in Qi for each i ∈ Ω.

The intuitive interpretation of the definition above is that the sets (Qi)i∈Ω are
the set of compatible observables in the observational scenario under analysis. From
a technical point of view, the difference is that we are not computing probabilities
with respect to a single fixed probability space, but with respect to a family of
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probability spaces, one for each subset U of a given Qi. More explicitly, given a
propositional formulas φ and a subset U of some Qi we let

[φ]X,U =
|{i ∈ Ω : τ(i)(φ) = 1}|

|ΩU |
= P ({i ∈ Ω | τ(i)(φ) = 1}),

where ΩU = {i ∈ Ω |U ⊆ Qi}. With this generalised notion of probability of a
formula in a team X we can recover many non-classical phenomena of interest in
quantum information theory. The point is then to devise a good logic for quantum
teams. Based on the logic of [9], we build a propositional logic whose atomic
formulas are expressions of the kind

a0(φ0;V0) + . . .+ ak−1(φk−1;Vk−1) > c,
where we interpret (φ0;V0) as the probability [φ]X,U , in order to capture the phe-
nomenon that there are limitations as to what observables can be measured simul-
taneously. Relativising the deductive system of [9] to this more complicated syntax,
we prove a completeness theorem for this logic, which we call quantum team logic.

Theorem (Completeness). Let α be a formula of quantum team logic. Then

` α ⇔ |= α.

As an application, we show how to resolve an apparent paradoxicality noticed
by Feynman in the famous “Double-Slit Experiment” of [10].

4.3. Measure Teams
As mentioned above, a measure team is a random vector of assignments of a

given set of variables. In order for this notion to make sense, we of course have to
put some measurability conditions. This is done in the following way.

Definition (Measure team). Let L be a signature andA an L-structure. Ameasure
team X with values in A and domain dom(X) ⊆ Var is a quadruple (Ω,F , P, τ)
such that (Ω,F , P ) is a probability space and τ : Ω → Adom(X) is a measurable
function, in the sense that

{
i ∈ Ω : A |=t(i) φ

}
∈ F

for every first-order L-formula φ with free variables in dom(X).

We then see that the function τ in the definition above is nothing but a random
vector from (Ω,F , P ) into the space of definable subsets of A, and thus that this
notion captures exactly the intuitive idea described above.

But does this abstract definition have any relevance for “concrete situations”?
What are the canonical examples of measure teams? The first example that comes
to mind is the case of finite multi-teams with the normalized counting measure, but
this example does not justify the generality of the setting. The paradigm example
of measure team is another one. This is the case of an idealised measurement of
given variables v0, . . . , vn at all points of time starting at time 0 and ending at time
1. The values of the variables are e.g. real numbers, which change continuously
with time, such as temperature, speed, pressure, amplitude, force, etc. When time
progresses from 0 to 1, the vector (st(v0), . . . , st(vn)) flows from (s0(v0), . . . , sn(vn))
to (s1(v0), . . . , s1(vn)).

Thus, the notion of measure team has its canonical incarnation in the formaliza-
tion of classical experimental situations. Consequently, we want to devise a syntax
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capable of expressing as much as possible regarding statistics made on experimen-
tal scenarios. To this extent, we devise a syntax L1 based on the language of the
ordered field of real numbers {0, 1,+,−, ·,6} (in order to express properties of
our statistics), which is in function of an arbitrary countable signature L0, to be
thought as expressing the fundamental aspects of our experimental setting. Tech-
nically, what we do is adding a constant symbol |φ(x)| to {0, 1,+,−, ·,6} for every
L0-formula φ(x).

This rich language allows for a broad field of applications. A leading example is
within biology, in the study of pools of genes. This is the Hardy-Weinberg Princi-
ple, which shows that a conservation phenomenon takes place in a gene pool from
generation to generation under certain assumptions, such as random mating. Other
applications are in quantum mechanics, Markov chains, and the analysis of known
paradoxes of probability logic.

The semantics for our language L1 is given straightforwardly. In fact, for any
team X with values in an L0-structure A, we can naturally define the notion of
probability of a formula in a team X = (Ω,F , P, τ), simply as

[φ]X = P (
{
i ∈ Ω : A |=τ(i) φ

}
).

Now, given a measure team X with values in A and dom(X) = {vi : i < n}, we
let RXQ be the expansion of R = (R, 0, 1,+,−, ·,6) to an L1-structure obtained by
interpreting

|φ(x)|RX
Q = [φ(x)]X .

Definition 4.1 (Semantics). Let Σ be an L1-theory, A an L0-structure, X a mea-
sure team with values in A and dom(X) = {vi : i < n}. We define

X |= Σ ⇔def RXQ |= Σ.

The main result of Article VII is the elaboration of a complete deductive system
for the language L1 under this semantics.

Theorem (Completeness). Let T be an L0-theory and Σ a positive bounded L1-
theory. Then the following are equivalent.
(i) There exists A |= T and measure team X = (Ω,F , P, τ) with values in A and

dom(X) = {vi : i < n}, such that X |= Σ.
(ii) (T,Σ) 0⊥.
(iii) As in (i), with Ω = [0, 1], F the σ-algebra L of Lebesgue measurable subsets

of [0, 1] and P the Lebesgue measure on [0, 1].

Because of this completeness result, the Hardy-Weinberg Principle (and all other
applications of our system) is not only a property of measure teams expressible
semantically, but it is an actual theorem of our logic.
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