
An institution for Alloy and its translation to
second-order logic

Renato Neves1, Alexandre Madeira2, Manuel Martins3, and Lúıs Barbosa1

1 INESC TEC (HASLab) & Univ. Minho
{nevrenato@gmail.com, lsb@di.uminho.pt}

2 INESC TEC (HASLab) & Univ. Minho and Dep. Mathematics, Univ. Aveiro
madeira@ua.pt

3 Center for Research and Development in Mathematics and Applications - Dep.
Mathematics, Univ. Aveiro

martins@ua.pt

Abstract. Lightweight formal methods, of which Alloy is a prime ex-
ample, combine the rigour of mathematics without compromising sim-
plicity of use and suitable tool support. In some cases, however, the
verification of safety or mission critical software entails the need for
more sophisticated technologies, typically based on theorem provers. This
explains a number of attempts to connect Alloy to specific theorem
provers documented in the literature. This paper, however, takes a dif-
ferent perspective: instead of focusing on one more combination of Alloy
with still another prover, it lays out the foundations to fully integrate this
system in the Hets platform which supports a huge network of logics,
logic translators and provers. This makes possible for Alloy specifica-
tions to “borrow” the power of several, non dedicated proof systems. The
paper extends the authors’ previous work on this subject by developing
in full detail the semantical foundations for this integration, including a
formalisation of Alloy as an institution, and introducing a new, more
general translation of the latter to second-order logic.

Keywords: Model finding, theorem proving, second–order logic.

1 Introduction

In [17] the authors discussed the integration of Alloy [9] in Hets platform
of logics, logic translators and provers, by scketching its formalisation as an
institution [7, 6] and defining its encoding into Casl [14], an extension of multi-
sorted first order logic with partiality and free types. The motivation was clear:
to offer a systematic way to connect Alloy to a huge network of logics and
logical systems in order to complement the model finder strategies of the former
with suitable theorem provers already linked into the latter.

Actually, Alloy, based on a single sorted relational logic whose models can
be automatically tested with respect to bounded domains, is a most success-
ful tool for the working software engineer. Its simple but powerful language

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55634086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

combined with an analyser which can promptly give counter-examples depicted
graphically, makes it increasingly popular both in academia and industry: Suc-
cessful stories report on the discovery of faults in software designs, supposedly
faultless, by taking advantage of Alloy. The tool, however, may also bring a
false sense of security, as absence of counter-examples does not imply model’s
correctness. Therefore, in the project of critical systems our research claims the
use of Alloy should be framed into broader toolchains involving more general,
even if often less friendly, theorem provers. In such a toolchain properties can
be first tested within the Alloy analyser; if no counter-examples are found, a
theorem prover would be asked to generate a proof, at least in what concerns
critical design fragments.

There is a number of results on connecting Alloy to specific theorem provers.
The perspective taken in [17], however, and complemented in this paper goes a
step further by “plugging” Alloy into the Hets network, providing a number
of effective and sound connections to several logical systems and tools at once.
Currently, Hets integrates several world-class reasoners, namely Isabelle [18],
LEO-II [4], SPASS [21], Vampire [19], Darwin [2], among many others. Plug-
ging Alloy to Hets, makes thus possible the translation of its models to a
number of languages in the network, and naturally, borrowing for free the corre-
sponding proof support. Experiments can then be carried out in different tools,
typically tuned to specific application areas.

Actually, Hets [15] may be regarded as a “motherboard” for logics where
different “expansion cards” can be plugged. The latter are individual logics (with
associated analysers and proof tools) as well as logic translations to “transport”
properties and proofs between them. To make them compatible, logics are for-
malised as institutions [6] and logic translations as comorphisms. This is the
price to be paid: the integration of Alloy in this network entails the need for
formalising Alloy as an institution and providing a translation to a relevant
logic in the Hets network.

The present paper addresses this challenge by developing in full detail the se-
mantical foundations for this integration, including a formalisation of Alloy as
an institution, and introducing a new, more general translation of it to second-
order logic (SOL) [12]. This new translation allows a more natural embedding
of Alloy, when compared to the previous, essentially first-order translation to
Casl introduced in [17]. Moreover, this translation establishes a connection be-
tween Alloy and higher-order provers, such as LEO-II and Isabelle, using
the logic THF [3] which integrates second-order features. The original transla-
tion to Casl, presented in [17], is re-framed in this context, because, in practice,
it opens doors to a broad number of theorem provers, namely for first-order
systems. Both translations are depicted in Fig. 1 as dashed arrows.

Related work. The idea of connecting Alloy to a theorem prover is not new —
see, for example, references [20, 10, 1] . The usual approach is to translate Alloy
models into the input language of a given theorem prover and (re-)formulate the
proof targets accordingly. For instance, [20], one of the most recent proposals

Isabelle LEO-IIHaskell

THFHasCASL

CASL ALLOYSoftFOL

OWLHCASL Prop

SPASS

Vampire

Darwin

Fig. 1. HETS sub–network extended with ALLOY

in this trend, translates models into a first-order dialect supported by the KeY
theorem prover.

Paper structure. The formalisation of Alloy as an institution and the definition
of suitable comorphisms is presented in sections 3, 4 and 5. Before that, in section
2, a brief overview of the theory of institutions is provided as a background for
the paper. Section 6 reports on a (fragment of a) case study in the medical
domain on the combined use of Alloy and Hets, to illustrate the potential
and limits of the approach proposed here. Finally, section 7 concludes.

2 Background: Institutions

2.1 Institutions and comorphisms

An institution [7] is a formalisation of the concept of a logical system, intro-
duced by Joseph Goguen and Rod Burstall in the late 70’s, as a response to the
increasing number of logics emerging for software specification. Its original aim
was to develop as much computing science as possible in a general and uniform
way, independently of particular logical systems. This has now been achieved
to an extent even greater than originally thought, as the theory of institutions

became the most fundamental mathematical theory underlying the algebraic
specification discipline.

Definition 1. An institution is a tuple

(SignI , SenI , ModI , {|=IΣ}Σ∈|SignI |)

where

– SignI is a category of signatures and signature morphisms,

– SenI : SignI → Set is a functor relating signatures to the corresponding
sentences, where Set is the category of Sets,

– ModI : (SignI)op → Cat is a functor giving for each signature Σ, the
category of its models, where Cat is the category of categories,

– |=IΣ ⊆ |ModI(Σ)|×SenI(Σ) is the satisfaction relation between models and
sentences such that, for each morphism ϕ : Σ → Σ′ in SignI , and for any
M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ),

M ′ |=IΣ′ SenI(ϕ)(ρ) iff ModI(ϕ)(M ′) |=IΣ ρ

The reduct ofM ′ through a signature morphism ϕ is defined byModI(ϕ)(M ′),
and denoted by M ′ � ϕ. Dually, M ′ is called a model ϕ–expansion of M ′ � ϕ.

Example 1. To illustrate the concept of an institution, consider, in this example,
the construction of an institution for first-order logic (FOL).

Signatures. SignFOL is a category whose objects are triples (S, F, P), where S
is the set of sort symbols, F a family of function symbols indexed by their arity,
F = {Fw→s|w ∈ S∗, s ∈ S} and P a family of relational symbols also indexed by
their arity, P = {Pw|w ∈ S∗}. A signature morphism in this category is also a
triple (ϕst, ϕop, ϕrl) such that for ϕ : (S, F, P)→ (S′, F ′, P ′), if σ ∈ Fw→s, then
ϕop(σ) ∈ F ′ϕst(w)→ϕst(s)

, and if π ∈ Pw then ϕrl(π) ∈ P ′ϕst(w).

Sentences. For each signature object (S, F, P) ∈ |SignFOL|, SenFOL(S, F, P) is
the smallest set of first order sentences:

t ≈ t′, for t, t′ ∈ terms
π(t1, . . . , tn), for t1, . . . , tn ∈ terms and π ∈ Pw
¬ρ, for ρ ∈ SenFOL(S, F, P)
ρ⇒ ρ′, ρ, ρ′ ∈ SenFOL(S, F, P)
∀x : s . ρ, s ∈ S, ρ ∈ SenFOL(S, F] {x}→s, P)

where a term of sorts is a syntactic structure σ(t1, . . . , tn), such that σ ∈
Fs1,...,sn→s and t1, . . . , tn are terms of sort s1, . . . , sn, respectively. A signature
morphism ϕ defines a term translation function terms(ϕ), given by

terms(ϕ)(σ(t1, . . . , tn)) = ϕop(σ)(terms(ϕ)(t1), . . . , terms(ϕ)(tn)).

Given a signature morphism ϕ in SignFOL, sentences are mapped in the following
way:
SenFOL(ϕ)(t ≈ t′) = terms(ϕ)(t) ≈ terms(ϕ)(t′)
SenFOL(ϕ)(π(t1, . . . , tn)) = ϕrl(π)(terms(ϕ)(t1), . . . , terms(ϕ)(tn))
SenFOL(ϕ)(¬ρ) = ¬SenFOL(ϕ)(ρ)
SenFOL(ϕ)(ρ⇒ ρ′) = SenFOL(ϕ)(ρ)⇒ SenFOL(ϕ)(ρ′)
SenFOL(ϕ)(∀x : s . ρ) = ∀x : ϕst(s) . Sen

FOL(ϕ′)(ρ),
where ϕ′ canonically extends ϕ with ϕ′op(x) = x

Models. For each signature (S, F, P) ∈ |SignFOL|,ModFOL(S, F, P) is a cate-
gory whose objects are models with the following components : a carrier set |Ms|,
for each s ∈ S; a function Mσ : |Mw| → |Ms|, for each σ ∈ Fw→s; a relation
Mπ ⊆ |Mw|, for each π ∈ Pw.

For any signature morphism ϕ : (S, F, P) → (S′, F ′, P ′), and any (S′, F ′, P ′)–
model M ′, ModFOL(ϕ)(M ′), or M ′ � ϕ, is defined as:

– for any s ∈ S, |(M ′ � ϕ)s| = |M ′ϕst(s)
|

– for any σ ∈ Fw→s, (M ′ � ϕ)σ = M ′ϕop(σ)

– for any π ∈ Pw, (M ′ � ϕ)π = M ′ϕrl(π)

Satisfaction. For any Σ–model M ∈ |ModFOL(Σ)|, with Σ ∈ |SignFOL|, the
satisfaction relation is inductively defined in the following way:

M |=FOL
Σ t ≈ t′ iff Mt = Mt′

M |=FOL
Σ π(t1, . . . , tn) iff (t1, . . . , tn) ∈Mπ

M |=FOL
Σ ¬ρ iff M 6|=FOL

Σ ρ
M |=FOL

Σ ρ⇒ ρ′ iff M |=FOL
Σ ρ′ whenever M |=FOL

Σ ρ
M |=FOL

Σ ∀x : s . ρ iff for any model x–expansion M ′ of M , M ′ |=FOL
Σ′ ρ

A comorphism is a mapping that “embeds” a structurally “simpler” institu-
tion into a more “complex” one.

Definition 2. Formally, given two institutions I, I ′, a comorphism from I to
I ′ is a triple (Φ, α, β) consisting of

– a functor Φ: SignI → SignI
′
,

– a natural transformation α: SenI ⇒ SenI
′
.Φ,

– a natural transformation β: ModI
′
.Φop ⇒ModI ,

such that, for any Σ ∈ |SignI |,M ′ ∈ |ModI
′
(Φ(Σ))| and ρ ∈ SenI(Σ),

βΣ(M ′) |=IΣ ρ iff M ′ |=I′Φ(Σ) αΣ(ρ)

Definition 3. Let (Φ, α, β) be a comorphism. We say that (Φ, α, β) is conser-
vative whenever, for each Σ–model M in I, there exists a Φ(Σ)–model M ′ in I ′
such that M = βΣ(M ′).

The notion of conservative comorphism is typically used to “borrow” proof sup-
port from an institution in a sound way. In this paper we resort to such notion
to complement Alloy’s proof environment by “borrowing” the proof support
from other logical systems within Hets.

Definition 4. Given an institution I, one defines the institution of presen-
tations over I by extending signatures Σ ∈ |SignI | to pairs (Σ,Γ), where
Γ ⊆ SenI(Σ), signature morphisms to presentation morphisms and restrict-
ing models M ∈ |ModI(Σ)| to the ones in which Γ is satisfied, i.e., such that
M |=IΣ Γ .

The latter definition (from [6]) is very useful to deal with comorphisms where
the source institution is too “complex” to be transformed into the target one in
a straightforward way. Actually, as discussed later in the paper, due to a sort of
“hidden” rules in semantics of Alloy, each comorphism defined in sections 4
and 5 does not go to the institution of the target logic, but to the corresponding
institution of presentations.

The notion of an amalgamation square is often essential for proving the
satisfaction conditions of institutions and comorphisms. This justifies recalling
it here.

Definition 5. A commuting square of functors,

A′

A1

A2

A

G1

G2

F1

F2

is a weak amalgamation square if and only if, for each M1 ∈ |A1|, M2 ∈ |A2|,
such that F1(M1) = F2(M2), there is an object M ′ ∈ |A′| such that G1(M ′) = M1

and G2(M ′) = M2. When M ′ is unique the amalgamation square is called strong.

The model amalgamation of an institution consists of the model amalga-
mation of the diagrams in ModI (external square) induced by the pushout of
signatures in SignI (internal square),

Σ′

Σ1

Σ2

Σ

ModI(Σ′)

ModI(Σ1)

ModI(Σ2)

ModI(Σ)

θ1

θ2

ϕ

ϕ′ModI(θ1)

ModI(θ2)

ModI(ϕ′)

ModI(ϕ)

i.e., for each M1 ∈ |ModI(Σ1)|, M2 ∈ |ModI(Σ2)|, such that ModI(θ1)(M1) =
ModI(θ2)(M2), there is an object M ′ ∈ |ModI(Σ′)| called the amalgamation
of M1 and M2, such that ModI(ϕ)(M ′) = M1 and ModI(ϕ′)(M ′) = M2. The
square is strong if M ′ is unique.

Consider comorphism (Φ, α, β). The model amalgamation of β–transformations
and functor reducts of ModI consists of the weak model amalgamation of the
following commutative square,

Mod′
I
(Φ(Σ′))

ModI
′
(Φ(Σ))

ModI(Σ′)

ModI(Σ)

ModI(θ1)

βΣ′

ModI(ϕ′)

βΣ

i.e., for each MΦ ∈ |ModI
′
(Φ(Σ))|, M ′ ∈ |ModI(Σ′)|, such that βΣ(MΦ) =

ModI(ϕ)(M ′), there is a model M ′Φ ∈ |ModI(Φ(Σ′))|, such that

ModI
′
(ϕ′)(M ′Φ) = MΦ and βΣ′(M

′
Φ) = M ′. When M ′ is unique, the amalgama-

tion square is called strong.

3 Alloy as an institution

Alloy[9] is based on a single sorted relational language extended with a transi-
tive closure operator. Roughly speaking, an Alloy specification is divided into
declarations, of both relations and signatures, and sentences. Signatures will be
called kinds from now on to distinguish them from signatures in an institution.
Actually, kinds are nothing more than unary relations whose purpose is to re-
strict other relations. This is in line with the motto of Alloy which regards
everything as a relation. Additionally, kinds may be given parents by an annota-
tion with the keyword extends, establishing the obvious inclusion relation. When
two kinds are in different subtrees (i.e. one is not a descendant of the other) they
are supposed to be mutually disjoint. Finally, kinds may be of type Abstract, i.e.,
included in the union of its descendants, Some, i.e., required to have at least one
element, or One, i.e., exactly with one element. The Alloy analyser checks an
assertion against a specification by seeking for counter-examples within bounded
domains.

In this section we define an institution for Alloy, A = (SignA,SenA,ModA,
|=A). We proceed as follows:

Signatures. Objects in SignA are tuples, (S,m,R,X), composed by:

– A family of sets containing kinds and indexed by a type,
S = {St}t∈{All,Abs,Som,One}. SAll is the set of all kinds, SAbs the set of the
abstract ones, SSom the non-empty ones, and, finally, SOne collects the kinds
containing exactly one element. Notice that, for all St, St ⊆ SAll.

– m : SAll → SAll is a function that gives the parent of each kind, i.e., m(s) =
s′ means that s′ is the parent of s. Top level kinds are considered the parents
of themselves, and therefore, m takes the form of a forest structure.

– A family of relational symbols R = {Rw|w ∈ (SAll)
+}.

– A set of unary relational symbols X, representing the variable symbols de-
clared on quantified expressions. Despite being the same than the elements
in SOne, once encoded they must be treated differently.

Morphisms ϕ : (S,m,R,X) → (S′,m′, R′, X ′) in this category are triples
ϕ = (ϕkd, ϕrl, ϕvr) such that:

– ϕkd : S → S′ is a function that, for any St ∈ S, if π ∈ St then ϕkd(π) ∈ S′t,
and the following diagram commutes:

S

S

m

S′

S′

m′

ϕs

ϕs

– ϕrl is a family of functions such that, ϕrl = {ϕkd : Rw → R′ϕkd(w)}w∈(SAll)+ ;

– ϕvr : X → X ′ is a function.

Sentences. Consider Exp a functor of the same type of SenA. Given a
signature Σ = (SΣ ,mΣ , RΣ , XΣ) ∈ |SignA|, the set of expressions Exp(Σ) is
the smallest one containing

π, π ∈ (SΣ)All ∪ (RΣ)w ∪XΣ

ˆe, e ∈ Exp(Σ) and |e| = 2
∼ e, e ∈ Exp(Σ)
e −> e′, e, e′ ∈ Exp(Σ)
e� e′, e, e′ ∈ Exp(Σ), |e| = |e′|, and � ∈ {+,−,&}
e . e′, e, e′ ∈ Exp(Σ), and |e|+ |e′| > 2
where the length |e| of an expression e is computed as follows:

|π| = |w|, for π ∈ (RΣ)w
|π| = 1, for π ∈ (SΣ)All ∪XΣ

|ˆe| = |e|
|∼ e| = |e|
|e� e′| = |e|, for � ∈ {+,−,&}
|e . e′| = (|e|+ |e′|)− 2
|e −> e′| = |e|+ |e′|

Finally, the set of sentences, SenA(Σ), is the smallest one containing:

e in e′ e, e′ ∈ Exp(Σ), for |e| = |e′|
not ρ ρ ∈ SenA(Σ)
ρ implies ρ′ ρ, ρ′ ∈ SenA(Σ)
(all x : e) ρ e ∈ Exp(Σ), |e| = 1, and ρ ∈ SenA(Σ′), where

Σ′ = (SΣ ,mΣ , RΣ , XΣ] {x})
Note that other standard boolean connectives may be built from the above. For
instance, the conjunction, denoted in Alloy with symbol and, is usually defined
with the implication and negation constructors.

Given a signature morphism ϕ : Σ → Σ′ in SignA, expressions and sentences
are mapped as follows:

Exp(ϕ)(π) = ϕkd(π), for π ∈ (SΣ)All
Exp(ϕ)(π) = ϕrl(π), for π ∈ (RΣ)All
Exp(ϕ)(π) = ϕvr(π), for π ∈ XΣ

Exp(ϕ)(ˆe) = ˆExp(e)
Exp(ϕ)(e −> e′) = Exp(ϕ)(e)−> Exp(ϕ)(e′)
Exp(ϕ)(e� e′) = Exp(ϕ)(e)� Exp(ϕ)(e′)
Exp(ϕ)(e . e′) = Exp(ϕ)(e) . Exp(ϕ)(e′)

SenA(ϕ)(e in e′) = SenA(ϕ)(e) in SenA(ϕ)(e′)
SenA(ϕ)(not ρ) = not SenA(ϕ)(ρ)
SenA(ϕ)(ρ implies ρ′) = SenA(ϕ)(ρ) implies SenA(ϕ)(ρ′)
SenA(ϕ)((all π : e) ρ) = (all x : Exp(ϕ)(e)) SenA(ϕ′)(ρ), where ϕ′

canonically expands ϕ with ϕ′vr(x) = x.

Models. For each signature (S,m,R,X) ∈ |SignA|, a model
M ∈ |ModA((S,m,R,X))| has,

1. a carrier set |M |;
2. an unary relation Mπ ⊆ |M |, for each π ∈ SAll;
3. a relation Mπ ⊆Mw, for each π ∈ Rw;
4. a singleton relation, Mπ ⊆ |M |, for each π ∈ X,

satisfying the following properties for any π, π′ ∈ SAll,

1. Mπ ⊆Mm(π)

2. if π ∈ SSom, then Mπ 6⊆ ∅
3. if π ∈ SOne, then #Mπ = 1
4. if π ∈ SAbs, then Mπ ⊆

⋃
τ∈m◦(π)Mτ

5. if π, π′ are not related by the transitive closure of m, then
Mπ ∩Mπ′ = ∅

Evaluation of expressions in such models, is done in the following way:
M∼ e = (Me)

◦

Me+ e′ = Me +Me′

Me− e′ = Me −Me′

Me& e′ = Me ∩Me′

Me . e′ = Me . Me′

Me −> e′ = Me ×Me′

Mˆe = (Me)
+

A signature morphism, ϕ : Σ→Σ′, is mapped to ModA(ϕ) : ModA(Σ′) →
ModA(Σ), giving for each M ′ ∈ |ModA(Σ′)|, its ϕ-reduct, M ′ � ϕ ∈ |ModA(Σ)|.
The latter is defined as follows:
|(M ′ � ϕ)| = |M ′|
(M ′ � ϕ)π = M ′ϕkd(π), for any π ∈ (SΣ)All
(M ′ � ϕ)π = M ′ϕrl(π), for any π ∈ (RΣ)w
(M ′ � ϕ)π = M ′ϕvr(π), for any π ∈ XΣ

Satisfaction. Given a Σ-model M , for Σ ∈ |SignA|, the satisfaction relation is
defined for each Σ-sentence as follows:

M |=AΣ e in e′ iff Me ⊆Me′

M |=AΣ not ρ iff M 6|=AΣ ρ
M |=AΣ ρ implies ρ′ iff M |=AΣ ρ′ whenever M |=AΣ ρ
M |=AΣ (all x : e)ρ iff M ′ |=AΣ′ (x in e) implies ρ,

for all model x–expansions M ′ of M , with Σ′ canonically extending Σ with the
variable x.

The next step is to prove that A = (SignA,SenA,ModA, |=A) forms an
institution. The proof will proceed through a number of auxiliary results.

Lemma 1. On the conditions above the commuting diagram below is a strong
amalgamation square.

(S,m,R,X)

(S,m,R,X + {x})

(S′,m′, R′, X ′)

(S′,m′, R′, X ′ + {x})

x

ϕ

ϕ′

xϕ

Proof. Proof in appendix A.1. ut

Lemma 2. For any signature morphism ϕ : Σ → Σ′ in SignA, any Σ–expression
e, and any Σ′–model M ′,

(M ′ � ϕ)e = M ′Exp(ϕ)(e)

Proof. Proof in appendix A.2. ut

Finally, we can prove the satisfaction condition for A and conclude its cha-
racterisation as an institution.

Theorem 1. The satisfaction condition holds for A.

Proof. Let ϕ : Σ → Σ′ be a SignA morphism, ρ a Σ–sentence, and M ′ a Σ′–
model:

Consider first the case ρ := e in e′:

M ′ � ϕ |=AΣ e in e′

⇔ {|= defn. }

(M ′ � ϕ)e ⊆ (M ′ � ϕ)e′

⇔ {Lemma 2 }

M ′Exp(ϕ)(e) ⊆M
′
Exp(ϕ)(e′)

⇔ {|= defn. }

M ′ |=AΣ′ Exp(ϕ)(e) in Exp(ϕ)(e′)

⇔ {SenA defn. }

M ′ |=AΣ′ SenA(ϕ)(e in e′)

Proofs for the negation and implication are analogous.

When ρ := (all x : e) ρ:

M ′ � ϕ |=AΣ (all x : e) ρ

⇔ {|= defn. }

For all model x–expansions (M ′ � ϕ)′ of M ′ � ϕ,
(M ′ � ϕ)′ |=AΣx (x in e) implies ρ

⇔ {Lemma 1; I.H. }

For all model x–expansions M ′′ of M ′,
M ′′ |=AΣ′x SenA(ϕ′)((x in e) implies ρ)

⇔ {|= defn. }

M ′ |=AΣ′ (all x : SenA(ϕ)(e)) SenA(ϕ′)(ρ)

⇔ {SenA defn. }

M ′ |=AΣ′ SenA(ϕ)((all x : e) ρ)
ut

We have proved that A = (SignA, SenA,ModA, |=A) is an institution.

4 From Alloy to SOL

Second-order logic (SOL), extends first–order logic with quantification over func-
tions and predicates, a feature required to canonically encode the notion of
transitive closure primitive in Alloy. The corresponding institution, SOL =

(SignSOL, SenSOL,ModSOL, |=SOL), extends the one in example 1, by allowing
quantification over functions and predicates in SenSOL.

This section describes a conservative comorphism from Alloy to the insti-
tution of presentations over SOL, where the notion of presentations is used as
a key tactic for dealing appropriately with Alloy’s implicit rules over kinds.

We proceed as follows: Let us define (Φ, α, β) : Alloy→ SOLpres.

Signature functor. For any signature (S,m,R,X) ∈ |SignA|, Φ gives a tuple
((S′, F, P), Γ) where,

– S = {U}

– Fw =

{
{π|π ∈ X} if w = U

∅ otherwise

– Pw =

{π|π ∈ SAll} ∪ {π|π ∈ Rs, |s| = 1} if w = U

{π|π ∈ Rs, |s| > 1} if w = (U, . . . , U), |w| > 1

∅ otherwise

and Γ is the least set containing the following sets of axioms:

1. {(∀u : U)π(u)⇒ π′(u)|π ∈ SAll, π′ = m(π)}
2. {(∃u : U)π(u)|π ∈ SOne ∪ SSom}
3. {(∀u, u′ : U) (π(u) ∧ π(u′))⇒ u = u′|π ∈ SOne}
4. {(∀u : U)π(u)⇒ (

∨
π′∈m◦(π) π

′(u))|π ∈ SAbs}
5. {¬(∃u : U)π(u)∧π′(u)|π, π′ ∈ SAll, π,π′ not related by the transitive closure

of m}
6. {(∀u1, . . . , un : U)π(u1, . . . , un)⇒

∧n
i=1 si(ui)|π ∈ Rs1,...,sn}

Sentence transformation. Given any signature Σ = (SΣ ,mΣ , RΣ , XΣ) ∈
|SignA|, αΣ : SenA(Σ)→ SenSOLpres

(Φ(Σ)) is defined as:

αΣ(not ρ) = ¬αΣ(ρ)
αΣ(ρ implies ρ′) = αΣ(ρ)⇒ αΣ(ρ′)
αΣ((all x : e) ρ) = (∀x : U) αΣx ((x in e) implies ρ), where

Σx = (SΣ ,mΣ , RΣ , XΣ + {x})
αΣ(e in e′) = (∀V : U1 . . . Un) ηV (e)⇒ ηV (e′), such that

V = (v1, . . . , vn), and |V | = |e|,
with ηV

4 being defined as follows:

4 To represent a tuple of n elements, v1, . . . , vn, we use notations (v1, . . . , vn) and
v1, . . . , vn interchangeably, the latter being usually chosen if potential ambiguity is
ruled out by the context.

ηV (π) = π(V), π ∈ (SΣ)All ∪ (RΣ)w
ηv(π) = π = v, π ∈ XΣ

η(v1,v2)(ˆe) = (∃R : U1, U2)R(v1, v2) ∧ αΣR(e inR and e.R inR) ∧
(∀S : U1, U2)αΣR,S ((e in S and e.S in S) impliesR in S),
where ΣR = (SΣ ,mΣ , RΣ +R,XΣ) and
ΣR,S = (SΣ ,mΣ , RΣ +R+ S,XΣ)

ηV (∼ e) = ηV ′(e), such that V ′ = (vn, . . . , v1)
ηV (e+ e′) = ηV (e) ∨ ηV (e′)
ηV (e - e′) = ηV (e) ∧ ¬ηV (e′)
ηV (e& e′) = ηV (e) ∧ ηV (e′)
ηV (e −> e′) = ηV ′(e) ∧ ηV ′′(e′), where V ′ is the prefix of V such that

|V ′| = |e| and V ′′ the suffix of V such that |V ′′| = |e′|
ηV (e . e′) = (∃y : U)η(V ′,y)(e) ∧ η(y,V ′′)(e

′), where V ′ is the prefix of V
such that |V ′|+ 1 = |e|, V ′′ the suffix of V such that
|V ′′|+ 1 = |e′|

Model transformation. Consider a signatureΣ = (SΣ ,mΣ , RΣ , XΣ) ∈ |SignA|,
and a Φ(Σ)–model M .
Then βΣ : |ModSOLpres(Φ(Σ))| → |ModA(Σ)| is defined as:

|βΣ(M)| = |MU |, where |MU | is the carrier of U in M ,
βΣ(M)π = Mπ, for any π ∈ (SΣ)All ∪ (RΣ)w,
βΣ(M)π = {Mπ}, for any π ∈ XΣ

Lemma 3. On the conditions above, the commuting diagram below is a strong
amalgamation square,

ModSOLpres

(S′, F ′, P ′)

ModSOLpres

(S′, F ′ + {x}, P ′)

x

ModA(S,m,R,X)

ModA(S,m,R,X + {x})

xβ

β(S,m,R,X)

β(S,m,R,X+{x})

Proof. Proof in appendix A.3 ut

Note that Lemma 3 says that, for any (S′, F ′, P ′)–model M the xβ–expansion
of its transformation by β(S,m,R,X), is equal to the transformation by
β(S,m,R,X+{x}) of its x–expansion, whenever the value taken by both x’s in the
corresponding expansions is the same.

Lemma 4. Let Σ = (SΣ ,mΣ , RΣ , XΣ) be a signature in SignA, M ′ a Φ(Σ)-
model M ′, and e a Σ-expression. Then, for any tuple (v1, . . . , vn) ∈ XΣ with
n = |e|, we have

M ′ |=SOLpres

Φ(Σ) η(v1,...,vn)(e) iff βΣ(M ′) |=AΣ (v1−> . . .−>vn) in e

Proof. Proof in appendix A.4 ut

Theorem 2. On the conditions above the satisfaction condition holds in (Φ, α, β).
I.e., given a signature Σ ∈ |SignA|, a Φ(Σ)-model M ′, and a Σ-sentence ρ

M ′ |=SOLpres

Φ(Σ) αΣ(ρ) iff βΣ(M ′) |=AΣ ρ

Proof. Proof in appendix A.5 ut

Theorem 3. The triple (Φ, α, β) defined above is a conservative comorphism
(in SOLpres).

Proof. Let M be an (S,m,R,X)-model. Now, lets consider the Φ(S,m,R,X)-
model M ′ defined by:

1. |M ′U | = |M |
2. M ′π = Mπ, for any π ∈ SAll ∪Rw
3. M ′π = a where {a} = Mπ, for any π ∈ X

Clearly β(S,m,R,X)(M
′) = M and M ′ satisfies Γ . Hence β is surjective and,

therefore, (Φ, α, β) is conservative.
ut

5 From Alloy to Casl

Casl, the Common Algebraic Specification Language [14], was developed within
the CoFI initiative with the purpose of creating a suitable language for spec-
ifying requirements and to design conventional software packages. Casl speci-
fications extend multi-sorted first order logic with partial functions, subsorting
and free types, i.e., types whose elements are restricted to be generated by the
corresponding constructors and whose distinct constructor terms must denote
different elements; we use free types and the notion of presentations to encode
Alloy’s transitive closure in Casl. Signatures in Casl are as in SOL, but ex-
tended with a family of partial functions symbols PF indexed by their arity, and
a partial order ≤ over the symbols in S. As usual, PF ∩ F = ∅.

Currently, Casl is regarded as the de facto standard language for algebraic
specification. It is integrated into Hets along with many of its expansions, act-
ing, as suggested in figure 1, as a glue language inside the Hets network of
logics.

A comorphism (Φ′, α′, β′) : Alloy→Caslpres may be defined in a very simi-
lar way to the comorphism defined in the previous section. Let us, then, analyse
the things that change in each component.

Signature functor. For any signature (S,m,R,X) ∈ |SignA|, Φ′ gives a tuple
((S′, F, PF, P), Γ) where

S′ = {U,Nat}
PF = ∅

Fw =

{π|π ∈ X} if w = U

{0} if w = Nat

{suc} if w = Nat,Nat

∅ for the other cases

Pw =

{π|π ∈ SAll} ∪ {r|r ∈ Rs, |s| = 1} if w = U

{r|r ∈ Rs, |s| > 1} if w = (U, . . . , U), |w| > 1

{πr|π ∈ Rs, |s| = 2} if w = Nat, U, U

∅ for the other cases

and Γ contains two additional rules:

1. { free type Nat ::= (0 | suc(Nat)) }
2. {(∀u, v : U) πr(0, u, v) ⇔ r(u, v) ∧ (∀n : Nat) πr(suc(n), u, v) ⇔ (∃x : U)
πr(0, u, x) ∧ πr(n, x, v)|πr ∈ Rs, |s| = 2}

Sentence transformation. Given any signature Σ ∈ |SignA|, where
Σ = (SΣ ,mΣ , RΣ , XΣ), α′Σ : SenA(Σ) → SenCASLpres

(Φ(Σ)) is defined in the
same way as α (introduced in section 4), with the following replacing the case
of transitive closure over expressions:

η′V (ˆr) = (∃n : Nat) πr(n, V)

Note that only the transitive closure of atomic relations is considered. This is
done, however, without loss of generality: for an arbitrary expression we just
declare an extra binary relation and state that the latter is equal to the former.

Model transformation. Nothing changes in the model transformation compo-
nent, i.e., for each Σ ∈ |SignA|, βΣ = β′Σ .

Theorem 4. On the conditions above the satisfaction condition holds in
(Φ′, α′, β′).

Proof. We can prove the satisfaction condition by using the following treatment
in the case of transitive closure:

When e := ˆr, r ∈ Rw, with |w| = 2 :

M ′ |=Caslpres

Φ(Σ) ηV (ˆr)

⇔ {α definition }

M ′ |=caslpres

Φ(Σ) (∃n : Nat) πr(n, V)

⇔ {|= defn. and πr in Γ defn. }

M ′V ∈M ′(r+)

⇔ {elements of V are constants, β definition }

βΣ(M ′)V ⊆ βΣ(M ′)(r+)

⇔ {Expression evaluation and |= definition }

βΣ(M ′) |=AΣ V in ˆr

Then for all other cases the proof is analogous to the one performed in the last
section. ut

Theorem 5. The above comorphism is conservative.

Proof. We have just to define a model in the same way as in Theorem 3. In
addition, the following must also be included:

(a) M ′Nat = N;
(b) For any π in Rs,s, M

′ has a relation, πr, defining the transitive closure of r.

Clearly, M ′ satisfies the additional rules 1,2 in Γ . ut

We have proved that (Φ′, α′, β′) is a comorphism, and furthermore that is
conservative. This means that (Φ′, α′, β′) is a sound method for validating Al-
loy’s specifications through the proof environment of Casl.

6 ALLOY and HETS at work

6.1 An introduction to DCR graphs

DCR graphs, short for Distributed Condition Response Graphs, were introduced
in [8] to specify workflow models in an implicit way through a number of con-
ditions. A functional style and precise semantics make DCR graphs excellent
candidates for modelling critical workflows.

Formally, a DCR graph consists of a set E of events and two relations
condition, response ⊆ E × E which restrict control flow, regarded as a se-
quence of event executions. In detail,

– (e, e′) ∈ condition iff e′ can only be executed after e;
– (e, e′) ∈ response iff whenever e is executed the control flow may only come

to terminal configuration after the execution of e′.

A mark, or execution state, in a DCR G, is a tuple (Ex,Res) ∈ P(E)×P(E),
where Ex is the set of the events that already occurred and Res the set of
events scheduled for execution. A valid execution step in G is a triple (M,M ′, e)
where M,M ′ ∈ P(E) × P(E) and e ∈ E such that, for M = (Ex,Res),M ′ =
(Ex′, Res′),

1. {e′|condition(e′, e)} ⊆ Ex
2. Ex′ = Ex ∪ {e}
3. Res′ = (Res\{e}) ∪ {e′|response(e, e′)}

Mukkamala [16] suggests a translation of DCR graphs to Promela so that
the specification of workflows can be checked with the Spin model checker. The
encoding, however, is not easy. For example, the language has only arrays as
a basic data structure, thus events and relations have to be encoded as arrays,
relations becoming two-dimensional bit arrays. Moreover, Spin based verification
is limited by possible state explosion.

An encoding into ALLOY, on the other hand, seems an attractive alterna-
tive. Not only it comes out rather straightforwardly, due to the original relational
definition of DCR graphs, but also the ALLOY analyser is eager to avoid poten-
tial state space explosion by restricting itself to bounded domains. This restricts,
of course, the scope of what can be verified in a specification. However, as illus-
trated below, Alloy plugged into the HETS family offers a really interesting
alternative to the verification of DCR based workflows.

6.2 DCR graphs in ALLOY

DCR graphs are encoded in ALLOY as follows,

abstract sig Event {
condition : set Event,
response : set Event

}

sig Mark {
executed : set Event,
toBeExecuted : set Event,
action : set Mark −> set Event

}

fact {
all m,m’ : Mark, e : Event |

(m −> m’ −> e) in action <=>

(condition.e in m.executed and

m’.executed = m.executed + e and

m’.toBeExecuted = (m.toBeExecuted - e) + e.response)

}

This includes the declaration of two kinds (sig), one of events and another
to define markings. Relations are declared in an object oriented style as fields
of kinds (objects). For example, what the declaration of action entails is, as
expected, a subset of the product Mark × Mark × Event. Finally note how the
invariant for valid execution steps is directly captured in the fact above. Other
DCR properties can be directly checked in ALLOY. For example,

all m,m’ : Mark, e : Event |
(m −> m’ −> e) in action and e in m’.toBeExecuted

implies e in e.response

formalises the claim that ‘after executing an event e, if in the next mark e is still
to be executed, then response contains a reflexive pair at e”.

Of course, this property cannot be proved in ALLOY for an arbitrary do-
main. To do it another tool inside the network has to be called, provided that
ALLOY is already plugged there. Applying the comorphism to CASL defined
in the previous section we get the following encoding of the property:

forall m : U . Mark(m) =>

forall m’ : U . Mark(m’) =>

forall e : U . Event(e) =>

(forall v1,v2,v3 : U . v1 = m /\ v2 = m’ /\ v3 = e => action(v1,v2,v3)) /\
(forall v : U . v = e => exists y : U . y = m’ /\ toBeExecuted(y,v)) =>

(forall v : U . v = e => exists y : U . y = e /\ response(y,v))

which, after a few reduction steps simplifies to

forall m,m’,e : U .

Mark(m) /\ Mark(m’) /\ Event(e) =>

(action(m,m’,e) /\ toBeExecuted(m’,e) => response(e,e))

which is can then be verified by the SPASS theorem prover.

6.3 A medical workflow

Consider now the following example of a DCR graph representing a medical
workflow as introduced in [16]. It concerns the administration of a medicine to
a patient. The workflow diagram obtained from the Alloy analyser is depicted
in Fig. 2.

As mentioned in the introduction, Alloy may give a false sense of security
as the scope set for a simulation session may not be wide enough to produce
a counter example. To illustrate this situation consider the following property
in which we assume transRun = ˆ(action.Event). In English it reads: “starting
with an empty mark (∅, ∅), if by continuously executing events a mark is reached
where SecEffect was executed and no further events are to be executed, then this
mark has no executed events”. In Alloy,

all m,m’ : Mark |
(no m.(executed+toBeExecuted) and

m’ in m.transRun and

SecEffect in m’.executed and

no m’.toBeExecuted)

implies no m’.executed

Fig. 2. A medical workflow diagram

An analysis of the workflow diagram shows the property is false. Actually, if
the left side of the implication is true, it may happen that the right hand side
is false: the former says there are executed events while the latter contradicts
it. The Alloy analyser, however, is unable to find a counter-example within a
scope below 15 (recall the default scope is 3). The problem of this, is that with
a scope smaller than 15 (10 marks + 5 events) the Alloy analyser can never
reach a mark where the left side of the implication is true, and therefore no
counter examples are found.

On the other hand, after encoding into CASL and calling another prover in
the HETS network, such as Vampire, the result pops out in a few seconds. A
HETS session for this example is reproduced in Fig. 3. In general the ALLOY
analyser has difficulties when dealing with similar properties and diagrams with
just two more events. In some cases the search, if successful, may exceed 30
minutes.

We have checked several other properties5 using both ALLOY, with scope
15, and automatic theorem provers available in HETS, namely SPASS and
EProver, through the second encoding proposed in this paper. The experi-
mental results seem to confirm the advantages of the hybrid approach proposed
here, with automatic theorem provers taking the job whenever ALLOY is un-
able to proceed or requires an excessive processing time. In some cases, namely
when dealing with encodings of ALLOY models that make heavy use of tran-
sitive closure, another member of the HETS network — an interactive theorem
prover — has to be called.

5 Full models at github.com/nevrenato/IRI FMI Annex.

Fig. 3. A Hets session.

7 Discussion and conclusions

The paper laid the first steps toward establishing a rigorous methodology for
modelling and validating software designs by connecting Alloy to a network of
logics and logical tools, rather than, once and for all, to a single one.

Going generic has, as one could expect, a price to be paid. In our case,
this was the development of a proper formalisation of the Alloy underlying
logical system as an institution, together with conservative comorphisms into
institutions of presentations over SOL and Casl as entry points in the Hets
network. The work reported here extends [17] in working out all the proof details
and, mainly, providing a new, sound translation to SOL.

Adopting an institutional framework brings to scene a notational burden the
working software engineer may find hard to bear. It should be noted, however,
this is done once and for all: our results, once proved, provide a simple method
to translate Alloy models not only into both SOL and Casl specifications. On
the other hand, following this approach has a number of advantages. First of all
this is a sound way to integrate systems based on a formal relationship between
their underlying logical systems. This contrasts with ad hoc combinations, often
attractive at first sight but not always consistent, which abound in less careful
approaches to Software Engineering. A second advantage concerns the possibil-
ity of, once an institutional representation for Alloy is obtained, combining it
with other logical systems through a number of techniques available in the in-

stitutional framework. For example, in [13] we have developed a systematic way
to build a hybrid logic layer on top of an arbitrary institution.

Hybrid logic [5] adds to the modal description of transition structures the
ability to refer to specific states, which makes it a suitable language to describe
properties of individual states in any sort of structured transition system. A
typical application of this method discussed in [11] is the design of reconfig-
urable systems, where each state corresponds to an execution configuration and
transitions are labelled by triggers. The institutional rendering of Alloy makes
possible that the hybridisation of its models and their integration in the devel-
opment cycle of reconfigurable software.

A second motivation was defining a tool chain for the validation of workflows
represented by DCR graphs. Results obtained so far suggest that ALLOY, suit-
ably integrated into a wider network of theorem provers, provides an intuitive
alternative to the Promela formalisation presented in [16]. More experimental
work, however, is necessary to substantiate this claim on general grounds.

Acknowledgements: This work is funded by ERDF - European Regional De-
velopment Fund through the COMPETE Programme (operational programme
for competitiveness) and by National Funds through FCT, the Portuguese Foun-
dation for Science and Technology, within projects FCOMP-01-0124-FEDER-
028923, project FCOMP-01-0124-FEDER-022690 and NORTE-01-0124-FEDER-
000060.

References

1. Konstantine Arkoudas, Sarfraz Khurshid, Darko Marinov, and Martin Rinard. In-
tegrating model checking and theorem proving for relational reasoning. In 7th
Inter. Seminar on Relational Methods in Computer Science (RelMiCS 2003), vol-
ume 3015 of Lecture Notes in Computer Science, pages 21–33, 2003.

2. Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Implementing the model
evolution calculus. International Journal on Artificial Intelligence Tools, 15(1):21–
52, 2006.

3. Christoph Benzmüller, Florian Rabe, and Geoff Sutcliffe. Thf0 — the core of the
tptp language for higher-order logic. In Proceedings of the 4th international joint
conference on Automated Reasoning, IJCAR ’08, pages 491–506, Berlin, Heidel-
berg, 2008. Springer-Verlag.

4. Christoph Benzmüller, Frank Theiss, Larry Paulson, and Arnaud Fietzke. LEO-II
- a cooperative automatic theorem prover for higher-order logic. In Alessandro
Armando, Peter Baumgartner, and Gilles Dowek, editors, Automated Reasoning,
4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15,
2008, Proceedings, volume 5195 of LNCS, pages 162–170. Springer, 2008.

5. T Braüner. Proof-Theory of Propositional Hybrid Logic. Hybrid Logic and its
Proof-Theory, 2011.

6. Răzvan Diaconescu. Institution-independent Model Theory. Birkhäuser Basel,
2008.

7. Joseph A. Goguen and Rod M. Burstall. Institutions: abstract model theory for
specification and programming. J. ACM, 39:95–146, January 1992.

8. Thomas T. Hildebrandt and Raghava Rao Mukkamala. Declarative event-based
workflow as distributed dynamic condition response graphs. In Proc. 3rd PLACES
Workshop, volume 69 of EPTCS, pages 59–73, 2010.

9. Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT
Press, 2006.

10. Nuno Macedo and Alcino Cunha. Automatic unbounded verification of Alloy spec-
ifications with Prover9. CoRR, abs/1209.5773, 2012.

11. Alexandre Madeira, José M. Faria, Manuel A. Martins, and Lúıs Soares Barbosa.
Hybrid specification of reactive systems: An institutional approach. In G. Barthe,
A. Pardo, and G. Schneider, editors, Software Engineering and Formal Methods
(SEFM 2011, Montevideo, Uruguay, November 14-18, 2011), volume 7041 of Lec-
ture Notes in Computer Science, pages 269–285. Springer, 2011.

12. Maŕıa Manzano. Extensions of first order logic. Cambridge tracts in theoretical
computer science. Cambridge University Press, Cambridge, New York, 1996.

13. Manuel A. Martins, Alexandre Madeira, Răzvan Diaconescu, and Lúıs Soares Bar-
bosa. Hybridization of institutions. In A. Corradini, B. Klin, and C. Ĉırstea,
editors, Algebra and Coalgebra in Computer Science (CALCO 2011, Winchester,
UK, August 30 - September 2, 2011), volume 6859 of Lecture Notes in Computer
Science, pages 283–297. Springer, 2011.

14. Till Mossakowski, Anne Haxthausen, Donald Sannella, and Andrzej Tarlecki.
CASL: The common algebraic specification language: Semantics and proof the-
ory. Computing and Informatics, 22:285–321, 2003.

15. Till Mossakowski, Christian Maeder, and Klaus Lüttich. The heterogeneous tool
set, Hets. In O. Grumberg and M. Huth, editors, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2007 - Braga, Portugal, March
24 - April 1, 2007), volume 4424 of Lecture Notes in Computer Science, pages
519–522. Springer, 2007.

16. R. R. Mukkamala. A Formal Model For Declarative Workflows : Dynamic Condi-
tion Response Graphs. PhD thesis, IT University of Copenhagen, 2012.

17. Renato Neves, Alexandre Madeira, Manuel A. Martins, and Lúıs S. Barbosa. Giv-
ing alloy a family. In Chengcui Zhang, James Joshi, Elisa Bertino, and Bhavani
Thuraisingham, editors, Proceedings of 14th IEEE International conference on in-
formation reuse and intergration, pages 512–519. IEEE Press, 2013.

18. Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: a proof
assistant for higher-order logic. Springer-Verlag, Berlin, Heidelberg, 2002.

19. Alexandre Riazanov and Andrei Voronkov. The design and implementation of
vampire. AI Commun., 15(2,3):91–110, August 2002.

20. Mattias Ulbrich, Ulrich Geilmann, Aboubakr Achraf El Ghazi, and Mana Taghdiri.
A proof assistant for alloy specifications. In Cormac Flanagan and Barbara König,
editors, Proc. 18th Inter. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 7214 of Lecture Notes in Computer Science,
pages 422–436. Springer, 2012.

21. Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin
Suda, and Patrick Wischnewski. SPASS version 3.5. In Renate A. Schmidt, ed-
itor, Proceedings of the 22nd International Conference on Automated Deduction,
CADE 2009, volume 5663 of Lecture Notes in Artificial Intelligence, pages 140–145.
Springer, 2009.

A Proofs

A.1 Lemma 1

The following commuting diagram of Alloy signature morphisms is a strong
amalgamation square.

(S,m,R,X)

(S,m,R,X + {x})

(S′,m′, R′, X ′)

(S′,m′, R′, X ′ + {x})

x

ϕ

ϕ′

xϕ

Proof. Let M1 be an (S,m,R,X + {x})–model, and M2 an (S′,m′, R′, X ′)–
model, such that ModA(x)(M1) = ModA(ϕ)(M2). Thus, for any π ∈ St,M1π =
M2ϕkd(π), for any π ∈ Rw,M1π = M2ϕrl(π), for any π ∈ X, M1π = M2ϕvr(π),
and |M1| = |M2|.

Then, let us define an (S′,m′, R,′ , X ′+{x})-model M ′ by stating that: For all
π ∈ S′t,M2π = M ′π; for all π ∈ R′w,M ′π = M2π; for all π ∈ X ′,M2π = M ′π; |M2| =
|M ′|, and M1x = M ′x. Clearly, M1 = ModA(ϕ′)(M ′) and M2 = ModA(xϕ)(M ′).
Also it is not difficult to show that M ′ is unique. Therefore the diagram above
is a strong amalgamation square.

ut

A.2 Lemma 2

For any signature morphism ϕ : Σ → Σ′ in SignA, any Σ–expression e, and any
Σ′–model M ′,

(M ′ � ϕ)e = M ′Exp(ϕ)(e)

Proof. Consider first the case e := π, for π ∈ (RΣ)w :

(M ′ � ϕ)π

= {Reduct defn. }

M ′ϕrl(π)

= {Exp defn. }

M ′Exp(ϕ)(π)

Proofs for when π ∈ (SΣ)All or π ∈ XΣ are analogous.

When e := e+ e′ :

(M ′ � ϕ)e+e′

= {Expression evaluation }

(M ′ � ϕ)e + (M ′ � ϕ)e′

= {Induction hypothesis }

M ′Exp(ϕ)(e) +M ′Exp(ϕ)(e′)

= {Expression evaluation }

M ′Exp(ϕ)(e)+Exp(ϕ)(e′)

= {Exp defn. }

M ′Exp(ϕ)(e+e′)

Proofs for the remaining operators are analogous. ut

A.3 Lemma 3

The following commuting square of model morphisms and model transformations
is a strong amalgamation square,

ModSOLpres

(S′, F ′, P ′)

ModSOLpres

(S′, F ′ + {x}, P ′)

x

ModA(S,m,R,X)

ModA(S,m,R,X + {x})

xβ

β(S,m,R,X)

β(S,m,R,X+{x})

Proof. Let M1 be an (S,m,R,X + {x})–model and M2 a (S′, F ′, P ′)–model
such that ModA(xβ)(M1) = β(S,m,R,X)(M2). I.e., for any π ∈ SAll ∪ Rw ∪ X,
M1π = M2π and |M1| = |M2|.

Then let us define an (S′, F ′ + {x}, P ′)–model M ′ such that for any s ∈
S′, |M ′s| = |M2s|; for any σ ∈ F ′w,M ′σ = M2σ; for any π ∈ P ′w,M ′π = M2π; M ′x =
{M1x}. Clearly, we haveM1 = β(S,m,R,X+{x})(M

′) andM2 = ModSOLpres

(x)(M ′).
Moreover, it is not difficult to show that M ′ is unique. Therefore the diagram
above is a strong amalgamation square. ut

A.4 Lemma 4

Let Σ = (SΣ ,mΣ , RΣ , XΣ) be a signature in SignA, M ′ a Φ(Σ)-model M ′, and
e a Σ-expression. Then, for any tuple (v1, . . . , vn) ∈ XΣ with n = |e|, we have

M ′ |=SOLpres

Φ(Σ) η(v1,...,vn)(e) iff βΣ(M ′) |=AΣ (v1−> . . .−>vn) in e

Proof. When e := π, π ∈ (RΣ)w ∪ (SΣ)All :

M ′ |=SOLpres

Φ(Σ) η(v1,...,vn)(π)

⇔ {η defn. }

M ′ |=SOLpres

Φ(Σ) π(v1, . . . , vn)

⇔ {|= defn. }

(M ′v1 , . . . ,M
′
vn) ∈M ′π

⇔ {vi elements are constants }

M ′v1 × · · · ×M
′
vn ⊆M

′
π

⇔ {β defn. }

βΣ(M ′)v1 × · · · × βΣ(M ′)vn ⊆ βΣ(M ′)π

⇔ {Expression evaluation; |= defn. }

βΣ(M ′) |=AΣ (v1−> . . .−>vn) in π

When e := π, π ∈ XΣ :

M ′ |=SOLpres

Φ(Σ) ηv(π)

⇔ {η defn. }

M ′ |=SOLpres

Φ(Σ) v = π

⇔ {|= defn. }

M ′v = M ′π

⇔ {v and π are constants }

{M ′v} ⊆ {M ′x}

⇔ {β defn. }

βΣ(M ′)v ⊆ βΣ(M ′)π

⇔ {|= defn. }

βΣ(M ′) |=AΣ v in π

When e := e . e′:

M ′ |=SOLpres

Φ(Σ) ηV (e . e′)

⇔ {η defn. }

M ′ |=SOLpres

Φ(Σ) (∃y : U) η(V ′,y)(e) ∧ η(y,V ′′)(e
′)

⇔ {|= defn. }

There is a y-expansion M ′′ of M ′ such that
M ′′ |=SOLpres

Φ(Σ)y η(V ′,y)(e) and M ′′ |=SOLpres

Φ(Σ)y η(y,V ′′)(e
′)

⇔ {I.H., lemma 3, |= defn. }

There is a y–expansion M ′′ of M ′ such that
βΣy (M ′′) |=AΣy (V ′−>y) in e and (y−>V ′′) in e′

⇔ {lemma 3, |= defn. }

βΣ(M ′) |=AΣ V in e . e′

When e := ˆe:

M ′ |=SOLpres

Φ(Σ) η(v1,v2)(ˆe)

⇔ { η defn. }

M ′ |=SOLpres

Φ(Σ) ∃R.
(
R(v1, v2) ∧ αΣR(e inR and e.R inR)∧

∀S. αΣR,S ((e in S and e.S in S) impliesR in S)
)

⇔ { |= defn. }

There is an R-expansion MR of M ′ such that
MR |=SOLpres

Φ(Σ)R R(v1, v2) ∧ αΣR(e inR and e.R inR)

and for any S-expansion MR,S of MR,
MR,S |=SOLpres

Φ(Σ)R,S αΣR,S

(
(e in S and e.S in S) impliesR in S

)
⇔ {|= defn, α defn. }

There is an R-expansion MR of M ′ such that(
MR |=SOLpres

Φ(Σ)R R(v1, v2) and MR |=SOLpres

Φ(Σ)R (∀u1, u2).(
η(u1,u2)(e)⇒ η(u1,u2)(R)

)
∧
(
η(u1,u2)(e.R)⇒ R(u1, u2)

))
and for any S-expansion MR,S of MR,

MR,S |=SOLpres

Φ(Σ)R,S

(
(∀u1, u2).(η(u1,u2)(e)⇒ η(u1,u2)(S))∧

(η(u1,u2)(e.S)⇒ S(u1, u2))
)
⇒
(
(∀u1, u2).R(u1, u2)⇒ S(u1, u2)

)
⇔ { α defn., |= defn. }

There is an R-expansion MR of M ′ such that
MR |=SOLpres

Φ(Σ)R R(v1, v2) and

(
for any (u1, u2)-expansion (MR)(u1,u2) of MR,(

(MR)(u1,u2) |=SOLpres

Φ(Σ)R,u1,u2
η(u1,u2)(e) implies

(MR)(u1,u2) |=SOLpres

Φ(Σ)R,u1,u2
η(u1,u2)(R)

)
and(

(MR)(u1,u2) |=SOLpres

Φ(Σ)R,u1,u2
η(u1,u2)(e.R) implies

(MR)(u1,u2) |=SOLpres

Φ(Σ)R,u1,u2
R(u1, u2)

))
and for any S-expansion MR,S of MR,(

for any (u1, u2)-expansion (MR,S)(u1,u2) of MR,S(
(MR,S)(u1,u2) |=SOLpres

Φ(Σ)R,S,u1,u2
η(u1,u2)(e) implies

(MR,S)(u1,u2) |=SOLpres

Φ(Σ)R,S,u1,u2
η(u1,u2)(S)

)
and(

(MR,S)(u1,u2) |=SOLpres

Φ(Σ)R,S,u1,u2
η(u1,u2)(e.S) implies

(MR,S)(u1,u2) |=SOLpres

Φ(Σ)R,S,u1,u2
S(u1, u2)

))
implies

that for any (u1, u2)-expansion (MR,S)(u1,u2) of MR,S(
(MR,S)(u1,u2) |=SOLpres

Φ(Σ)R,S,u1,u2
R(u1, u2) implies

(MR,S)(u1,u2) |=SOLpres

Φ(Σ)R,S,u1,u2
S(u1, u2)

)
⇔ {I.H., Lemma 3 }

There is an R-expansion MR of M ′ such that
βΣR(MR) |=AΣR (v1−>v2) inR and(

for any (u1, u2)-expansion (MR)(u1,u2) of MR,(
βΣR,u1,u2 ((MR)(u1,u2)) |=A

ΣR,u1,u2
(u1−>u2) in e implies

βΣR,u1,u2 ((MR)(u1,u2)) |=A
ΣR,u1,u2

(u1−>u2) inR
)

and(
βΣR,u1,u2 ((MR)(u1,u2)) |=A

ΣR,u1,u2
(u1−>u2) in e.R implies

βΣR,u1,u2 ((MR)(u1,u2)) |=A
ΣR,u1,u2

(u1−>u2) inR
))

and for any S-expansion MR,S of MR,(
for any (u1, u2)-expansion (MR,S)(u1,u2) of MR,S(

βΣR,S,u1,u2 ((MR,S)(u1,u2)) |=A
ΣR,S,u1,u2

(u1−>u2) in e implies

βΣR,S,u1,u2 ((MR,S)(u1,u2)) |=A
ΣR,S,u1,u2

(u1−>u2) in S
)

and(
βΣR,S,u1,u2 ((MR,S)(u1,u2)) |=A

ΣR,S,u1,u2
(u1−>u2) in e.S implies

βΣR,S,u1,u2 ((MR,S)(u1,u2)) |=A
ΣR,S,u1,u2

(u1−>u2) in S
))

implies

that for any (u1, u2)-expansion (MR,S)(u1,u2) of MR,S(
βΣR,S,u1,u2 ((MR,S)(u1,u2)) |=A

ΣR,S,u1,u2
(u1−>u2) inR implies

βΣR,S,u1,u2 ((MR,S)(u1,u2)) |=A
ΣR,S,u1,u2

(u1−>u2) in S
)

⇔ {inclusion defn., |= defn. }

There is an R–expansion MR of M ′ such that

βΣR(MR) |=AΣR (v1−>v2) inR and
βΣR(MR) |=AΣR e inR and e.R inR

and for all S–expansions MR,S of MR

βΣR,S |=AΣR,S (e in S and e.S in S) impliesR in S

⇔ {transitive closure defn. }

βΣ(M ′) |=AΣ (v1−>v2) in ˆe

When e := ∼ e:

M ′ |=SOLpres

Φ(Σ) η(v1,...,vn)(∼ e)

⇔ {α defn. }

M ′ |=SOLpres

Φ(Σ) η(vn,...,v1)(e)

⇔ {I.H }

βΣ(M ′) |=AΣ (vn−> . . .−>v1) in e

⇔ {Galois connection }

β(M ′) |=AΣ (v1−> . . .−>vn) in (∼ e)

When e := e+ e′:

M ′ |=SOLpres

Φ(Σ) ηV (e+ e′)

⇔ {α defn., |= defn. }

M ′ |=SOLpres

Φ(Σ) ηV (e) or M ′ |=SOLpres

Φ(Σ) ηV (e′)

⇔ {I.H }

βΣ(M ′) |=AΣ V in e or βΣ(M ′) |=AΣ V in e′

⇔ {|= defn., sum defn. }

βΣ(M ′) |=AΣ V in e+ e′

Proofs for the remaining cases are analogous.
ut

A.5 Theorem 2

The satisfaction condition holds in (Φ, α, β) : Alloy → SOLpres. I.e., given a
signature Σ ∈ |SignA|, a Φ(Σ)-model M ′, and a Σ-sentence ρ

M ′ |=SOLpres

Φ(Σ) αΣ(ρ) iff βΣ(M ′) |=AΣ ρ

Proof. When ρ := e in e′:

M ′ |=SOLpres

Φ(Σ) αΣ(e in e′)

⇔ {α defn. }

M ′ |=SOLpres

Φ(Σ) (∀V : U1, . . . , Un) ηV (e)⇒ ηV ′(e
′)

⇔ {Satisfaction defn. }

For any V -expansion M ′′ of M ′,
M ′′ |=AΦ(Σ)′ ηV (e′) whenever M ′′ |=AΦ(Σ)′ ηV (e)

⇔ {Lemma 4 and |= defn. }

For any V -expansion M ′′ of M ′,
βΣ′(M

′′) |=AΣ′ V in e⇒ V in e′

⇔ {Inclusion defn., Lemma 3 }

βΣ(M ′) |=AΣ e in e′

When ρ := not ρ:

M ′ |=SOLpres

Φ(Σ) αΣ(not ρ)

⇔ {α defn. }

M ′ |=SOLpres

Φ(Σ) not αΣ(ρ)

⇔ {|= defn. }

M ′ 6|=SOLpres

Φ(Σ) αΣ(ρ)

⇔ {I.H. }

βΣ(M ′) 6|=AΣ ρ

⇔ {|= defn. }

βΣ(M ′) |=AΣ not ρ

For implication the proof is analogous

When ρ := (all x : e) ρ:

M ′ |=SOLpres

Φ(Σ) αΣ((all x : e) ρ)

⇔ {α defn. }

M ′ |=SOLpres

Φ(Σ) (∀x : U)αΣ((x in e) implies ρ)

⇔ {|= defn. }

For any x-expansion M ′′ of M ′,
M ′′ |=SOLpres

Φ(Σ)x αΣx((x in e) implies ρ)

⇔ {I.H. }

For any x-expansion M ′′ of M ′,
βΣx(M ′′) |=AΣx (x in e) implies ρ

⇔ {Lemma 3 }

For any x-expansion βΣx(M ′′) of βΣ(M ′),
βΣx(M ′′) |=AΣx (x in e) implies ρ

⇔ {|= defn. }

βΣ(M ′) |=AΣ (all x : e) ρ
ut

