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Abstract
In computational complexity theory, decision problems are divided into complexity
classes based on the amount of computational resources it takes for algorithms to solve
them. In theoretical computer science, it is commonly accepted that only functions for
solving problems in the complexity class P, solvable by a deterministic Turing machine
in polynomial time, are considered to be tractable. In cognitive science and philosophy,
this tractability result has been used to argue that only functions in P can feasibly work
as computational models of human cognitive capacities. One interesting area of com-
putational complexity theory is descriptive complexity, which connects the expressive
strength of systems of logic with the computational complexity classes. In descriptive
complexity theory, it is established that only first-order (classical) systems are con-
nected to P, or one of its subclasses. Consequently, second-order systems of logic are
considered to be computationally intractable, and may therefore seem to be unfit to
model human cognitive capacities. This would be problematic when we think of the
role of logic as the foundations of mathematics. In order to express many important
mathematical concepts and systematically prove theorems involving them, we need to
have a system of logic stronger than classical first-order logic. But if such a system is
considered to be intractable, it means that the logical foundation of mathematics can
be prohibitively complex for human cognition. In this paper I will argue, however,
that this problem is the result of an unjustified direct use of computational complexity
classes in cognitive modelling. Placing my account in the recent literature on the topic,
I argue that the problem can be solved by considering computational complexity for
humanly relevant problem solving algorithms and input sizes.

1 Introduction
In computational complexity theory, decision problems are divided into complexity
classes based on the amount of computational resources it takes for algorithms to solve
them. In theoretical computer science, it is commonly accepted that only functions
for solving problems in the complexity class P, solvable by a deterministic Turing
machine in polynomial time, are considered to be tractable, i.e., efficiently computable
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(Papadimitrou 1994, Arora & Barak 2007). In cognitive science and philosophy, this
tractability result has been used (see, e.g., Frixione 2001, Gigerenzer et al. 2008) to
argue that only functions in P can feasibly work as computational models of human
cognitive capacities. This is called the P-cognition thesis in the literature (van Rooij
2008).

One interesting area of computational complexity theory is descriptive complex-
ity, which connects the expressive strength of systems of logic with the computational
complexity classes. One of the most important results of descriptive complexity is
that while first-order systems (linearly ordered, with a least fixed-point operator) are
connected with the complexity class P, richer logical systems yield complexity classes
beyond what is considered tractable (Immerman 1999). In particular, given the gener-
ally accepted conjecture that the complexity class NP, the class of decision problems
solvable by a non-deterministic Turing machine in polynomial time, is strictly greater
than P, it follows that second-order systems of logic are considered to be computation-
ally intractable. Hence, mirroring the above-mentioned reasoning in cognitive science,
the proponents of the P-cognition thesis could argue that second-order logic is also
unfit to model human cognitive capacities.

Such conclusion, while perhaps carrying some initial appeal, turns out to be unwar-
ranted. I will argue that there are several ways in which it is problematic to draw direct
connections between computational complexity, the complexity of logical languages,
and computational models in cognitive science. However, the entire range of relevant
cognitive phenomena is enormous and a thorough analysis is not possible in a single pa-
per. For this reason, I focus on mathematics and mathematical problem solving to show
that the computational complexity measures are too coarse to be used as general prin-
ciples concerning the modelling of human cognitive capacities in these domains. The
reason for this choice is two-fold. First, the differences between logical languages is a
widely studied field in the foundations of mathematics and, as we will see, it provides
us with philosophically interesting questions concerning the relation between logical
and cognitive foundations of mathematics. Second, even though mathematical problem
solving has its own characteristics, I believe that it can provide a platform for a more
general treatment of how complexity should be applied in cognitive science. In the
case of mathematical problem solving, the computational complexity measures are not
sensitive to the actual problem solving algorithms used by human agents, nor are they
sensitive to the computational characteristics of problems for bounded input sizes, only
some of which are relevant for the modelling of human cognitive processes. On both
accounts, there is no reason to believe that mathematical problem solving is unique
among cognitive phenomena. I will conclude that while computational complexity
measures can work as rough guidelines in the computational modelling of cognitive
capacities, strict limitations like focusing only on functions in P are unwarranted. This
conclusion, I contend, can be generalized to other domains of cognitive phenomena.

Throughout this paper, I am not targeting a particular theory proposed in cogni-
tive science or philosophy. I acknowledge that many researchers would not advocate
a drastic use of computational complexity measures as limits to computational mod-
elling in the cognitive sciences. Furthermore, to the best of my knowledge, descriptive
complexity is not discussed in the current literature in cognitive science when it comes
to mathematical cognition. Nevertheless, I believe that there are three reasons why
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the present topic is important to tackle. First, as we will see, computational complex-
ity measures are an important part of the discussion on the theory of computational
modelling, both among cognitive scientists and philosophers. While there have been
important critical assessments of how computational complexity should be applied in
cognitive science (e.g., van Rooij 2008, Isaac et al. 2014, Szymanik 2016, Szymanik
& Verbrugge 2018, van Roiij et al. 2019, Pantsar 2019b, Fabry & Pantsar 2019), lim-
itations like the above P-cognition thesis are still too often misunderstood and given
excessive importance. Second, these problems can extend to applications of descrip-
tive complexity through the connections between computational complexity measures
and the complexity of logical systems. Therefore, part of the purpose of this paper is to
pre-empt potential confusions regarding descriptive complexity and the computational
modelling of cognitive capacities, thus providing a feasible way in which computa-
tional complexity, and descriptive complexity in particular, can be applied in cognitive
science and philosophy.

Third, I believe that mathematics and mathematical problem solving provide a
clearly specified field of study for discussing computational complexity measures in
the context of cognitive modelling, and this extends also to descriptive complexity.
The mathematical consequences of adopting different logical systems as the founda-
tion for mathematics is a much-researched topic. However, while perhaps implicitly
present, these considerations have not been explicitly linked to the potential limits of
human cognitive capacities. I will show that by connecting descriptive complexity
measures to considerations on the modelling of cognitive processes, we can get a fruit-
ful platform for discussing the relationships between logical and cognitive foundations
of mathematics. In particular, I will show how drawing careless connections between
the two can lead us astray.

I will begin in Section 2 by presenting computational complexity measures and
how they have been used to argue for tractability principles when it comes to cognitive
modelling. In Section 3, I will present the field of descriptive complexity and how it is
connected to the computational complexity measures and other notions of complexity.
Section 4 then presents a fundamental tension of logical systems as the foundations
of mathematics: since many important results in mathematics require second-order
logic, either we must commit to computationally intractable logic as the foundation of
mathematics, or else we must use a system of logic that is too weak to express crucial
mathematical concepts and/or prove theorems concerning them. In Section 5, I will
then propose a solution to this tension by analysing the way the computational com-
plexity measures and descriptive complexity should be understood in the framework of
human mathematical problem solving. I will then compare my account to two promi-
nent alternatives in the literature, provided by van Rooij (2008) and Szymanik (2016).
I will conclude that with well-considered specifications with regard to relevant input
sizes and problem solving algorithms, tractability principles like the P-cognition thesis
can be given their proper place as potentially useful guidelines, but not as anything
resembling strict limits.
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2 Computational complexity and tractable cognition
In theoretical computer science, the complexity of decision problems is a fundamental
question and it is standardly studied in the theoretical framework of Turing machines
(Turing 1936).1 Turing presented his model of a universal machine in order to study
computation theoretically. Shortly put, a Turing machine functions by reading and
writing symbols on a tape one at a time. The Turing machine is always in some inner
state and based on the input symbol and the state, the machine has instructions to read
and write symbols on the tape, move the tape, and change to a new inner state (or
remain in the same state). The set of these instructions is called an algorithm. Since
the Turing machine is a theoretical construct, no limits are made to the size of the tape
or the number of operations that the machine can carry out.

According to the generally accepted Church-Turing thesis, if there is a mechanical
procedure for solving a problem, then there is a Turing machine that can solve it (Turing
1936, Church 1936). This way, Turing machine has become the standard framework for
studying computational complexity, but also for studying the problem-solving potential
of algorithmic, mechanical procedures in general (see, e.g., Arora & Barak 2007).
Consequently, in the study of complexity in theoretical computer science, researchers
are not interested in the computing capacities of particular computers. Instead, they
want to study the inherent complexities of different tasks free from the limitations of
physical computers. Under this approach, the complexity of a mathematical problem
can be characterised by the complexity of a minimally complex Turing machine (i.e.,
an algorithm run by a Turing machine that takes minimal resources) that solves the
problem. Such an algorithm is called optimal.

Optimality of algorithms, however, is not a straight-forward matter. One impor-
tant question concerns what the resource is that the algorithm should be optimal over.
There are two common answers to that: time and space. Since the Turing machine is a
theoretical construct, time and space are measured as functions of the size of the input,
rather than any physical measure. But since there are no physical limits to the Turing
machine, there are also no limits to the size of the input. That is one reason why the
complexity measures based on the Turing machines are asymptotic: they characterise
the complexity of algorithms as the input sizes grow without limit.2

The great advantage of the asymptotic complexity measures is that they can be
used to divide problems into complexity classes. The plethora of different complexity
classes and the relationships between them is an active topic of research and it is not
possible to go extensively into the details here (for more, see Papadimitrou 1994, Arora

1In this paper the focus is on decision problems, i.e., “yes/no” problems. There are also many other types
of problems studied in theoretical computer science, including counting, search, function and optimisation
problems (Goldreich 2008). I focus on decision problems because it is the most researched field in the
present context. It also needs to be noted that many problems can be framed in different ways, so these
distinctions can be somewhat arbitrary.

2It should be noted that optimal algorithms are not unique. In theoretical computer science, an algorithm
is called asymptotically optimal if it never performs more than a constant factor worse than the best possible
algorithm. There can thus be many (even an infinite number of) optimal algorithms. It should also be added
that although the method of characterising complexity of a problem in terms of an optimal algorithm for
solving it is commonplace, we know from Blum’s speedup theorem (Blum 1967) that it is not possible in all
cases to define the computational complexity of functions in terms of optimal algorithms for solving them.
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& Barak 2007).3 But taking time as the relevant measure, we can use two complexity
classes to show how complexity classes work and what kind of relevance they can have
for philosophy. One of the most important complexity classes is called P (or PTIME)
and it is defined as the class of decision problems that can be solved by a deterministic
Turing machine in polynomial time. An algorithm (i.e., a Turing machine) is said to run
for polynomial time if its running time has an upper bound of a polynomial function
of the size of the input for the algorithm. This means that if the size of the input is n,
the running time has an upper bound of some function nk for some constant k. Another
complexity class relevant here is called EXP (or EXPTIME) and it is the class of
decision problems that are solvable by a deterministic Turing machine in exponential
time. An algorithm runs for exponential time if its running time has a lower bound of
some exponential function of the size of the input, i.e., for input size of n, the running
time has a lower bound of some function 2p(n) where p(n) is some polynomial function
of n.

Here I have wanted to present P and EXP for two reasons. First, following the so-
called Cobham’s thesis (or Cobham-Edmonds thesis), P is standardly accepted as the
class of problems that can be feasibly solved by a computer (Cobham 1964, Edmonds
1965). Second, it has been proven that EXP is strictly greater than P. Algorithms
for solving problems in P are called efficient or tractable (Garey and Johnson 1979).
Algorithms for solving problems in EXP (that are not in P), on the other hand, are
considered to be inefficient or intractable (ibid.). A simple example of an efficient
algorithm is the standard schoolbook algorithm for multiplying integers, which takes
roughly n2 steps of computation for two n-digit integers. The standard algorithm for
factoring integers into primes, on the other hand, is a good example of an inefficient
algorithm. An n-digit integer takes about 2n1/3

computational steps (Pomerance 1996).4

While it is proven that EXP is strictly greater than P, perhaps the most important
inclusion relation between the complexity classes is still a matter of conjecture. The
complexity class NP is defined as the class of decision problems that can be solved by
a non-deterministic Turing machine in polynomial time.5 It is easy to see that P is a
subclass of NP, but it has proven to be difficult to show whether it is a proper subclass
of it, i.e., whether P 6= NP. Although this is perhaps the most famous unsolved problem
in theoretical computer science, it is a generally accepted conjecture that the class NP
is strictly greater than P. This is important for the present context since because the
conjecture P 6= NP is generally accepted, the complexity class NP is de facto the lowest
complexity class of problems which are thought to be computationally intractable.

For computer science, the distinction between tractable and intractable algorithms
is central, but what is its relevance for philosophy and the cognitive sciences? It turns
out that this distinction can be potentially useful for characterizing cognitive complex-

3For the state-of-the-art, see Scott Aaronson’s highly informative website “Complexity Zoo”
(https://complexityzoo.uwaterloo.ca/Complexity_Zoo).

4It should already be noted here that for inputs of fixed sizes, a problem in EXP can be less complex to
solve than a problem in P. As mentioned above, the complexity classes are asymptotic and as such charac-
terize the complexity of an algorithm as the input sizes grow without limit. More on this topic in Section 5,
where it will play an important role.

5The difference being that whereas a deterministic Turing machine is programmed to have one action for
each situation, a non-deterministic Turing machine can pick the action from several options.
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ity, i.e., the complexity of human cognitive tasks and processes. In computational
modelling in the cognitive sciences, the focus is often on what Marr (1982) calls the
computational level of explanation. This means that rather than focusing on the ac-
tual algorithms used in performing a cognitive task (the algorithmic level in Marr’s
terminology), or the neuronal activity (Marr’s implementational level), the focus is on
identifying a mathematical function that can model a cognitive process (Marr 1982,
Pantsar 2019b). This is based on the understanding of cognitive tasks as employing
cognitive capacities to transfer input states (e.g., perceptions) into output states (e.g.,
decisions), thus yielding a function that models the cognitive task as input-output map-
pings (Cummins 2000). In the computational-level approach, it is then possible to
study these functions in terms of their computational complexity.6 This computational-
level framework has been highly influential for studying cognitive capacities (see, e.g.,
Newell 1982, Pylyshyn 1984, Horgan & Tienson 1996). As explained by Frixione:

The aim of a computational theory is to single out a function that mod-
els the cognitive phenomenon to be studied. Within the framework of a
computational approach, such a function must be effectively computable.
However, at the level of the computational theory, no assumption is made
about the nature of the algorithms and their implementation. (Frixione
2001, 381)

This way, many researchers accept that computationally intractable functions cannot
accurately model human cognitive tasks. This has become known as the tractable
cognition thesis in the literature (van Rooij 2008, Isaac et al. 2014). According to
the tractable cognition thesis, when we are looking for functions that can potentially
model cognitive capacities, we should limit ourselves to those functions that can be
computed by tractable algorithms. Standardly, based on Cobham’s thesis, this has been
understood as the P-cognition thesis, stating that we should limit our considerations to
functions associated with problems in the complexity class P (Arora & Barak 2007,
van Rooij 2008, van Rooij et al. 2019). Many cognitive scientists have accepted the
P-cognition thesis as a fundamental rule of computational-level explanations. For ex-
ample, according to Gigerenzer and colleagues:

The computations postulated by a model of cognition need to be tractable
in the real world in which people live, not only in the small world of an
experiment with only a few cues. This eliminates NP-hard models that
lead to computational explosion (...) (Gigerenzer et al. 2008, 236; quoted
in van Rooij et al. 2019, 17).

6A fundamental question in all this is whether human cognition should generally be considered to be
computational, and in particular whether there are forms of mathematical cognition that cannot be captured
by algorithmic procedures. Such a position was suggested by Turing (1948) and was argued for explicitly
by Lucas (1961) and Penrose (1989, 1994). It is not possible to go into the details here (for more, see, e.g.,
Piccinini (2003)), but I work under the assumption that there are no theoretical limitations in the algorithmic
approach to modelling mathematical cognition. In addition, I assume that cognitive processes can generally
be captured by computational models (without taking a stand in the question whether cognitive processes
are computation in some more substantial sense). In particular, against the arguments of Lucas and Penrose,
I do not see any reason why the human mathematical ability could rise above all algorithmic or mechanical
procedures, i.e., Turing machines. See Pantsar (2009) for more.
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Thus the approach of Gigerenzer and others draws a direct link between computational
complexity and cognitive complexity. In the case of mathematical problem solving, this
implies that mathematical cognitive processes should be computationally modelled by
functions whose values can be computed by algorithms for solving decision problems
in the complexity class P.7

With Regina E. Fabry, we have argued that such a direct connection between com-
putational and cognitive complexity is potentially problematic since the computational
complexity approach does not transfer in a straight-forward manner into studying the
complexity of human cognitive processes (Pantsar 2019b, Fabry & Pantsar 2019). One
of the reasons for this is that human mathematical problem solving often includes vi-
sual and heuristic reasoning (e.g., the use of diagrams and spatial manipulation of
symbols (Fabry & Pantsar 2019)) that is not usually included in the algorithmic ap-
proach to problem solving used in theoretical computer science (Pantsar 2019b). Thus
it is important to realize that human mathematical problem solving has its own par-
ticular characteristics that do not always correspond to the computational complexity
approach. In this paper, I want to extend the critical evaluation of applying results from
computational complexity theory to cognitive modelling to one important subfield of
computational complexity, which has not been extensively studied in the philosophical
or cognitive scientific literature so far. This subfield is the complexity of systems of
logic.

3 Descriptive complexity
The computational complexity measures such as P, NP and EXP are standardly used
for classifying decision problems, but they have also turned out to have important con-
nections with languages of logic. This field of study is called descriptive complexity
(Immerman 1999). Typically in computational complexity theory, we ask about the
complexity of the task of checking if a certain input has a certain property. In descrip-
tive complexity, we ask how complex it is to express that property in a formal language
(Immerman 1995). This way, rather than measuring complexity in terms of time or
space requirements for solving decision problems, as in standard computational com-
plexity theory, descriptive complexity measures complexity in terms of the strength of
logical systems. As Immerman argues, time and space are natural complexity mea-
sures from an engineering standpoint since they quantify physical resources required
of completing a computational task, but neither appears to capture the inherent mathe-
matical complexity of computational problems (Immerman 1999, 1). Thus, when we
consider the cognitive complexity of mathematical problem solving processes, descrip-
tive complexity initially appears to have great relevance. The logical systems we use
have different strengths in expressing and proving mathematical statements, and it is

7As has probably become clear by now, in this paper I talk about cognitive processes in a general way
rather than the cognitive processes of particular individuals. This follows the standard usage in the relevant
literature and corresponds roughly to Chomsky’s (2015/1965) distinction between competence and perfor-
mance, which was also used by Marr (1982). More specifically, here I am interested in enculturated compe-
tence in mathematical problem solving, i.e., the culturally-shaped competence we have in mathematics. See
Fabry & Pantsar (2019) for more.
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a priori feasible that processing different logical languages also differs in terms of the
complexity of the associated cognitive processes.8

What makes descriptive complexity particularly interesting to the present discus-
sion is the way it has proven to be directly connected to results concerning computa-
tional complexity classes. The research field of descriptive complexity can be traced
back to Fagin’s (1974) result that the complexity class NP is equal to the class of
problems describable in the existential fragment of second-order logic (also known as
Σ1

1-logic).9 Many other such connections have since been proven. Full second-order
logic, for example, has been shown to yield the complexity class PH, which is the
union of all complexity classes in the polynomial hierarchy (Stockmeyer 1977). PH of
course contains NP but it is also thought to contain many stronger complexity classes,
making full second-order logic more complex than its existential fragment.10

Here it is not possible to go into all the intricacies of the connections between
particular cases, but it is essential to see the general connection between the expres-
sive strength of logical systems and the computational complexity of classes of de-
cision problems. It is particularly important to note that there is a crucial difference
between first-order logical systems and second-order systems in terms of their com-
plexity. While existential second-order logic yields the complexity class NP, classical
first-order logical systems give us the complexity class P, or one of its subclasses.11

Therefore, only systems of first-order (classical) logic are connected with complexity
classes that are considered to be computationally tractable. Even if it turned out to be
the case that P = NP, this would still be a problem. It is known that second-order logic
with a least fixed point operator yields the complexity class EXP, which we know to
be strictly greater than P (Immerman 1999).12

This connection between computational complexity classes and the descriptive
complexity of systems of logic has dual importance for the present purposes. First, it
tells us that - according to the generally accepted view - systems of second-order logic
are considered to be computationally intractable. But this is not limited to considera-

8It is important to note that the strength of a logical system required to express a mathematical statement
may differ from that of a system required to prove that statement (generally or in particular cases). Here I
will focus mainly on the strength required for expressing mathematical concepts, under the assumption that
proving statements about those concepts is generally not possible with a weaker logical system. However,
this can be possible for particular instances.

9In existential second-order logic, one can have universal quantification only over first-order objects, but
not on second-order objects such as relations and sets. Existential quantification is allowed over both first-
and second-order objects.

10Although all this is a matter of conjecture: if it turned out that P = NP, it would also be the case
that P = PH (Hemaspaandra 2018). In any case, as Immerman (1999) points out, PH is a rather strange
complexity class because it implies having an exponential number of Turing machines but limiting them to
run for a constant time. The complexity class PSPACE is more much intuitive, as it allows for the time to
grow polynomially. PSPACE is the class of all decision problems solvable in polynomial space and it is
generally thought to be strictly greater than PH (Aaronson 2009). This would make it even stronger than full
second-order logic.

11Standard first-order logic is a very weak system that corresponds to the complexity class AC0, a system
of circuit complexity which is known to be strictly smaller than P. However, AC0 does not contain even in-
teger multiplication (Vollmer 1999). Linearly ordered systems of first-order logic with a fixed-point operator
are the strongest systems known to be included in P.

12Since the least fixed point operator shows up for the second time, it should probably be noted that it is
important in complexity considerations because of its strength in allowing recursive definitions.
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tions on computational complexity. In the framework of computational modelling of
cognitive capacities, this has important consequences also when it comes to cognitive
complexity. If we accept the P-cognition thesis, we also need to accept that second-
order logic, even the existential fragment of it, can express functions too complex to
feasibly model human cognitive capacities, since many functions expressed in second-
order logic are not in the complexity class P. In other words, by using second-order
logic to describe functions supposedly modelling human cognitive capacities, we run
the risk of including intractable functions, which goes against the P-cognition thesis.

Second, the connection between second-order logical systems and intractable com-
putational complexity classes tells us that many important mathematical results can
only be expressed with systems of logic that are computationally intractable. For ex-
ample, the (upward) Löwenheim-Skolem theorem famously shows that first-order theo-
ries cannot distinguish between the cardinality of infinite models. If a first-order theory
has an infinite model of one transfinite cardinality, it has a model of every transfinite
cardinality (Hodges 1993). This would be a huge problem in mathematics because,
among other problematic aspects, it means that in first-order theories it is not possible
to distinguish between the cardinality of natural numbers and the cardinality of real
numbers. There are numerous known differences between first-order and second-order
logical theories and, by and large, the latter are seen as an important part of the toolbox
of logicians and mathematicians (Väänänen 2019). Thus if, based on the P-cognition
thesis, we limit the complexity of acceptable logical languages, it would go against the
prevalent use of logical systems in mathematics.

However, before we go deeper into the potential problems in applying descriptive
complexity measures for the foundations of mathematics, we need to be more detailed
about descriptive complexity and its applications. In particular, we should first consider
what kind of systems and problems descriptive complexity concerns. As Grohe (1999)
puts it, one main theme of descriptive complexity is to study model-checking problems,
i.e., problems of the type:

Given a finite structure A and a sentence φof some logic L , decide
whether A satisfies φ . (Grohe 1999, 14).

It is important to note that model-checking complexity is just one notion of com-
plexity used in the literature, and there are substantial differences between different
notions of complexity. One important notion of complexity, for example, is expres-
sion complexity which measures the complexity of a formula in terms of the length of
its expression in different models (Vardi 1982). As Szymanik (2016, 104) remarks,
expression complexity and model-checking complexity have a potentially important
difference: the existential fragment of second-order logic (Σ1

1-logic) is of the expres-
sion complexity NEXPTIME while its model-checking complexity is NP-complete.
This prompts the question why we should focus on model-checking complexity when
another notion of complexity like expression complexity (or perhaps a combination
of two or more notions of complexity) could be more relevant? This is particularly
important when we consider differences in cognitive tasks and the relevant complexity
measures for them. For example, Szymanik (ibid.) suggests that while model-checking
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complexity is suitable for measuring difficulty of the cognitive task of sentence verifi-
cation, other notions of complexity could be used for measuring the cognitive difficulty
of other processes, such as reasoning.13

Since the particular area of cognitive processes this paper focuses on concerns
mathematical problem solving, we need to assess whether model-checking complexity
is indeed a suitable complexity measure for mathematical cognition. The first potential
problem is that mathematics (for the most part) is concerned with infinite structures
whereas descriptive complexity deals with finite structures, which have a finite uni-
verse. This way, descriptive complexity can be treated as a subfield of finite model
theory (Szymanik 2016, 103-104), which is hardly representative of mathematics in
general. However, we are not here interested in the general question whether a math-
ematical model A satisfies a sentence φ of a logic L . As mentioned in the beginning
of this section, we are ultimately interested in cognitive complexity, i.e., the complex-
ity of a computational model of some cognitive entity. Perhaps it is illuminating to
think of such computational models as systems of artificial intelligence (AI). If an AI
models a human cognitive process, we can use the algorithmic complexity of the AI to
characterise the cognitive complexity of the human process. Since all human cognitive
processes are obviously finite, we can limit our considerations to finite computational
models. This way, the fact that descriptive complexity is restricted to finite structures
is not a problem for the present topic.14

However, the above remark of Szymanik suggests another potential problem. Since
the field of study in the present context is mathematical problem solving, the complex-
ity measure we use should be suitable for mathematical cognitive processes. However,
at first look sentence verification does not appear to be typically the kind of cognitive
task mathematicians are involved with. Instead of verifying sentences in models, math-
ematicians try to construct proofs. Would another complexity measure, perhaps one
based on satisfiability, be more suitable for the cognitive task of proving theorems?15

This is a legitimate question to ask and I do not want to claim that descriptive complex-
ity is the most suitable measure generally for mathematical cognitive tasks. Indeed,
since I will ultimately argue that results connecting descriptive complexity and compu-
tational complexity measures should not be used as any kind of general principles when
discussing the computational modelling of cognitive capacities, my purpose is not to

13There are also many other notions of complexity that are potentially relevant to the present topic. Kol-
mogorov complexity, for example, refers to the length of the shortest computer program that has an in-
formative object, such as a string of symbols, as its output. This notion of complexity seems fitting for
mathematical problem solving, but it has turned out that determining the Kolmogorov complexity of even
short strings of symbols is a highly difficult task (Soler-Toscano et al. 2014). Other interesting notions of
complexity come from machine learning theory, where statistical complexity measures like Gaussian com-
plexity, Rademacher complexity, and Vapnik-Chervonenkis (VC) dimension are used (see Shalev-Shwartz
& Ben-David (2014) for more).

14This is not to say that AI mathematical problem solving should generally aim to model human cognitive
processes. Indeed, computer-assisted solutions to mathematical problems tend to take advantage of the brute
computational power of computers rather than look for “human-like” proofs. A good example of this is
the computer-assisted proof of the four color theorem (Appel & Haken 1976). In modern AI research in
mathematics, there are efforts to use statistical “deep learning” to combine with symbolic processes to find
new ways of using AI. See, e.g., Lample & Charton (2019). I thank an anonymous reviewer for this last
suggestion.

15I am grateful to an anonymous reviewer for pointing out this potential difficulty.
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defend generally the use of descriptive complexity in characterising mathematical (or
indeed other) cognitive tasks.16

Nevertheless, I can envision how descriptive complexity could be seen to be rel-
evant for the question of complexity of cognitive processes involved in mathematical
tasks. Taking a (proposed) computational model M of a mathematical cognitive capac-
ity, we can reasonably ask whether for M some mathematical statement φ is part of the
output. Furthermore, it is reasonable to ask which logical languages do statements like
φ in a particular model belong to. Thinking of the computational model again as an
artificial intelligence, we can ask whether it models human cognitive capacities with
regard to a mathematical task by asking whether it provides as output the same math-
ematical statements as a human mathematician (given the same input). This way, it is
possible to understand the question of computational modelling of human mathemat-
ical capacities in the context of model-checking problems, even if we do not believe
that human mathematical problems standardly are model-checking.

I want to emphasise that for various reasons, which will become apparent in the
rest of this paper, I do not advocate the above line of reasoning when it comes to com-
putational modelling. Generally speaking, the connections and differences between
different complexity measures and different notions of complexity are a much more
complicated topic than there is space to describe here, and I do not want to suggest
that the simplistic way above of connecting model-checking problems to mathematical
cognitive tasks is valid. Nevertheless, I believe that it carries enough force to require
a closer analysis of the connection between descriptive complexity and computational
complexity, particularly in the context of computational modelling of cognitive capaci-
ties involved in mathematical tasks. Furthermore, as we will see, such a closer analysis
is fruitful in explicating the weaknesses of applying descriptive complexity measures
in the context of mathematical cognition. Let us therefore continue, for now, with the
assumption that descriptive complexity measures can be used in characterizing mathe-
matical cognitive tasks.

4 Descriptive complexity and the dual foundations of
mathematics

If we accept the applicability of descriptive complexity in modelling mathematical
cognition as described in the previous section, results from the study of descriptive
complexity appear to put us in an uncomfortable position. When subscribing to a strong
form of tractable cognition restriction, such as the P-cognition thesis, the conclusion
seems to be inevitable: at the very least, second-order logic with a least fixed point
operator (since it yields the complexity class EXP) is intractable. As such, according to
the P-cognition thesis, it could not feasibly work as the logic of computational models
of human cognitive phenomena. The consensus view implies that the same is true
of existential second-order logic, since it is connected with the complexity class NP.
Only systems of first-order logic yield the complexity class P or one of its subclasses

16This is not to deny that descriptive complexity can be more suitable as a measure for some cognitive
tasks and less suitable for others.
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and thus can be considered to be computationally tractable. But first-order systems are
too weak mathematically to express important properties, such as the least upper bound
property for sets of real numbers or, as in our example earlier, the difference between
the cardinalities of sets of natural numbers and real numbers.

Therefore we arrive at a fundamental tension. When we consider the connection
between mathematics and logic since at least Frege (1884) and Russell (1903), logic
has been thought to provide two types of foundations for mathematics. First of these
is expressing mathematical concepts in a system of formal logic. The second founda-
tion comes from logic being formalisation of mathematical thought. In Frege’s (1884)
approach, formal logic was meant to provide universally acceptable rules of human
thought (free from what he considered to be the arbitrariness of psychologism) that
would justify mathematical principles.

However, the complexity considerations above seem to imply that these two foun-
dational roles are in conflict. In order to express many important mathematical con-
cepts, we need to have a system of logic stronger than classical first-order logic.17 But
this connects the required system of logic to a computational complexity class that is
considered to be intractable. If we accept the P-cognition thesis, this means that the
system of logic used in mathematics can express functions that are too complex to fea-
sibly model human mathematical cognitive capacities. Thus the problem that follows
from incorporating the P-cognition thesis, descriptive complexity, and logical founda-
tions of mathematics is as follows: either our logical system is too weak to express
important mathematical concepts, or else it is too complex cognitively. This suggests
that we need to give up one of the criteria of Frege and Russell. Yet giving up either
one is an unappealing prospect. Certainly we do not want to give up important math-
ematical results because the logical systems used in proving them are considered to
be computationally intractable. But from the epistemological point of view, it would
seem to be equally problematic to have mathematics built on a system of logic that is
considered to be prohibitively complex cognitively.

This prohibitive cognitive complexity can be understood in two different ways.
First, we can analyse the strength of a system of logic in terms of its descriptive com-
plexity and connect this to computational modelling of cognitive capacities, as I have
been describing above. In this approach, it can be argued that second-order logic can-
not be the cognitive basis of mathematics because in it we can express functions that
are computationally intractable, which are thought to be unfit to work as computational
models. This follows from a direct application of the P-cognition thesis.

It should be noted that the above line of reasoning does not imply that functions
expressed in second-order logic are by necessity prohibitively complex. Obviously
not everything expressible with second-order logical systems is computationally in-
tractable. For example, an important part of what is expressible in second-order logic

17This should not be confused with first-order theories that quantify over second-order objects as providing
a basis for mathematics. Most notably this means first-order set theory (ZFC) which has very similar expres-
sive power to second-order logic (Väänänen 2001). It should also be noted that there are first-order systems
of logic, such as the independence-friendly logic of Hintikka and Sandu (1989) and the dependence logic of
Väänänen (2007), that can express mathematical concepts that are beyond standard first-order logic. These
systems don’t have contradictory negation so they are not classical. Importantly for the present purposes,
both of the above-mentioned systems have equal expressive strength to existential (classical) second-order
logic, thus yielding the complexity class NP.
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is also expressible in first-order logic. But by introducing second-order logic into com-
putational modelling, we are expanding the domain of potential functions that model
human cognitive capacities beyond the complexity class P. Without further restrictions,
this goes against the P-cognition thesis.

The second way to understand the intractability of second-order logic is based on
its ability to express and/or decide the truth-value of logical formulas that are too com-
plex for human cognizers to process. This is based on the simple observation that the
cognitive process of deciding the truth-value of a logical formula cannot, by definition,
be less complex than an optimal algorithm for determining the truth-value run by a
Turing machine.18 As explained in Section 2, the computational complexity of deci-
sion problems, and hence also the corresponding logical formulas, is defined through
optimal algorithms for solving them. There are many ways in which the human prob-
lem solving algorithms can be computationally suboptimal (more on this in the next
section), but they cannot outperform optimal algorithms.

For these reasons, it may appear that we cannot escape the problem that the logic we
need for expressing familiar mathematical concepts can be, following the P-cognition
thesis, prohibitively complex for the modelling of human cognitive capacities. As ex-
plained above, this can be understood in two ways, both of which end up with the same
problem for the proponents of the P-cognition thesis. 19

5 Tractable cognition thesis reconsidered
How can we solve the problem presented at the end of the previous section? How
can computationally intractable systems of logic work as foundations of mathematics
if they are considered to be unfit for modelling human cognitive capacities? In this
section I will argue that this is in fact a pseudo-problem that is the result of unwarranted
application of results from the study of computational complexity in the domain of
computational modelling of cognitive processes. In particular, I question the general
use of tractable cognition theses like the P-cognition thesis.

This could seem like a problematic solution. After all, it may appear obvious that
some form of tractable cognition thesis must be acceptable. Even though the brain is a
highly complex organ with a great deal of computational power, it quite clearly has lim-
its. Beyond some limit, computational tasks will be too complex for the brain to carry
out. I am not contesting that. What I do want to contest is whether the computational
complexity classes, in the present context connected to the descriptive complexity of

18To be precise, it is the algorithm that computes the values of a function modelling the cognitive process
that cannot be less complex than an optimal algorithm.

19Here I am only considering logic as formalisation of (part of) human mathematical cognition, although
a more general case could be made that logic should work as the formalisation of universal laws of thought,
in the tradition following Boole (1854) and Russell (1903). This would bring in many difficult questions,
concerning the prescriptive versus descriptive role of logic, possible cultural differences in logic, etc. Of
course such questions are also relevant in the case of mathematical thinking, as well. However, mathematics
as a case study is less problematic since there is a wider (although not full) consensus of how mathematical
thinking should be formalised with shared logical rules. But this should not be confused with these rules
being universal to all humans and not (at least partly) culturally determined (see Pantsar 2014, 2019a for
more).
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logical systems, can be used in the general way they are done in the P-cognition thesis.
I accept that second-order systems in logic are indeed computationally intractable, but
I argue that this notion of computational intractability must be applied in combination
with considerations on the kind of algorithms and inputs that are relevant to human
cognitive processes.

To see why, we need to make a few important clarifications. The first thing to re-
member is that not all problems in complexity classes like EXP (or NP) are intractable.
Rather, it is the class of EXP-complete (or NP-complete) problems that are considered
to be intractable, i.e., those problems that are in EXP (or NP) but not in P. In the case
of NP, it is of course possible that this class is empty. But even if that were not the
case, the question is not about all the problems of NP; it is about the so-called NP-hard
problems, referring to those problems that are at least as hard to solve as the hardest
problems in NP.

However, even with this clarification, there seems to be something weird going
on. Recall how P and EXP provided us with reference points for tractable and in-
tractable algorithms, respectively, the difference being that algorithms in P have upper
bounds for running time that are polynomial functions of the input while algorithms in
EXP are lower-bounded by exponential functions. But these may seem like rather use-
less criteria. We can have, for example, an algorithm that runs for n999999999999999999

computational steps, which is sure to take longer than the 2n1/3
computational steps for

prime factoring for any humanly feasible input size n. According to Cobham’s thesis,
however, the former algorithm is tractable while the latter is intractable. As Aaronson
(2012) points out, this characterisation of tractability is accepted in computer science
mainly because empirical evidence shows us that it works most of the time. In practice,
polynomial time and exponential time have proven be good characterizations for what
is considered to be computationally tractable and intractable, respectively.

However, the practice of computer science is potentially very different from the
study of tractable cognition. Because of this, we must first put tractable cognition
theses in their proper place philosophically. There are two ways in which this should be
done. The first of these concerns input sizes. We must acknowledge that the complexity
classes and the resulting theses of tractability are practical guidelines in theoretical
computer science. In particular cases, however, problems in P can for inputs up to a
certain size be more complex to solve than EXP-complete problems. This can continue
for a long time as the input sizes grow, but ultimately it will change. It is crucial to
remember that the computational complexity measures are asymptotic and measure
the complexity of the problem solving task as the input sizes approach infinity. In
computer science, the asymptotic complexity measures work in practice, even though
problem solving with physical computers is obviously always limited to finite inputs.
But the kind of finite inputs computers deal with can be very different from inputs that
human problem solvers (without the help of computers) can process. To give just one
example, the Goldbach conjecture has been verified for integers up to 4 ·1018 (Oliveira
e Silva et al. 2014).20 If a printout of an integer has 4,000 digits per page, the largest
integer alone would take a thousand trillion pages to print. It is obvious that simply

20The Goldbach conjecture states every even integer greater than 2 can be expressed as the sum of two
primes.
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reading the integer that is tested would take a prohibitive time for a human problem
solver, and thus input sizes of that magnitude cannot be relevant when we consider
the complexity of the cognitive processes involved in the treatment of the Goldbach
conjecture.

Based on such differences in relevant input sizes, we must be careful about the
conclusions we draw based on the computational complexity measures. Even when
limiting the consideration to finite inputs, the fact that the asymptotic measures work
as a good practical guideline in computer science does not necessarily imply that they
provide similar guidelines for studying the complexity of human cognition. When it
comes to human mathematical cognition, the relevant input sizes can be very different
from what is feasible for computers. As a consequence of this, for humanly relevant
input sizes an NP-complete or EXP-complete problem can still be solvable. With
this sensitivity to bounded inputs, there is nothing to suggest that a function in NP or
EXP could not model the human cognitive process, which goes directly against the
P-cognition thesis.

This insight transfers directly to descriptive complexity. It is clear that there are
limits to the kind of solutions to mathematical problems that human problem solvers
can feasibly provide. If the length of a second-order sentence is beyond the range
of what humans can feasibly process, there is no need to consider it relevant for the
question what the strength of logical systems can be in order for them to be processable
by human cognitive capacities. Based on this reasoning, if the inputs are bounded
to humanly relevant sizes, second-order systems could very well be computationally
tractable.21

Aside from considerations on input sizes, another problematic aspect in applying
computational complexity measures to characterise cognitive processes is the fact that
the complexity classes are based on optimal algorithms for solving problems. As I have
argued in (Pantsar 2019b), in mathematics human problem solvers use many heuristic
and didactic methods (e.g., diagrams) that involve suboptimal problem solving algo-
rithms. In (Fabry & Pantsar 2019), we argue that mathematical problem solving is a
culturally shaped ability that is tightly connected to spatial manipulation of symbols
and other ways of engaging with cognitive tools in the problem solving process. Thus
the computationally optimal algorithms that are standardly studied in the research of
computational complexity can be a bad fit with modelling human problem solving al-
gorithms.22

Thus, both in terms of the problem solving algorithms and the input sizes, the stan-

21It has been argued that limiting input sizes like this is not without its problems, since that the total size of
input for cognitive capacities can be very large in real life situations, as opposed to the small domains used in
studies conducted in lab settings (see, e.g, van Rooij et al. 2019, 201). While I agree that this is a legitimate
concern, I do not see it as an argument against introducing limits to relevant input sizes. Rather, I see it is
as a challenge to investigate what the relevant input sizes are for particular cognitive capacities. Obviously
there have to exist some limits due to the physiological limitations of our sensory nervous system, and these
limits can be enough to make the asymptotic complexity measures misleading or downright irrelevant for
that cognitive capacity.

22The positive proposal in Pantsar (2019b) and Fabry & Pantsar (2019) is that we should study humanly
optimal algorithms that are the result of the process of enculturation, which refers to the transformative
process in which interactions with the surrounding culture determine how cognitive practices are acquired
and developed (Menary 2015, Fabry 2019, Pantsar 2019a, Pantsar 2019c).
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dard computational complexity measures fail to be sensitive to important characteristics
of cognitive processes as carried out by human agents. When considering the descrip-
tive complexity of systems of logic, the same conclusions apply. General principles,
like the P-cognition thesis, that draw directly from the computational complexity mea-
sures are simply too coarse to be applied as reliable theses in cognitive modelling. This
does not imply, however, that no form of a tractable cognition principle could be used.
I am even ready to agree with Szymanik & Verbrugge (2018) that the P-cognition the-
sis can provide “a fruitful lens for assessing cognitive tasks”. In general, I share their
approach that computational complexity measures can provide important tools for the
cognitive sciences. Specifically to mathematical problem solving, it is clear that due
to physiological limitations there exists a class of problems too complex for human
beings to solve as the inputs grow large enough.23 This class could feasibly intersect
in a significant way with the class of EXP-complete or NP-complete problems. I do
not want to claim that the computational complexity measures cannot provide useful
information, either generally in computational modelling or specifically in the case of
mathematical problem solving. I only argue that they cannot be connected to limits in
the modelling of cognitive tasks as directly as is done in the case of P-cognition thesis.

In this way, the problem is not only that the P-cognition thesis appears to be too
strict. More generally, limits in computational modelling based directly on computa-
tional complexity classes should be treated at best as guidelines. The reason for this
is that both in terms of input sizes and the applied algorithms, human problem solv-
ing processes can greatly differ from those studied in computer science, for which the
complexity classes and the Cobham-Edmonds tractability thesis are meant to apply. In
addition to the humanly optimal algorithms as studied in (Pantsar 2019b) and (Fabry &
Pantsar 2019), this should prompt us to consider bounded inputs, limited to humanly
relevant input sizes.24

One such alternative to the P-cognition thesis has been suggested by van Rooij
(2008; see van Rooij et al. 2019 for more details), who argues that by introducing
suitable parameters to the computational problem, also super-polynomial time com-
putation can be feasible in modelling cognitive tasks. Van Rooij calls this the “FPT-
cognition thesis”, for fixed-parameter tractable. The introduction of such parameters
is studied in computational complexity theory (see, e.g., Downey & Fellows 1999) and
it can provide more fine-grained complexity considerations to apply to studying the

23With computer assisted problem solving, for example, this class of problems is of course different,
which brings us to the important question just what should be included in “human” problem solving. The
introduction of cognitive tools, such as pen and paper, abacus, calculators and computers, clearly complicates
the matter significantly. Strictly speaking, since computers are human creations, all mathematical problem
solving can be seen as human mathematical problem solving. On the other hand, to limit human problem
solving to situations where no tools are used (not even pen and paper) would seem needlessly limiting. It is
not possible here to go into details, but I believe that there can be a meaningful characterisation of “human”
problem solving, based on the idea that a human cognitive process must be essential to reaching the solution.
This would not be the case, for example, in simply typing an input to a computer program and reading an
output (see Pantsar 2019b for more).

24See Buijsman & Pantsar (2020) for a suggestion how to find a more sensitive complexity measure in
the case of mental arithmetic, which includes only small input sizes. Instead of being based exclusively on
the input size, the complexity measure we suggest is also sensitive to features that have been empirically
confirmed to differ in terms of cognitive complexity (based on different reaction times), such as additions
involving zero (see, e.g., Brysbaert, Fias, & Noël 1998).
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complexity of cognitive tasks. The parameters van Rooij and colleagues discuss are
different from limits to input sizes. One example of an NP-hard problem that can be
made tractable by fixed parameters is the minimum vertex cover problem in graph the-
ory (van Rooij et al. 2019, 109). A vertex cover of a graph refers to a vertex set that
includes (at least) one endpoint of each edge of the graph. If we limit the size of the ver-
tex cover, we get a parametrised version of the minimum vertex cover problem. Many
other parameters can also be used, like the maximum degree of a vertex, etc. Note that
this is different from imposing limits to input sizes (which in this case would mean a
limit to the size of graphs) since the parameter adds another variable, in addition to the
input size, into the analysis (van Rooij et al. 2019, 202). Thus the difference is that
parametrisation determines how the complexity of a function is generally characterised
(ibid.), whereas limiting the input sizes simply ignores the complexity of a function af-
ter some point in the growth of the input sizes. Of course limiting the input size makes
intractable functions fixed-parameter tractable (for some value of the parameter), so
the two approaches (FPT-cognition thesis and bounded input sizes) are compatible.25

Another alternative for the P-cognition thesis is proposed by Szymanik (2016), who
argues that the relevant complexity class as a limit for cognitive modelling is, at least in
some cases, in fact NP.26 Based on Fagin’s theorem and Ristad’s (1993) contention that
(human) language computations are NP-complete, he formulates the so-called Ristad’s
thesis, according to which everyday language is semantically bounded by properties
expressible in existential second-order logic (Mostowski & Szymanik 2012).27 Szy-
manik then argues that while such languages contain computationally intractable ex-
pressions for human agents, there can be indirect mechanisms that make them tractable
(in the sense of model checking), meaning that that they can be verified through infer-
ential dependencies with other sentences (Szymanik 2016, 14-16). While Szymanik is
concerned with natural languages, Hintikka (1996) has famously argued that his inde-
pendence friendly (IF) logic can provide a foundation for mathematics. Since IF logic
has the same strength as existential second-order logic (Väänänen 2007), combining
the views of Szymanik and Hintikka would entail that the foundations of mathematics
could be tractable. Hintikka’s contention, however, is not generally accepted and it is
unclear whether Szymanik’s view extends to mathematical inferences. As Szymanik
himself notes (2016, 14), there are mathematical expressions like “there exist at most
countably many” that are not definable by existential second-order formulas, and would
thus require a logical language yielding a computational complexity class greater than
NP.

One of the reasons why Szymanik (2016) eases the relevant complexity class for
tractability considerations from P to NP is that NP-complete problems that are in-
tractable to solve can have solutions whose correctness can be tractably checked. This
is important to remember and it is closely connected to the present considerations on

25See van Rooij et al. (2019, Chapter 5) for details on fixed-parameter algorithms and proving that they
are indeed fixed-parameter tractable.

26See also Szymanik & Verbrugge (2018), in which they argue for a combination of P-cognition thesis
and Fixed-parameter Tractability for NP-complete tasks as a platform for assessing cognitive tasks.

27“Everyday language” refers to the pretheoretic part of natural language. The reason for this specification
is that natural languages (which Ristad writes about) can contain technical expressions that are prohibitively
complex (Szymanik 2016, 14).
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what kind of processes mathematical cognition consists of. In Szymanik’s (2016, 10)
formulation, we can intuitively think of NP-hard problems as ones that do not have
“snappy” algorithmic solutions. Problems become prohibitively complex because the
only method for solving them is through brute force by going through all possible com-
binations. But quite clearly this is not how mathematical problems are solved by human
agents, aside from particular cases involving small domains. This is consistent with the
way I have argued the P-cognition thesis to be misguided: limits on relevant input sizes
and considerations on human problem solving algorithms require thinking of mathe-
matical problem solving in a different context, one in which computational complexity
classes are not applied directly. As I see it, this is in line with Szymanik’s argumenta-
tion concerning everyday languages, and there is no reason to believe logical languages
connected with complexity classes greater than P to be intractable in the relevant hu-
man sense. However, while Szymanik argues that the complexity class NP provides
a relevant limit for language processing in everyday languages, for mathematical lan-
guages I do not see any a priori reason to use even NP as a limit of complexity. It is
only after considering the relevant human problem solving algorithms and input sizes
(or fixed parameters) that we should consider the computational complexity classes,
and the descriptive complexity of logical languages.28

Finally, it should be noted that the present approach is very much in line with how
computational-level theories are actually used in cognitive science. Generally speak-
ing, theories are not rejected even though they are known to be intractable (usually
NP-hard, but possibly also more complex). Van Rooij and colleagues (2019, 170)
list numerous such theories in the literature, ranging from grammar processing (Ris-
tad 1993, Berwick at al. 1987) to bottom-up visual matching (Tsotsos 1990). In the
practice of cognitive science, tractability considerations are often ignored, which goes
against principles like the P-cognition thesis and the theoretical discussions on them.
Based on the considerations in this paper, however, there is not necessarily anything
problematic in that. This does not mean that computational complexity is not relevant
in the computational modelling of cognitive capacities. As detailed in Van Rooij et al
(2019, Chapter 8), computational intractability can be put into use in many ways in
revising computational models of cognitive processes. Along similar lines, instead of
dismissing the importance of complexity considerations, I have argued in this paper for
carefulness and context-sensitivity in making connections between computational and
cognitive complexity.

6 Conclusion
Considering descriptive complexity, the upshot of the considerations in the previous
section is clear. If the tractable cognition theses based on computational complex-

28For example, as mentioned earlier, second-order logic with a least fixed point operator yields the com-
plexity class EXP. Under restrictions for humanly relevant input sizes, however, there is no a priori reason
to believe that this logic is prohibitively complex. In mathematical practice, second-order logic is freely
used and least fixed point operators play a crucial role in recursive definitions. Outside the field of pure
mathematics, there are many examples of problems generally considered to be EXP-complete. One of the
first of these presented in the literature was finding a perfect strategy in generalized (n×n) chess (Fraenkel
& Lichtenstein 1981).
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ity are translated into the framework of descriptive complexity, it would mean that
second-order logic would be (at least partly) unfit as a logical system used in modelling
mathematical cognitive capacities, or as a logical system thought to be processable by
our cognitive capacities. This would be definitely so if it includes a least fixed point
operator (since it yields the complexity class EXP), and likely so already in the case of
existential second-order logic (which yields the complexity class NP). This is a trou-
bling prospect, since it would imply that we use in mathematics a system of logic that
cannot feasibly work as the basis for the cognitive modelling of mathematical thinking.

Fortunately the matter changes fundamentally if we limit our considerations to hu-
manly relevant input sizes and humanly relevant problem solving algorithms. There
are many good reasons for doing that, but one very basic reason is already that process-
ing input always takes time and the longer a logical formula, the more time it takes to
process it as input. Here I do not want to suggest any particular limits, because with
cognitive tools humans can increase the speed of processing input. Perhaps an even
more relevant limit is what human beings can process in their working memory, which
is another aspect of cognition that can be enhanced with cognitive tools. Nevertheless,
there is always some limit after which the input simply takes too much time to process
or the memory load becomes too large. In the simplest case of reading a logical for-
mula, for example, it makes no sense to consider cases where it would necessarily take
hours, days, or even years to complete the process of feeding in the input. In computer-
assisted problem solving the limits are different, but for every process some such limit
to the input size can be established.29

Based on such considerations, I have argued that any philosophical treatment of
tractable cognition needs to include considerations on aspects of human mathematical
problem solving that the computational complexity measures are not sensitive to. In
doing this, I am not claiming that the P-cognition thesis, or another complexity princi-
ple, could not be along the right lines for an important amount of cases. It could indeed
be a useful guideline to focus on functions computed by P-hard algorithms as models
of human cognitive capacities. But this must not be considered to be a strict criterion.

I have argued that based already on the question of humanly relevant inputs, in ad-
dition to the computational complexity of a function, also its behaviour for different
input sizes needs to be studied. If the values of a function start to become prohibitively
complex to compute only for humanly unfeasible input sizes, there is no prima facie
reason why the function could not work as a model of a human cognitive phenomenon.
In moving the focus to descriptive complexity, the same conclusion applies for formu-
las in supposedly intractable logical systems, such as full second-order logic. Together
with the other problems I have discussed in this paper, it becomes clear that applying
principles based on descriptive complexity measures in the cognitive sciences is no
less problematic than applying computational complexity classes in the manner of the
P-cognition thesis.

This is not to say that they cannot be used fruitfully at all. The complexity of
different logical systems can be relevant for a wide field of issues both in cognitive
science and philosophy. In the foundations of mathematics, the descriptive complexity

29This kind of complexity could be better assessed through the notion of expression complexity discussed
in Section 3, which measures complexity with regard to the size of the formula and not the model.
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measures can also be relevant. An argument could be made, for example, that the un-
derlying logic of mathematics should not be any more complex computationally than
necessary. As a general guideline, it is feasible that the less complex a logical language
is computationally, the less complex it is also cognitively. But already at that point
we must be very careful to consider complexity in a way that is relevant to the actual
cognitive processes of human agents: the kind of algorithms they use and the types of
inputs they process. Only then can we assess accurately the question of cognitive com-
plexity of logical languages. In principle, however, there is no reason to believe that,
with appropriate restrictions, second-order logical systems could not provide a feasi-
ble basis for the computational modelling of mathematical cognition. Consequently,
neither is there any reason to believe that we could not have a common logic for the
foundations of mathematics and the modelling of mathematical cognition.30
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