604 research outputs found

    Mapping Impervious Surface Using Phenology-Integrated and Fisher Transformed Linear Spectral Mixture Analysis

    Get PDF
    The impervious surface area (ISA) is a key indicator of urbanization, which brings out serious adverse environmental and ecological consequences. The ISA is often estimated from remotely sensed data via spectral mixture analysis (SMA). However, accurate extraction of ISA using SMA is compromised by two major factors, endmember spectral variability and plant phenology. This study developed a novel approach that incorporates phenology with Fisher transformation into a conventional linear spectral mixture analysis (PF-LSMA) to address these challenges. Four endmembers, high albedo, low albedo, evergreen vegetation, and seasonally exposed soil (H-L-EV-SS) were identified for PF-LSMA, considering the phenological characteristic of Shanghai. Our study demonstrated that the PF-LSMA effectively reduced the within-endmember spectral signature variation and accounted for the endmember phenology effects, and thus well-discriminated impervious surface from seasonally exposed soil, enhancing the accuracy of ISA extraction. The ISA fraction map produced by PF-LSMA (RMSE = 0.1112) outperforms the single-date image Fisher transformed unmixing method (F-LSMA) (RMSE = 0.1327) and the other existing major global ISA products. The PF-LSMA was implemented on the Google Earth Engine platform and thus can be easily adapted to extract ISA in other places with similar climate conditions.Peer Reviewe

    The Long-term Impact of Land Use Land Cover Change on Urban Climate: Evidence from the Phoenix Metropolitan Area, Arizona

    Get PDF
    abstract: This dissertation research studies long-term spatio-temporal patterns of surface urban heat island (SUHI) intensity, urban evapotranspiration (ET), and urban outdoor water use (OWU) using Phoenix metropolitan area (PMA), Arizona as the case study. This dissertation is composed of three chapters. The first chapter evaluates the SUHI intensity for PMA using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) product and a time-series trend analysis to discover areas that experienced significant changes of SUHI intensity between 2000 and 2017. The heating and cooling effects of different urban land use land cover (LULC) types was also examined using classified Landsat satellite images. The second chapter is focused on urban ET and the impacts of urban LULC change on ET. An empirical model of urban ET for PMA was built using flux tower data and MODIS land products using multivariate regression analysis. A time-series trend analysis was then performed to discover areas in PMA that experienced significant changes of ET between 2001 and 2015. The impact of urban LULC change on ET was examined using classified LULC maps. The third chapter models urban OWU in PMA using a surface energy balance model named METRIC (Mapping Evapotranspiration at high spatial Resolution with Internalized Calibration) and time-series Landsat Thematic Mapper 5 imagery for 2010. The relationship between urban LULC types and OWU was examined with the use of very high-resolution land cover classification data generated from the National Agriculture Imagery Program (NAIP) imagery and regression analysis. Socio-demographic variables were selected from census data at the census track level and analyzed against OWU to study their relationship using correlation analysis. This dissertation makes significant contributions and expands the knowledge of long-term urban climate dynamics for PMA and the influence of urban expansion and LULC change on regional climate. Research findings and results can be used to provide constructive suggestions to urban planners, decision-makers, and city managers to formulate new policies and regulations when planning new constructions for the purpose of sustainable development for a desert city.Dissertation/ThesisDoctoral Dissertation Geography 201

    Quantifying spatiotemporal changes of the urban impervious surface of Dhaka District using Remote sensing Technology

    Get PDF
    Dhaka, the capital of Bangladesh, is one of the world's fastest-growing cities where imperviousness expanding in tandem. Therefore, accurate estimation of impervious surfaces is essential for urban planning and management. This paper attempts to quantify the changes of urban impervious surfaces in Dhaka district from 1990 to 2020 using remote sensing technology. Satellite images of 1990, 1995, 2000, 2005, 2010, 2015, and 2020 have been taken from the Landsat TM, ETM+, OLI sensor. Unsupervised classification with k-means clustering and three different RS indices NDVI, NDBI, and BUI was used to delineate the actual impervious area of Dhaka city. This study reveals that due to urbanization a net increase of 67.30 sq. miles impervious area is added to the existing amount over the study period. In 2020 total 300.749 sq. miles which contain 51.02% of the total land were occupied by impervious surfaces compared to the 233.446 sq. miles in 1990. Instantaneously taking appropriate strategies is crucial for sustainable urban growth.  

    Mapping Impervious Surface Using Phenology-Integrated and Fisher Transformed Linear Spectral Mixture Analysis

    Get PDF
    The impervious surface area (ISA) is a key indicator of urbanization, which brings out serious adverse environmental and ecological consequences. The ISA is often estimated from remotely sensed data via spectral mixture analysis (SMA). However, accurate extraction of ISA using SMA is compromised by two major factors, endmember spectral variability and plant phenology. This study developed a novel approach that incorporates phenology with Fisher transformation into a conventional linear spectral mixture analysis (PF-LSMA) to address these challenges. Four endmembers, high albedo, low albedo, evergreen vegetation, and seasonally exposed soil (H-L-EV-SS) were identified for PF-LSMA, considering the phenological characteristic of Shanghai. Our study demonstrated that the PF-LSMA effectively reduced the within-endmember spectral signature variation and accounted for the endmember phenology effects, and thus well-discriminated impervious surface from seasonally exposed soil, enhancing the accuracy of ISA extraction. The ISA fraction map produced by PF-LSMA (RMSE = 0.1112) outperforms the single-date image Fisher transformed unmixing method (F-LSMA) (RMSE = 0.1327) and the other existing major global ISA products. The PF-LSMA was implemented on the Google Earth Engine platform and thus can be easily adapted to extract ISA in other places with similar climate conditions

    Effects of rapid urbanisation on the urban thermal environment between 1990 and 2011 in Dhaka Megacity, Bangladesh

    Get PDF
    This study investigates the influence of land-use/land-cover (LULC) change on land surface temperature (LST) in Dhaka Megacity, Bangladesh during a period of rapid urbanisation. LST was derived from Landsat 5 TM scenes captured in 1990, 2000 and 2011 and compared to contemporaneous LULC maps. We compared index-based and linear spectral mixture analysis (LSMA) techniques for modelling LST. LSMA derived biophysical parameters corresponded more strongly to LST than those produced using index-based parameters. Results indicated that vegetation and water surfaces had relatively stable LST but it increased by around 2 °C when these surfaces were converted to built-up areas with extensive impervious surfaces. Knowledge of the expected change in LST when one land-cover is converted to another can inform land planners of the potential impact of future changes and urges the development of better management strategies

    Rapid urbanization and changes in spatiotemporal characteristics of precipitation in Beijing metropolitan area

    Get PDF
    This study investigates changes in temporal trends and spatial patterns of precipitation in Beijing over the last six decades. These changes are discussed in the context of rapid urbanization and the growing imbalance between water supply and demand in Beijing. We observed significant decreases in precipitation amounts from 1950 to 2012, with the annual precipitation decreasing by 32% at a decadal rate of 28.5 mm. In particular, precipitation decrease is more pronounced in the summer and warm seasons when water use is at its seasonal peak. We further analyzed hourly precipitation data from 43 rain gauges between 1980 and 2012 to examine the spatiotemporal characteristics of both precipitation amount and intensity across six distinct subregions in Beijing. No significant spatial variations in precipitation changes were identified, but slightly greater amounts of precipitation were noted in the urban areas (plains) than in the surrounding suburbs (mountains), due to the effect of urbanization and topography. Precipitation intensity has increased substantially, especially at the hourly duration, as evidenced by the more frequent occurrence of extreme storms. The observed decreased water availability and the increase in extreme weather events require more integrated water management, particularly given the expectation of a warmer and more variable climate, the continued rapid growth of the Beijing metropolis, and the intensifying conflict between water supply and demand

    Mapping regional land cover and land use change using MODIS time series

    Full text link
    Coarse resolution satellite observations of the Earth provide critical data in support of land cover and land use monitoring at regional to global scales. This dissertation focuses on methodology and dataset development that exploit multi-temporal data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to improve current information related to regional forest cover change and urban extent. In the first element of this dissertation, I develop a novel distance metric-based change detection method to map annual forest cover change at 500m spatial resolution. Evaluations based on a global network of test sites and two regional case studies in Brazil and the United States demonstrate the efficiency and effectiveness of this methodology, where estimated changes in forest cover are comparable to reference data derived from higher spatial resolution data sources. In the second element of this dissertation, I develop methods to estimate fractional urban cover for temperate and tropical regions of China at 250m spatial resolution by fusing MODIS data with nighttime lights using the Random Forest regression algorithm. Assessment of results for 9 cities in Eastern, Central, and Southern China show good agreement between the estimated urban percentages from MODIS and reference urban percentages derived from higher resolution Landsat data. In the final element of this dissertation, I assess the capability of a new nighttime lights dataset from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) for urban mapping applications. This dataset provides higher spatial resolution and improved radiometric quality in nighttime lights observations relative to previous datasets. Analyses for a study area in the Yangtze River Delta in China show that this new source of data significantly improves representation of urban areas, and that fractional urban estimation based on DNB can be further improved by fusion with MODIS data. Overall, the research in this dissertation contributes new methods and understanding for remote sensing-based change detection methodologies. The results suggest that land cover change products from coarse spatial resolution sensors such as MODIS and VIIRS can benefit from regional optimization, and that urban extent mapping from nighttime lights should exploit complementary information from conventional visible and near infrared observations

    Study of the urban heat island (UHI) using remote sensing data/techniques: a systematic review.

    Get PDF
    Urban Heat Islands (UHI) consist of the occurrence of higher temperatures in urbanized areas when compared to rural areas. During the warmer seasons, this effect can lead to thermal discomfort, higher energy consumption, and aggravated pollution effects. The application of Remote Sensing (RS) data/techniques using thermal sensors onboard satellites, drones, or aircraft, allow for the estimation of Land Surface Temperature (LST). This article presents a systematic review of publications in Scopus andWeb of Science (WOS) on UHI analysis using RS data/techniques and LST, from 2000 to 2020. The selection of articles considered keywords, title, abstract, and when deemed necessary, the full text. The process was conducted by two independent researchers and 579 articles, published in English, were selected. Qualitative and quantitative analyses were performed. Cfa climate areas are the most represented, as the Northern Hemisphere concentrates the most studied areas, especially in Asia (69.94%); Landsat products were the most applied to estimates LST (68.39%) and LULC (55.96%); ArcGIS (30.74%) was most used software for data treatment, and correlation (38.69%) was the most applied statistic technique. There is an increasing number of publications, especially from 2016, and the transversality of UHI studies corroborates the relevance of this topic.This work was funded by National Funds through the FCT-Foundation for Science and Technology and FEDER, under the projects UIDB/04683/2020 and PT2020 Program for financial support to CIMO UIDB/00690/2020. This work was funded by National Funds through the FCT-Foundation for Science and Technology and FEDER, under the projects UIDB/04683/2020 and PT2020 Program for financial support to CIMO UIDB/00690/2020.info:eu-repo/semantics/publishedVersio
    • …
    corecore