
environments 

Review

Study of the Urban Heat Island (UHI) Using Remote Sensing
Data/Techniques: A Systematic Review

Cátia Rodrigues de Almeida 1,*, Ana Cláudia Teodoro 1,2 and Artur Gonçalves 3

����������
�������

Citation: Almeida, C.R.d.; Teodoro,

A.C.; Gonçalves, A. Study of the

Urban Heat Island (UHI) Using

Remote Sensing Data/Techniques: A

Systematic Review. Environments

2021, 8, 105. https://doi.org/

10.3390/environments8100105

Academic Editor: Paul C. Sutton

Received: 22 August 2021

Accepted: 5 October 2021

Published: 9 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Geosciences, Environment and Land Planning, Faculty of Sciences, University of Porto,
Rua Campo Alegre, 687, 4169-007 Porto, Portugal; amteodor@fc.up.pt

2 Earth Sciences Institute (ICT), Pole of the FCUP, University of Porto, 4169-007 Porto, Portugal
3 Centro de Investigação de Montanha (CIMO), Campus de Santa Apolónia, Instituto Politécnico de Bragança,

5300-253 Bragança, Portugal; ajg@ipb.pt
* Correspondence: up201600831@fc.up.pt

Abstract: Urban Heat Islands (UHI) consist of the occurrence of higher temperatures in urbanized
areas when compared to rural areas. During the warmer seasons, this effect can lead to thermal
discomfort, higher energy consumption, and aggravated pollution effects. The application of Remote
Sensing (RS) data/techniques using thermal sensors onboard satellites, drones, or aircraft, allow
for the estimation of Land Surface Temperature (LST). This article presents a systematic review of
publications in Scopus and Web of Science (WOS) on UHI analysis using RS data/techniques and LST,
from 2000 to 2020. The selection of articles considered keywords, title, abstract, and when deemed
necessary, the full text. The process was conducted by two independent researchers and 579 articles,
published in English, were selected. Qualitative and quantitative analyses were performed. Cfa
climate areas are the most represented, as the Northern Hemisphere concentrates the most studied
areas, especially in Asia (69.94%); Landsat products were the most applied to estimates LST (68.39%)
and LULC (55.96%); ArcGIS (30.74%) was most used software for data treatment, and correlation
(38.69%) was the most applied statistic technique. There is an increasing number of publications,
especially from 2016, and the transversality of UHI studies corroborates the relevance of this topic.

Keywords: review; LST; Landsat; MODIS; correlation; regression

1. Introduction

Urbanization is an anthropic alteration that generates modifications in surface ma-
terials due to vegetation suppression, albedo variation, and soil sealing, influencing the
local energy balance, contributing to the formation of the Urban Heat Island (UHI) [1].
This effect is a consequence of the greater absorption of electromagnetic energy and the
slow cooling of urbanized surfaces compared to surrounding areas with the presence of
vegetation [2,3].

This local dynamic contributes to an increase in surface temperature, with a subse-
quent reduction in relative humidity and latent heat, and an intensification of sensible heat.
The main causes of UHI formation are: (i) the ability of building materials to store heat;
(ii) anthropogenic heat production; (iii) alteration and minimization of wind speed as a
function of surface roughness; and (iv) increased absorption of solar radiation from lower
albedo surfaces, among others [4–7].

Due to the relevance of the topic, studies focusing on understanding the causes and
effects of UHI are increasing, including the analysis of the variability in air temperature
in urbanized areas and its underlying mechanisms [8–11]. Voogt and Oke (2003) [12]
suggested a sub-classification analogous to UHI, called Surface Urban Heat Island (SUHI)
which, in addition to studying surface temperature differences between urban and rural
areas, also addresses temporal variability [13]. In this review, considering that not all
the papers reviewed made the distinction between UHI and SUHI, the term UHI will be
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mentioned in the broad sense, and in the case of studies dealing with surface temperature,
it assumes that the study focuses on SUHI.

The most recurrent impacts associated with this effect are: (i) influence on the local
microclimate; (ii) thermal discomfort; (iii) impacts on public health; and (iv) changes in
hydrological behavior, with a displacement of water masses, for example [4–7]. UHI and
SUHI combined with natural phenomena, such as Heat Waves (HWs), can potentiate the
impacts on human health, culminating in increased mortality [14]. Climate change will
most likely generate an increase in air temperatures, raising the negative effects of UHI and
SUHI, and thus demanding climate-resilient cities that can accurately analyze and promote
urban planning solutions to mitigate this effect [15–18].

During the morning period, the SUHI presents great amplitude and variable behavior,
especially in urbanized areas. In these same areas, the UHI presents lower temperatures
when compared to those with the presence of vegetation, due to the amount of mass per
unit area for heating, i.e., places with fewer horizontal and vertical constructions will need
less time to heat (Figure 1) [19–22].

Figure 1. The temperature profile in different areas, with the formation of the UHI (adapted from [3]).

In addition, there is an influence regarding the thermal properties of the constituent
materials and their arrangement, which can generate shading effects and corroborate to the
local heat exchange characteristics: the more heterogeneous their composition, the more
complex the local heating and cooling relationship (as in the case of civil constructions). In
urban areas, SUHI gains intensity around noon, and during the night, urban areas retain
more heat due to the thermal behavior of buildings, surface materials, and areas that have
reduced view of the skydome/hemisphere, as a function of lower Sky View Factor (SVF)
(Figure 1) [19–22].
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There are several techniques to study the thermal behavior of a site, such as Remote
Sensing (RS) [23], data from fixed meteorological stations, data from qualified entities, in
situ campaigns with portable thermal cameras, etc. Some studies adopt more than one of
the aforementioned data sources to complement the information, both at the atmospheric
and surface-level (UHI and SUHI, respectively). This variety of sources allows the access
to diurnal and/or nocturnal data and in different seasons of the year, although the effect is
more intense in summer and winter [19–22].

From the RS data, it is possible to compute the Land Surface Temperature (LST), a
relevant variable that can be used to determine the radiative load of the earth’s surface.
It conducts longwave radiation and turbulent heat fluxes between the earth and the
atmosphere, i.e., it is a variable in the physics of local and global surface processes, linked
to radiative, latent, and sensible heat fluxes at the interface with the surface, allowing
analyses of warming trends at the earth’s surface [24–27].

The LST, also known as radiometric or “skin” temperature, refers to the direct measure-
ment of the earth’s surface temperature. Unlike the measurements taken by meteorological
stations that record the temperature near the surface, the LST allows for a more detailed
scale of analysis: in areas of dense vegetation it will represent the temperature of the
leaves of the canopy; in areas of sparse vegetation the temperature will correspond to
the whole canopy, subsurface (limbs, branches, etc.), and the ground surface; and on
the bare ground it will correspond to the temperature of the top (few micrometers) from
the ground surface [25].

In RS, the aggregated radiometric temperature is represented per pixel, according to
the sensor display field. The LST is recovered by estimating the emitted surface radiance,
obtained by the atmospheric correction in the radiance sensor, and inventing the Planck
function, considering the effects of emissivity variation [25].

LST can be used to retrieve relevant climate variables, as evapotranspiration, water-
stress vegetation, soil moisture, and thermal inertia [28,29]. Its application is vast, being
effective in UHI research [30,31], global warming, cryosphere melting [32,33], insect infes-
tation [34], vector-borne diseases [35], etc.

1.1. Satellites More Used to Estimate Land Surface Temperature

Considering the use of RS data for studying UHI and SUHI, the most commonly
used sensors in RS concerning the works evaluated in this review were thermal sensors,
which detect emitted and/or reflected terrestrial radiation [2,24]. Thermal sensors present
challenges in recording the collection, especially when clouds are present, which can affect
the reliability of the results and the temporal analysis of a site [36,37].

Another technique is the adoption of passive microwave sensors [36,38] which, al-
though they do not present as detailed spatial scale as thermal sensors, overcome the
challenge of atmospheric influence and allow for a thermal analysis of the atmospheric
boundary layer, as in the case of Moscow, where profiles up to 600 m high were created for
the study of UHI [38].

It is emphasized that there are studies that use data from both collection methodolo-
gies, to complement the information in the study area [36]. Details regarding the operation
of each methodology will be presented in sequence (Sections 1.1.1 and 1.1.2).

1.1.1. Thermal Sensors

Thermal sensors operate in the 8–14 µm range, known as one atmospheric window.
This range includes the emission part of the earth’s spectrum, making heat detection
by RS sensors possible. The emitted radiation is recorded as Digital Number (DN) and
subsequently converted into temperature data [2,26].

Each sensor has its spectral resolution that defines its ability and sensitivity to generate
data within the electromagnetic spectrum, which includes both visible and non-visible
zones. In practice, the sensors are cooled to temperatures close to absolute zero so that their
eventual emissions do not influence the measurements and the temperature data records



Environments 2021, 8, 105 4 of 39

of the targets. A comparison is made between the measured radiation temperature (target)
and the internal reference temperatures of the sensors (related to the absolute radiation
temperature) [2]. The main advantage of RS sensors is their continuous spatial coverage
and temporal repeatability of the study area [39].

The most applied satellite/sensors to study LST are Landsat, Moderate Resolution
Imaging Spectroradiometer (MODIS), and Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER). Some studies used data obtained by polar and/or geosta-
tionary satellites, which prioritize the temporal mapping of the study area [40].

Table 1 presents a summary of the thermal sensors most applied in UHI studies. It
is emphasized that this list is not intended to end or encourage that only these satellites
be used to obtain information about the LST (the OSCAR—Observing Systems Capability
Analysis and Review Tool, offers a query base for users, who can filter the choices of
satellites, sensors, or products) [41].

Table 1. Summary of the thermal sensors most commonly applied in UHI studies (adapted from [37,41]).

Sensor Satellite
Platform

Orbital
Frequency

Spatial
Resolution

Spectral Bands
(µm) Number Band Data Available

Since

AATSR Envisat 35 days 1 km (approx.) 11 and 12 TIR 2002–2012

ASTER Terra Twice daily 90 m

8.125–8.475
8.475–8.825
8.925–9.275
10.25–10.95
10.95–11.65

10
11
12
13
14

1999

AVHRR
(Advanced Very

High
Resolution

Radiometer)

NOAA 6, 8 10,
TIROS-N Twice daily 1.1 km

(approx.)
10.3–11.3
11.5–12.5

4
5 1978–2001

AVHRR/2
(Advanced Very

High
Resolution

Radiometer/2)

NOAA 7, 9, 11,
12, 13, 14 Twice daily 1.1 km

(approx.)
10.3–11.3
11.5–12.5

4
5 1981–2007

AVHRR/3
(Advanced Very

High
Resolution

Radiometer)

METOP-A, B, C 29 days 1.1 km
(approx.)

10.3–11.3
11.5–12.5

4
5 2006

AVHRR/3
(Advanced Very

High
Resolution

Radiometer/3)

NOAA 15, 16,
17, 18, 19 Twice daily 1.1 km

(approx.)
10.3–11.3
11.5–12.5

4
5 1998

ETM+ Landsat 7 16 days

Collected at
60 m and

resampled to
30 m

10.4–12.5 6 1999

GOES Imager GOES Geostationary 4 km (approx.) 10.2–11.2
11.5–12.5 TIR 1974

IRMSS
(Infrared

Multispectral
Scanner)

HJ-1B 31 days 300 m 10.5–12.5 TIR 2008–2018
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Table 1. Cont.

Sensor Satellite
Platform

Orbital
Frequency

Spatial
Resolution

Spectral Bands
(µm) Number Band Data Available

Since

IRMSS
(Infrared

Multispectral
Scanner)

CBERS 1 26 days 160 m 10.4–12.5 4 1999–2003

IRMSS
(Infrared

Multispectral
Scanner)

CBERS 2 26 days 160 m 10.4–12.5 4 2003–2009

IRMSS
(Infrared

Multispectral
Scanner)

CBERS 2B 26 days 160 m 10.4–12.5 4 2007–2010

IRMSS-2 (HJ)
(Infrared

Multispectral
Scanner-2)

HJ-2A and
HJ-2B 4 days 300 m 10.5–12.5 TIR 2020

IRS (Infrared
Medium

Resolution
Scanner)

CBERS 4 26 days 80 m 10.4–12.5 12 2014

IRS (Infrared
Medium

Resolution
Scanner)

CBERS 4A 31 days 80 m 10.4–12.5 12 2019

MODIS Terra Twice daily 1 km (approx.) 10.78–11.28
11.77–12.27

31
32 1999

MODIS Aqua Twice daily 1 km (approx.) 10.78–11.28
11.77–12.27

31
32 2002

SEVIRI Meteosat-8 Geostationary 3 km (approx.) 10.812 TIR 2005

TIRS Landsat 8 16 days

Collected at
100 m and

resampled to
30 m

10.6–11.2
11.5–12.5

10
11 2013

TIRS 2 Landsat 9 16 days

Collected at
100 m and

resampled to
30 m

Similar TIRS Similar TIRS
Launch

planned for
09/23/2021

TM Landsat 4 16 days

Collected at
120 m and

resampled to
30 m

10.4–12.5 6 1982–1993

TM Landsat 5 16 days

Collected at
120 m and

resampled to
30 m

10.4–12.5 6 1984–2011

In the next subsections, a brief description will be given considering these sensors.

• Landsat mission

The Landsat mission began in 1972, but only in the following decade, with Landsat 4,
thermal data began to be collected, due to the recording capabilities of the following
sensors: in Landsat 4 and 5, the Thematic Mapper (TM) [42,43]; in Landsat 7, the Enhanced
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Thematic Mapper Plus (ETM+) [44]; and in Landsat 8, the Thermal Infrared Sensor (TIRS)
and Operational Land Imager (OLI) [45]. The Landsat family operates in heliosynchronous
and near-polar orbit with a nominal altitude of 705 km, an orbital inclination of 98.2◦, and
a revision time of 16 days [42–45].

The Thematic Mapper (TM), present on Landsat 4 (operation from July 1982 to June
2001) and Landsat 5 (operation from March 1984 to January 2013), is a multispectral sensor,
with seven spectral bands that detect information, simultaneously. Thermal infrared
radiation is detected by band 6, whose records occur only at night. The Instantaneous
Field of View (IFOV) of this sensor is 30 × 30 m in bands 1–5 and 7, and 120 × 120 m in
band 6 [42,43].

ETM+ of Landsat 7 began operation on 15 April 1999, and since June 2003 has acquired
and provided data with gaps caused by the Scan Line Corrector (SLC) failure [44]. It
consists of a fixed scanning, multispectral radiometer with eight spectral bands, including
a panchromatic and a thermal band. The spectral resolution of the bands is in the range of
0.45 to 12.5 µm and it has a spatial resolution of 30 m (except for band 6, which is 60 m,
resampled to 30 m, and the panchromatic band, which is 15 m). The radiometric resolution,
which is the sensor’s ability to discriminate small variations in energy, which in images
refers to the number of distinguishable shades of gray between black and white, is related
to the sensor’s bits, and is 8 bits and records Digital Number (DN) values between 0 and
255 gray levels [44].

Concerning Landsat 8, the OLI consists of one panchromatic band and eight multi-
spectral bands, with a resolution of 15 and 30 m, respectively. In the TIRS sensor, there
are two thermal bands with a resolution of 100 m, whose data are resampled to 30 m [45].
Landsat 9 is planned to be launched at the end of 2021. There is a similarity regarding
the operation and characteristics of the Landsat 8 thermal sensors, renamed to TIRS 2 and
OLI 2 [46].

Landsat has a long and uninterrupted observation program [47] and its heliosyn-
chronous orbit favors temporal studies of the same place, since its revisit occurs at the same
point and UTM time, with an interval of 16 days. Its data are released free of charge by the
United States Geological Survey (USGS), in levels 1 and 2 (with absence and presence of
pretreatment, respectively).

To compute the LST, it is necessary to process the two levels of data: NIR and RED
bands from level 1 and thermal band from level 2 [48]. The standard processing will be
presented below [27].

The conversion from Digital Number (DN) to Top Of Atmosphere (TOA) spectral
radiance (Lλ)—physical quantity defined as the radiant flux in each direction, considering
a surface normalized concerning surface area and unit solid angle [26]. It is calculated
according to Equation (1) [49,50], using the thermal band.

Lλ = MLQcal + AL (1)

where Lλ is the TOA spectral radiance (Watts/(m2 * srad * µm)); band-specific multi-
plicative rescaling factor from the metadata (radiance_mult_band_x, where x is the band
number) is the ML; the band-specific additive rescaling factor from the metadata (radi-
ance_add_band_x, where x is the band number) is represented by AL; and the quantized
and calibrated standard product pixel values (DN) is Qcal, i.e., the thermal band.

TOA spectral radiance (Lλ) is converted to Top Of Atmosphere brightness temperature
(Kelvin) by Equation (2) [49,50].

TK = K2/(ln(K1/Lλ) + 1)) (2)

where TK is the Top Of Atmosphere brightness temperature (K);
Lλ is TOA spectral radiance (Watts/(m2 * srad * µm)); K1 and K2 are band-specific

thermal conversion constants from the metadata (K1 or K2 _constant_band_x, where x is
the thermal band number).
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Subsequently, the result is converted into Temperature in Celsius—TC, according to
Equation (3) [49,51].

TC = TK − 273.15 (3)

where TC is Top Of Atmosphere brightness temperature (◦C).
The thermal band includes the Emissivity (E) of the soil and vegetation. Although it is

possible to deduce radiance and temperature values, it is necessary to include emissivity
in the computation for the generation of the LST, using the NIR and RED bands. For that
purpose, first, the Normalized Difference Vegetation Index (NDVI) is calculated (according
to Equation (4)). NDVI was first proposed by Rouse et al. (1974) [52].

NDVI = (NIR − RED)/(NIR + RED) (4)

where NIR is the near-infrared satellite band and RED is the red satellite band.
This result is used to obtain the Vegetation Proportion (PV) (Equation (5) [49,53].

PV = ((NDVI − NDVImin)/(NDVImax − NDVImin))
1
2 (5)

where NDVImin and NDVImax are the minimum and maximum values obtained in the
NDVI calculation, respectively.

In Equation (6), the emissivity (E) is estimated [54].

E = 0.004 ∗ Pv + 0.986 (6)

Finally, the LST was computed according to Equation (7) [39,49].

LST = (TC/(1 + (λ ∗ TC/ρ) ∗ Ln(E))) (7)

where LST is the temperature, with correction by emissivity (◦C); TC is the temperature
of the brightness at the sensor (◦C); λ is the wavelength of the emitted radiance; E is the
emissivity; P is which is deduced from Equation (8) [23,49].

ρ = h
c
σ
=

(
1.438 × 10−2 mk

)
(8)

where σ is the Boltzmann constant (1.38 × 10−23 J/K), h is Planck’s constant (6.626 × 10−34 Js),
and c is the speed of light (2998 × 108 m/s).

The standard process is presented in Figure 2.

• MODIS

MODIS is an instrument onboard Terra (1999) and Aqua (2002) satellites, both launched
by NASA. It has a spectral resolution of 36 bands, divided into the visible, NIR, and infrared
wavelengths (comprising the bands 20, 22, 23, 29, 31, and 32, centered at 3.79, 3.97, 4.06,
8.55, 11.03, and 12.02 µm, respectively) [55]. With a revisit time of every one or two days, its
spatial resolution is low: bands 1 and 2 are recorded with 250 m, bands 3 to 7 with 500 m,
and bands 8 to 36, with 1 km. MODIS sensors can measure the physical and biological
properties of the oceans and land and the physical properties of the atmosphere [55].

Thermal data has a resolution of 1 km, which makes its products applicable to larger
regions. There are several pre-processed products for users, such as ocean surface tempera-
ture, ice, snow, evaporation, precipitation [56], LST with daytime and nighttime data, and
emissivity, from MOD11C3, MOD11A1, and MOD11A2 products, respectively.

In MODIS products, the LST value is retrieved by applying the generalized split-
window algorithm [57]. In MODIS LST Collection-6 products, the MODIS Land Surface
Temperature and Emissivity (LST&E) product (MOD21), the LST is calculated by the
ASTER Temperature Emissivity Separation (TES) algorithm and are more sensitive to land
cover changes when compared to other emissivity products [55,58].
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TES applies physics concepts to dynamically and simultaneously retrieve both LST
and spectral emissivity for the MODIS thermal infrared bands (29, 31, and 32) through
simulations of radiative transfers for atmospheric correction, called Water Vapor Scaling
(WVS), and a model of the variation of surface radiation data, resulting in accuracies at the
1 K level for various surfaces (deserts, water, and vegetation) [59].

Studies using products from sensors onboard satellites may be useful to show differen-
tiation in the daytime and nighttime LST levels when there is not much cloud concentration.
For this purpose, a study used a sensor onboard the Aqua satellite to analyze heat wave
episodes in Cyprus [60]. The combined use of Terra and Aqua MODIS data can also provide
valuable results, especially when complemented with daytime data, as it increases the
spatial, temporal, and angular coverage of clear-sky data [61].

Figure 2. Steps for generating the LST map.

• ASTER

Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) is a sensor
onboard NASA’s Terra satellite, launched in December 1999. It operates with three inde-
pendent imaging subsystems and collects data in different regions of the electromagnetic
spectrum: in the Visible Spectrum (VIS) and NIR region there are three spectral bands with
15 m spatial resolution (bands 1 to 3); in the shortwave infrared there are six bands with
30 m resolution (bands 4 to 9), and in the thermal infrared region there are five bands with
90 m resolution (bands 10 to 14) [62–65].

Additionally, there is the VIS-NIR system, consisting of two telescopes. One of them
operates with rear-view, with a difference of seconds relative to the nadir view, making
it possible to generate stereoscopic pairs in band 3. The revisit time is 16 days or less
since the subsystems have a side view of ±24 degrees beyond nadir. Each image covers a
60 × 60 km area [62–65].

The data are available in different treatment levels. Level 1A, unsuitable for most
users, refers to raw data, without calibration or noise correction pretreatment, and with non-
co-recorded bands. Level 1B, a product suitable for many applications, has geometric and
radiometric calibration and co-registered bands. Level 2 includes more specific products,
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identified by acronyms, the most used of which are AST04—surface temperature; AST05—
surface emissivity; AST06—decorrelation-enhanced color compositions; AST07—surface
reflectance; AST08—kinetic temperature (in which it is possible to obtain the LST, with an
accuracy of 1.5 K and there may be nighttime records of the study area, which is interesting
for UHI studies); and AST09—surface radiance. Level 3 products are more sophisticated
and include, for instance, digital elevation models (AST14). Level 2 and 3 products are
freely available on the Internet, although they were charged from 1999 to April 2016
(resulting in fewer search results in this period) [58,62–66].

• Polar and geostationary satellites

Polar and geostationary satellites can also be used for LST estimation. Their fixed
positioning at a point on earth provides wide temporal coverage of local data, even allowing
for a more adequate characterization of the diurnal cycle compared to other orbits [40].
However, the spatial resolution and coverage area do not present much detail, which can
compromise the identification of land surfaces in a more refined way [37,67], and are not
suitable for analyses of UHI patterns and dynamics about heat-associated health risk at
urban scales [67].

The best-known satellites for LST estimation are Suomi National Polar-orbiting Part-
nership (NPP), Spinning Enhanced Visible InfraRed Imager (SEVIRI) [68], aboard Meteosat
Second Generation (MGS) [69]; and Geostationary Operational Environmental System
(GOES) [67].

NPP consists of a mission to monitor biological productivity and long-term climate
trends. It acts between the measurements gauged by EOS Terra and Aqua, complementing
the data between NASA’s EOS missions and the Joint Polar Satellite System (JPSS) [70].

MGS operates in geostationary orbit, 36,000 km above the equator and can be directed
for data collection at different locations, and is currently operated over Europe, Africa, and
the Indian Ocean. Its sensor, SEVIRI, has 12 spectral channels and provides data on the
atmosphere, assisting in the generation of predictive weather models. It has eight channels
in the thermal infrared region, including High-Resolution Visible (HRV), which performs
sampling with a nadir distance of 1 km, with daytime cycle coverage every five minutes,
due to its fast scanning [68,71].

The GOES mission is controlled by the National Aeronautics and Space Adminis-
tration (NASA) and operated by the National Oceanic and Atmospheric Administration
(NOAA). Its orbit is geosynchronous equatorial, 35,800 km above the earth, and scans
the continental United States and its surroundings (Atlantic and Pacific oceans), Central
and South America, and southern Canada [67]. The GOES LST product is based on the
split-window technique, which corrects atmospheric absorption and surface emissivity. It
has a spatial resolution between 4 and 8 km [72].

Considering that most of the materials analyzed in this review do not use data from
polar and geostationary sensors, the treatment processes for estimating the LST will not
be detailed.

1.1.2. Passive Microwave Sensors

LST can also be computed from processing data from passive microwave radiometers.
Passive sensors are microwave instruments that receive and measure natural emissions,
which are produced by the earth’s atmospheric and surface constituents. The power
associated with the measurement is related to the composition and roughness of the surface
being measured, and the physical temperature. The frequency bands are determined by
fixed physical properties of what is being measured and cannot be duplicated in other
bands [73]. They generate products capable of measuring biogeophysical variables, such
as air temperature [36,74], even at night [36]. Compared to thermal sensors, passive
microwave sensors have a greater ability to penetrate clouds, snow, rain, arid surfaces, and
vegetation, complementing the data for UHI studies [75].

The limitations of these data relate mainly to the coarseness of spatial resolution (low)
and the inability to recover temperatures on frozen surfaces [36].
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The first attempts to obtain data from passive sensors were performed in the 1990s, i.e.,
compared to thermal sensors, there are limitations of historical and coverage areas [76–78].

The Advanced Microwave Scanning Radiometer-Earth observing system (AMSR-E)
on the Aqua satellite was responsible for collecting data at high temporal resolution and
contributed to the mapping of global near-surface air temperatures on a near-daily basis
and for over a decade, until there was a failure of its antenna in October 2011 [36]. A
combination of data from AMSR-E and AMSR2 (onboard the Japan Aerospace eXploration
Agency’s Global Change Observation Mission-Water1 (JAXA’s GCOM-W1)) was released in
May 2012 [36,79]. The data gap was filled with data obtained by the Microwave Radiation
Imager (MWRI), onboard on the Chinese satellite FengYun-3B (FY3B) [36]. An example
application is the use of data from these sensors to obtain information about the three-
dimensional structure of urban temperature. The Atmospheric Boundary Layer (ABL) acts
as a buffer zone and accumulates heat, pollutants, and moisture. The ABL influences the
intensity of vertical exchange, and the more unstable it is, the more favorable the removal
of pollutants in the lower layer [38].

Moreover, the information from passive sensors can be combined with thermal ones for
the complementarity information in locations with a higher presence of clouds or obstacles
that influence the collected results. It is noteworthy that the methodology employing the
use of passive sensors was not recurrent in the analyzed papers.

1.2. SUHI and LST Studies Applying Different Techniques

Information on the surface temperature of a location can be useful in different fields
of investigation, either to assess climate change of natural and/or anthropogenic origin or
to predict climatic behavior based on statistical models and time series. LST prediction can
be an important tool for mitigating possible social impacts and promoting improvements
in the quality of life of the populations.

Although LST is widely applied for studies that aim to analyze SUHI, this parameter is
cross-cutting and can corroborate for the analysis of other topics, for example: environmen-
tal analyses with research on aquifers/water bodies [80], biomes [2], forest dynamics [81],
and natural hazards such as volcanic activity studies [82]; air pollution [83] and determina-
tion of particulate concentration in urbanized areas [84]; architectural assessment to identify
the building area and building layout with the least impact to the local microclimate [85]
and identification of Local Climate Zones (LCZ) [86], from the identification of regions
with uniform characteristics, from hundreds of meters to several kilometers, with respect
to land cover, surface structure, building materials and human activities [10], use of hybrid
data, including physical and mobile equipment for climate characterization of a site [87],
socioeconomic and cultural analysis, including studies on biophysical and socioeconomic
impacts [88–90], and social events [91]; and public health and mortality associated with
HWs [92].

1.3. Study Objectives

Given the relevance of the studies in this area, this work aimed to identify the publi-
cations from 2000 to 2020 that address the UHI effect using RS data, namely the LST, and
to perform a qualitative and quantitative analysis considering the following parameters:
(i) number of publications in the considered period; (ii) geographic location and climate
zone of the study areas; (iii) keywords; (iv) general objectives and application areas; (v)
equipment/sensor used to obtain information about the thermal data; (vi) information
sources used to obtain Land Use Land Cover (LULC) and additional data; (vii) software
employed to process the data; (viii) Vegetation Index (VI) and additional data used for
the comparative analyses; (ix) statistical methods employed to evaluate the relationship
between indices and LST; (x) authors’ main conclusions (quantitative and qualitative
analysis); (xi) bibliographical references; (xii) authors; and (xiii) citations.
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2. Materials and Methods
2.1. Bibliographic Database

The databases selected for this study were Scopus and Web of Science (WOS). Scopus
has been available since 2004. Its publications are peer-reviewed, and it is one of the largest
databases of literature abstracts and citations worldwide, with more than 25,100 active titles
from over 5000 international publishers, divided into the fields of science, technology,
medicine, social sciences, arts, and humanities. In 2020, it included 23,452 peer-reviewed
journals. Its tools for information retrieval and aggregation are efficient, allowing data
extraction in several formats, which facilitates the analytical process [93]. WOS is a global
database of various publishers. It has consistent indexing in its main base, which is approx-
imately 50 years old. In the WOS platform version, there are more than 34,586 publications,
including journals, books, proceedings, patents, and datasets. Like Scopus, peer review
occurs independently, and it is possible to filter by area or publication type and to issue
customized reports in different extensions, which allows the analysis of the publications
available in the database [94].

2.2. Search Strategy and Validity

Considering the relevance of reviews to provide a broad picture on a given subject
from the contextualization of a topic, its methodological approaches, the direction of
research, and the challenges and points for improvement discussed [95], the selection
process of the evaluated papers is important.

The following steps were performed: firstly, the papers were screened to select those
applying RS in UHI studies; secondly, the data from the selected papers were systematized,
identified, and filtered, considering the titles, abstracts, methodologies, and other parts
that could correspond to the 13 criteria analyzed (described in Section 1.3); subsequently,
the resulting data were identified and filtered, descriptive statistics were applied, and
analytical graphs were plotted; finally, the results were discussed, by class.

Not all steps contained in a meta-analysis were adopted in this review, since it was
not intended to assign weight or relevance to any of the criteria evaluated in the papers,
such as the number of citations or year of publication [96]. The intention was to select and
evaluate all papers quantitatively and qualitatively, from a manual review, using synthesis
study techniques similar to those adopted in other reviews in the area of RS [97].

The details of each step are presented below.
The search in both databases considered publications that occurred from 2000 to

2020. The keywords ((UHI*) OR (satellite image*)) existing in the article title, abstract, or
keywords fields were searched. Search results were saved in a list so that the base was
static and Excel software was used for data tabulation and manipulation.

The process of selection of the publications approved for analysis in this paper was
carried out by two independent researchers. A total of 1239 documents were considered,
872 (70.4%) published in Scopus, 199 (16%) in WOS, and 168 (13.6%) in both bases, divided
into Papers (978—78.9%), Conference Paper/Works (222—17.9%), and Reviews (39—3.2%).

In the first stage, only the publications classified as “papers” were considered, to main-
tain in the database as many unpublished documents as possible, since some research may
be first presented at conferences and later submitted as journal papers. Thus, 222 (17.9%)
publications classified as “Conference/Proceedings Paper” and 39 (3.2%) as “Reviews”
were discarded. The second step to refine the database consisted of the identification of
duplicated documents based on the criteria of similarity of the Digital Object Identifier
(DOI), title, and abstract, resulting in the elimination of 136 papers (13.91%). For each
repeated title, one was kept, and the other was deleted.

Next, the title, abstract, and keywords were evaluated to check if the UHI studies
used RS data (satellite, drone, or aerial imagery), to estimate LST. In cases where the fields
did not spell out which data sources were used, the researchers performed a full reading
of the paper methodology. At this stage, 43 papers (5.10%) were excluded, resulting in
799 publications (64.49% of the initial selection).
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To refine the database and allow a more effective qualitative analysis of the remaining
papers, a third analysis was performed, considering the papers published in English
and without the “in press” status. Thus, of the 799 approved publications, 756 (94.62%)
were in English; 36 in Chinese (4.5%); 3 in Spanish (0.38%), and the others correspond
to 1 publication in other languages: German, French, Croatian, and Portuguese (totaling
0.50%). Thus, 43 papers (5.38%) were discarded. Additionally, 14 papers with “in press”
status were also discarded for the next selection step.

Thus, 742 papers were selected for the next stage of analysis, which consisted of a
thorough reading regarding the adherence of their objectives and methods regarding this
review. In this step, 163 papers were discarded because they did not use RS data as the
main sources of information or because they did not present in a clean form the main
objective (UHI effect).

As each researcher performed this process separately, the titles approved by both were
included in the final database. Finally, 579 papers (46.73% of the initial total), were selected.
All these papers applied remote sensing techniques for UHI and SUHI analysis. Figure 3
presents a summary of the steps and the respective pass/fail criteria at different stages.

For the presentation of the results, in addition to graphs generated in Excel, the
VOSviewer tool [98] and ArcGIS version 10.7 software [99] were used to present the data
in grouping and map format, respectively.

Figure 3. Article selection criteria and approval process.

3. Results

In this item, the most relevant results identified during the development of this work
will be presented.

3.1. Publication Period

The evolution in the number of publications concerning the study of UHI with RS
data/techniques in the last 20 years can be observed in Figure 4. From 2000 to 2008,
this methodological combination resulted in fewer publications when compared to the
following years. In 2001 and 2002, the database search did not show any publications. In
this case, a second search was performed, using only the term “UHI” as a criterion, to
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assess whether there had been any inconsistency. As a result, 26 papers published in this
period were identified (adding the two databases), but none met the selection criteria of
this paper (either using data only from meteorological stations or applying the acronym
UHI to other phenomena, such as in health areas).

It is possible to verify a significant increase of publications in the last 20 years, espe-
cially in the last five years, the period which concentrated 399 (68.91%) of the analyzed
papers. This increase reinforces the relevance of the topic in the scientific community, as
well as the applicability of RS to analyze the UHI effect.

Figure 4. Publications per year between 2000 and 2020.

3.2. Geographic Location and Climate Zone of the Study Areas

Regarding the study areas, the most studied continents or subcontinents were Asia
(405–69.94%), Europe (65–11.23%), and North America (59–10.19%), totaling 529 (91.36%)
papers. Besides the papers with continental delimitation, 14 papers were produced with
data from at least two continents, representing 2.42% of the analyzed papers. Table 2 shows
the number of publications and their respective percentages.

Considering the countries, China was the most studied, with 233 (40.24%) papers, fol-
lowed by India with 69 (11.92%), the United States (50–8.64%), and Iran (19–3.28%). These
four countries are accountable for 64.08% (371) of the material analyzed. Figure 5 shows
the spatial distribution of the papers by country. Studies that were conducted on more
than one continent (3–0.52%) were not considered in this map in order not to generate
duplication of information.
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Table 2. Published papers by continent/sub-continent.

Continent No. of Publications % of Publications

Asia 405 69.94
Europe 65 11.23

North America 59 10.19
Africa 18 3.11

South America 12 2.07
Australian Area 4 0.69
Antarctic Area 2 0.35

Studies Involving More than One Continent/Sub-Continent

Africa and Europe 1 0.17
Asia and Europe 7 1.21

Asia and North America 3 0.52
More than two continents 3 0.52

Total 579 100

Figure 5. Published papers by country.

Regarding climatic zones, in this work, we adopted the Köppen–Geiger global classifi-
cation, proposed in 1900 by climatologist Wladimir Köppen and improved in 1918, 1927,
and 1936 with the help of Rudolf Geiger to separate the papers analyzed. According to the
concepts of phytosociology and ecology, the regional natural vegetation correlates with the
predominant climate of the area. In this classification, these climate types are designated
considering seasonality, and annual and monthly mean values of precipitation and air
temperature [100,101].

In the nominal representation of the climate type, there are uppercase and lowercase
letters that symbolize the types and subtypes considered, respectively. Table 3 shows the
division of the study sites by climate zones.

Regions with a Cfa climate were the most studied, followed by Dwa and Cwa. It is
noteworthy that, of the 579 papers evaluated, 41 (7.08%) addressed more than one climate
zone in the same study. In addition, 31 papers analyzed different climates in the same study.
As expected, there is a correspondence between the continents with most case studies and
the climate of such studies.
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3.3. Keywords

From the data generated by the VOSviewer software, a total of 3050 keywords were
identified, corresponding to an average of five keywords per selected article (n = 579).
Figure 6 shows the 338 most used keywords in the papers. The diameter of the circle in the
image is proportional to the number of repetitions of each term.

Table 3. Climatic zone of study areas.

Group Climate Acronym/Name No. of Publications That
Mentioned the Climate

C Temperate Cfa—Humid Subtropical Climate 188

D Continental Dwa—Monsoon-Influenced Hot-Summer Humid
Continental Climate 81

C Temperate Cwa—Monsoon-Influenced Humid Subtropical Climate 54
A Tropical Aw—Tropical Savanna Climate 50
C Temperate Cfb—Temperate Oceanic Climate 42
B Dry BWh—Hot Desert Climate 37
B Dry BSk—Cold Semi-Arid Climate 33
C Temperate Csa—Hot-Summer Mediterranean Climate 31
B Dry BSh—Hot Semi-Arid Climate 22
A Tropical Af—Tropical Rainforest Climate 15
D Continental Dfb—Warm-Summer Humid Continental Climate 13
A Tropical Am—Tropical Monsoon Climate 11
C Temperate Cwb—Subtropical Highland Climate 6
D Continental Dfa—Hot-Summer Humid Continental Climate 6
D Continental Dfc—Subarctic Climate 4
C Temperate Csb—Warm-Summer Mediterranean 3
B Dry BWk—Cold Desert Climate 2

D Continental Dwb—Monsoon-Influenced Warm-Summer Humid
Continental Climate 1

E Polar ET—Tundra 1

Figure 6. Most used keywords in the publications.

Table 4 presents the 15 most cited keywords in the papers evaluated.
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All keywords are associated with topics and methodologies that can be employed for
the study of UHI, except for the word “China”, which stands out among the 15 most cited
because of the high number of publications in the area.

Table 4. Top 15 most frequently cited keywords.

Keyword No. of Citation

land surface temperature 285
urban heat island 285

heat island 282
atmospheric temperature 279

remote sensing 211
surface temperature 196

landforms 188
land surface 171

surface properties 164
surface measurement 149

China 141
satellite imagery 140

urbanization 134
land use 111

urban planning 110

3.4. General Objectives and Application Areas

The qualitative analysis of the objectives of the papers resulted in the identification of
seven main areas addressed, presented in Table 5.

Table 5. Study of the UHI effect.

Study Approach Main Data Used No. of Papers %

Rural versus urban areas and
Seasonality

Including papers that used extra data
(weather network, LULC, building

construction, LCZs, on-site measurement)
416 71.85

Environmental
Environmental Data

Vegetation, biophysical, biochemical, water
body, and wetland data

61 10.53

Models
(IVs, mathematical, computational)

Satellite data; extra data (weather network,
LULC, building construction, LCZs, on-site

measurement, historical data)
31 5.35

Health and Social Census, health data, questionnaire
application 28 4.84

Specific areas of study
Complementary data to identify local

specificities (as petrochemical, arid zones,
and mountainous areas)

21 3.63

Air pollution, energy consumption,
and economic factors Consumption and pollutant data 15 2.60

Focus on Predictability Historical data 7 1.20

Total 579 100

The most recurrent objectives/areas in the papers focused on studying the UHI effect,
using a comparison between the temperature amplitude of anthropically altered areas
versus vegetated ones (416 papers—71.85%). Secondly, studies focused on analyzing the
environmental characteristics, conditions, and impacts of UHI, considering biophysical, bio-
chemical parameters, and data on water bodies and wetlands, totaling 61 (10.53%) papers.
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It is important to emphasize the subjectivity of this classification, especially in the case
of papers that worked with interdisciplinary topics, which were framed in the subclass
that presented more affinity.

3.5. Equipment/Sensor Used to Obtain Information about the Thermal Data

Regarding the satellite/sensor selection to obtain the thermal data, 446 papers (77%)
used RS data from a single source, 114 (19.69%) combined at least two sources of infor-
mation, 16 (2.76%) used three data sources, 2 (0.35%) used data from four sources, and
1 (0.17%) combined data from five sources.

The most used satellites/sensors were Landsat, with 396 papers (68.39%), considering
those that used complementary sources of data and 317 (54.75%) that used only Landsat
products; MODIS, with application in 185 (31.95%) papers, being the exclusive source of
data in 103 (17.79%) of the papers; and ASTER, which figures as the third most used, with
36 papers (6.22%), being the exclusive source in 15 (2.59). Considering the sum of the
papers that cited the three satellites as exclusive sources, there are 435 (75.13%) of all the
papers studied. It is emphasized that since most of the papers aimed a more detailed spatial
monitoring of the study area, the authors adopted to use data from heliosynchronous orbits,
rather than increasing the temporal resolution.

Table 6 presents the list of five satellites most used and the number of papers that
cited them.

Table 6. Most used satellites/sensors to obtain LST data.

Satellite
Exclusive Use Combination

No. of Papers % No. of Papers %

Landsat 317 54.75 396 68.39
MODIS 103 17.79 185 31.95
ASTER 15 2.59 36 6.22

NOAA/AVHRR 1 0.17 7 1.21
METEOSAT - - 3 0.52

Considering data from complementary sources, the use of meteorological networks
was cited in 41 (7.08%) of the papers, followed by in situ measurements in 14 (2.42%)
publications. The data collection by drones, helicopters, and airborne were cited in
13 publications (2.25%).

The combination RS data with complementary information, such different resolu-
tion [102], in situ measurement data, especially in daylight [69] and model information,
can be a good strategy to obtain data with better temporal resolution (due to the possibility
of collection in the interval between satellite passes), as well as to improve spatial and
spectral scales.

3.6. Information Sources Used to Obtain LULC and Extra Data

For the LULC computation, 446 (77.03%) papers used data from a single source,
144 (19.69%) considered two sources, 16 (2.76%) of the papers considered three sources,
2 (0.35%) four sources, and 1 (0.17) five sources.

Considering RS sources, 324 papers (55.96%) used Landsat data, with 211 papers
(36.44%) using this data exclusively. MODIS was the second most used, with 95 (16.41%)
citations, where 51 (8.81%) were exclusive sources. Next, ASTER was cited in 32 (5.53%)
papers, of which 11 (1.90%) were exclusive. Table 7 shows the five main satellites/sensors
used in LULC computation.
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Table 7. Most used satellites sensors in the LULC estimation.

Satellite
Exclusive Use Combination

No. of Papers % No. of Papers %

Landsat 211 36.44 324 55.96
MODIS 51 8.81 95 16.41
ASTER 11 1.90 32 5.53

IKONOS 5 0.86 21 3.63
SPOT 9 1.55 14 2.42

In addition to the derivation of LULC through satellite data, eight papers (1.38%)
used information recorded by drones and sensors onboard helicopters and airborne, and
two (0.35%) used exclusively these sources. One of the advantages of using data from
these sources is the improvement in spatial and temporal resolution when compared to
satellites, making it possible to record information at more detailed levels and, in areas of
considerable heterogeneity, the distinction between land-use types can be useful for the
researchers. However, the cost associated with this technology can be a limiting factor,
given the small number of publications found.

3.7. Software Employed

Regarding RS data processing, 208 (35.92%) papers did not specify the name of the
software used for processing the data. Considering those that did, 193 (33.33%) processed
the data in a single software program, 111 (19.17%) used two software packages, and the
other 67 papers (11.58%) used three to six different packages. Depending on the complexity
of the study, a single software program may not answer all the processing needs, which
justifies the combination and complementary use of different software. Figure 7 presents
the number of papers concerning the number of software programs used.

Figure 7. The number of papers by the software used.

Table 8 highlights the six most used software programs.
ArcGIS and ENVI were the most used software programs in the papers analyzed.

ArcGIS was used as the exclusive tool in 60 articles (10.36%) and 178 (30.74%) combined
with other software. For ENVI, 28 articles (4.84%) used it exclusively and 93 (16.06%)
combined with other software.

In addition to spatial image processing and analysis software, other software/systems
were used to supplement information. For instance, FRAGSTATS, used for calculating
landscape metrics, was used as complementary software in 39 papers (6.74%) and SPSS,
applied for statistical processing, was used in 33 papers (5.70%).
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Table 8. Six most used software programs.

Keyword Key Applications
in Papers

Exclusive Use Combination

No. of Papers % No. of Papers %

ArcGIS Spatial image
analysis and
processing

60 10.36 178 30.74

ENVI 28 4.84 93 16.06

Google Earth

3D representation
of the earth based
mainly on satellite
imagery used to
identify LULC

classes

30 5.18 71 12.26

ERDAS Image
Spatial image
analysis and
processing

11 1.90 43 7.43

FRAGSTATS Calculating
landscape metrics - - 39 6.74

SPSS Statistical
calculations - - 33 5.70

3.8. Vegetation Index and Extra Data

Several complementary/auxiliary indices and indicators have been used in addition
to the LST analysis. The ten indices/extra data most used are shown in Table 9.

Table 9. Ten indices/indicators most used.

Index No. of Citation

NDVI 190
Enhanced Vegetation Index (EVI); Fraction Vegetation Cover (FVC);

Photosynthesis 105

Built-up 78
LULC and Bareness 73

NDBI 71
Percent of Impermeable Surface (%ISA)/Impervious Surface Areas (ISA) 68

Dimension, Altitude, Latitude, Digital Elevation Model (DEM) 42
Demographic/Social Data 33

Water Bodies 31
Albedo 26

Most indicators are associated with different topics, such as urban morphology and
construction data, and indices obtained through RS data processing, such as NDVI, Normal-
ized Difference Built-Up Index (NDBI)—an index that allows the identification mapping
of built-up areas [103], census (demographic), environmental, social, and financial data.
NDVI figures as the most cited indicator (190), followed by indices that use vegetation data
such as EVI, FVC, and photosynthesis (105). It should be noted that the classification of the
indicators considered the adoption of identical names by the authors.

3.9. Applied Statistical Methods

As for the statistical methods, 36 papers (6.22%) did not explicitly mention how the
results were evaluated, 232 (40.07%) relied on one type of analysis, and 195 (33.68%) used
two methods for data analysis. Table 10 presents the proportion of papers concerning the
methods employed.
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Table 10. Papers by the number of statistical techniques applied.

No. of Statistical Techniques
Applied No. of Papers %

0 36 6.22
1 232 40.07
2 195 33.68
3 62 10.71
4 30 5.18
5 14 2.42
6 8 1.38

Total 579 100

The combination of methods can be a strategy when it comes to evaluating the best-
fitting model for the data set, as well as complementing analytical information.

Table 11 shows the list of the most applied statistics. It is noteworthy that, since
there are papers that applied different statistical techniques, the sum of the percentages
exceeds 100%.

Table 11. Papers by statistical technique.

No. of Statistical Techniques Applied No. of Papers %

Correlation 224 38.69
Regression 210 36.27

Descriptive Statistics 128 22.11
Others 60 10.36

Machine Learning 27 4.66
Model/Method 27 4.66

Dispersion 25 4.32
Tests 20 3.45

Variance 12 2.07
Spatial Statistics 3 0.52

The correlation technique was the most applied in the studies selected, corresponding
to 224 papers (38.69%), followed by the regression technique (210 papers, 36.27%), and
descriptive statistics (128 papers, 22.11%). The data most applied in the correlations were
the NDVI with the LST values.

3.10. Authors’ Main Conclusions

This section highlights the main conclusions of the analyzed in this work, considering
quantitative data, and highlighting some works for qualitative analysis, that were chosen
to exemplify the study of UHI and SUHI in different contexts/areas, aiming for a systemic
understanding of the causes identified for the interpretation of this effect. For that, in-
cluded was the discussion regarding the methodologies employed and statistical analysis,
suggestions, and mitigation strategies.

3.10.1. Quantitative Analysis

Considering the main authors’ findings, in all studies selected, the UHI effect was
evidenced. In addition to this finding, some papers discussed additional measures, high-
lighted in Table 12.
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Table 12. Main findings of the studies.

Main Conclusions No. of Papers %

UHI identified at a study site 579 100

Recommendations for mitigating
measures considering civil

construction, vegetation, and
maintenance of water bodies

229 39.55

Seasonality influences the results
(different times of the day and/or

seasons)
71 12.26

The methods and models tested for
the study of UHI were efficient 49 8.46

The morphology, density, and
choice of vegetation was

appropriate to the specificity of the
site and enhances the mitigation

effects

38 6.56

Recommendations on
socioenvironmental, economic, and

health measures to mitigate the
effects of UHI

15 2.59

Association of the UHI with
atmospheric contamination and

wind circulation, with
recommendations for mitigating

measures

11 1.90

Association of the UHI with
flooding and rainfall 8 1.39

Most of the papers identified the presence of the UHI in the studied areas and recog-
nized the importance of local studies to identify the most appropriate mitigation measures.
Two hundred and twenty-nine papers (39.55%) recommended mitigation measures, includ-
ing such actions as interventions on the built-up structures, and maintenance/increase of
water bodies and vegetation areas.

3.10.2. Qualitative Analysis

In this item, some UHI and SUHI studies will be presented to explore possible causes,
consequences, methodologies, and mitigations. The selection of the papers was made
considering the abstract and the diversity prioritized in the approach, without intending to
emphasize any research or recommend standardized methodologies.

Each site presents its specificities, both in relation to LULC and Urban Functional
Zones (UFZs), which refers to divisions of the urban surface, considering socioeconomic
and landscape data [104].

To propose appropriate mitigation measures, it is necessary to understand these
structures, as well as the climatic characteristics and local soil type/LULC [105], which
vegetation would best fit the study area, the socioeconomic data, technical resources, and
other additional indicators, relevant to public management.

The UHI and SUHI were associated with the formation factors shown in Table 13.
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Table 13. Highlight of some reasons for UHI and SUSHI´s formation.

Factors

Civil Constructions

Topographical features, building standards, building
cooling, landscape configuration, urban morphology,
spatial patterns of land use and occupancy [106–108],

texture and spatial distribution [109], rural/urban areas
with low vegetation density, in bare soil [110–113].

Three-dimensional urban design (such as height, volume,
and surface area of the buildings, and the footprint and
shadow volume) showed greater influence relative to
two-dimensional ones (such as building rooftop area,

street, and vegetation) [114].
Heterogeneity in the composition of built surfaces and

areas [115].
Hydrological and soil permeability interference [116].

Urban Size
Influence on surface heat flux, soil/air temperature,

humidity, and wind circulation, resulting in differences in
urban–rural energy balance [117].

Heat Emission Night lights [118,119], heat emission from industrial and
transportation sources [120–122].

Environment

Wind [123], wind speed, and land surface conditions,
especially in the morning, corroborate the advance of
warm air [124], aerosols can influence/limit diurnal

surface heating in dry seasons [125].

Table 14 presents some of the elements that can help in understanding the dynamics
of UHI and SUHI.

Table 14. Indicators for understanding UHI and SUHI.

Indicator

IV

NDVI, NDBI [126], PV (that can show better results in the
regressions applied when compared to NDVI) [127],
landscape effects (that may have more impact than

socioenvironmental data) [89].

Construction and soil

Characteristics and types of soils, LULC [128,129],
imperviousness [130], albedo-exposed land areas [131],

presence of surface contaminants, as hydrocarbons used
in bioremediation processes, whose soils can present
higher thermal signatures when revegetated [132].

Social, economic, and health

Population size [1], especially in cities with continental
climate [133], economics, social, environmental,

population health, anthropogenic heat flux [134–144], and
in specific events/actions [91,145].

As for data analysis, several comparative and correlative statistical tools were applied.
Among the papers analyzed, some compared two of these tools and presented critical
conclusions regarding the applicability and reliability of the results, namely: the Ordinary
Least Squares (OLS) and the Geographically Weighted Regression (GWR).

The OLS is based on the assumption of data independence, ignoring the spatial effect
between spatial items [146,147], whereas the GWR assumes that relationships between vari-
ables are influenced and change according to geographic distribution, allowing estimation
of regression coefficients for each site [148–151].

GWR was found to be effective [151], more than OLS [152–155], and provides an
analysis of the multiple spatial data layers with autocorrelated structures [156], predicts the
behavior of variables with better accuracy, and can describe spatial non-stationarity [157].
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It is recommended to apply GWR at finer scales than 480 m and in flat cities, since at larger
spatial scales (720–1200 m), the model does not show significant differences from OLS [158].

As for the satellites used in the studies, most use Landsat [159,160], and there are
considerations pointed out in some of the analyzed papers. MODIS is pointed out as inter-
esting for research, but some studies concluded that temperature data are overestimated,
especially during the daytime, and underestimated at the nighttime when compared to
in situ data [161,162], or showed higher LST results in winter when compared to in situ
data [163] and variability in measured temperature [164], especially in very dry or very
wet weather conditions [165]. Landsat was found to be more efficient than ASTER in
differentiating targets and temperature records. In areas with clear seasonality and thermal
anisotropy, LST acquisition is challenging [166].

Regarding the consequences, Table 15 shows some examples.

Table 15. Main consequences of the UHI and SUHI effect.

Main Consequences

Environment

Atmospheric instability [167] that can influence the
dispersion of pollutants [83], thermal circulations

[168], convective precipitation [135,169], urban
flooding [136].

Social and health

Biological risks [170], as the increase in mortality and
heath [134,144], heat stress-related diseases (especially

at night) [143], such as cardiovascular, respiratory,
circulatory, emotional disorders [171], anxiety, sleep

problems, and depression [142].

Economic

Regulation of the values practiced in the real estate
market, whose properties most affected by the effect
are cheaper [138], and preference in housing green

areas and open spaces by high-income and educated
families [88], which suggests understanding and

studies regarding social vulnerability associated with
residential segregation [172].

Increased electricity consumption in summer (due to
the need for cooling/use of air conditioning), and

minimized in winter (where the need for heating was
not so necessary) [173], especially in areas inhabited

by the high-income population, which have the means
to regulate temperature, promoting thermal comfort

[140]. It is noteworthy that the use of air conditioning
can corroborate the increase of primary pollutant

emissions and ozone generation [174], and increases
the financial costs [175].

As mitigation measures, the analyzed papers suggest a series of actions that range from
behavioral changes to structural changes in the analyzed areas, as presented in Table 16.
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Table 16. Mitigation of the UHI and SUHI effect.

Mitigation

Construction and LULC

Conversion of vacant land into green areas to minimize the effects of thermal
discomfort [139], knowledge of local parameters, urban plantation,

decentralization of urban areas [176–179], minimizing impervious areas and bare
soils (such as abandoned land) [176], and diversification and balance of LULC

elements, combining urban and vegetated areas, optimizing spatial configuration
[178]; industrial relocation, buildings demolition, and brownfield redevelopment

[180]; optimization of green land cover configuration [181] (in relatively small
cities) or controlling sprawl (in larger cities) reducing the ratio of compaction in

urban sprawl [182]; keeping the balance between urban and non-urban uses [183];
light-colored skyscrapers with glass curtain walls systems (which showed

relatively low LST) [184].

Environmental

Preservation of water bodies [80,174,185,186] with simple geometry. The area of
the waterbody is also a factor that influences temperature variation and, with high
surface moisture, are less efficient than a water body (such as a river) [187] but can

attenuate surface temperature better than vegetation cover, especially in dry
seasons [188]. Increased proportion of vegetation at the expense of impermeable
areas [189,190], distribution of trees and taking advantage of their shade effects

[191], green surfaces/roofs [192–200].
The relationship between the presence of vegetation and cooling is not linear [201],
and additional studies are needed to evaluate local specificities and needs. There
are cases, for example, that associate the use of large trees with negative effects on
nighttime cooling [202], due to higher heat retention as a consequence of a lower
SVF [203]. Therefore, their characteristics must be evaluated to identify the most

suitable and favorable vegetal species, arrangements, and strategies for heat
exchange in a region. In addition to increasing the volume of vegetation areas at a
site [204], evaluating the spatial pattern, shape, canopy cover [205], leaf density,

and area of influence of heat regulation/shade effects [206–208]. Large parks did
not present advantages over small ones [209].

Social, economic, and health

Encouraging the use of public transportation to reduce the circulation of cars and
the emission of atmospheric pollutants [137].

Development of social measures, such as subsidies for electricity [173], and
creation of heat warning and health surveillance systems, which alert users to the

occurrence of heat waves [141].

As for punctual events, a study conducted in Dehradun, India, identified the increase
in the number of hot spots and the minimization of the thermal comfort level associated
with the post-lockdown period (COVID-19) considered in the paper on 14 April 2020,
compared to data from 28 April 2019, 25 April 2018, and 8 May 2017 [145]. About the
adaptations made for the 2008 Beijing Olympic Games, mitigations were carried out, such
as increasing water-permeable areas, with the inclusion of green parks distributed among
the central cities, minimizing the effects of the UHI [91].

3.11. Bibliographical References

The VOSviewer software was used to verify the similarities regarding the materials
used for the theoretical basis of the papers. Table 17 shows the eight most cited references.
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Table 17. Eight most recurrent bibliographic references in the studies.

Reference No. of Papers %

J. A. Voogt and T. R. Oke, “Thermal remote sensing of urban
climates,” Remote Sens. Environ., vol. 86, no. 3, pp. 370–384,
2003, doi: 10.1016/S0034-4257(03)00079-8 [12].

105 18.13

F. Yuan and M. E. Bauer, “Comparison of impervious surface
area and normalized difference vegetation index as indicators
of surface urban heat island effects in Landsat imagery,”
Remote Sens. Environ., vol. 106, no. 3, pp. 375–386, Feb. 2007,
doi: 10.1016/j.rse.2006.09.003 [210].

42 7.25

M. L. Imhoff, P. Zhang, R. E. Wolfe, and L. Bounoua, “Remote
sensing of the urban heat island effect across biomes in the
continental USA,” Remote Sens. Environ., vol. 114, no. 3, pp.
504–513, 2010, doi: 10.1016/j.rse.2009.10.008.n [2].

30 5.18

Q. Weng, D. Lu, and J. Schubring, “Estimation of land surface
temperature-vegetation abundance relationship for urban
heat island studies,” Remote Sens. Environ., vol. 89, no. 4, pp.
467–483, 2004, doi: 10.1016/j.rse.2003.11.005 [23].

30 5.18

A. J. Arnfield, “Two decades of urban climate research: a
review of turbulence, exchanges of energy and water, and the
urban heat island,” Int. J. Climatol., vol. 23, no. 1, pp. 1–26,
Jan. 2003, doi: 10.1002/joc.859 [8].

28 4.84

T. R. Oke, “The energetic basis of the urban heat island
(Symons Memorial Lecture, 20 May 1980).,” Q. Journal, R.
Meteorol. Soc., vol. 108, no. 455, pp. 1–24, 1982,
doi:10.1002/qj.49710845502 [1].

28 4.84

J. A. Sobrino, J. C. Jiménez-Muñoz, and L. Paolini, “Land
surface temperature retrieval from LANDSAT TM 5,” Remote
Sens. Environ., vol. 90, no. 4, pp. 434–440, Apr. 2004, doi:
10.1016/j.rse.2004.02.003 [53].

26 4.49

X.-L. Chen, H.-M. Zhao, P.-X. Li, and Z.-Y. Yin, “Remote
sensing image-based analysis of the relationship between
urban heat island and land use/cover changes,” Remote Sens.
Environ., vol. 104, no. 2, pp. 133–146, Sep. 2006, doi:
10.1016/j.rse.2005.11.016 [211].

25 4.32

It is important to note that the software performs combinations considering the
similarity of the work cited; that is, the identical texts.

3.12. Authors

With the support of the VOSviewer software, 1475 authors were identified, with the
number of publications ranging from 1 to 18. Table 18 shows the relationship between the
number of publications, the number of authors, and the respective percentage.
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Table 18. Number of publications by author.

No. of Publications Associated with
the Author’s Name No. of Authors % of Authors

1 1136 77.02
2 181 12.27
3 78 5.29
4 27 1.83
5 17 1.15
6 12 0.81
7 4 0.27
8 5 0.34
9 3 0.20

10 2 0.14
>10 10 0.68

Total 1475 100

It was found that 1136 (77.02%) of the identified authors are involved in the publication
of one article. The sum between the authors who published from one to three articles
corresponds to 1.395 (94.58%), which concentrates most of the authors.

Of the 1475 authors, 719 (48.75%) showed interrelationship in publications. Using the
software’s association strength tool, the authors’ interrelationships were identified and
separated into 37 classes, distinguished by colors in Figure 8.

Figure 8. Interrelationships of authors in publications. The diameter of the circle corresponds to the number of published
articles, with the authors Zhang Y., Chen Y., and Weng Q. standing out, with 18, 17, and 16 articles, respectively.
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3.13. Citations

Table 19 presents the ten most cited papers in the analyzed papers.

Table 19. Ten most cited papers.

Paper No. of Citations

X.-L. Chen, H.-M. Zhao, P.-X. Li, and Z.-Y. Yin, “Remote sensing
image-based analysis of the relationship between urban heat island
and land use/cover changes,” Remote Sens. Environ., vol. 104, no. 2,
pp. 133–146, Sep. 2006, doi: 10.1016/j.rse.2005.11.016. [211]

849

M. L. Imhoff, P. Zhang, R. E. Wolfe, and L. Bounoua, “Remote sensing
of the urban heat island effect across biomes in the continental USA,”
Remote Sens. Environ., vol. 114, no. 3, pp. 504–513, 2010, doi:
10.1016/j.rse.2009.10.008. [2]

648

J. Li, C. Song, L. Cao, F. Zhu, X. Meng, and J. Wu, “Impacts of
landscape structure on surface urban heat islands: A case study of
Shanghai, China,” Remote Sens. Environ., vol. 115, no. 12, pp.
3249–3263, Dec. 2011, doi: 10.1016/j.rse.2011.07.008. [212]

499

W. Zhou, G. Huang, and M. L. Cadenasso, “Does spatial
configuration matter? Understanding the effects of land cover pattern
on land surface temperature in urban landscapes,” Landsc. Urban
Plan., vol. 102, no. 1, pp. 54–63, 2011, doi:
10.1016/j.landurbplan.2011.03.009. [213]

418

A. Buyantuyev and J. Wu, “Urban heat islands and landscape
heterogeneity: Linking spatiotemporal variations in surface
temperatures to land-cover and socioeconomic patterns,” Landsc. Ecol.,
vol. 25, no. 1, pp. 17–33, 2010, doi: 10.1007/s10980-009-9402-4. [156]

416

X. Cao, A. Onishi, J. Chen, and H. Imura, “Quantifying the cool
island intensity of urban parks using ASTER and IKONOS data,”
Landsc. Urban Plan., vol. 96, no. 4, pp. 224–231, Jun. 2010, doi:
10.1016/j.landurbplan.2010.03.008. [214]

266

J. P. Connors, C. S. Galletti, and W. T. L. Chow, “Landscape
configuration and urban heat island effects: Assessing the
relationship between landscape characteristics and land surface
temperature in Phoenix, Arizona,” Landsc. Ecol., vol. 28, no. 2, pp.
271–283, 2013, doi: 10.1007/s10980-012-9833-1. [107]

257

R. Amiri, Q. Weng, A. Alimohammadi, and S. K. Alavipanah,
“Spatial-temporal dynamics of land surface temperature in relation to
fractional vegetation cover and land use/cover in the Tabriz urban
area, Iran,” Remote Sens. Environ., vol. 113, no. 12, pp. 2606–2617, Dec.
2009, doi: 10.1016/j.rse.2009.07.021. [215]

235

Q. Weng, “Fractal analysis of satellite-detected urban heat island
effect,” Photogramm. Eng. Remote Sensing, vol. 69, no. 5, pp. 555–566,
2003, doi: 10.14358/PERS.69.5.555. [109]

204

N. Schwarz, S. Lautenbach, and R. Seppelt, “Exploring indicators for
quantifying surface urban heat islands of European cities with
MODIS land surface temperatures,” Remote Sens. Environ., vol. 115,
no. 12, pp. 3175–3186, Dec. 2011, doi: 10.1016/j.rse.2011.07.003. [216]

199

Table 20 shows a scale of citations and the respective papers, in absolute numbers
and percentages.
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Table 20. Number of citations per paper (data analyzed by consulting the database on 15 March 2021).

Citation No. of Papers %

0 48 8.29
1–3 97 16.75
4–6 63 10.88

7–10 55 9.50
11–18 85 14.68
19–25 45 7.77
26–40 66 11.40
41–60 38 6.56
61–80 33 5.70

81–100 10 1.73
101–125 9 1.55
126–160 13 2.25
161–250 10 1.73
251–500 5 0.86
501–849] 2 0.35

Total 579 100

A relatively small number of the analyzed articles were not cited (8.29%). Most articles
had between 1 and 25 citations, with 345 papers (59.59%) in total, corresponding to more
than half of the articles.

4. Discussion and Conclusions

The growing number of papers published on the UHI effect, especially since 2016,
from 48 to 118 publications at the time, emphasizes the interest by the scientific community
in the dissemination of this issue, considering its causes and consequences in several
dimensions, such as environmental, social, and economic. This scientific relevance should
add to the need for the promotion of an integrated urban climate planning [217], using
valuable data as a primary input [218], as a way to tackle the challenges posed by this
complex effect.

In the evaluated papers, it was observed that the methodological approaches and the
impacts analyzed concerning the UHI were diverse and transversal, which adds to the
complexity of this issue and corroborates with the need for researchers to know, as much
as possible, the specificities inherent to the areas of study.

Most of the studies were concentrated in Asia (405—69.94%) which can be explained
by interest from the scientific community in understanding the impacts of rapid urban
growth in some parts of this continent that is often associated with the generation of intense
UHI [219]. China was the most studied country.

As for climate regions, Cfa was the most recurrent. In this climatic region, the mini-
mum temperatures range from 0 to −3 ◦C, there are at least four months with an average
temperature of 10 ◦C, and at least one month with an average temperature above 22 ◦C.
Precipitation does not vary significantly between seasons, i.e., there is no extremely dry
month [220]. Considering that there are several areas in Asia and North America with this
classification, it is natural that the number of publications regarding this particular climate
region is higher (Figure 9, with Cfa in focus).
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Figure 9. Köppen–Geiger world climate classification map for the period 1951 to 2000 on a 0.5-degree
regular grid (in both latitude and longitude). Updated mean monthly temperature and precipitation
data (CRU TS 2.1 and VASClimO v1.1, respectively) (adapted from [221]).

The most recurrent keywords were “land surface temperature”, “urban heat island”,
and “heat island”. Considering the words used for the initial selection of papers for
analysis, it was expected that “urban heat island” and “heat island” are recurrent, because
they are associated with the acronym (UHI*) and “land surface temperature” is a product
that can be derived even from RS, associating the keyword (satellite image*).

There are several techniques to obtain LST data, from thermal sensors present in
heliosynchronous, geostationary, polar satellites, passive microwave radiometers, and data
processed with statistical modeling. The choice of the most suitable methodology should
consider the available resources (whether financial, data processing capacity, hardware,
software, human resources, etc.).

The most used RS data came from Landsat missions, both for LULC identification
and LST calculation. This preference can be explained by the free availability of historical
data, the easy and intuitive access to the platform (USGS) [48], and the greater detail of the
thermal band, especially of the transition and heterogeneous areas, compared to MODIS.

LULC data were mainly obtained by satellites, followed by models available from
competent agencies such as the European Environment Agency (EEA) [222]. Techniques
combining in situ data collection and/or UAV use were also applied and present advan-
tages in data validation, providing greater spatial detail, especially in small and hetero-
geneous areas, and a cost–benefit analysis is indicated to assess the feasibility of their
implementation.

NDVI was the most used index, especially for its effectiveness in distinguishing areas
with the presence of vegetation, water bodies, and anthropic zones. Considering that the
computation of the indices is performed from sensor data collected at the same instant
when the thermals are obtained, as in the case of Landsat, MODIS, and ASTER, there is
temporal concomitance of collection in the same study area.

Regarding the software used for data processing, among the papers that explained,
ArcGIS stood out as the most recurrent. Although it is not free software, its interface is
intuitive, and its data processing is effective. Moreover, some universities have licenses for
research purposes, which can corroborate the adoption of this software in the methodology.

Correlation and regression models were the most employed to evaluate the quanti-
tative relationship between indicators, such as LST, LULC, and additional data (socioe-
conomic, climatic, and from weather stations). The choice of these models is due to the
methodological need to assess whether an action causes some reaction in another indicator,
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such as whether the increase in urban density causes changes in the local microclimate. In
this sense, researchers must evaluate and compare relevant subjects, in a sample number
adequate for the research objective, to avoid possible biases in the results obtained.

Studies that related the UHI effect to surrounding areas, especially vegetated surfaces,
were the most recurrent, which converges with the publication by Voogt and Oke (2003),
which mentions that this comparison between anthropic structures with the anisotropic
thermal behavior of vegetated surfaces is more modeled and documented [12]. It is worth
mentioning that there are publications focused on improving UHI methodologies and
analyses, such as applications of mathematical and computational modeling to understand
the behavior of the effect and the consequences for the microclimate, in addition to identi-
fying gaps in mitigating measures, such as evaluating suitable vegetation to mitigate UHI
influences at the site, pointing out the basic requirements regarding canopy, leaf density,
and physical distribution at a site, etc.

The most cited bibliographies in the papers reviewed were from Voogt and Oke
(2003) [12] and Yuan and Bauer (2007) [210]. The abstract of both publications is adherent
to the UHI study and both methodologies employ RS data. Voogt and Oke (2003) [12] cite
that despite the progressive scenario, research must transcend the application of simple
correlations in data processing, as well as a qualitative description of urban surface land
use and include indicators such as emissivity and RS techniques, both to analyze surface
radiative parameters and to better describe the urban surface and ensure the effectiveness
of the atmospheric models used in the studies, respectively. The authors also recommend
advances in the spectral and spatial resolution of current sensors and the next-generation
satellites to optimize the details of urban surfaces, as well as the availability of affordable
high-resolution portable thermal scanners.

As for the consequences, the analyzed papers highlighted several areas that can be
influenced and affected by UHI, and that are intrinsically associated with local specificities
and anthropic activities developed in the region. In the atmosphere, for example, UHI
can influence the displacement of air masses and the transport of particles harmful to
health. From an economic perspective, some studies have addressed the influence of UHI
on real estate market values, since, in regions where the phenomenon is more evident,
costs can be reduced. As for the population’s health, thermal comfort was pointed out as
a concern, especially when considering low-income families, who may have restrictions
on the acquisition and maintenance of equipment such as air conditioners. The risks
of death associated with cardiovascular diseases, development of depression, and sleep
complaints [142] were also addressed.

Concerning UHI and SUHI mitigation measures, existent papers can be used as a
source of information for local managers and representatives to identify the effect, un-
derstand its dynamics, and minimize its impacts. Understanding the local microclimate,
urban growth, LULC, and complementary data (economic, socioenvironmental, and public
health), can be key elements to structure a strategy.

Regarding the possible applications and perspectives of UHI studies, it was possible
to identify multiple approaches, areas, and objects of study, which reinforces that the
applicability transcends the identification of areas affected by the microclimate, in terms of
temperature, but that encompasses social, economic, and health factors and well-being of
the population.

Moreover, most of the papers analyzed presented solutions for minimizing and miti-
gating the UHI effect, which can compose advisory material for managers. At this point,
the need to understand the local specificities is reinforced, so that more assertive decisions
can be made for each case. Publications aimed at improving the methodology of UHI
studies, data processing, which can occur in software that operates in clouds, as in the case
of Google Earth Engine [102], and the inclusion of artificial intelligence. Machine learning
algorithms, such as artificial neural networks [223], are of great value to the research and
can assist in the creation of new techniques. In addition, the combination of data from
different sources can contribute to minimizing the technical limitations of collection equip-
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ment or techniques. A more systemic look at the UHI effect will favor the advancement in
studies in the area, already identified as growing from the results presented in this review.

The design of a local bioclimatic model can be an interesting tool, as it is based on
the strategic use of urban elements to minimize heat storage [224,225]. Some strategies
that can be incorporated include: (i) analyze and adjust the distribution of built-up areas,
reducing continuous high rise and dense urban development; (ii) add humid or vegetated
areas to urban areas, corroborating for heat exchange; (iii) preserve and revitalize parks,
water bodies, and vegetation surfaces, considering the extension, density, and size of the
canopy aiming to maximize heat exchange capacity concerning the surroundings; and (iv)
evaluate civil construction materials, prioritizing those with lower heat retention.

It should be noted that UHI and SUHI are a consequence of specific factors on the study
sites, such as climatic, anthropogenic, and environmental characteristics, corroborating so
that the choice of methodology, scale, data sources, study objectives, diagnosis, and possible
mitigation proposals consider these particularities, transcending a standard methodology.

Despite this, there is recurring information and methodological approaches in the
studies reviewed. Figure 10 presents a suggestion of the steps necessary for the study
of IHU and SUHI, which does not disregard the need to assess local characteristics and
identify approaches specific to the study area.

Figure 10. Suggested steps for UHI and SUHI studies.

We believe that this work can contribute to a comprehensive overview of the current
state of the art regarding the UHI effect using RS data, considering the last 20 years.
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