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Abstract: This study investigates the influence of land-use/land-cover (LULC) change on land 

surface temperature (LST) in Dhaka Megacity, Bangladesh during a period of rapid urbanisation. 

LST was derived from Landsat 5 TM scenes captured in 1990, 2000 and 2011 and compared to 

contemporaneous LULC maps. We compared index-based and linear spectral mixture analysis 

(LSMA) techniques for modelling LST. LSMA derived biophysical parameters corresponded more 

strongly to LST than those produced using index-based parameters. Results indicated that vegetation 

and water surfaces had relatively stable LST but it increased by around 2 °C when these surfaces 

were converted to built-up areas with extensive impervious surfaces. Knowledge of the expected 

change in LST when one land-cover is converted to another can inform land planners of the potential 

impact of future changes and urges the development of better management strategies. 
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1. Introduction 

Over the last two decades, the rate of urbanisation on a global scale has been explosive, increasing 

from 12% in 1990 [1] to over 50% in 2011 [2]. This meteoric rise has generally emerged from high 

population growth [3] and rural to urban migration, both of which have been rapid in developing 

countries due to inadequate planning guidelines and the pursuit of economic development [4]. Of the 

world’s developing countries, those within Asia are experiencing the highest rate of urban growth [2]. 

In particular, Dhaka Megacity, Bangladesh, is one of the fastest growing cities in the world [5,6].  

The population in Dhaka Megacity (hereafter Dhaka) has increased from 2.3 million in 1975 [7] 

to approximately 15.4 million in 2011 [2]. Failure to manage urban growth has led to a significant 

decline in urban green space over this time, with natural surfaces rapidly being converted into 

impervious ones [8,9]. Extensive removal of natural surfaces modifies heat retention, its dispersion 

and evaporative and transvaporative rates [10], which in-turn modifies local climate, air flow and 

atmosphere [11,12]. Combined, these factors can create an urban heat island (UHI) effect, where urban 

atmospheric and surface temperatures become significantly warmer than its natural surrounds [11,13]. 

UHIs have a profound impact on human well-being due to temperature driven increases in 
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infectious diseases [14,15] and have potential to contribute to increasing dengue fever [16] and 

typhoid fever [17] risk in Dhaka. Considering that Dhaka has been found to have experienced 

significant urban green space and floodplain removal over the last several decades due to urban 

development [5,9,18] and its influence on UHI formation, it is vital that modification to Dhaka’s 

urban thermal environment over a multi-decadal period is better understood.  

Traditional urban thermal environmental studies are based on the collection of air temperature 

readings at multiple locations between urban and rural landscapes from weather stations [19], mobile 

thermometers [20] or both [21]. These approaches are somewhat limited in developing cities where 

weather stations are unavailable or infrequent [22], such as in Dhaka. Remotely sensed (RS) imagery 

can be an alternative source for studying urban thermal environments via the analysis of land surface 

temperature – LST. Through LST, the surface urban heat island (SUHI) effect can be studied, and 

based on strong relationships observed between near surface air temperature and LST, is considered a 

reliable indicator of atmospheric UHIs [23,24]. Imagery acquired from the Landsat series of satellites 

have been the most commonly used medium for assessing changes to urban thermal environments 

arising from land-use/land-cover (LULC) modification [25-27]. 

Two common approaches to investigate the relationship between LULC and LST are recognised [24]. 

One approach utilises information recorded from multispectral sensors to determine and compare LST of 

various LULC types over multiple dates [28]. The other approach is to extract biophysical parameters 

that quantitatively represent various LULC types from multispectral imagery through the use of 

indices or classification routines, and utilise these parameters to model LST [24]. Common indices 

and classification routines include: the Normalised Difference Vegetation Index (NDVI) to 

highlight vegetated surfaces [29]; the Normalised Difference Built-up Index (NDBI) for urban 

built-up surfaces [30]; the Modified Normalised Difference Water Index (MNDWI) for water body 

detection [24]; and linear spectral mixture analysis (LSMA) [31]. 

LSMA has seen increased use in urban thermal studies due to its ability to consider the mixed-pixel 

problem inherent in multispectral imagery [32]. This process separates multispectral image pixels into 

multiple ‘fraction’ images that represent the relative abundance of materials captured in multispectral 

imagery based on its spectral characteristics [33,34]. Fraction images in this approach include the Green 

Vegetation Fraction - GVF and Impervious Surface Area – ISA fraction [32]. Here, we extend on this 

approach by applying it to multi-date Landsat imagery.  

This study uses multi-date Landsat imagery (1990-2000-2011) to explore the consequences of 

rapid LULC modification resulting from rapid urbanisation on LST in Dhaka. Specifically, we aim to: 

(a) calculate LST for all three dates and compare it to contemporaneously mapped LULC; and (b) 

calculate biophysical parameters using index-based and linear spectral unmixing (fraction based) and 

assess their utility for LST modelling. We hypothesise that the greatest change in LST will be 

coincident to areas that have been converted into impervious surfaces as a consequence of rapid 

urbanisation and that fraction-based imagery will provide superior results, relative to an index-based 

approach, due to its ability to unmix land-covers from pixels.  

2. Study Area 

The study area is focused on Dhaka, Bangladesh (Figure 1). The broad Dhaka metropolitan extent is 

commonly referred to as Dhaka Megacity (DM), which is based on population number as defined by the 

Bangladesh Bureau of Statistics (BBS) in 1991. As access to urban planning and development spatial 

data is limited in Bangladesh, the official entirety of the DM could not be considered. Instead, a bounding 
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polygon that includes a subset of both the DM and Dhaka Metropolitan Development Plan (DMDP) 

planning area zone (as defined by the City Development Authority, RAJUK) was used. Inclusion of the 

DMDP extended the DM study area extent along its east and southeast boundary only – the north, south 

and west DMDP extent falls entirely within the DM [9]. The study area covers an area of approximately 

87,400 ha, and comprises the Tongi, Savar and Keraniganj municipalities in the northern, western and 

southern areas of the study area, respectively (Figure 1). 

 

Figure 1. Location of study area (Dhaka) in the context of the Dhaka Metropolitan 

Development Plan and Bangladesh National Boundary.   

Dhaka is situated on the eastern banks of the Buriganga River and lower reaches of the Ganges 

Delta on flat low-lying land close to sea level [8]. It experiences a humid, hot and wet subtropical 

climate with an annual mean temperature of 26.1 °C [35]. Three broad seasons are recognised; a cool 

and dry winter from November to February, a hot and dry summer from March to May, and a rainy 

monsoon season from June to October [9,36]. 

3. Materials 

3.1. Image selection and pre-processing 

Three Landsat 5 TM (Thematic Mapper) images captured on 7 January 1990 at 10:00 AM 

Bangladesh Time (BDT) (late winter), 8 March 2000 at 10:30 AM BDT (early summer), and 4 April 

2011 10:30AM BDT (peak summer) were acquired from the Geo-Informatics and Space Technology 
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Development Agency (GISTDA), Thailand. As the study area is on the boundary of two Landsat 

Rows, two scenes were acquired for each year, located at row/path 137/43 (northern scene) and 

137/44 (southern scene). All bands have a spatial resolution of 30 m except for band 6 - thermal 

infrared (TIR) with a resolution of 120 m. All Landsat images were provided at Level 1G, which are 

corrected for radiometric geometrical distortions.  

3.1.1. Geometrical correction 

All Landsat scenes were subjected to further geometrical correction using 75 ground control 

points (GCPs) taken from topographic maps of 1990 to register each scene to the Bangladesh 

Transverse Mercator (BTM) system [37]. The selected GCPs were well dispersed throughout scenes 

and resulted in a root-mean-square-error (RMSE) of < 0.5 of a pixel using a first-order polynomial 

and nearest-neighbour resampling. 

3.1.2. Calibration and atmospheric correction 

The raw digital numbers (DNs) for each Landsat 5 image (bands 1-5,7) were first converted to 

at-sensor spectral radiance by applying the calibration coefficients (gains and bias) specified by 

Chander and Markham [38] and Chander et al. [39]. This process used an image-based radiometric 

correction [40] to minimise radiometric differences between images and was applied using the COST 

model in IDRISI Selva [41] via the following formula:  

 Ls = gain * DN + bias (1) 

where Ls represents at-sensor spectral radiance in Watts * m−2 * sr−1 * µm−1, gain and bias are 

conversion coefficients, and DN is the digital number [40]. The COST model then removed 

atmospheric effects arising from changes in surface reflectance [39,40] using various atmospheric 

parameters including image capture date (in GMT) and sun elevation angles obtained from Landsat 

header files, and DN haze values derived from blackbody pixels and band wavelengths.  

This process was undertaken to ensure the cosine effect of different solar zenith angles due to 

time differences between image capture, exo-atmospheric solar irradiance differences due to aerosols 

and dust particles, and variation arising from sun-to-earth distance differences were corrected 

[38,39,41]. COST achieves this with the following formula: 

 
ρλ =

𝜋 ∗ 𝐿λ ∗ 𝑑2

ESUNλ ∗ cos 𝜃s
 (2) 

where ρλ represents unit-less planetary reflectance, Lλ is spectral radiance, d2 is earth-sun distance in 

astronomical units squared, and ESUNλ is mean solar exo-atmospheric irradiances. 

Finally, the pairs of Landsat scenes were mosaicked into a single image for each study year and 

clipped to the study area boundary. The resulting atmospherically corrected images were used to 

derive biophysical parameters. Calibration and correction of Landsat 5 TIR imagery (band 6) during 

LST calculation is outlined in Section 4.1. 

3.2. Land-use/Land-cover  

LULC images for 1990, 2000 and 2011 are shown in Figure 2. These images were provided by Dewan 
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and Corner [9], who developed several LULC images of the study area with classes based on a modified 

Anderson Level 1 Scheme [42] and derived via a hybrid classification technique as outlined by [43]. 

Subsequent accuracy assessment performed by Dewan and Corner [9] indicated an overall accuracy 

of 88%, 90% and 95% for the 1990, 2000 and 2011 LULC images, respectively. Preliminary 

assessment of the LULC images suggest that built-up and bare-soil surfaces are located 

predominately within Dhaka’s central urban core and have expanded to the north and south over the 

study period. Floodplains almost completely surround the central urban core on all sides. It is from 

the close proximity of these floodplains that Dhaka experiences considerable flooding during rainy 

season periods [5] and highly fertile soils [44]. 

 

Figure 2. Land-use/land-cover types found in the study area in a) 1990, b) 2000 and c) 2011 

(after Dewan and Corner [9]). 

4. Methods 

4.1. Calculation of LST 

Several methods exist for deriving LST from the Landsat 5 TIR band (band 6), including the 

mono-window routine (45) and single-channel algorithm (46). These methods require ancillary 

atmospheric information and parameters over the study area during satellite overpass to compensate 

for atmospheric differences between Landsat images. As atmospheric information was unavailable 

for all Landsat image capture dates, an alternative image-based approach was employed to derive 

LST based on 47, 48 and 49. 

 

First, the DN of each TIR band was converted to spectral radiance (Ls) derived using Equation 1 

[40] and then transformed to at-sensor brightness temperature (Ts) through the inverted Planck’s law 

(Equation 3) using calibration constants obtained from Chander et al. [39]: 

 Ts = 
𝐾2

ln  (
𝐾1
𝐿𝑠

+1) 
 (3) 

where Ts is the effective at-sensor brightness temperature in Kelvin (K), Ls is the spectral radiance at 
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the sensor’s aperture in Watts * m−2 * sr−1 * µm−1, and K1 and K2 are calibration constants. For 

Landsat 5 TM satellite, K1 = 607.76 Watts * m−2 * sr−1 * µm−1 and K2 = 1260.56 K, respectively. 

Secondly, the derived Ts images were then corrected for spectral emissivity [50] using the 

NDVI Threshold Method proposed by Sobrino et al. [51]. This method was chosen as it is considered 

appropriate for the estimation of emissivity for Landsat TM data as multiple thermal bands and 

night-time images are not required, unlike other methods such as temperature and emissivity 

separation (TES) and thermal infrared spectral indices (TISI) [27]. Furthermore, use in LST studies 

has proven successful [52,53].  

The NDVI threshold method obtains the emissivity values from an NDVI image by considering 

three different cases, based on fixed thresholds: soil pixels (NDVI < 0.2), pixels of dense vegetation 

(NDVI > 0.5) and pixels with mixed soil and vegetation (0.2 ≤ NDVI ≤ 0.5). To convert NDVI values 

into land surface emissivity, the emissivity coefficient (ε) was set to 0.96 for soil pixels (ε = εS λ) and 0.99 

for dense vegetation pixels (ε = εV λ + Cλ = 0.985 + 0.005) based on Artis and Carnahan [50], Nichol [54] 

and Sobrino et al. [55]. The emissivity coefficient for mixed soil and vegetation pixels was calculated 

using Equation 4 [55] where Pvege is the vegetation fraction obtained according to Equation 5 [56] 

and the cavity effect (C λ), which accounts for effects of rough or heterogeneous surfaces, was 

calculated using Equation 6 with a geometrical factor (F’) set to 0.55 after Sobrino et al. [57].  

 ε = εV λ * Pvege + εS λ * (1 – Pvege) + C λ (4) 

 
Pvege = (

𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙

𝑁𝐷𝑉𝐼𝑣𝑒𝑔𝑒  − 𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙
)

2

 (5) 

 C λ = (1 - εS λ) * εV λ * (F’) * (1 – Pvege) (6) 

In addition, a value of 0.955 was used for surface water emissivity and all major water-bodies 

were masked out of the Landsat imagery, as water can influence the accuracy of the process [58].  

Lastly, land surface temperature (LST) was retrieved from the Ts imagery and atmospherically 

corrected emissivity data. This used a method proposed by Artis and Carnahan [50], which is suited 

to studies that lack ancillary atmospheric parameters [32,47,49]: 

 LST = 
𝑇𝑠

1 + (
λσ𝑇𝐵

ℎ𝑐
)lnε

 (7) 

where Ts is the derived brightness temperature, λ is the effective wavelength (11.475 μm for Landsat 

TM band 6), σ is Boltzmann constant (1.38 × 10−23 J/K), h is Planck’s constant (6.626 × 10−34 Js), c is 

velocity of light in a vacuum (2.998 × 10−8 m/s), and ε is the atmospherically corrected emissivity 

value. As the LST images represent different years and seasons, LST images were finally normalised 

using the method suggested by Carlson and Arthur [59]. 

4.2. Calculation of biophysical parameters 

4.2.1. Index-based approach 

The use of index-based biophysical parameters in LST analysis and modelling can provide 

important insight into the heat mitigation or enhancement characteristics of various land surfaces [60,61]. 

Indices used in this study include NDVI to highlight densely vegetated surfaces [62], the NDBI 
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(normalised difference built-up index) as an indicator of built-up urban surfaces and bare-soil [30], 

and the MNDWI (modified normalised difference water index) as an indicator of water-bodies and 

rivers [63]. The NDVI, NDBI and MNDWI indices (Equation 8-10, respectively) were calculated 

using ArcMap 10.1 [64]. 

 
NDVI = 

𝑅𝑁𝐼𝑅−𝑅𝑅𝐸𝐷

𝑅𝑁𝐼𝑅+𝑅𝑅𝐸𝐷
 (8) 

 
NDBI = 

𝑅𝑀𝐼𝑅−𝑅𝑁𝐼𝑅

𝑅𝑀𝐼𝑅+𝑅𝑁𝐼𝑅
 (9) 

 
MNDWI = 

𝑅𝐺𝑅𝐸𝐸𝑁−𝑅𝑀𝐼𝑅

𝑅𝐺𝑅𝐸𝐸𝑁+𝑅𝑀𝐼𝑅
 (10) 

where 𝑅𝑁𝐼𝑅  is the reflectance in the near-infrared band (TM band 4), 𝑅𝑅𝐸𝐷  and 𝑅𝐺𝑅𝐸𝐸𝑁 are the 

reflectance in red and green bands (TM band 3 and 2, respectively), and 𝑅𝑀𝐼𝑅 is the reflectance in 

the middle infrared band (TM band 5).  

4.2.2. Linear spectral mixture analysis 

An alternative to index-based biophysical parameters is linear spectral mixture analysis 

(LSMA), which is able to unmix the components within a pixel [65]. LMSA was used to derive the 

green-vegetation fraction (GVF), which is similar to NDVI and estimates the fraction of green 

vegetation within each pixel. The impervious surface abundance (ISA) fraction, which is similar to 

the NDBI, estimates the fraction of built-up or bare-soil surfaces per pixel. LSMA was completed in 

two main stages using ENVI 4.8 software [66]. 

4.2.2.1. Stage 1: Water-body masking and image normalisation 

Pixels representing water are typically masked-out prior to undertaking LSMA as these pixels 

add unnecessary endmember spectra into the spectral range [32]. A unique mask was created from 

the water class of each LULC map. Wu [67] indicates that it is beneficial to reduce brightness 

variability within each fraction image to reduce the number of endmembers representing each 

component, thus reducing redundant information whilst retaining useful information for separating 

vegetation, impervious surface and soil fractions. To achieve this, the Normalised Spectral Mixture 

Analysis (NSMA) method [67] was implemented for each Landsat scene. The NSMA method uses 

the following equations based on Wu [67]: 

 Ŕ𝑏 =  
𝑅𝑏

𝜇
 ×  100 (11) 

 

𝜇 =
1

𝑁
 ∑ 𝑅𝑏

𝑛

𝑏=1

 (12) 

where Ŕb is the normalised reflectance for Landsat 5 TM band b in a pixel, Rb is the original 

reflectance for Landsat 5 TM band b, μ is the average reflectance for that pixel, and N is the total 

number of Landsat 5 TM bands (i.e., 6 bands for Landsat TM). 
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4.2.2.2. Stage 2: Minimum noise fraction transform, pixel purity index and n-dimensional 

visualisation 

Landsat image dimensionality was reduced to remove unnecessary noise from image bands by 

using the Minimum Noise Fraction (MNF) transform. The MNF comprises of two standard principal 

component (PC) transforms, which provide an output composed of uncorrelated MNF components 

that are used to assist in the endmember selection process [68]. We used the first four components in 

LSMA as the other components were comprised of noise. Following this, pure-pixel endmembers 

were identified by refining the MNF components and mixed pixels via a Pixel Purity Index (PPI) 

algorithm [69,70]. The endmembers trialed for each Landsat scene included: vegetation, soil, and 

impervious surface. 

After selection of endmembers, the constrained least-squares solution (Equation 13) was applied 

to unmix the MNF components identified earlier in which the residual eb is minimized: 

 
Ŕ𝑏 =  ∑ ḟ𝑚

𝑖=1 i Ŕ𝑖,𝑏 + 𝑒𝑏 (13) 

where ḟi is the fraction of endmember i, ∑  𝑚
𝑖=1  ḟi = 1 and ḟi = ≥0; Ŕ𝑖,𝑏 is the normalised reflectance 

of endmember i in band b for that pixel; m is the number of endmembers; and eb is the residual or 

band error. Additionally, the constrained least-squares solution assumes (Equation 14): 

 
RMSE = √(∑ 𝑒𝑖

2𝑚
𝑖=1 )

𝑚
 (14) 

This approach unmixed the selected MNF components into Green Vegetation Fraction (GVF), 

Impervious Surface Area (ISA), and soil abundance fraction images, and a summary of 

root-mean-square-error (RMSE) statistics was produced (Table 1). 

Table 1. Summary of root-mean-square-error (RMSE) statistics derived from linear 

spectral mixture analysis for combinations of three (vegetation, soil, impervious 

surface) endmembers for each study year. 

RMSE 1990 2000 2011 

Minimum 0.00 0.00 0.01 

Maximum 0.23 0.34 0.29 

Mean 0.11 0.17 0.21 

 

4.3. Temporal comparison of LULC to LST  

Spatial relationships, patterns and distributions between LULC classes and LST over the study 

period were visualised and explored by overlaying each LST images over their corresponding LULC 

classes map using ArcMap 10.1. The mean LST of each LULC type for each year was obtained using 

Zonal Statistics. Significant differences (α = 0.05) between the LST means of each LULC class across 

years were then determined using Tukey’s Honestly Significant Different test [71] to explore potential 
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changes to Dhaka’s urban thermal environment over the study period. Image differencing was undertaken 

on LULC class maps to generate change maps for the periods: 1990–2000; 2000–2011; and 1990–2011, 

which were then linked to LST images as tables to explore influence of LULC change on LST. 

Variation in LST is the result of several factors including LULC change, time of the day, and 

seasonality [11,72]. All acquired Landsat images used in analysis were captured at the same 

approximate time (10:00 AM Bangladesh local time) due to the sun-synchronous orbit [73], avoiding 

acquistion time issues. To correct for differences in seasonality, the normalisation method developed 

by Zhou and Wang [24] was utilised to correct seasonal differences in LST whilst retaining 

differences in LULC type. This approach compares the mean LST of each LULC type across each 

image using the following equations (Equation 15–17): 

 dTij = Tj(Ya) – Ti(Yb) (15) 

 ΔTi = Ti(Ya) – Ti(Yb) (16) 

 dTn = dTij − ΔTi (17) 

where dTij is the temperature difference between LULC type j in the first comparison year (Ya) and 

LULC type i in the second comparison year (Yb); ΔTi is the temperature difference for the same 

LULC type i between two comparison years; dTn is the normalised temperature by subtracting dTij − 

ΔTi. 

4.4. Comparison of LST and biophysical parameters 

Relationships were examined between LST images and biophysical parameters at 1000 samples 

distributed randomly over the entire study area. Samples were generated using a stratified random 

sampling design, where 148 random samples were randomly generated for each of the LULC strata. 

The strength of the relationship between biophysical parameters and LST was examined using 

univariate regression via SPSS Statistics software [74]. Fisher’s r to z transformation [75] was used 

to identify if the correlation between LST and LMSA were significantly different to the index-based 

parameters (i.e., NDVI vs GVF; NDBI vs ISA).  

5. Results 

5.1. Temporal comparison of LULC to LST 

High LST areas were observed to be associated with built-up and bare-soil LULC classes, based 

on a visual comparison between Figure 2 and Figure 3. In contrast, areas of lower LST are associated 

with floodplains, cultivated land and vegetation. Figure 3 indicates that surface temperature is 

increasing in both magnitude and spatial distribution over time. 
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Figure 3. Land surface temperature of the study area in: (a) 1990; (b) 2000; and (c) 2011. 

Locations with high NDVI and GVF values (Figure 4), and thus densely vegetated, declined 

significantly over the study period, particularly in Dhaka’s central urban core (Figure 4). In contrast, 

locations with high NDBI and ISA values increased, indicating urban development over the study 

period. Locations with high MNDWI values declined on floodplain areas over the study period. 

These trends, in particular decreasing vegetated surfaces due to conversion into impervious surfaces, 

have been noted in Dhaka in similar studies [76,77]. 

Built-up, bare-soil and cultivated LULC types consistently exhibited the highest mean LST, 

which increased significantly at each temporal data point studied (Table 2). In contrast, water-bodies 

consistently exhibited the lowest temperatures each year and did not significantly change throughout 

the study period when using normalised LST imagery. Floodplains and vegetated land maintained 

low LST and did not change significantly between 2000 and 2011 (Table 2). Comparison of each 

year indicated that the mean LST of each LULC type continually increased over the study period and 

these changes were significant between years for built-up areas, bare-soil, cultivated and rural classes, 

with the greatest mean increases occurring in the built-up and bare-soil classes. Comparison between 

water LULC types using normalised and non-normalised LST images was undertaken to explore the 

influence of seasonality on surface temperature. While water LST is considerably consistent and not 

significantly different across study years, water temperature based off non-normalised imagery 

increases considerably across years and present LST means that are significantly different. 

Influence of LULC type on LST modification was explored by subtracting LST values for each 

LULC type for the periods 1990 to 2000 and 2000 to 2011 (Table 3). This was undertaken for both 

normalised and non-normalised LST images as a consideration for potential seasonal differences 

between LULC types. Investigation of normalised LST for the two periods indicates that LST 

increased markedly when natural LULC types were converted into built-up and bare-soil. Not 

surprisingly, water-bodies exhibited the highest LST increase when converted into built-up areas, 

with an average increase of ca. 2 °C (Table 3). Similarly, mean LST for vegetated surfaces and 

floodplains increased by an average of ca. 1.2 °C and 1.6 °C, respectively, when converted into 

impervious surfaces (Table 3). These temperature increases align with similar studies, which have 
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noted an LST increase over 2 °C following the conversion of vegetated surfaces into impervious or 

bare-soil following urban developments over several decades in similar climates [78,79]. 

 

Figure 4. Spatial distribution of NDVI (a, f, k), NDBI (b, g, l), MNDWI (c, h, m), 

GVF (d, i, n) and ISA (e, j, o) biophysical parameters for the three time points 

studied (see text for a description of the acronyms). 

Table 2. Mean land surface temperature showing the variability of each 

land-use/land-cover over the study period. 

LULC Type 

Land Surface Temperature (oC) 

1990 2000 2011 All Years 

Meana SDb Mean SD Mean SD Mean 

Built-up 21.18a 1.03 25.36b 1.03 27.69c 1.38 24.74 

Bare-soil 20.79a 1.31 24.86b 1.07 27.38c 1.51 24.34 

Cultivated 20.56a 1.05 24.32b 0.67 25.76c 0.99 23.55 

Rural 20.47a 1.01 24.25b 0.67 25.85c 1.04 23.52 

Vegetated 19.12a 0.85 23.15b 0.57 24.11b 1.03 22.13 

Floodplain 19.01a 1.06 23.24b 0.81 23.74b 1.11 22.00 

Water (NLSTc) 18.24a 0.91 18.53a 0.71 18.91a 1.46 18.56 

Water (Non-NLSTd) 18.56a 1.03 23.09b 0.93 24.47c 0.75 22.04 
a Different subscripts represent significantly different LST means (α = 0.05) between years for land-use/land-cover type; 

b SD = Standard Deviation 

c NLST = Normalised land surface temperature 

d Non-NLST = Non-normalised land surface temperature. 
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The LST of cultivated land resulted in only minor change when converted into built-up and 

bare-soil for both comparison periods. Likewise, temperature differences between built-up and 

bare-soil were minimal (Table 3).  

Considering that the greatest LST change appears to be associated with natural areas being 

converted into impervious surfaces, built-up and bare-soil classes were merged to further explore the 

spatial correspondence between LST and LULC change due to urbanisation. Floodplains, cultivated 

land and vegetation were not included due to seasonal influence. Comparison between each of the 

time periods indicates that impervious surfaces have expanded on to surrounding LULC types such 

as floodplains, water-bodies and cultivated land (Figure 5). Likewise, urban expansion appears to be 

moving from the urban core in north, north-east, north-west, east, and south-east directions. 

Table 3. Influence of land-use/cover change on non-normalised and normalised land 

surface temperature for 1990–2000 and 2000–2011 comparison periods. No LULC 

occurred in classes with the same label. 

Land-use/cover Type Land Surface Temperature (oC) 

 Comparison Period 

 1990–2000 2000–2011 

Converted Non-Norm. Non-Norm. Norm. Non-Norm. Non-Norm. Norm. 

From To dTa dT (SDb) dTc dT dT (SD) dT 

W
at

er
 

Water 4.53 4.2 0.28 1.38 3 0.3 

Floodplain 3.74 2.5 0.5 0.71 4.1 0.79 

Culti. land 4.32 2.5 0.96 2.23 3.8 0.81 

Vegetated 4.04 1 0.59 2.33 0.7 0.49 

Built-up 5.36 0.0 2.18 4.78 2.2 2.03 

Bare-soil 4.66 2.2 1.59 3.66 0.4 1.13 

Rural 4.25 0.3 0.47 2.33 4.2 0.28 

F
lo

o
d
p
la

in
 

Water 5.03 0.2 0.5 2.17 1.5 0.79 

Floodplain 4.24 1.8 0.0 1.5 0.7 0.0 

Culti. land 4.82 3.4 1.06 3.02 0.5 0.57 

Vegetated 4.54 0.8 0.59 3.11 3.1 0.3 

Built-up 5.86 2.3 1.68 4.95 0.5 1.62 

Bare-soil 5.16 2.2 1.09 4.44 4.8 0.92 

Rural 4.75 0.9 0.97 3.11 2.4 0.51 

C
u
lt

iv
at

ed
 L

an
d
 

Water 3.97 3 −0.96 1.59 2.7 −0.81 

Floodplain 3.18 3.3 −1.06 0.93 2.2 −0.57 

Culti. land 3.76 2.4 0.0 2.44 1.2 0.0 

Vegetated 3.49 3.9 −0.46 2.54 3.1 −0.27 

Built-up 4.8 2 0.63 4.37 3.2 1.05 

Bare-soil 4.1 0.8 0.03 3.87 2.1 0.34 

Rural 3.69 4.1 −0.09 2.54 4.9 −0.07  

Continued on next page. 
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V
eg

et
at

ed
 

Water 4.44 0.4 0.59 1.86 1 0.49 

Floodplain 3.65 1.2 −0.59 1.2 2.7 −0.3 

Culti. land 4.22 0.8 0.46 2.72 0.4 0.27 

Vegetated 3.95 3 0.0 2.81 3.8 0.0 

Built-up 5.27 2.3 1.09 4.64 1.5 1.32 

Bare-soil 4.57 2.8 0.75 4.14 1.1 0.62 

Rural 4.15 1.5 0.37 2.81 3.3 0.21 

B
u
il

t-
u
p
 

Water 3.35 1.9 −2.18 0.55 3.8 −2.03 

Floodplain 2.56 0.2 −1.68 −0.12 4.8 −1.62 

Culti. land 3.13 2.3 −0.63 1.4 0.8 −1.05 

Vegetated 2.86 2.8 −1.09 1.49 0.4 −1.32 

Built-up 4.18 3.5 0.0 3.33 1.4 0.0 

Bare-soil 3.48 2 −0.59 2.82 0.3 −0.7 

Rural 3.06 3.2 −0.72 1.49 0.5 −1.11 

B
ar

e-
so

il
 

Water 3.94 3.5 −1.59 1.25 1.6 −1.13 

Floodplain 3.15 2.4 −1.09 0.58 3.2 −0.92 

Culti. land 3.73 1.1 −0.03 2.1 2.1 −0.34 

Vegetated 3.45 2.9 −0.75 2.2 3 −0.62 

Built-up 4.77 1.3 0.59 4.03 3.8 0.7 

Bare-soil 4.07 4.6 0.0 3.53 1.1 0.0 

Rural 3.66 1.9 −0.12 2.2 1.4 −0.41 

R
u
ra

l 

Water 4.06 1.2 −0.47 1.66 2.3 0.28 

Floodplain 3.27 1.5 −0.97 0.99 3.3 −0.51 

Culti. land 3.85 4.2 0.09 2.51 0.3 0.07 

Vegetated 3.58 4.4 −0.37 2.61 3 −0.21 

Built-up 4.89 0.3 0.72 4.44 2.5 1.11 

Bare-soil 4.19 3.5 0.12 3.94 0.8 0.41 

Rural 3.78 2.2 0.0 2.61 1.9 0.0 
a Non-norm. dT = Non-normalised land surface temperature difference; 

b Norm. dT = Normalised land surface temperature difference; 

c SD = Standard Deviation. 

Differences in LST were calculated and visualised for the comparison periods in order to 

inspect the influence of urban development on LST change (Figure 6). Differences in LST across 

study periods were also calculated and visualised to assess LST changes as a result of LULC 

modification (Figure 6). The thermal environment of Dhaka matched these cover changes across 

each comparison period, with significant expansion of LST into areas that were floodplains and rural 

land that have changed into impervious, built-up, areas (cf. Figure 5 and Figure 6).  
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Figure 5. Land-use/cover conversion into Built-up, Rural Settlements and 

Water-body for (A) 1990–2000, (B) 2000–2011 and (C) 1990–2011. 

 

Figure 6. Land surface temperature differences for (A) 1990–2000; (B) 2000–2011; 

and (C) 1990–2011. 

5.2. Comparison of LST and biophysical parameters 

The strength of the correlation between NDVI/GVF and LST varied considerably between years 

(Figure 7), although it was persistently negative, reflecting the inverse relationship often observed 

between dense vegetation and LST. In contrast, the correlation between NDBI/ISA and LST was 

positive, strong, and relatively stable throughout the study period highlighting LST increases in 

tandem with impervious surfaces (Figure 7) These trends, particularly those between vegetation, 

impervious surfaces and LST, have been highlighted in similar studies [12,60]. The MNDWI 

consistently had a weak negative correlation with LST for the study period (Figure 7 g,h,i), 

indicating the resistance of water-bodies to increases in LST.  
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Comparison of the correlation coefficients between the fraction-based approach (GVF) and the 

index-based approach (NDVI) for detecting greenness identified that the GVF was a better predictor of LST 

than the NDVI. However, differences were only significant in 1990 (Table 4). Likewise, the ISA 

fraction-based approach had consistently higher correlation with LST than the NDBI for all time periods, 

although differences were not significant at α = 0.05 (Table 4). Within techniques, the NDBI was 

significantly more correlated to LST than NDVI (1990-2000) and the ISA outcompeted the GVF (Table 4). 

 

Figure 7. Visualisation of univariate regression scatter-plots between land-surface 

temperature and NDVI, NDBI, MNDWI (blue), GVF and ISA (red) biophysical 

parameters over the study period (see text for a description of the acronyms). The 

dashed vertical line represents 0 units. 

Table 4. Significant differences between the corresponding index-based and 

fraction-based approaches (i.e., NDVI vs GVF; NDBI vs ISA). 

  NDVI vs GVF1 NDBI vs ISA NDVI vs NDBI GVF vs ISA 

1990 0.04 0.33 <0.05 0.06 

2000 0.10 0.25 <0.05 <0.05 

2011 0.13 0.25 0.17 0.31 
1p-values < 0.05 identify significant differences between approaches. 
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6. Discussion 

Dhaka’s urban thermal environment has been significantly modified over the last several 

decades as a result of LULC change from rapid urbanisation. Built-up and bare-soil surfaces 

associated with urban growth have rapidly replaced pre-existing natural surfaces including vegetation, 

floodplains and water-bodies. On-going conversion has modified the thermal environment of the area, as 

indicated by increases in the magnitude and spatial distribution of LST over the study period. Our 

findings are based on Landsat imagery acquired at three temporal data points (1990, 2000, 2011). Our 

selection criteria required cloud-free imagery close to anniversary dates. Ideally, additional images should 

be employed to study the changes through time more finely [80] and closer to anniversary dates. 

However, we note that greater temporal resolution was severely impeded by an almost ubiquitous 

presence of cloud cover in the Landsat scenes visualised. Unfortunately, this is a problem in studies 

exploring urban thermal environments situated in tropical or sub-tropical regions of the world, a 

problem which has restricted numerous studies to small image sets in analysis of LST change across 

wide temporal and seasonal ranges [32,47,81,82].  

6.1. Temporal comparison of LULC to LST  

The highest mean LST in each study year were the built-up and bare-soil surfaces, which shared 

similar mean LST across study years likely due to similarity in albedo [25,83]. The mean LST of 

both surfaces continually increased over the study period, and the mean LST of natural surfaces such 

as water-bodies, floodplains and vegetation increased significantly when converted into these 

impervious surfaces. The higher mean temperature of these surfaces is likely due to the ability of 

impervious surfaces to retain solar heat [84]. Further, the removal of natural surfaces such as 

floodplains and vegetation to make way for these surfaces likely modified the surface energy balance 

and reduced evapotranspiration, resulting in an increase in the sensible heat flux and a reduction in 

latent heat flux [85] as well as modification to the heat storage and conductivity charactistics of the 

original surfaces [86].  

Natural surfaces such as vegetation, cultivated land and floodplains exhibited moderate LST 

increases across the study period, possibly as a result of seasonal variation. Floodplains become 

highly inundated during certain periods of heavy rain [9], altering the thermal characteristics of the 

surface. The presence of prominent crop vegetation, extensive harvest activity between January and 

March [87], and moisture stress from pre-monsoonal drought [44,88] also results in fluctuations in 

land surface temperatures at different times of the year. The mean LST of water-bodies maintained a 

consistent temperature of approximately 19 °C across the study period, likely due to the consistently 

high thermal inertia of water surfaces [89]. Water-bodies only maintained consistent temperatures 

after seasonal variation was normalized across the study period. Without normalisation, water-body 

surface temperature increased and was significantly different across the study period, highlighting 

strong seasonal influence across our restricted, non-normalised Landsat image set.  

A reduction of water-bodies and vegetated areas, which typically mitigate high surface temperatures 

due to differing albedos and heat storage capacity [1,90], are also likely to have contributed to an increase 

in the LST. Regardless, as a result of several decades of rapid urbanisation in Dhaka, impervious surfaces 

have expanded considerably. Considering that impervious materials such as concrete maintain a high 

thermal inertia and conductivity [25], high heat storage capacity [86] and can increase surface reflections 

and reduce wind dispersal in an urban area [91], the rapid development of these surfaces and the removal 
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of natural surfaces has led to postively trending LSTs in Dhaka.  

These findings reflect the results of similar studies in comparable subtropical or monsoonal 

climates. For instance, Xu et al. [92] investigated the influence of LULC change on LST of the 

subtropical Quanzhou region of south-eastern China over two decades using Landsat imagery. They 

found that LULC change had led to rapid urban expansion, causing natural surfaces to be converted 

into impervious surfaces, resulting in an urban heat island (UHI) effect. It was found through 

multivariate statistics that built-up surfaces contributed greatly to LST increase. Likewise, Weng [93], 

explored the influence of LULC change on LST in the subtropical Zhujiang Delta, China over a 

decade. Weng [93] found that land development raised surface radiant temperature by approximately 

10oC and found that this change indirectly reduced the biomass of the Zhujiang Delta. LST increases 

were highly correlated to urban expansion, particularly to the development of major roads. 

Importantly, simulated forecasts in Dhaka to 2029 indicate continued and rapid increases in LST [76] 

and reinforce both the negative influence of unmanaged urban growth on LST and the importance of 

maintaining natural surfaces. 

Our results are strongly dependent on the accuracy of the land cover derivatives used over the three 

time periods, which were noted as having overall accuracies between 88 and 95%. Hence, we assume 

that, like Dewan and Corner [94], green space has been rapidly converted to predominantly impervious 

surfaces over the entire study period. However, this is in contrast to Raja [77] and Raja and Neema [95], 

who explored LULC change and LST in Dhaka across the period 1989-2010 and determined that 

vegetated and other natural surfaces actually increased in area over time (i.e., in 2010).  

Almost equally consistent across these studies, are noted issues pertaining to seasonal influence 

on LST. Raja [77] and Raja and Neema [95] indicate unexpected area increases in some LULC types 

and decline in mean LST within their most recent study year (2010) may potentially be related to 

seasonal variations. Similarly, Dewan and Corner [94] attributed season to inflated mean LST of 

built-up surfaces in some years. Here we have applied and statistically validated the correction 

proposed by Zhou and Wang [24] for seasonal differences, avoiding these possible influences thus 

enabling more confident acquisition of non-anniversary date, cloud-free imagery in Dhaka. We 

encourage similar validation be carried out in other study areas.  

Similarly, Ahmed et al. [76] indicated that reliance on a limited set of index-based parameters 

potentially reduced LST model strength when predicting LST dynamics in Dhaka and suggested 

improvements could be made using improved, or more, biophysical parameters. Based on our 

findings, use of LSMA-derived parameters offer stronger correlations with LST than traditional 

index-based parameters, and may therefore improve model strength. Furthermore, the continued 

advancement in modern satellites spectral resolution (e.g., Landsat 8, Sentinel 2), coupled with 

LSMA, could be applied to extract far more surface materials from imagery than index-based 

techniques, improving LULC maps and correlations with LST [96]. 

6.2. Comparison of LST and biophysical parameters 

Univariate statistics indicated that the use of LSMA-derived biophysical parameters (GVF and 

ISA) were more highly correlated to LST than their index-based equivalents (NDVI and NDBI). This 

is particularly evident when comparing NDVI to GVF, and differences were most pronounced in 

1990. NDBI was a stronger predictor of LST than NDVI, which has previously been reported [12] 

and is due to the comparatively low seasonal influence on impervious surfaces [97,98]. Similarly, 

ISA was a stronger predictor than GVF.  
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Despite the improvements that the LSMA method can provide for deriving accurate biophysical 

parameters and LST modelling, it is important to note that the user should make some considerations 

prior to use. First, the LSMA approach is a highly iterative and particularly elaborate process. This makes 

it prone to more human error when compared to the index-based approach. The requirement of expert 

knowledge is also a key factor in deriving accurate fraction images, limiting the use of this process to 

specialists. Furthermore, deriving urban impervious surface fraction imagery is highly prone to the 

‘mixed pixel problem’ due to high pixel variability associated with built-up surfaces [99]. This makes the 

selection of accurate endmembers both difficult and time consuming during the process. To this end, it is 

reasonable to suggest that studies utilising LSMA to derive biophysical parameters should also derive 

NDVI or NDBI and compare to the results of LSMA to assess accuracy.  

7. Conclusion  

The increase in unmanaged urbanisation in Dhaka and its immediate surroundings has led to a 

continuous increase in LST as vegetation and floodplains are converted into either bare-soil or 

built-up surfaces. Two index-based biophysical parameters (NDVI and NDBI) were compared with 

two LSMA-based parameters or fraction surfaces (GVF and ISA). NDBI indicated a strong 

relationship with LST due to its heat retaining capacities. However, the LSMA parameters yielded 

stronger relationships with LST than the corresponding index-based parameters, particularly for 

vegetation (GVR>NDVI).  
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