57 research outputs found

    Particle Swarms in Statistical Physics

    Get PDF

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Ground state determination, ground state preserving fit for cluster expansion and their integration for robust CE construction

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, February 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages 106-111).In this thesis, we propose strategies to solve the general ground state problem for arbitrary effective cluster interactions and construct ground state preserving cluster expansions. A full mathematical definition of our problem has been formalized to illustrate its generality and clarify our discussion. We review previous methods in material science community: Monte Carlo based method, configurational polytope method, and basic ray method. Further, we investigate the connection of the ground state problem with deeper mathematical results about computational complexity and NP-hard combinatorial optimization (MAX-SAT). We have proposed a general scheme, upper bound and lower bound calculation to approach this problem. Firstly, based on the traditional configurational polytope method, we have proposed a method called cluster tree optimization method, which eliminates the necessity of introducing an exponential number of variables to counter frustration, and thus significantly improves tractability. Secondly, based on convex optimization and finite optimization without periodicity, we have introduced a beautiful MAX-MIN method to refine lower bound calculation. Finally, we present a systematic and mathematically sound method to obtain cluster expansion models that are guaranteed to preserve the ground states of the reference data.by Wenxuan Huang.Ph. D

    Quantum-classical generative models for machine learning

    Get PDF
    The combination of quantum and classical computational resources towards more effective algorithms is one of the most promising research directions in computer science. In such a hybrid framework, existing quantum computers can be used to their fullest extent and for practical applications. Generative modeling is one of the applications that could benefit the most, either by speeding up the underlying sampling methods or by unlocking more general models. In this work, we design a number of hybrid generative models and validate them on real hardware and datasets. The quantum-assisted Boltzmann machine is trained to generate realistic artificial images on quantum annealers. Several challenges in state-of-the-art annealers shall be overcome before one can assess their actual performance. We attack some of the most pressing challenges such as the sparse qubit-to-qubit connectivity, the unknown effective-temperature, and the noise on the control parameters. In order to handle datasets of realistic size and complexity, we include latent variables and obtain a more general model called the quantum-assisted Helmholtz machine. In the context of gate-based computers, the quantum circuit Born machine is trained to encode a target probability distribution in the wavefunction of a set of qubits. We implement this model on a trapped ion computer using low-depth circuits and native gates. We use the generative modeling performance on the canonical Bars-and-Stripes dataset to design a benchmark for hybrid systems. It is reasonable to expect that quantum data, i.e., datasets of wavefunctions, will become available in the future. We derive a quantum generative adversarial network that works with quantum data. Here, two circuits are optimized in tandem: one tries to generate suitable quantum states, the other tries to distinguish between target and generated states

    A review on probabilistic graphical models in evolutionary computation

    Get PDF
    Thanks to their inherent properties, probabilistic graphical models are one of the prime candidates for machine learning and decision making tasks especially in uncertain domains. Their capabilities, like representation, inference and learning, if used effectively, can greatly help to build intelligent systems that are able to act accordingly in different problem domains. Evolutionary algorithms is one such discipline that has employed probabilistic graphical models to improve the search for optimal solutions in complex problems. This paper shows how probabilistic graphical models have been used in evolutionary algorithms to improve their performance in solving complex problems. Specifically, we give a survey of probabilistic model building-based evolutionary algorithms, called estimation of distribution algorithms, and compare different methods for probabilistic modeling in these algorithms

    Applications of Spin Glasses across Disciplines: From Complex Systems to Quantum Computing and Algorithm Development

    Get PDF
    The main subjects of this dissertation are spin glass applications in other disciplines and spin glass algorithms. Spin glasses are magnetic systems with disorder and frustration, and the essential physics of spin glasses lies not in the details of their microscopic interactions but rather in the competition between quenched ferromagnetic and antiferromagnetic interactions. Concepts that arose in the study of spin glasses have led to applications in areas as diverse as computer science, biology, and finance, as well as a variety of others. In the first part of this dissertation I study the equilibrium and non-equilibrium properties of Boolean decision problems with competing interactions on scale-free networks in an external bias (a magnetic field). First, I perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and I show that the system has a spin-glass phase in a field, i.e., it exhibits a de Almeida–Thouless line. Then I study avalanche distributions when the system is driven by a field at zero temperature to test whether the system displays self-organized criticality. The numerical results suggest that avalanches (damage) can spread across the entire system with nonzero probability when the decay exponent of the interaction degree is less than or equal to 2, i.e., that Boolean decision problems on scale-free networks with competing interactions can be fragile when the system is not in thermal equilibrium. In the second part of this dissertation I discuss the best-case performance of quantum annealers on native spin-glass benchmarks, i.e., how chaos can affect success probabilities. We perform classical parallel-tempering Monte Carlo simulations of the archetypal benchmark problem, an Ising spin glass, on the native chip topology. Using realistic uncorrelated noise models for the D-Wave Two quantum annealer, I study the best-case resilience, or the probability that the ground-state configuration is not affected by random fields and random-bond fluctuations found on the chip. We compute the upper-bound success probabilities for different instance classes based on these simple error models, and I present strategies for developing robust and hard benchmark instances. In the third part of this dissertation I present a cluster algorithm for Ising spin glasses that works in any space dimension and speeds up thermalization by several orders of magnitude at temperatures where thermalization is typically difficult. Our isoenergetic cluster moves are based on the Houdayer cluster algorithm for two-dimensional spin glasses and lead to a speedup over conventional state-of-the-art methods that increases with the system size. We illustrate the benefits (improved thermalization and achievement of more equiprobable sampling of ground states) of the isoenergetic cluster moves in two and three space dimensions, as well as in the nonplanar Chimera topology found in the D-Wave quantum annealing machine. Finally, I study the thermodynamic properties of the two-dimensional Edwards-Anderson Ising spin-glass model on a square lattice using the tensor renormalization group method based on a higher-order singular-value decomposition. Our estimates of the partition function without a high precision data type lead to negative values at very low temperatures, thus illustrating that the method can not be applied to frustrated magnetic systems
    • …
    corecore