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ABSTRACT

The main subjects of this dissertation are spin glass applications in other disci-

plines and spin glass algorithms. Spin glasses are magnetic systems with disorder

and frustration, and the essential physics of spin glasses lies not in the details of their

microscopic interactions but rather in the competition between quenched ferromag-

netic and antiferromagnetic interactions. Concepts that arose in the study of spin

glasses have led to applications in areas as diverse as computer science, biology, and

finance, as well as a variety of others.

In the first part of this dissertation I study the equilibrium and non-equilibrium

properties of Boolean decision problems with competing interactions on scale-free

networks in an external bias (a magnetic field). First, I perform finite-temperature

Monte Carlo simulations in a field to test the robustness of the spin-glass phase and I

show that the system has a spin-glass phase in a field, i.e., it exhibits a de Almeida–

Thouless line. Then I study avalanche distributions when the system is driven by a

field at zero temperature to test whether the system displays self-organized critical-

ity. The numerical results suggest that avalanches (damage) can spread across the

entire system with nonzero probability when the decay exponent of the interaction

degree is less than or equal to 2, i.e., that Boolean decision problems on scale-free net-

works with competing interactions can be fragile when the system is not in thermal

equilibrium.

In the second part of this dissertation I discuss the best-case performance of

quantum annealers on native spin-glass benchmarks, i.e., how chaos can affect success

probabilities. We perform classical parallel-tempering Monte Carlo simulations of

the archetypal benchmark problem, an Ising spin glass, on the native chip topology.

ii



Using realistic uncorrelated noise models for the D-Wave Two quantum annealer, I

study the best-case resilience, or the probability that the ground-state configuration

is not affected by random fields and random-bond fluctuations found on the chip. We

compute the upper-bound success probabilities for different instance classes based

on these simple error models, and I present strategies for developing robust and hard

benchmark instances.

In the third part of this dissertation I present a cluster algorithm for Ising spin

glasses that works in any space dimension and speeds up thermalization by several

orders of magnitude at temperatures where thermalization is typically difficult. Our

isoenergetic cluster moves are based on the Houdayer cluster algorithm for two-

dimensional spin glasses and lead to a speedup over conventional state-of-the-art

methods that increases with the system size. We illustrate the benefits (improved

thermalization and achievement of more equiprobable sampling of ground states) of

the isoenergetic cluster moves in two and three space dimensions, as well as in the

nonplanar Chimera topology found in the D-Wave quantum annealing machine.

Finally, I study the thermodynamic properties of the two-dimensional Edwards-

Anderson Ising spin-glass model on a square lattice using the tensor renormalization

group method based on a higher-order singular-value decomposition. Our estimates

of the partition function without a high precision data type lead to negative values

at very low temperatures, thus illustrating that the method can not be applied to

frustrated magnetic systems.
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1. PHASE TRANSITIONS, CRITICAL PHENOMENA, SPIN GLASSES

The analysis of phase transitions and the associated microscopic structures is a

well-developed scientific approach in physics. Mathematical and conceptual tools

developed from spin glass phase transition have found their way into a variety of ap-

plications, including satisfiability problem [1], probability of finding an unsatisfiable

instance shows a sharp threshold behavior at some critical ratio between the number

of clauses and variables; the robustness of scale free network to local perturbation [2];

the finite-temperature phase space of quantum annealer [3]; percolation theory [4];

etc. In this chapter we provide an overview of phase transition, critical phenomena

and spin glass physics.

1.1 Phase transitions

A phase transition is the transformation of a thermodynamic system from one

phase to another. A phase is a state of matter in which the macroscopic physical

properties of the substance are uniform on the macroscopic scale and usually charac-

terized by a thermodynamic function, which is a function of macroscopic parameters

such as temperature, pressure, etc. During a phase transition of a thermodynamic

system, certain properties of the system change as a result of a change in some

macroscopic parameters. For example, a liquid may become gas when heated to

the boiling point, resulting in an abrupt change in volume, and a two-dimensional

(2D) Ising model [5] may suddenly lose its spontaneous magnetization as its temper-

ature exceeds the critical temperature. These properties of the system are actually

measures of the degree of order across boundaries in the phase transition and are

usually called order parameters. From a theoretical point of view, order parameters

arise from symmetry breaking; for example, in the case of the 2D Ising model, the
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magnetization M is spontaneously broken when the system is cooled to below the

Curie temperature.

A phase diagram is a graphical representation of the physical states of matter

under different conditions indicated by the macroscopic parameters. A typical phase

diagram has macroscopic parameters on the x- and y-axes and several specific fea-

tures, including phase boundaries, a critical point, and a triple point. A phase

boundary separates different phases. A change in parameters across a phase bound-

ary, such as a change in temperature, causes a sudden change in the phase of the

substance. A phase boundary sometimes disappears at a critical point, where the

two phases become indistinguishable and the substance shows anomalous behavior.

Figure 1.1 below shows a phase diagram for water molecules. Every point in

this diagram represents a possible combination of temperature and pressure for the

system. The diagram is divided into three areas, which represent the solid, liquid,

and gas states of the water molecules.

Figure 1.2 shows a phase diagram for the 2D Ising model using Onsager’s formula

for spontaneous magnetization. There is a phase transition at the critical tempera-

ture Tc = 2.269J/k: the system stays mostly ordered below the critical temperature

and the average magnetization M is one, while the system becomes completely un-

ordered above Tc and the average magnetization M is zero.

In the conventional classification [6], phase transitions are divided into two broad

categories by the degree of singularity in the physical quantities (see table 1.1). When

the first-order derivative of the free energy (usually either Helmholtz free energy F or

Gibbs free energy G) shows a discontinuity, the transition is first-order and typically

involves latent heat. The transition is called continuous if the second- or a higher-

order derivative of the free energy shows a discontinuity or divergence. Continuous

phase transitions are usually characterized by a divergent susceptibility, an infinite
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Figure 1.1: Sketch of phase diagram for water molecules, the blue curve represents the
transition between liquid (water) and solid (ice) states, the red curve represents the
transition between gas (vapor) and liquid (water) states, the purple curve represents
the transition between solid (ice) and gas (vapor) states.
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Figure 1.2: Magnetization as a function of temperature for the 2D Ising model. At
zero temperature, the state stays completely ordered. As we increase temperature,
the magnetization starts to drop rapidly until the phase transition occurs. Above
the critical temperature Tc = 2.269, the absolute magnetisation is nearly zero.
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correlation length, and a power-law decay of correlations near criticality. Examples

of first-order phase transitions are the melting of ice and the boiling of water. The

ice–water or water–vapor transition releases latent heat, which means that entropy

S = −∂F
∂T

(1.1)

is discontinuous. Alternatively, we can say that volume

V =
∂G

∂P
(1.2)

is discontinuous. An example of a second-order phase transition is in the 2D Ising

model, where the specific heat

Cv = T (
∂S

∂T
)v = −T (

∂2F

∂T 2
)v (1.3)

and magnetic susceptibility

χ =
∂m

∂H
= − ∂

2F

∂H2
(1.4)

are divergent at the critical temperature.

In some limited cases, we can derive exact solutions for the phase transitions

of a thermodynamic system—for instance, in the case of 1D and 2D Ising models

[7, 5]. But in general, we have to resort to approximate methods to understand

phase transitions. Mean field theory was introduced by Landau [8, 9] in an attempt

to formulate a general theory of continuous phase transitions. Essentially, mean

field theory neglects spin fluctuations around the mean and treats spins as behaving

statistically independently. In the simplest version, when Weiss mean field theory

predicts the existence of a phase transition for the 1D Ising model, it fails even
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qualitatively. However, in higher dimensions, spin is coupled with more and more

neighbors, whose fluctuations around the mean magnetization will increasingly tend

to cancel one another. Thus, mean field theory gives the correct results for an Ising

model with a high enough space dimension (D = 4 is the upper critical dimension).

Table 1.1: Different orders of phase transitions. First-order phase transitions are
those that involve a latent heat. Second-order phase transitions are also called con-
tinuous phase transitions and characterized by a divergent susceptibility, an infinite
correlation length, and a power-law decay of correlations near criticality.

Differential of free energy G Corresponding experimental quantities
First S, V S, V

Second ( ∂S
∂T

)p, (
∂V
∂T

)p, (
∂S
∂p

)T , (
∂V
∂p

)T Cp, β, κ

Third
( ∂

2S
∂T 2 )p, (

∂2V
∂T 2 )p,

∂2S
∂T∂p

(∂Cp
∂T

)p, (
∂β
∂T

)p, (
∂κ
∂T

)p

(∂
2S
∂p2

)T , (
∂2V
∂p2

)T ,
∂2V
∂T∂p

(∂Cp
∂p

)T , (
∂β
∂p

)T , (
∂κ
∂p

)T

1.2 Critical phenomena

Critical phenomena [10] often refers to continuous phase transitions; it is the

collective name associated with the physics of critical points. The critical behavior is

usually different from the mean-field approximation that is valid away from the phase

transition. This is because the mean-field approximation neglects correlations, which

become increasingly important as the system approaches the critical point where the

correlation length diverges. The three pillars of modern critical phenomena theory

are scaling, universality, and renormalization [10].

The scaling hypothesis [11, 12] has two categories of predictions, both of which

have been remarkably well verified by experimental data for diverse systems. The

first category is a set of relations, called scaling relations, that serve to relate the

various critical-point exponents, which describe the behavior of physical quantities
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near continuous phase transitions. For example, the critical exponents of phase

transitions in the Ising model, α, β, γ, and ν, describe the behavior of the specific

heat Cv, the magnetization M , the susceptibility χ, and the correlation length ξ,

respectively:

Cv ∼ t−α, (1.5)

M ∼ t−β, (1.6)

χ ∼ t−γ, (1.7)

ξ ∼ t−ν , (1.8)

where t is reduced temperature t = (T −Tc)/Tc. These Ising critical exponents obey

the scaling relations

α + 2β + γ = 2, νd = 2− α. (1.9)

These equations imply that there are only two independent exponents. The second

scaling hypothesis category is data collapse, which can also be explained using the

Ising model. The ratio

ξ/L = t−νL−1 (1.10)

should control the behavior of finite-size data close to Tc. Assume that χ(t) has the

finite-size scaling form

χ(t) ∼ Lσf(ξ/L) = Lσf(t−νL−1) = Lσg(tL1/ν) (1.11)

for small t, then the infinite L scaling form should be

χ(t) = L−γ. (1.12)
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To reproduce this, the scaling function g(x) must have the limit g(x) ∼ xb as x→∞.

We can determine the exponents as follows:

χ(t) ∼ Lσg(tL1/ν) = Lσ(tL1/ν)b = tbLσ+b/ν , (1.13)

so b = −γ, σ = γ/ν, and

χ(t) ∼ Lγ/νC̃(tL1/ν). (1.14)

Similarly, for the magnetization:

M(t) ∼ Lβ/νM̃(tL1/ν). (1.15)

Here C̃ and M̃ are unknown scaling functions. Both scaling forms show that when

T = Tc, the data for χ(t)/Lγ/ν and M(t)/Lβ/ν simulated for different system sizes L

should cross in the large-L limit at T = Tc.

The concept of a universality class is the centerpiece of the modern theory of

critical phenomena. Two systems with the same critical exponent values and scal-

ing functions are said to belong to the same universality class. Data collapse onto

a scaling function supports the scaling hypotheses, while the fact that the scaling

function is the same for different materials is truly remarkable. For example, the

critical exponents of the 3D Ising model phase transitions are the same as those at

the liquid–gas critical point, and they share the same Ising model universality class

with α = 0.110(1), β = 0.3265(3), γ = 1.2372(5), and ν = 0.6301(4). Universality

is a prediction of renormalization group theory, which states that the thermody-

namic properties of a system near a critical point depend only on dimensionality and

symmetry and are insensitive to the underlying microscopic properties of the system.

The idea of a renormalization group (RG) stems from Wilson’s [13] essential
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idea that the critical point can be mapped onto a fixed point of a suitably chosen

transformation on the system’s Hamiltonian. Here is an example of how to develop

a real-space RG for the 1D Ising model. The energy E of the 1D Ising model is

H = −J
∑
i

sisi+1 (1.16)

and the partition function is

Z =
∑
{si}

e−H/k =
∑
{si}

∏
i

eKsisi+1 , (1.17)

where K = J/kT . One way to reduce the number of degrees of freedom is to describe

the system in terms of two-spin cells, where the partition function is written as

Z = Tr(TN) = Tr(T 2)N/2 = Tr(T ′)N/2 (1.18)

with

T ′ =

e2K + e−2K 2

2 e2K + e−2K

 . (1.19)

If we require T ′ to have the same form as T , then

T ′ = C

 eK
′

e−K
′

e−K
′

eK
′

 . (1.20)

The solution to this matrix equation is recurrence relations

K ′ =
1

2
ln[cosh(2K)] (1.21)
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and

C4 = 4(e4K + e−4K + 2). (1.22)

Suppose we have some initial value of the coupling constant K0 such that 0 < K0 <

1. Then iteration of the recurrence relation produces a succession of values that

approach K = 0. Accordingly, the point corresponding to K = 0 is called a stable

fixed point of the recurrence relations, or a critical point of the 1D Ising model

phase transition. This renormalization group description provides a foundation for

understanding the scaling and universality, a calculation tool that permits us to

obtain numerical estimates for the various critical exponents.

1.3 Spin glass

Spin glasses [14] are magnetic systems with disorder and frustration. The bonds

in a spin glass are a mixture of roughly equal numbers of ferromagnetic bonds and

antiferromagnetic bonds, and the essential physics of spin glasses lies not in the de-

tails of the microscopic interactions but rather in the competition between quenched

ferromagnetic and antiferromagnetic interactions shown in Figure 1.3. The Hamil-

tonian H for a spin glass can be described as follows:

H = −
∑
i,j

JijSiSj +
∑
i

hiSi, (1.23)

where Jij denotes the interactions between spins and Si denotes the values of the spin

components. If Si has a single component, it’s called an Ising spin glass. If Si has

two or three components, it is called an XY or a Heisenberg spin glass, respectively.

A characteristic feature of spin glasses is that their dynamics are very slow at low

temperatures, due to the development of a complicated “energy landscape” with

many valleys separated by barriers.
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Figure 1.3: Disorder and frustration in a spin glass. Bonds marked “+” correspond
to ferromagnetic couplings, “-” corresponds to an antiferromagnetic coupling. For a
ferromagnet the energy is minimized by aligning all spins, in the case of spin glass,
no spin configuration can simultaneously satisfy all couplings.

1.3.1 Phase transitions in spin glasses

Unlike a ferromagnet, where thermal fluctuations completely eliminate sponta-

neous magnetization above the critical temperature, spin glasses intrinsically do not

have a visible spatial order. The spins in a spin glass are frozen with random orienta-

tions at low temperatures, and a spin overlap comparing two copies of a system with

the same disorder rather than magnetization plays the role of the order parameter.

We compute the spin overlap via two independent replicas at the same temperature

as

qαβ =
1

N

∑
i

Sαi S
β
i . (1.24)

Above a spin glass’s critical temperature Tc, the spins fluctuate widely and the

overlap parameter tends to be zero. Below the critical temperature Tc, the spins are

frozen with random orientations and the overlap parameter is one (or minus one).

Spin glasses exhibit continuous phase transitions, and the specific heat Cv has a

broad, smooth, and rounded maximum. However, the non-linear susceptibility χnl

diverges at the critical temperature Tc. χnl can be measured experimentally and is
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Figure 1.4: Sketch of phase diagram for three-dimensional Ising spin glass with bi-
modal disorder. The blue curve represents the transition between ferromagnetic
(FM) and paramagnetic states (PM), the purple curve represents the transition be-
tween spin glass (SG) and ferromagnetic states (FM), the red curve represents the
transition between spin glass (SG) and paramagnetic states (PM). T and p are tem-
perature and fraction of antiferromagnetic bonds, respectively.

defined by the coefficient of h3 in the expansion of the magnetization m:

m = χh− χnlh
3. (1.25)

The non-linear susceptibility χnl is essentially the same as the spin glass susceptibility

χSG:

χSG =
1

N

∑
i,j

[〈SiSj〉2]av. (1.26)

where [· · · ]av denotes an average over the quenched disorders. For the Edwards-

Anderson model, it can be shown that

T 3χnl = χSG − 2/3. (1.27)

Another divergent quantity at Tc is the spin glass correlation length ξ, which can be

11



computed from the spin glass correlation function due to Ornstein-Zernicke approx-

imation

[χSG(0)/χSG(k)]−1 ≈ 1 + ξ2k2, (1.28)

where χSG(k) is the vector-dependent spin glass susceptibility

χSG(k) =
1

N

∑
i,j

[〈SiSj〉2]ave
ik·(Ri−Rj) (1.29)

and R is position vector. On a finite lattice the momentum is discretized and one

arrives at the expression

ξ =
1

2 sin(kmin/2)

(
χSG(0)

χSG(kmin)
− 1

)1/2

(1.30)

with

kmin =
2π

L
(1, 0, 0). (1.31)

The phase diagram of the 3D lattice ±J Ising spin glass model is sketched in

figure 1.4. p is the fraction of antiferromagnetic bonds, we only consider p ≤ 1/2

because of the symmetry p → 1 − p. While the high-temperature phase is always

paramagnetic (PM), at low temperatures there is a ferromagnetic (FM) phase for

small frustration, and a spin glass phase (SG) with vanishing magnetization for

sufficiently large frustration.

The critical exponents of phase transitions in spin glasses, α, β, γ, and ν, describe

the behavior of the specific heat Cv, overlap parameter q, susceptibility χSG, and

correlation length ξL, respectively:

Cv ∼ t−α, (1.32)
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q ∼ t−β, (1.33)

χSG ∼ t−γ, (1.34)

ξ ∼ t−ν . (1.35)

This allows us to study critical properties and universality class in spin glasses via

scaling relations.

1.3.2 Long-range and short-range spin glass model

For the Sherrington-Kirkpatrick (SK) model [15], a system of N Ising spins with

zero external fields and the range of each interaction can be infinite (every spin

interacts with every other one). the Hamiltonian is described as follows:

H = − 1√
N

∑
i,j

JijSiSj. (1.36)

The couplings Jij are chosen from a Gaussian distribution with mean zero and vari-

ance one; the 1√
N

rescaling ensures a non-divergent thermodynamic limit for free

energy per spin as well as other thermodynamic quantities. The equilibrium solution

of the model was found by Giorgio Parisi with the replica method, and subsequent

work on the interpretation of the Parisi solution revealed the complex nature of a

glassy low temperature phase characterized by ergodicity breaking, ultrametricity,

and non-self-averageness [16, 17, 18, 19]. The SK model has a line of transitions,

known as the Almeida–Thouless (AT) line (shown in Figure 1.5), in a magnetic field.

The AT line separates a spin glass phase with divergent relaxation times and “replica

symmetry breaking” from a paramagnetic “replica symmetric” phase with finite re-

laxation times. Therefore, the SK model has a finite-temperature spin-glass phase

transition in a field.
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In the Edwards-Anderson model [20], spins are arranged on a D-dimensional

lattice with only nearest neighbor interactions and periodic boundary conditions in

all directions. Its Hamiltonian is

H = −
∑
i,j

JijSiSj, (1.37)

where i, j indicates a sum over nearest neighbors. The coupling constants Jij are

independent random variables drawn from a given distribution with mean zero and

variance one. In the original version proposed by Edwards and Anderson, the spin

was assumed to be the Heisenberg one with three spin components. However, Ising

spin glasses have been widely used in numerous simulations because of their sim-

plicity. Much of what we know about the Edwards-Anderson model comes from

numerical simulations, and there has been a general consensus that for Ising systems

with D ≥ 2.5 [21], a spin glass transition occurs in zero field. The upper critical

dimension of the Ising spin glass, above which mean field results should apply, is

expected to be six [22]. Phase transitions in the magnetic field for the Edwards-

Anderson model are controversial, and two main scenarios have been proposed for

resolving this issue. In the “droplet picture” [23, 24, 25], there is no AT line in any

finite-dimensional spin glass. By contrast, the “replica symmetry breaking” picture

[26, 27] predicts that the behavior of short-range Ising spin glasses is similar to that

of the infinite-range SK model with an AT line. Many problems can be mapped onto

short-range systems. As such, whether having a field term could destroy the spin

glass state has far-reaching impact [28]. Most of recent numerical studies point to

the absence of an equilibrium transition under finite fields [28, 29], however, there is

still no consensus on this issue because there seem to be quite large corrections to

finite-size scaling. Therefore, better models such as one-dimensional spin-glass model
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with power-law interactions and spin glasses on scale free networks can be used to

probe short-range models by tuning the exponent of the power-law interactions or

the exponent that describes the decay of the interaction degree in the scale-free graph

[30, 31].

T

H

SG

PM

Figure 1.5: Sketch of Almeida–Thouless (AT) line for the SK model. The AT line
separates a spin glass phase with divergent relaxation times and “replica symme-
try breaking” from a paramagnetic “replica symmetric” phase with finite relaxation
times.

1.3.3 Applications of spin glasses

The study of spin glasses has led to a variety of applications to problems in neural

networks [32], graph theory [33, 2], protein folding [34], self-organized criticality [35],

combinatorial optimization [36], quantum information theory [37, 38, 3], economics

[39], and many other areas. In this thesis, I attempt to illustrate how the spin glass

model can establish fruitful links and contribute new insights to a wide range of

interdisciplinary applications.

15



2. NUMERICAL METHODS FOR SPIN GLASSES

For a spin glass system in equilibrium with a heat bath, the probability Ps of

being in a given state s depends only on the energy Es:

Ps =
1

Z
e−Es/kT . (2.1)

where k is Boltzmann constant, T is the temperature and Z is the partition function

of the system. To sample the average of an observable 〈O〉 in the system, we sum

over all possible configurations analytically:

〈O〉 =
1

Z

∑
s

Ose
−Es/kT . (2.2)

For a system with N spins, there are a total of 2N possible configurations. Even

a small lattice with N = 100 is impossible to study using “brute force”, especially

systems with strong interactions between spins. We have no choice but to seek an

approximation if we want to correctly estimate the observables without exploring

the entire configuration space. Unlike the case of ferromagnets, which display spa-

tial symmetries that greatly simplify their physical and mathematical analyses, the

absence of symmetries in spin glasses enormously complicates the analysis of their

behavior. Mean field theory has almost always served as an invaluable guide to

the low-temperature behavior of statistical mechanical systems. However, in the

Edwards-Anderson model, there are finite corrections to the mean field (especially

large in one or two dimensions). Because of this failure of mean field theory to pro-

vide a correct description of the low-temperature phase in any finite dimensional spin

glass [14, 40, 41], it is necessary to develop efficient numerical algorithms—especially
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for those cases where exact results such as critical temperature, critical exponents,

avalanche size distributions, and ground states are not available, due to formidable

mathematical difficulties and NP-hard complexity. Over the last few decades, the

development of efficient Monte Carlo methods such as parallel tempering [42] and

population annealing [43] has helped us understand these systems at a much deeper

level. However, most numerical studies are still plagued by corrections to finite-size

scaling due to the small system sizes currently available, so more powerful algorithms

are needed to overcome the computational limitations. In this chapter I review state-

of-the-art numerical methods for spin glass simulations.

2.1 Metropolis algorithm

The Metropolis algorithm [44] constructs an ergodic Markov chain that satisfies

the detailed balance property with respect to the stationary Boltzmann distribution.

If we generate a Markov chain of successive states s1 → s2 → ..., each new state

is generated from the previous state with a carefully-designed transition probability

p(s1 → s2). The outline of the algorithm is as follows:

1. Starting from a configuration s1 with known energy Es1 , take a random walk

and make a trial change to obtain a new configuration s2.

2. Compute the energy Es2 of trial configuration s2.

3. If Es2 ≤ Es1 , accept the new configuration; If Es2 > Es1 , accept the new

configuration with probability

p(s1 → s2) = e−
(Es2−Es1 )

kT . (2.3)

The process is repeated until equilibrium is reached for temperature T . To un-

derstand how the Metropolis algorithm works, note that at low temperatures the

algorithm will almost always drive the system towards a lower energy. However, at
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Figure 2.1: Sketch of a rough energy landscape of spin glass. A Monte Carlo move is
unlikely if the height of the energy barrier ∆E is large, especially at low temperatures.
In this case, a simple Monte Carlo simulation will stall and the system will be stuck
in the metastable state.

high temperatures the transition probability is close to one, and the algorithm tends

to randomize all of the configurations. The Metropolis algorithm is generally used for

sampling multi-dimensional distributions, and its error is independent of the space

dimension [45]. However, the disadvantage of this Markov-chain approach is that

the new state usually depends on the previous state at low temperatures, and thus

they are correlated. To ensure that the measurement of an observable is not biased

by correlated configurations, measurements can only be taken after autocorrelation

time. However, the dynamics of spin system can be extremely slow at low tempera-

ture. Imagine that a simple spin flip can produce a huge change in the energy ∆E

of a spin glass system with a rough energy landscape (shown in figure 2.1). The

effect of this will be that the probability of new configurations being accepted is very

small, so a simple Monte Carlo simulation will stall and the system will be stuck in

the metastable state, which result in a long autocorrelation time and large error bars

of observables. Therefore, in spin glasses with a rough energy landscape we need to

come up with better ideas.
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2.2 Parallel tempering

Parallel tempering, also known as replica exchange Markov-Chain Monte Carlo

(MCMC) sampling [42], is a simulation method aimed at improving the dynamic

properties of Monte Carlo method simulations of physical systems. Essentially, NT

replicas of the system, randomly initialized, are run at a range of temperatures

{T1, T2, ..., TNT }. Configurations at different temperatures are exchanged based on

the Metropolis criterion

p(Ei, Ti → Ei+1, Ti+1) = min{1, e∆E∆β}, (2.4)

where ∆β = 1/Ti+1 − 1/Ti is the difference between the inverse temperatures and

∆E = Ei+1 −Ei is the difference in the energy of the two replicas. The idea behind

this method is to make configurations at high temperatures available to the simu-

lations at low temperatures, and vice versa. This results in a very robust ensemble

that is able to sample both low- and high-energy configurations. An example shown

in figure 2.2 demonstrates that parallel tempering outperforms simple Monte Carlo

method in a rough energy landscape.

One important aspect of the parallel tempering algorithm is that optimal tem-

perature intervals must be carefully chosen [45]. When the temperatures are too

far apart, the energy distributions at the individual temperatures will not overlap

enough, and many moves will be rejected. If the temperatures are too close, CPU

time will be wasted. Usually the most accurate data for a fixed amount of compu-

tation are obtained if we ensure that the acceptance probabilities are approximately

independent of the temperature, roughly between 20%− 80% [46].

In practice, parallel tempering enables us to simulate intermediate size systems,

e.g., ∼ 103 spins, at low temperatures [41].
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Figure 2.2: This figure shows energy per spin e as a function of Monte Carlo time
(measured in lattice sweeps) t = 2b with (blue dots) and without (red dots) parallel
tempering (system size N = 64, temperature T = 0.21) for a 2D square lattice. The
system is in equilibrium when e becomes approximately flat and fluctuates around a
mean value. The data show that without parallel tempering (PT), the system does
not reach equilibrium even after 220 MCS. In contrast, the system thermalizes much
faster with parallel tempering and reaches equilibrium after only a few thousand
Monte Carlo sweeps.

2.3 Houdayer cluster algorithm

For ferromagnets, the Metropolis algorithm is plagued by large autocorrelation

times at criticality. Empirically the autocorrelation time grows proportional to the

correlation length τ ∝ ξz, with a dynamical critical exponent z ≈ 2. Since ξ di-

verges at critical temperature, the Metropolis algorithm severely suffers from critical

slowing down. The problem of critical slowing down can be overcome by cluster

algorithms. By comparing thermal phase transitions to percolation transitions and

applying Fortuin-Kasteleyn transformation to spin configurations, Swendsen-Wang

and Wolff [47, 48] cluster algorithms have been developed to greatly reduce the dy-
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namical critical exponent. Although the generalization is even valid for spin glasses.

The corresponding algorithm is inefficient when frustration is introduced into Hamil-

tonian [49]. Therefore, these cluster algorithms have been most useful for system

without frustration.

The Houdayer cluster move is a rejection-free method [50] for 2D spin glasses.

The use of clusters makes global updates possible and leads to a speedup of several

orders of magnitude. Essentially, M replicas are run at the same temperature, and

the q-space between the two random replicas α and β is then defined as

qi = Sαi S
β
i . (2.5)

There are two domains in the q-space, the sites with qi = 1 and the sites with qi = −1,

and clusters are defined to be the connected parts of these domains. One site with

qi = −1 in the q-space is randomly chosen, and the cluster to which it belongs is

flipped in both configurations. Since the total energy of the two replicas is unchanged

by this transformation, acceptance of this cluster move is guaranteed, which allows a

much faster thermalization because the two replicas are mixed together very quickly.

An example shown in figure 2.3 demonstrates that simulations using Houdayer clus-

ter moves are superior to vanilla parallel tempering at very low temperature. The

drawback of Houdayer cluster algorithm is that it only works for 2D (site percolation

threshold pc = 0.59) Ising spin glass. Usually there are about as many sites with

qi = 1 as with qi = 1, flipping one of those big clusters in both replicas is the same

as exchanging the replicas as soon as the site percolation threshold is less than 0.5

which essentially forbids all lattices of dimension D > 2 or with more than nearest

neighbour connections in D = 2.
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Figure 2.3: This figure shows energy per spin e as a function of Monte Carlo time
(measured in lattice sweeps) t = 2b with (blue dots) and without (red dots) Houdayer
cluster moves (system size N = 64, temperature T = 0.02) for a 2D square lattice.
The system is in equilibrium when e becomes approximately flat and fluctuates
around a mean value. The data show that without Houdayer cluster moves (HC), the
system does not reach equilibrium even after 220 MCS. However, it thermalizes much
faster with Houdayer cluster moves and reaches equilibrium after only a few thousand
Monte Carlo sweeps. Note temperatures for the simulations here are extremely low
(about 1/10 of temperatures in figure 2.2), the simple Monte Carlo method will be
useless.

2.4 Test for equilibration

Spin glass dynamics is slow at low temperatures due to the complicated energy

landscape. To speed things up, most spin glass simulations now use the Metropo-

lis algorithm and parallel tempering combined with some cluster algorithms. The

Metropolis algorithm is widely popular in statistical physics; we start with a random

configuration and try to explore the phase space more efficiently, both vertically and

horizontally, with parallel tempering and a cluster algorithm. The systems usually

have to evolve for many Monte Carlo steps before an equilibrium state at a given
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temperature is obtained. Once equilibration time has been reached, the observables

become approximately flat and fluctuate around a mean value; the system is in

thermal equilibrium and the observables can be measured.

For spin glasses with Gaussian disorder, we can use a strong equilibration test

to ensure that the system is in thermal equilibrium. The internal energy per spin is

given by

U = − 1

N

∑
i,j

[〈JijSiSj〉]av, (2.6)

where 〈· · · 〉 represents the Monte Carlo average for a given set of bonds and [· · · ]av

denotes an average over the Gaussian disorder. We can perform an integration by

parts over Jij to relate U to the average link overlap [51]:

U(ql) = −
[〈

z

2

1− ql
T

〉]
av

, (2.7)

where ql is the link overlap

ql =
1

Nd

∑
i,j

sαi s
α
j s

β
i s

β
j (2.8)

and z is the number of neighbors per site. The data for both quantities approach

equilibrium from opposite directions. Figure 2.4 shows equilibration test for spin

glasses with Gaussian disorder on a 2D square lattice, data for the energy have to

equate to data for the energy computed from the link overlap. This equilibration

test does not work for spin glasses with bimodal interactions.

2.5 Finite size scaling for spin glasses

Finite size scaling is a method for finding the critical exponents and the critical

temperature by observing how the measured quantities change for different system
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Figure 2.4: Equilibration test for a 2D square lattice with N = 64 spins at T = 0.212.
Once the data for the energy e and the energy e(ql) computed from link overlap ql
agree, the system is in thermal equilibrium (shaded area).

sizes. Three different useful quantities can be applied with finite size scaling for spin

glass: the Binder ratio [52], spin glass susceptibility, and correlation length. These

have the following scaling forms:

g(t) ∼ G̃(tL1/ν), (2.9)

χSG(t) ∼ Lγ/νC̃(tL1/ν), (2.10)

ξ(t)/L ∼ X̃(tL1/ν), (2.11)

where g(t) = (1/2)(3 − 〈q4〉/〈q2〉2), G̃, C̃, and X̃ are unknown scaling functions, t

is reduced temperature t = (T − Tc)/Tc and L is side length. These scaling forms

imply that when T = Tc (or t = 0) , the data for g(t), χSG(t)/Lγ/ν , and ξ(t)/L with

different system sizes L should cross in the large-L limit at T = Tc. Also, they should
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collapse onto the same curve if we plot g(t), χSG(t)/Lγ/ν , and ξ(t)/L as a function of

tL1/ν . This method is illustrated in figure 2.5 and 2.6 for the Sherrington-Kirkpatrick

Ising spin glass model. The figure 2.5 shows the sketch of Binder ratio as a function

of temperature for several small system sizes, the vertical dashed line marks the

exactly known value of the critical temperature Tc. The figure 2.6 shows a sketch

of finite-size scaling analysis of the data for the exact values of the critical exponent

ν. Close to the transition the data fall onto a universal curve, showing that ν is the

correct value of the critical exponent.

T

L1

L2
L3L4

Tc

Tc > 0

g(T )

Figure 2.5: Sketch of Binder ratio g(T ) for the Sherrington-Kirkpatrick model with
different system sizes N as a function of temperature T . The data cross at a point
(shaded area) and we obtain the critical temperature Tc.

Generally, use of the correlation length [53] to locate the critical temperature in

spin glasses is better than use of the Binder ratio. This is because for the Binder

ratio, the data merge but do not clearly splay out in the low temperature region,
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Figure 2.6: Sketch of finite-size scaling analysis of Binder ratio g(T ) for the
Sherrington-Kirkpatrick model with different system sizes N as a function of
N1/ν(T − Tc). Close to the transition the data fall onto a universal curve, show-
ing that ν is the correct value of the critical exponent.

whereas in the results for the correlation length, the data intersect at the critical

temperature and splay out again at lower temperatures. For spin glasses on a graph

without geometry, the Binder ratio and susceptibility but not the correlation length

can be measured and used to determine the critical temperature and exponents [2].

2.6 Optimization algorithms

Ising spin glasses are prototypical models for disordered systems and have played

a central role in statistical physics during the last four decades. In the area of

optimization, spin glasses provide a rich class of test problems that are a challenge for

most optimizers, mainly because of the large number of local optima and the existence

of rough energy landscapes. On the one hand, progress in the theory of combinatorial

optimization, and in particular the development of new and more efficient algorithms,

contributes to our understanding of spin glass physics. On the other hand, spin glass
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physics can also help shed light on some basic, yet unsolved, questions in computer

science. Problems that are originally formulated as purely combinatorial tasks can

be equivalently rewritten as spin glass models, by identifying the cost function with

a Hamiltonian. Applying statistical mechanics tools at a temperature close to T = 0

may thus unveil many properties of the original problem and its cost-function minima

[54].

Many generally applicable computational methods have been developed to solve

hard combinatorial optimization problems. Exact algorithms that efficiently explore

the tree of system states include branch-and-cut algorithms [55], exact algorithms

that will terminate and are guaranteed to provide the minimum energy solution,

but unfortunately these tend to be slow. Heuristic methods provide good, but not

necessarily optimal solutions. They have the advantages of being easy to program

and of being very fast, which often allows researchers to quickly tackle relatively

large systems with little effort. Widely popular heuristic optimization algorithms

include Monte Carlo methods: simulated annealing [36], parallel tempering [56], and

population annealing [57]; evolutionary algorithms: genetic algorithms [58], particle

swarm optimization [59], ant colony optimization, and extremal optimization [60];

tabu search [61]; hysteretic optimization [62]; and quantum annealing [63].

Usually, heuristic algorithms are used for problems that cannot be easily solved.

Classes of time complexity are defined to distinguish problems according to their

“hardness” and illustrated in figure 2.7. Class P consists of decision problems solv-

able in polynomial time, and class NP consists of decision problems that are “verifi-

able” in polynomial time. A major open question in theoretical computer science is

whether every problem whose solution can be quickly verified by a computer can also

be quickly solved by a computer. It currently appears that P6= NP, meaning that

we have plenty of examples of problems for which we can quickly verify potential
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answers but which we cannot solve quickly, such as the traveling salesman problem,

the Boolean satisfiability problem, and finding spin glass ground states. There is

a class of NP problems that are NP-complete, which means that if you can solve

one of them, you can use the same method to solve any other NP problem quickly.

Finally, the class of NP-hard problems is the class of problems that are NP-complete

or harder. NP-hard problems have the same characteristic as NP-complete problems

but they do not necessary belong to the class NP, that is, the class of NP-hard prob-

lems also includes problems for which no algorithm at all can be provided. For the

spin glass ground states problem, Barahona [64] proved in 1982 that the 3D spin glass

model and the planar model with an external field are NP-complete. The complexity

result bars algorithms only from solving all instances of the problem in polynomial

time. Typical spin glasses are random mixtures of coupling constants, and it’s en-

tirely possible that the average spin glass problem can be solved in polynomial time,

even though the worst case may be exponential. The ground-state properties cap-

ture most of the low temperatures physics, therefore we might be able to study the

nature of spin glass state at low temperature without solving the worst problems. A

good optimization algorithm is not expected to turn the exponential scaling into a

polynomial one, however, smaller scaling constants will potentially give substantial

speedup. In the next few chapters we will develop cluster algorithms that speedup

thermalization of spin glasses and fair sampling of their ground states.
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Figure 2.7: This figure [65] illustrates the relationships among the three categories: P,
NP, and NP-complete. The existence of problems within NP but outside both P and
NP-complete, under assumption P 6= NP, was established by Ladner’s theorem [66].
For spin glasses, non-planar model and the planar model with an external field are
NP-complete, planar model is P, it is unclear whether there are spin glass problems
that are in the complexity class NP but are neither in the class P nor NP-complete.

29



3. BOOLEAN DECISION PROBLEMS WITH COMPETING INTERACTIONS

ON SCALE-FREE NETWORKS: EQUILIBRIUM AND NONEQUILIBRIUM

BEHAVIOR IN AN EXTERNAL BIAS ∗

Scale-free networks play an integral role in nature, as well as in industrial, tech-

nological and sociological applications [67]. In these networks, the edge degrees {ki}

(the number of neighbors each node has) are distributed according to a power law

λ, with the probability ℘k for a node to have k neighbors given by

℘k ∝ k−λ. (3.1)

In the meantime, there have been many studies of Boolean variables on scale-free

networks and, more recently, even with competing interactions [68, 33, 69, 70, 2].

There is general consensus that stable ferromagnetic and spin-glass phases emerge

in these complex systems [2] and that for particular choices of the decay exponent λ

the critical temperature diverges, i.e., Boolean variables with competing interactions

are extremely robust to local perturbations.

However, the behavior of these intriguing systems in an external magnetic field—

which can be interpreted as a global bias—remains to be fully understood. Although

a replica ansatz works well when determining the critical temperature of the system

[33, 2] in zero field, it is unclear if a stable spin-glass state persists in a field. In

addition, when studying the system without local perturbations (i.e., at zero tem-

perature), it is unclear if “damage” in the form of avalanches of Boolean variable

∗Reprinted with permission from “Boolean decision problems with competing interactions on
scale-free networks: Equilibrium and nonequilibrium behavior in an external bias” by Zheng Zhu,
Juan Carlos Andresen, M. A. Moore, and Helmut G. Katzgraber, 2014, Phys. Rev. E 89, 022118
Copyright 2014 by American Physical Society [31].
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flips triggered by a field can spread easily across the system.

In this chapter I tackle the two aforementioned problems numerically and show

that at finite temperature Boolean variables with competing interactions are re-

markably robust to global external biases. In particular, I show that a de Almeida–

Thouless line [71] persists to a regime of λ where the system is not in the mean-field

Sherrington-Kirkpatrick [15] universality class, i.e., when λ < 4 [33, 2].

Furthermore, I probe for the existence of self-organized criticality (SOC) when

driving the system at zero temperature with an external magnetic field across a

hysteresis loop. SOC is a property of large dissipative systems to drive themselves

into a scale-invariant critical state without any special parameter tuning [72, 73,

74, 35, 75]. It is a phenomenon found in many problems ranging from earthquake

statistics to the structure of galaxy clusters. As such, studying SOC on scale-free

networks might help us gain a deeper understanding on how avalanches, i.e., large-

scale perturbations, might spread across scale-free networks that are so omnipresent

in nature. Recent simulations [76] have shown that a diverging number of neighbors

is the key ingredient to obtain SOC in glassy spin systems. In scale-free graphs the

average edge degree diverges if λ ≤ 2 (average number of neighbors 〈k〉 ∝∑k=3 k
1−λ).

As such, it might be conceivable that in this regime spin glasses on scale-free graphs

exhibit SOC. However, it is unclear what happens for λ > 2 where the number of

neighbors each spin has is finite in the thermodynamic limit (N → ∞), or how the

fraction of ferromagnetic versus antiferromagnetic bonds influences the scaling of

the avalanche distributions. Within the spin-glass phase, for Gaussian disorder and

bimodal disorder with the same fraction p of ferromagnetic and antiferromagnetic

bonds, we find that when λ ≤ 2 Boolean variables with competing interactions always

display SOC like the mean-field Sherrington-Kirkpatrick model [35]. For λ > 2

and with bimodal disorder, a critical line in the p–λ plane emerges along which
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perturbations to the system are scale free, but not self-organized critical because the

fraction of ferromagnetic bonds has to be carefully tuned. The latter is reminiscent

of the behavior found in the random-field Ising model [77, 78, 79, 80, 81], as well as

random-bond [82] and random-anisotropy Ising models [83].

This chapter is structured as follows. Section 3.1 introduces the Hamiltonian

studied, followed by numerical details, observables, and results from equilibrium

Monte Carlo simulations in Sec. 3.2. Section 3.3 presents our results on nonequi-

librium avalanches on scale-free graphs, followed by concluding remarks. In the

appendix A we outline our analytical calculations to determine the de Almeida–

Thouless line for spin glasses on scale-free graphs.

3.1 Model

The Hamiltonian of the Edwards-Anderson Ising spin glass on a scale-free graph

in an external magnetic field is given by

H({si}) = −
N∑
i<j

Jijεijsi sj −
∑
i

Hisi, (3.2)

where the Ising spins si ∈ {±1} lie on the vertices of a scale-free graph with N sites

and the interactions are given by

P(Jij, εij) = ℘J(Jij)

[(
1− K

N

)
δ(εij) +

K

N
δ(εij − 1)

]
. (3.3)

If a bond is present, we set εij = 1, otherwise εij = 0. K represents the mean con-

nectivity of the scale-free graph. The connectivity of site i, ki :=
∑

j εij, is sampled

from a scale-free distribution as done in Ref. [2]. The interactions Jij between the

spins are independent random variables drawn from a Gaussian distribution with
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zero mean and standard deviation unity, i.e.,

℘J(Jij) ∼ exp (−J2
ij/2) . (3.4)

In the nonequilibrium studies we also study bimodal-distributed disorder where we

can change the fraction of ferromagnetic bonds p, i.e.,

℘J(Jij) = pδ(Jij + 1) + (1− p)δ(Jij − 1) . (3.5)

Finally, for the finite-temperature studies we use random fields drawn from a Gaus-

sian distribution with zero mean and standard deviation Hr in Eq. (3.2), instead of

a uniform field. This allows us to perform a detailed equilibration test of the Monte

Carlo method [51, 84].

The scale-free graphs are generated using preferential attachment with slight

modifications [85]. Details of the method are described in Ref. [2]. We impose an

upper bound on the allowed edge degrees, kmax =
√
N . Although we can, in principle,

generate graphs with k exceeding
√
N , the ensemble is poorly defined in this case:

Even randomly chosen graphs cannot be uncorrelated [86, 87, 88]. Furthermore, to

prevent dangling ends that do not contribute to frustrated loops in the system, we

set a lower bound to the edge degree, namely kmin = 3.

3.2 Equilibrium properties in a field

In equilibrium, the behavior of spin glasses in a magnetic field is controversial

[28, 89, 29, 84, 90, 91]. While the infinite-range (mean-field) Sherrington-Kirkpatrick

(SK) model [15] has a line of transitions at finite field known as the de Almeida–

Thouless (AT) line [71] that separates the spin-glass phase from the paramagnetic

phase at finite fields or temperatures, it has not been definitely established whether
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an AT line occurs in systems with short-range interactions. Spin glasses on scale-

free networks are somewhat “in between” the infinite-range and short-range limits

depending on the exponent λ. As such, it is unclear if a spin-glass state will persist

when an external field H is applied, especially when the spin-glass transition at zero

field occurs at finite temperatures, i.e., for λ > 3.

Note that spin glasses on scale-free graphs share the same universality class as

the SK model if λ > 4 [2]. As such, in this regime, one can expect an AT line.

However, for 3 < λ < 4, where Tc < ∞, the critical exponents depend on the

exponent λ [33, 2]. Therefore, it is unclear if a spin-glass state in a field will persist.

For λ ≤ 3 the critical temperature diverges with the system size, i.e., we also expect

the system to have a spin-glass state for finite fields. We therefore focus on two

values of λ, namely λ = 4.50 (deep within the SK-like regime because λ = 4 has

logarithmic corrections) [2] and λ = 3.75 (where the existence of an AT line remains

to be determined).

3.2.1 Observables

In simulations, it is most desirable to perform a finite-size scaling (FSS) of dimen-

sionless quantities. One such quantity, the Binder ratio [92], turns out to be poorly

behaved in an external field in short-range systems [93]. Therefore, to determine

the location of a spin-glass phase transition we measure the connected spin-glass

susceptibility given by

χ =
1

N

∑
i,j

[(〈sisj〉T − 〈si〉T 〈sj〉T )2]av, (3.6)

where 〈· · · 〉T denotes a thermal average and [· · · ]av an average over both the bond

disorder and different network instances. N is the number of spins. To avoid bias,
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each thermal average is obtained from separate copies (replicas) of the spins. This

means that we simulate four independent replicas at each temperature.

For any spin glass outside the mean-field regime, the scaling behavior of the

susceptibility is given by [2]

χ = N2−ηC̃
(
N1/ν [β − βc]

)
, (3.7)

where ν and η are the correlation length and susceptibility exponents, respectively,

and βc = 1/Tc is the inverse temperature for a given field strength Hr.

For λ < 4 (see the appendix A for details) we expect the critical exponent γ = 1.

This is only possible if 2− η = 1/ν in Eq. (3.7). Using the standard scaling relation

α + 2β + γ = 2, the hyperscaling relation dν = 2 − α (which we assume will hold

when λ < 4), and allowing for the nonstandard meaning of ν in this paper (it is

equal to dν in standard notation where d is here the dimensionality of the system),

it follows for λ < 4, where β = 1/(λ− 3) (see the appendix A and Ref. [33]) that

ν =
λ− 1

λ− 3
and η = 2− 1

ν
. (3.8)

For the case of λ = 3.75 this means that ν = 11/3 and therefore η = 2−1/ν = 19/11.

As such, curves of χ/N3/11 should have the same scaling behavior as the Binder ratio.

For λ > 4, the finite-size scaling form presented in Eq. (3.7) is replaced by [84, 30]

χ = N1/3C̃
(
N1/3[β − βc]

)
. (3.9)

In this case the scaling is simpler because the exponents are fixed and independent

of λ, i.e., 1/ν = 2 − η = 1/3. Here, curves of χ/N1/3 should have the same scaling

behavior as the Binder ratio. Performing a finite-size scaling of the data therefore
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allows one to detect the transition to high precision.

Finally, note that the aforementioned study is, strictly speaking, only valid at

zero field. Although γ = 1 across the AT line, there is no explicit calculation of the

critical exponent β in a field. While our data suggest that the values of the zero-field

exponents might be the same as those for finite external fields, the accuracy of our

results for the exponents in a field is limited by large finite-size corrections.

3.2.2 Equilibration scheme and simulation parameters

The simulations are done using the parallel tempering Monte Carlo method

[94, 42]. The spins couple to site-dependent random fields Hi chosen from a Gaus-

sian distribution with zero mean [Hi]av = 0 and standard deviation [H2
i ]

1/2
av = Hr.

Simulations are performed at zero field as well as at Hr = 0.1, 0.2, 0.3, and 0.4.

Using Gaussian disorder, we can use a strong equilibration test to ensure that the

data are in thermal equilibrium [51, 84, 2]. Here, the internal energy per spin

U = (1/N)[〈H〉T ]av , (3.10)

with H defined in Eq. (3.2), has to equate an expression derived from both the link

overlap q4 given by

q4 =
1

Nb

∑
i,j

εijs
α
i s

α
j s

β
i s

β
j , (3.11)

and the spin overlap

q =
1

Nb

∑
i

sαi s
β
i . (3.12)

Here α and β represent two copies of the system with the same disorder and Nb

represents the number of neighbors each spin has for a given sample (graph instance).

Note that because in Eq. (3.6) we already simulate four replicas, we actually perform

an average over all four-replica permutations.
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The system is in thermal equilibrium if

U = U(q4) = − 1

T

[〈
Nb

N
(1− q4) +H2

r (1− q)
〉]

av

. (3.13)

Sample data are shown in Fig. 3.1. The energy U computed directly is compared

to the energy computed from the link overlap U(q4). The data for both quantities

approach a limiting value from opposite directions. Once U = U(q4), the data for q2

(shifted for better viewing in Fig. 3.1) are also in thermal equilibrium. The simulation

parameters are shown in Table 3.1.
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Figure 3.1: Equilibration test for N = 8192 spins at T = 1.500 (lowest temperature
simulated) and λ = 3.75. Once the data for the energy U and the energy computed
from q4 [U(q4)] agree, the system is in thermal equilibrium (shaded area). At this
point data for q2 are also independent of Monte Carlo time. Note that the data for q2

are shifted by a constant factor of 1.1 for better comparison. Error bars are smaller
than the symbols.
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Table 3.1: Parameters of the simulation: For each exponent λ and system size N , we
compute Nsa disorder or network instances. Nsw = 2b is the total number of Monte
Carlo sweeps for each of the 4NT replicas for a single instance, Tmin [Tmax] is the
lowest [highest] temperature simulated, and NT is the number of temperatures used
in the parallel tempering method for each system size N .

λ Hr N Nsa b Tmin Tmax NT

3.75 0.0 2048 9600 16 1.5000 3.0000 30
3.75 0.0 3072 9600 16 1.5000 3.0000 30
3.75 0.0 4096 9600 16 1.5000 3.0000 30
3.75 0.0 6144 9600 16 1.5000 3.0000 30
3.75 0.0 8192 9600 16 1.5000 3.0000 30
3.75 0.1 512 9600 17 0.9000 3.0000 50
3.75 0.1 768 9600 17 0.9000 3.0000 50
3.75 0.1 1024 9600 17 0.9000 3.0000 50
3.75 0.1 1536 9600 18 0.9000 3.0000 50
3.75 0.1 2048 2400 18 0.9000 3.0000 50
3.75 0.2 768 9600 17 0.9000 3.0000 50
3.75 0.2 1024 9600 17 0.9000 3.0000 50
3.75 0.2 1536 9600 18 0.9000 3.0000 50
3.75 0.2 2048 2400 18 0.9000 3.0000 50
3.75 0.2 4096 2400 19 0.9000 3.0000 50
3.75 0.3 256 9600 17 0.9000 3.0000 50
3.75 0.3 512 9600 18 0.9000 3.0000 50
3.75 0.3 1024 9600 18 0.9000 3.0000 50
3.75 0.3 2048 2400 18 0.9000 3.0000 50
3.75 0.4 256 9600 18 0.9000 3.0000 50
3.75 0.4 512 9600 18 0.9000 3.0000 50
3.75 0.4 1024 9600 18 0.9000 3.0000 50
3.75 0.4 2048 2400 18 0.9000 3.0000 50
4.50 0.0 1024 9600 16 1.0000 3.0000 30
4.50 0.0 2048 9600 16 1.0000 3.0000 30
4.50 0.0 4096 9600 16 1.0000 3.0000 30
4.50 0.0 8192 9600 16 1.0000 3.0000 30
4.50 0.1 512 9600 17 0.9000 3.0000 50
4.50 0.1 1024 9600 17 0.9000 3.0000 50
4.50 0.1 2048 9600 18 0.9000 3.0000 50
4.50 0.1 4096 2400 18 0.9000 3.0000 50
4.50 0.2 256 9600 18 0.6000 3.0000 50
4.50 0.2 512 9600 18 0.6000 3.0000 50
4.50 0.2 1024 9600 18 0.6000 3.0000 50
4.50 0.2 2048 2400 19 0.6000 3.0000 50
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Table 3.1 continued

λ Hr N Nsa b Tmin Tmax NT

4.50 0.3 64 9600 18 0.3000 3.0000 50
4.50 0.3 128 9600 19 0.3000 3.0000 50
4.50 0.3 256 9600 20 0.3000 3.0000 50
4.50 0.3 512 9600 22 0.3000 3.0000 50
4.50 0.4 90 9600 19 0.3000 3.0000 50
4.50 0.4 128 9600 19 0.3000 3.0000 50
4.50 0.4 180 9600 19 0.3000 3.0000 50
4.50 0.4 256 9600 20 0.3000 3.0000 50

3.2.3 Numerical results for λ = 4.50

Corrections to scaling are large for this model despite the large system sizes and

number of samples studied. As previously stated, we expect that for λ = 4.50 a spin-

glass state is stable towards an external field because for λ > 4 the system shares the

same universality class as the SK model. To determine the AT line, we plot χ/N1/3

versus the inverse temperature β = 1/T . Because χ/N1/3 is a dimensionless function

[see Eq. (3.9)], data for different system sizes should cross at the putative field-

dependent transition temperature. To cope with corrections to scaling and obtain

a precise estimate of the critical temperature, we study the crossing temperatures

Tc(N, 2N) for pairs of system sizes N and 2N assuming

Tc(N, 2N) = Tc + A/Nω , (3.14)

where A is a fitting parameter and empirically ω = 1. An example extrapolation

is shown in Fig. 3.2 for λ = 4.50 and Hr = 0.1. A linear fit is very stable and

the extrapolation to the thermodynamic limit clear. Statistical error bars are deter-

mined via a bootstrap analysis [95] using the following procedure: For each system
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size N and Nsa disorder realizations, a randomly selected bootstrap sample of Nsa

disorder realizations is generated. With this random sample, an estimate of χ/N1/3

is computed for each temperature. The crossing temperature for pairs of N and 2N

is obtained by fitting the data to a third-order polynomial and a subsequent root

determination. We repeat this procedure Nboot = 500 times for each lattice size and

then assemble Nboot complete data sets (each having results for every system size N)

by combining the ith bootstrap sample for each size for i = 1, . . ., Nboot. The non-

linear fit to Eq. (3.14) is then carried out on each of these Nboot sets, thus obtaining

Nboot estimates of the fit parameters Tc and A. Because the bootstrap sampling is

done with respect to the disorder realizations which are statistically independent, we

can use a conventional bootstrap analysis to estimate statistical error bars on the

fit parameters. These are comparable to the standard deviation among the Nboot

bootstrap estimates.

The obtained estimates of Tc are listed in Table 3.2. Figure 3.3 shows the field–

temperature phase diagram for λ = 4.50. The shaded area is intended as a guide

to the eye. The critical line separates a paramagnetic (PM) from a spin-glass (SG)

phase. The dotted (blue) line represents the AT line computed analytically (appendix

A) in the limit of Hr → 0. For 4 < λ < 5 the shape of the AT line is given by

Eq. (A.17). The analytical approximation fits the data for λ = 4.5 very well with

Hr(T ) ∼ C4.5(1− T/Tc)5/4 and C4.5 = 0.48(3).

3.2.4 Numerical results for λ = 3.75

Because for λ < 4 we are no longer in the SK universality class, it is a priori

unclear if a spin-glass state in a field will exist. Furthermore, when λ = 3.75, a

finite-size scaling according to Eq. (3.7) has to be performed. Because it is not

possible to define a distance metric on a scale-free network, there is no notion of a
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Figure 3.2: Extrapolation to the thermodynamic limit for the critical temperature Tc
for λ = 4.50 and Hr = 0.1. We determine the crossing points of critical temperatures
of the susceptibility expression for pairs of system sizes N and 2N . Using Eq. (3.14)
with ω = 1 we extrapolate the data to the thermodynamic limit. This allows us to
take into account corrections to scaling in an unbiased way.

correlation length or spin-spin correlation function. As such, the critical exponents

ν (that describes the divergence of the correlation length) and η (also known as the

anomalous dimension) have to be treated carefully. However, we will assume that

Eq. (3.7) is valid in this regime on generic finite-size scaling grounds and treat ν

and η as parameters when Hr > 0 with no special meaning attached to them. In

addition, we fix ν = 11/3 and η = 2 − 1/ν — the zero-field values of the critical

exponents — and scale the data at finite fields assuming these exponents are valid

also when Hr > 0.

To determine Tc(Hr), we perform a finite-size scaling analysis of the susceptibility

data according to Eq. (3.7). To determine the optimal value of Tc = 1/βc that

scales the data best we use the approach developed in Ref. [95]. We assume that
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Figure 3.3: Field Hr versus temperature T phase diagram for an Ising spin glass on
a scale-free graph with λ = 4.50. The data points separate a paramagnetic (PM)
from a spin-glass (SG) state. The shaded area is intended as a guide to the eye. The
dotted (blue) line is a calculation of the AT line in the Hr → 0 limit.

the scaling function in Eq. (3.7) can be represented by a third-order polynomial

y(x) = c0 + c1x+ c2x
2 + c3x

3 for |x| . 1 and do a global fit to the seven parameters

ci with i ∈ {0, . . . , 3}, βc, η, and ν. Here y = χ/N2−η and x = N1/ν [β − βc].

After performing a Levenberg-Marquardt minimization combined with a bootstrap

analysis we determine the optimal critical parameters with an unbiased statistical

error bar.

Figure 3.4 shows two representative scaling collapses at zero and nonzero field

values. The data scale well and allow one to determine the critical temperature with

good precision despite the difficulties that scaling the spin-glass susceptibility poses

[95]. Note that for zero field we obtain η = 1.72(1) and ν = 3.56(17), which agree very

well with the analytical expressions η = 19/11 = 1.72 . . . and ν = 11/3 = 3.66 . . ..

However, for finite fields deviations are visible. A summary of the relevant fitting
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Table 3.2: Critical parameters Tc, ν, and η for a spin glass with Gaussian random
bonds defined on a scale-free graph. The data for λ = 4.50 have been determined
using the mean-field finite-size scaling expression in Eq. (3.9). In this case one
can, in principle, define η = 5/3 and ν = 3, although these should be viewed as
parameters placed in Eq. (3.7) to obtain Eq. (3.9). For λ = 3.75 we determine the
critical parameters using Eq. (3.7). The starred estimates of Tc for Hr > 0 have been
determined by using the zero-field estimates of η = 19/11 and ν = 11/3 as fixed.
Both Tc and T ?c agree within error bars, except statistical fluctuations are smaller
for T ?c because there are fewer fitting parameters.

λ Hr Tc T ?c ν η
3.75 0.0 1.98(2) 1.97(1) 3.56(17) 1.72(1)
3.75 0.1 1.67(5) 1.68(3) 4.42(73) 1.70(3)
3.75 0.2 1.32(8) 1.39(5) 6.53(61) 1.72(2)
3.75 0.3 1.20(6) 1.16(4) 3.31(32) 1.74(2)
3.75 0.4 0.97(7) 1.00(4) 3.68(46) 1.72(2)

4.50 0.0 1.39(1) 3 5/3
4.50 0.1 1.03(3) 3 5/3
4.50 0.2 0.66(5) 3 5/3
4.50 0.3 0.55(5) 3 5/3
4.50 0.4 0.46(4) 3 5/3

parameters is listed in Table 3.2. Note that the value of η for different fields agrees

within error bars. However, fluctuations are larger for ν. One can expect that the

universality class of the system does not change along the AT line [14]. Therefore,

and because it is hard to simulate large systems for large fields, we also determine

Tc by fixing η = 19/11 and ν = 11/3. As listed in Table 3.2, both estimates agree

within error bars. This is also visible in Fig. 3.5 which shows the AT line for λ = 3.75.

Overall, the analysis using the zero-field estimates for η and ν gives more accurate

results. The dotted (blue) line in Fig. 3.5 is our analytical estimate of the AT line

computed in the Hr → 0 limit (appendix A). The estimate fits the data well with

Hr(T ) ∼ C3.75(1− T/Tc)7/6 and C3.75 = 0.76(5).
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Figure 3.4: Finite-size scaling analysis of χ/N2−η as a function of N1/ν(β − βc) for
an Ising spin glass on a scale-free network with Gaussian disorder and λ = 3.75. The
data at zero field (top panel) scale very well. The bottom panel shows representative
data for Hr = 0.1 scaled according to Eq. (3.7). Error bars are smaller than the
symbols.
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Figure 3.5: Field Hr versus temperature T phase diagram for an Ising spin glass on a
scale-free graph with λ = 3.75. The data points separate a paramagnetic (PM) from
a spin-glass (SG) state. The shaded area is intended as a guide to the eye. The dotted
(blue) line is a calculation of the AT line in the Hr → 0 limit. Note that estimates
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3.3 Nonequilibrium properties in a field

It has recently been shown that a key ingredient for the existence of SOC in

glassy spin systems is a diverging number of neighbors [76]. Scale-free networks have

a power-law degree distribution. If the exponent λ ≤ 2, then scale-free networks have

an average number of neighbors K that diverges with the system size. Therefore, it

is possible that SOC might be present in this regime. To test this prediction, in this

section we compute nonequilibrium avalanche distributions of spin flips driven by an

external field.
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3.3.1 Numerical details and measured observables

We study the Hamiltonian in Eq. (3.2) either with Gaussian [Eq. (3.4)] or bimodal

[Eq. (3.5)] disorder. The external magnetic field used to drive the avalanches is

uniform rather than drawn from a Gaussian distribution, i.e., Hi = H in Eq. (3.2).

Spin-flip avalanches are triggered by using zero-temperature Glauber dynamics [77,

79, 96, 76]. In this approach one computes the local fields

hi =
∑
j

JijSj −H (3.15)

felt by each spin. A spin is unstable if the stability hiSi < 0 is negative. The

initial field H is selected to be larger than the largest local field, i.e., H > |hi| ∀i.

Furthermore, we set all spins Si = +1. The spins are then sorted by local fields and

the field H reduced until the stability of the first sorted spin is negative, therefore

making the spin unstable. This (unstable) spin is flipped, then the local fields of all

other spins updated, and the most unstable spin is flipped again until all spins are

stable, i.e., the avalanche ends. Simulation parameters are shown in Table 3.3.

We measure the number of spins that flipped until the system regains equilibrium

and record the avalanche size distributions D(n) for all triggered avalanches of size

n until Si → −Si ∀i. When SOC is present (as for the SK model), we expect the

avalanche distributions to be power-law distributed with an exponential cutoff that

sets in at a characteristic size n∗. Only if n∗(N) → ∞ for N → ∞ without tuning

any parameters does the system exhibit true SOC. n∗ is determined by fitting the

tail of the distributions to D(n) ∼ exp[−n/n∗(N)] with n∗(N) a fitting parameter.

This procedure is repeated for different values of λ and the thermodynamic value of

n∗ is determined by an extrapolation in the system size N .
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Table 3.3: Simulation parameters in the nonequilibrium study with both Gaussian
and bimodal-distributed random bonds: For each exponent λ we study systems of
N = 500 × 2m spins with m ∈ {1, . . . ,mmax}. For Gaussian disorder, when λ < 4,
we also simulate systems with 48 000 spins (m = 6 corresponds to 32 000 spins). All
distributions are computed using Nsa disorder realizations.

disorder type λ mmax Nsa

Gaussian 1.50 6 12 000
Gaussian 2.00 6 12 000
Gaussian 2.50 6 12 000
Gaussian 3.00 6 12 000
Gaussian 3.50 6 12 000
Gaussian 4.00 5 12 000
Gaussian 4.50 5 12 000
Gaussian 5.00 5 12 000
Gaussian 5.50 5 12 000
Gaussian 6.00 4 12 000
Gaussian 6.50 4 12 000
Gaussian 7.00 4 12 000

Bimodal 1.50 6 12 000
Bimodal 2.00 6 12 000
Bimodal 2.25 6 12 000
Bimodal 2.50 6 12 000
Bimodal 3.00 6 12 000
Bimodal 3.50 6 12 000
Bimodal 4.00 6 12 000
Bimodal 4.50 5 12 000
Bimodal 5.00 5 12 000
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3.3.2 Numerical results for Gaussian disorder

We start by showing avalanche distributions for selected values of the exponent

λ which show the characteristic behavior of the system.

Figure 3.6 (top panel) shows avalanche distributions D(n) for λ = 4.50 recorded

across the whole hysteresis loop (bottom panel). Here, the number of neighbors does

not diverge with the system size because λ = 4.50 > 2. The distributions show no

system size dependence. The fact that the data show a curvature in a log-log plot

clearly indicate that these are not power laws. Although tens of thousands of spins

are simulated, the largest avalanches found span less than 1% of the system. The

vertical line represents the extrapolated typical avalanche size n∗ which is rather

small and indicates that the system is not in an SOC state.

In contrast, Fig. 3.7, top panel, shows data for λ = 1.5 < 2 in the regime where

the number of neighbors diverges with the system size. The distributions D(N) have

a clearly visible power-law behavior with a crossover size n∗(N) that grows with

increasing system size. Furthermore, a careful extrapolation to the thermodynamic

limit shows that 1/n∗ = −0.0012(23), i.e., n∗ = ∞. The hysteresis loop shown in

the bottom panel of Fig. 3.7 suggests that for this value of λ larger rearrangements

of spins are possible.

We have repeated these simulations for several values of the exponent λ. Our

results are summarized in Fig. 3.8, where 1/n∗ is plotted as a function of λ. Clearly,

1/n∗ = 0 only if λ ≤ 2, i.e., in the regime where the number of neighbors diverges, in

perfect agreement with the results of Ref. [76] for hypercubic systems, as well as the

SK model [35]. Note that we have also recorded distributions of magnetization jumps

(not shown) [35, 76] that qualitatively display the same behavior as the avalanche

size distributions.
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Figure 3.6: Top: Avalanche distribution D(n) for the Edwards-Anderson spin-glass
model with Gaussian disorder on scale-free networks with λ = 4.50 recorded across
the whole hysteresis loop. The data show no system size dependence. The vertical
(black) line marks the extrapolated value of n∗. Clearly, no signs of SOC are visible
in the data. Bottom: Magnetization M = (1/N)

∑
i si versus field H hysteresis loop

for λ = 4.50 and 48000 spins. The data are for one single sample and meant as
an illustration for the typical behavior of the system in a field. The inset shows a
zoom into the boxed region. The discrete steps due to magnetization jumps in the
hysteresis loop are clearly visible.
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Figure 3.7: Top: Avalanche distribution D(n) for the Edwards-Anderson spin-glass
model with Gaussian disorder on scale-free networks with λ = 1.5 recorded across
the whole hysteresis loop. For λ = 1.5 < 2.0 the number of neighbors diverges.
The data show a clear system-size dependence with the distributions becoming in-
creasingly power-law-like for increasing system size N . As shown in Fig. 3.8, the
extrapolated cutoff value is n∗ = ∞, i.e., the system exhibits true SOC behavior.
Bottom: Magnetization M = (1/N)

∑
i si versus field H hysteresis loop for λ = 1.50

and 48000 spins. The data are for one single sample and meant as an illustration
for the typical behavior of the system in a field. The inset shows a zoom into the
boxed region. The discrete steps due to magnetization jumps in the hysteresis loop
are clearly visible. Qualitatively, the data seem to show larger rearrangements as for
λ = 4.50 (Fig. 3.6).
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3.3.3 Numerical results for bimodal disorder

So far, we have only probed for the existence of SOC within the spin-glass phase.

Bimodal disorder [Eq. (3.5)] has the advantage that one can easily tune the fraction

of ferromagnetic bonds by changing p. When p = 1 the system is a pure ferromagnet,

whereas for p = 0 it is an antiferromagnet and for p = 0.5 a spin glass (comparable

to the Gaussian case).

Sethna et al., as well as others, have studied the random-field Ising model [97, 77,

82, 78, 79, 80, 81] where the level of ferromagnetic behavior is tuned by changing the

width of the random-field distribution σ. In particular, for three space dimensions,

there is a critical value σc where a jump in the hysteresis loop appears, i.e., large

system-spanning rearrangements of the spins start to occur when σ > σc. We call this
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regime supercritical because here system-spanning avalanches will always occur in a

predominant fashion. For σ = σc true power-law distributions of the spin avalanches

are obtained, whereas for σ < σc no system-spanning rearrangements are found. We

call the latter scenario subcritical.

Here we find a similar behavior when tuning the fraction of ferromagnetic bonds

p. Figure 3.9 shows the typical behavior we observe for the avalanche distributions

D(n). For p = 0.63 and λ = 3.50 (Fig. 3.9, top panel), the distributions show

small system-size dependence. A detailed analysis of the characteristic avalanche

size n∗(N) shows that it extrapolates to a finite value in the thermodynamic limit.
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Figure 3.9: Avalanche distribution D(n) for the Edwards-Anderson spin-glass model
with bimodal disorder on scale-free networks with λ = 3.5 recorded across the whole
hysteresis loop. Top panel: Data for p = 0.63 < pc. Here the system displays
subcritical behavior, i.e., the characteristic avalanche size n∗ is finite. Center panel:
For p = 0.66 ≈ pc the system is in the critical regime where the distributions are
well described by power laws. Bottom panel: For p = 0.70 > pc the system is
in the supercritical regime. A jump in the hysteresis loop occurs, i.e., very large
rearrangements are very probable, as can be seen in the bump that develops in the
distributions D(n) for large n.
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Figure 3.9 continued

This means we are in the subcritical regime. However, for λ = 3.50 and p = 0.66 clear

power laws in the distributions D(n) emerge (Fig. 3.9, center panel). Here n∗ →∞,

i.e., true power-law behavior. However, for λ = 3.50 and p = 0.70, although most of

the distributions show a clear power-law-like behavior, a bump for large n appears

(Fig. 3.9, bottom panel). In this case the probability for very large rearrangements
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increases. Direct inspection of the underlying hysteresis loops (not shown) shows

a jump in the magnetization, i.e., we are in the supercritical regime. We repeat

these simulations for different exponents λ and vary the fraction of ferromagnetic

bonds p until the distributions are power laws. This allows us to construct the phase

diagram shown in Fig. 3.10. We find a critical line pc(λ) (triangles, solid curve)

that separates the subcritical region from the supercritical region. Along the critical

line avalanche size distributions are power laws. Note that this critical line shows

no close correlations with the spin-glass–to–ferromagnetic boundary computed in

Ref. [2] (dotted line in Fig. 3.10). For λ ≤ 2 and when p = 0.5, i.e., within the

spin-glass phase where the graph connectivity diverges, we recover true SOC.

3.4 Summary and conclusions

We have studied Boolean (Ising) variables on a scale-free graph with competing

interactions in an external field both in thermal equilibrium, as well as in a nonequi-

librium hysteretic setting.

At finite temperatures, we show that for λ > 3, where at zero field the system

orders at finite temperatures [2], spin glasses on scale-free graphs do order in a field,

i.e., their behavior is very much reminiscent of the mean-field SK model in a field.

Naively, one could have expected that outside the SK regime (λ < 4) a behavior

reminiscent of (diluted) one-dimensional spin glasses with power-law interactions

[98, 99, 100] emerges where a spin-glass state in a field seems stable only within the

mean-field regime of the model [89, 84]. These results again illustrate the superb

robustness of Boolean decision problems on scale-free networks to perturbations.

In this case, a stable spin-glass state emerges at nonzero temperatures even in the

presence of magnetic fields (external global biases).

At zero temperature, when driven with an external field, Boolean decision prob-
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Figure 3.10: Fraction of ferromagnetic bonds p versus λ phase diagram for the
Edwards-Anderson spin-glass model on scale free networks with bimodal interactions
between the spins. For λ > 2 a critical line pc(λ) separates the subcritical regime
where avalanches are small, from the supercritical regime where system-spanning
avalanches are very common. Along the critical line pc(λ) (triangles, solid line)
avalanche sizes are distributed according to power laws. For λ ≤ 2 the number of
neighbors diverges. In this regime for p = 0.5 the system displays avalanches that are
power laws, i.e., true SOC. The dotted line represents the spin-glass–to–ferromagnetic
phase boundary from Fig. 2 in Ref. [2].

lems on scale-free networks show self-organized critical behavior only when the num-

ber of neighbors diverges with the system size, i.e., for λ ≤ 2. For λ > 2 and with

bimodal disorder, a behavior reminiscent of the random-field Ising model is found

[77, 82, 78, 79, 80, 81] where system-spanning avalanches only occur whenever the

fraction of ferromagnetic bonds pc(λ) is tuned towards a critical value. These re-

sults show that “damage” can easily spread on real networks where typically λ . 3.

Therefore, in contrast the robustness found at finite temperatures, Boolean decision

problems on scale-free networks show a potential fragility when driven in a nonequi-

librium scenario at zero temperature. Our results agree with the conclusions in Ref.
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[76] that SOC is not necessarily a property of the mean-field regime but is instead a

result of a diverging number of neighbors z.
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4. BEST-CASE PERFORMANCE OF QUANTUM ANNEALERS ON NATIVE

SPIN-GLASS BENCHMARKS: HOW CHAOS CAN AFFECT SUCCESS

PROBABILITIES

Although a useful universal quantum computer [101, 40] is far from reality at

the moment, the advent of quantum annealing (QA) machines based on quantum

adiabatic optimization techniques [102, 103, 104, 105, 106, 63, 107, 108, 109, 110,

111, 112] has sparked a small computing revolution in recent years. Being the first

novel hardware based on non-silicon chips used to perform computations exploiting

the potential advantages of quantum fluctuations [113], quantum annealing machines

might affect the way a multitude of hard optimization problems are solved today.

The first somewhat useful programmable commercial device that attempts to ex-

ploit this unique power are the D-Wave One and Two quantum annealers [114], that

are designed to solve quadratic unconstrained binary optimization (QUBO) prob-

lems [115], such as finding the ground state of a disordered Ising spin-glass Hamil-

tonian, a well-known NP-hard problem in this general formulation [64]. Because

many problems across disciplines can be mapped onto QUBOs, multiple studies

of the D-Wave quantum annealer’s performance, compared to some classical opti-

mization approaches, such as simulated annealing (SA) [36], have been performed

[37, 116, 117, 118, 119, 120, 38, 121, 122, 123, 124]. Tests [116, 117, 119, 121] by dif-

ferent research teams suggest that the D-Wave quantum annealer does benefit from

quantum effects. However, it is unclear if this quantum advantage is involved in the

optimization of cost functions. Furthermore, to date these studies reveal no clear

evidence of limited quantum speedup [38] over classical optimization algorithms on

traditional computers.

57



Recent work by Katzgraber et al. [3] suggests that current benchmarking ap-

proaches using spin glasses with uniformly-distributed disorder on the Chimera graph

[125], such as bimodal or range-k, might not be the best benchmark problems in the

quest for quantum speedup. In particular, Ref. [126] proposes an innovative approach

based on insights from the study of spin glasses to design hard benchmark problems

within the constraints of the D-Wave device. To overcome the limitations posed by

the D-Wave architecture, Ref. [126] proposes to use instances with a unique ground

state, as well as many metastable states. In this chapter I study the interplay between

the generation of hard benchmark instances with the design of problems suitable for

the D-Wave device that are robust to noise. Ideally, thus, a two-tier (unfortunately

computationally-expensive) data mining approach is needed to produce ideal test

instances for any quantum annealing device: First, random benchmark instances are

mined for their desired properties (e.g., unique ground state) that make them hard

problems to solve. Second, these instances are tested for their robustness to the

intrinsic noise present in any hardware device.

The fact that different numerical studies [107, 108, 111, 127] demonstrated that

QA might outperform SA in certain problems—especially those with rough energy

landscapes—has motivated the authors of Refs. [126] and [128] to design tunable

hard benchmarking problems. Reference [126] goes a step further, by being able to

carefully tune the barrier thickness between dominant features in the energy land-

scape, thus putatively allowing for the detection of any quantum advantage that

a quantum annealing device might pose over traditional optimization approaches.

Despite these efforts, noise due to thermal excitations and control errors on qubits

and couplers have a detrimental effect on the performance of the D-Wave quan-

tum annealer [129, 130, 118, 131, 132] that likely is masking any potential lim-

ited quantum speedup [38]. A simple explanation for these problems is given by
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the fragility of spin glasses to small perturbations, also known as chaotic effects

[133, 134, 135, 136, 137, 138, 139, 140, 141, 142] to either couplers (bond chaos),

qubits via longitudinal fields (field chaos), or both couplers and qubits (temperature

chaos). Here, small fluctuations can produce large changes in the free energy of the

system thus perturbing the original problem Hamiltonian to be solved.

Although quantum error correction [118, 131, 132] can, in principle, mitigate

these errors, it does so at a cost of needing multiple physical qubits to encode one

logical qubit, thus reducing the effective system size of problems to be studied. This

also means that “error-corrected” benchmark instances, while more robust to noise,

will likely be too small to be in the scaling regime of interest. As such, designing

hard benchmark instances that are robust to noise and require no overhead in the

embedding to keep the problem size at a maximum are of utmost importance to detect

quantum speedup. In this chapter I classically study resilience, i.e., the probability

that the ground-state configuration is not affected by random fields and random-

bond fluctuations found on the chip for different benchmark instance classes, by

using realistic uncorrelated noise models for the D-Wave Two quantum annealer.

Furthermore, I present strategies on how to develop hard benchmark instances that,

at the same time, are robust to noise. Note that our methodology is generic, i.e., it

can be applied to any architecture.

This chapter is structured as follows. In Sec. 4.1 I introduce the different bench-

mark instance classes studied, as well as the noise model. Furthermore, I describe the

heuristic used to find the ground-state configurations. Our numerical results on the

D-Wave chimera topology are presented in Sec. 4.2, followed by concluding remarks.
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4.1 Model, observables and algorithm

Our calculations are for the currently-available D-Wave Two device. However,

the ideas can be generalized to any topology.

4.1.1 Model

The native benchmark for the D-Wave Two quantum annealer is an Ising spin

glass [14, 40, 143] defined on the Chimera topology of the system [125]. The Hamil-

tonian of the problem to be optimized is given by

H = −
∑
{i,j}∈V

Jijsisj −
∑
i∈V

sihi , (4.1)

where si ∈ {±1} signify Ising spins on the vertices V of the Chimera lattice. Figure

4.1 shows a 512 qubit Chimera lattice with 8× 8 K4,4 cells. In addition, each spin si

is coupled to a local random field hi. The sum is over all edges E connecting vertices

{i, j} ∈ V . The interactions Jij between the spins are drawn from carefully chosen,

discrete disorder distributions within the hardware constraints of the D-Wave Two

architecture.

To emulate the effects of thermal noise in the device, we perturb the discrete

values of the couplers Jij by a random amount ∆Jij drawn from a Gaussian distri-

bution with zero mean and standard deviation ∆J . For simplicity, we assume the

noise is quenched and uncorrelated. This “white noise” represents a realistic (classi-

cal) noise model for coupler fluctuations that is typically used to study the effects of

noise in electronic devices, as well as telecommunications. Although the qubit noise

in the D-Wave Two device is closer to 1/f noise with a “pink” power spectrum, for

simplicity we couple the individual qubits to uncorrelated quenched random fields

drawn from a Gaussian distribution with zero mean and standard deviation h. We
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do not expect this simplification to qualitatively change our results.

Figure 4.1: Adjacency matrix of the D-Wave Two chip with 8× 8 K4,4 cells and 512
qubits (circles) connected by couplers (lines).
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4.1.2 Instance classes and observables

Carefully-chosen interactions between the spins determine the hardness and ro-

bustness of instance classes [126]. To develop hard instances, multiple requirements

have to be fulfilled. First, it is of paramount importance to ensure that the in-

stances have a unique ground-state configuration that minimizes the cost function

in Eq. (4.1). Furthermore, it is desirable to have dominant metastable states such

that the system is easily trapped – a process that can be accomplished by a post-

processing selection and mining of the data based on insights from the study of the

dynamics of spin glasses using classical simulation techniques [144, 126]. Ultimately,

an ideal benchmark instance is robust to noise, has a unique ground state and, ideally,

many metastable states.

To gauge the fraction of unique ground-state configurations for a particular in-

stance class, we define a quantity we call yield (Y), i.e.,

Y = Nunique/Ntotal. (4.2)

In Eq. (4.2) Ntotal is the total number of randomly-generated instances for that partic-

ular instance class and Nunique is the number of instances featuring a unique ground

state (no degeneracy).

One simple approach pioneered in Ref. [126] to design instance classes with high

yield, is to ensure that as few qubits si as possible have zero local fields in Eq. (4.3)

Fi =
∑
j 6=i

Jijsj + hi. (4.3)

If for a given qubit Fi ≡ 0, then the qubit’s value does not change the energy

of the system. Therefore, if a system with N qubits has k free qubits with zero
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local field, the degeneracy of the ground state is increased by a factor 2k. We have

exhaustively computed the probability that a particular combination of two, three,

or four integer values in the range [±1,±imax] (with imax = 28) [145] for the couplers

Jij on the Chimera topology yields the smallest fraction of qubits with zero local

fields. Furthermore, we have attempted to “spread out” the integers as much as

possible in the range [−1, 1] after a normalization of the coupler values with imax. In

addition to the previously-studied cases of bimodal disorder, i.e.,

U1 ∈ {±1},

as well as uniform range-k disorder with k = 4 [116, 38]

U4 ∈ {±1,±2,±3,±4},

we also study Sidon-type instances [146, 126], namely

U5,6,7 ∈ {±5,±6,±7},

which are similar to uniform range-7 instances, however only the three largest integers

that form a Sidon set are kept. Finally, we study a larger Sidon set

S28 ∈ {±8,±13,±19,±28}.

The U5,6,7 and S28 Sidon instance classes reduce the probability of zero local fields

drastically by design, and thus maximize the yield of unique ground states. In fact,

while U1 has an average probability of 23% (average percentages of local fields being

zero) to have zero local fields, this number is reduced to 6% in the U4 class. U5,6,7

has only 4.5% zero local fields and S28 1.5%.

To increase the resilience of noise for a given instance, one has to maximize the

change in energy when flipping a spin, i.e., the minimum classical energy gap. Ideally,

this change in energy should be considerably larger than the typical noise fluctuations
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to prevent qubit errors. For Ising spins, this energy gap is given by ∆E = 2/imax,

where imax is the largest integer in the unnormalized bond distribution. For example,

∆E(U1) = 2, whereas ∆E(U4) = 1/2, ∆E(U5,6,7) = 2/7, and ∆E(S28) = 1/14 ∼

0.07. For the current D-Wave Two machine with 512 qubits, coupler fluctuations

are typically ∼ 0.035 if the bonds are normalized to unity (“auto-scaling mode”).

This means that in this case the S28 instance class pushes the limits of the machine

because ∆E(S28) ∼ 2∆J .

To quantify the robustness of ground-state configurations to noise, we define the

resilience R of an instance to be

R = Nsame/Ntrials (4.4)

where Nsame is the number of trials with different random noise perturbations that do

not change the original ground-state configurations. We perform Ntrials = 10 trials

(or gauges) to compute R. The resilience of an instance class is the resilience for

each instance R averaged over disorder, i.e., R = [R]av, where [· · · ]av represents an

average over multiple random bond configurations. A preference should be given to

whole instance classes with high resilience. However, individual instances that are

unaffected by the perturbations are also robust instances to noise and can be used

for benchmarking purposes. Conversely, to study the effects of noise in quantum

annealing machines and how to reduce these, instances with a small resilience can

also be generated [123].

4.1.3 Algorithm details

In order to measure the yield and resilience of a particular instance class, ground

states of instances from all instance classes have to be found. We apply a heuristic

method that uses the parallel tempering Monte Carlo algorithm [42] combined with
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isoenergetic cluster moves [147] to speed up the thermalization. Simulation parame-

ters are listed in Table 4.1 and thermalization has been determined by a logarithmic

binning of the data. Once the last three bins agree within error bars, we deem

the system to be in thermal equilibrium. The detailed algorithm to detect ground

states was first introduced in Ref. [99]. However, to increase the accuracy of our

heuristic, here four instead of two copies of the system with the same disorder are

simulated with independent Markov chains. We perform NSW updates [148]. For

NSW/8 updates we keep track of the lowest energy E of each Markov chain at the

lowest temperature simulated. If E(1) = E(2) = E(3) = E(4), it is very likely the

ground state energy E0 has been found. For the remaining number of updates we

keep statistics of the configurations that minimize the Hamiltonian and thus estimate

the degeneracy distribution of the ground state. However, there is no guarantee that

any solution obtained by this heuristic method is the true optimum, or that we have

found all configurations that minimize the Hamiltonian. Fortunately, for the Sidon-

type instance classes the degeneracy is small by construction. Therefore, it is likely

that we found all ground-state configurations. Once the ground-state configurations

of all instances have been found, the average yields for different instance classes can

be computed.

In addition to the effects of the minimum energy gap ∆E on the resilience for

each instance class, we also consider the effects of the number of first excited states

on the resilience. To estimate the number of first excited states, for the remaining

(7/8)NSW sampling updates we also keep track of all configurations that have an

energy E1 = E0 + ∆E.
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Table 4.1: Simulation parameters: For each instance class and system size N , we
compute Nsa instances. Nsw = 2b is the total number of Monte Carlo sweeps for
each of the 4NT replicas for a single instance, Tmin [Tmax] is the lowest [highest]
temperature simulated, and NT is the number of temperatures used in the parallel
tempering method. For the lowest Nicm temperatures isoenergetic cluster moves are
applied.

Class N Nsa b Tmin Tmax NT Nicm

U1 512 900 19 0.150 3.050 30 13
U4 512 900 19 0.150 3.000 30 14
U5,6,7 128 900 19 0.150 3.000 30 14
U5,6,7 288 900 19 0.150 3.000 30 14
U5,6,7 512 900 19 0.150 3.000 30 14
U5,6,7 800 900 19 0.150 3.000 30 14
U5,6,7 1152 900 19 0.150 3.000 30 14
S28 512 900 19 0.150 3.000 30 14

4.2 Results

4.2.1 Yield of non-degenerate ground states

For the current D-Wave Two architecture with 512 qubits, the yield of unique

ground states is strongly dependent on the instance class (disorder between spins)

used. When the disorder is drawn from a bimodal distribution (U1) the yield in all

our experiments was exactly 0%. Surprisingly, uniform range-4 instances (U4) also

have Y = 0%. However, by increasing the range of the integers and selecting them

from a Sidon set while removing the lowest values gives Y = 4.5(4)% for the U5,6,7

class. Although a small fraction, it is clearly nonzero. Finally, for the large Sidon

set S28 we obtain a fraction Y = 20.0(6)% of unique ground states [149], i.e., optimal

for large-scale benchmarking.
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4.2.2 Resilience to noise

Figure 4.2 shows the resilience to random-field noise for different instance classes.

As the typical field strength h increases, the resilience R for all instance classes

decreases. This is expected, because the bandwidth of split states due to increased

random-field strength results in more energy levels crossing. Furthermore, for a

fixed field strength, instance classes with small energy gaps ∆E tend to have lower

resilience. This is to be expected: it is easier for split states to have a lower energy

than the original ground state when the gap is small. Note that while instance

classes U5,6,7 and U4 have a similar resilience, the yield of unique ground states is

considerably higher for U5,6,7, i.e., a careful design of the spin-spin interactions is key

when attempting to benchmark a quantum annealing device.

Figure 4.3 shows the resilience of different instance classes as a function of dif-

ferent typical coupler perturbations ∆J . Again, for all instance classes studied, the

resilience decreases as fluctuations increase. In addition, instance classes with small

energy gaps have a lower resilience. It is important to note that bond noise has a

stronger impact to the resilience than field noise. Considering each qubit has typi-

cally ∼ 6 neighbors in the Chimera lattice, the impact of bond noise is amplified by

multiple connections of qubits. Therefore, reducing the fluctuations of the couplers

is more important than dealing with the intrinsic flux noise of each qubit.

Unfortunately, for the D-Wave architecture, to find an instance class that is both

hard and robust to noise, compromise has to be made. The U1 instance class has the

highest resilience to noise, however, the huge ground-state degeneracy makes it easier

for classical algorithms such as SA to find minimum-energy configurations [3, 126].

On the flip side, the Sidon instance class is known to be hard [126] and produces many

unique ground states, but its resilience is comparably low due to the small energy
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Figure 4.2: Resilience (R) of different instance classes (see text) for a N = 512 qubit
system on the Chimera graph as a function of Gaussian random field strength (h).
Instance classes are less resilient to noise with increasing field strength and decreasing
classical energy gap. The shaded line represents the current field noise strength of
approximately 5% in the D-Wave Two system.

gap. A compromising natural choice would therefore be to either use the U4 or U5,6,7

instance classes. However, while the resilience for both U4 and U5,6,7 are comparable,

the yield of unique ground states needed to construct hard benchmark problems is

much higher for U5,6,7. We thus conclude that for the current Chimera topology, the

U5,6,7 instance class is the optimal compromise to design hard benchmark problems

within the D-Wave Two architecture constraints. For the remainder of this paper

we thus focus on this particular instance class.

Figure 4.4 shows the resilience of the U5,6,7 instance class for different system

sizes N of the Chimera lattice as a function of the random-bond fluctuation strength

∆J . Clearly, for increasing system size the resilience R decreases (larger system

sizes typically have a higher degeneracy, therefore level crossings are more common
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Figure 4.3: Resilience (R) of different instance classes (see text) for a N = 512
qubit system on the Chimera graph as a function Gaussian random bond fluctuation
strength (∆J). Instance classes are less resilient to noise with increasing bond fluc-
tuation strength and a decreasing classical energy gap. The shaded line represents
the current bond noise strength in the D-Wave Two system, i.e., ∼ 3.5%. Note that
bond noise has a stronger effect than field noise (Fig.4.2) on the device.

than with smaller systems). This means that to scale up the system size of the

D-Wave Two—or any other quantum annealing device—in the future, a much more

precise control over the device’s noise is imperative and/or the implementation of

error correction schemes [118, 131, 132].

4.2.3 Effects of the number of first excited states

Figure 4.5 shows the resilience R of the U5,6,7 instance class as a function of the

degeneracy of the first excited state on the Chimera topology with N = 512 spins.

The higher the degeneracy of the first excited state, the lower the resilience. This

can be explained by the increased probability of level crossing. We also color code

each dot in the figure: The heat map represents the number of instances that had a

69



R

∆J

N

128
288
512
800

1152

0

0.2

0.4

0.6

0.8

1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Figure 4.4: Resilience R of the U5,6,7 instance class as a function of the bond fluc-
tuation strength (∆J) for different system sizes N on the Chimera topology. The
resilience clearly decreases for increasing noise and system size. The shaded ver-
tical line represents the current bond-noise strength in the D-Wave Two system,
approximately 3.5%.

given degeneracy N1 of the first excited state out of the 900 simulated. In this case,

the bulk of the instances have between 4 and 8 degenerate first excited states. This

results in a reduction of the resilience, compared to instances that contain only one

or two first excited states.

While instances with only one or two first excited states are extremely rare, the

effort needed to find these might outweigh the approximately 30% in the resilience

reduction by allowing states with three to four first excited states. We thus recom-

mend to fix the number of first excited states to be less or equal than four in this

case.

We have also computed the Hamming distance between the ground state and all

first excited states for a given instance. Our results suggest that when the average
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Figure 4.5: Resilience R as a function of the number of first excited states N1 for
N = 512 spins on the Chimera lattice. The data are for the U5,6,7 instance class.
The color bar shows approximately how often a given number of first excited states
occurs for the 900 instances studied. In this case, between four and eight first excited
states are most common.

Hamming distance is small, the resilience to noise is higher. A simple explanation

is that both ground-state and excited configurations are quite similar and therefore

the noise affects them comparably, i.e., both the ground state and the first excited

states are lifted approximately by the same amount.

4.3 Conclusions

In order to develop both hard and robust benchmark instances, we have tested dif-

ferent instance classes by computing their yield (fraction of instances with a unique

ground-state configuration) and resilience to noise fluctuations. Ideally, hard in-

stances (high yield) with a high resilience are optimal for benchmarking purposes.

Both yield and resilience can be tuned by a careful design of the instance classes—

within the hardware restrictions of the machine—followed by a mining of the data.
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Although the numerical effort to do such “designer instances” is nonnegligible, we

think this is a key ingredient in designing good benchmarks for quantum annealing

devices, as well as any other computing architectures. It seems that both resilience

and yield for the Chimera topology are slightly anticorrelated. A good compromise

is thus the U5,6,7 instance class that has a good resilience to both field and coupler

noise, as well as a nonzero yield of unique ground states, with a small number of first

excited states.

We emphasize that our results for the resilience represent a best-case scenario for

any quantum annealing machine. Any other source of error can only decrease the

success probabilities further. However, it could be that the introduction of carefully-

crafted correlations between bond and field noise might reduce the errors and increase

the resilience. Bond noise is the most limiting issue for the current D-Wave Two

quantum annealer and is highly dependent on the connectivity of the graph. While

it is desirable to have a high connectivity to be able to embed interesting problems

on any putative architecture, one has to also keep in mind that noise levels should

be far lower than in the current D-Wave machine.

This classical study of both resilience and yield plays an important role in the

design of future adjacency matrices for quantum annealing machines. Our results

and methods can easily be generalized to other systems and thus should be of gen-

eral interest when designing hard instance problems that attempt to circumvent the

limitations of current hardware. Furthermore, calibration of future generations of

the D-Wave device should be improved to allow for the encoding of more complex

Sidon sets and thus the design of harder benchmark problems.

We conclude by pointing out that while the main goal of this work is to produce

problems that are robust to noise, the methodology presented can also be used to

design tailored instances that are particularly sensitive to noise. This could play
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an important role when designing approaches to better calibrate devices, as done in

Ref. [150].
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5. EFFICIENT CLUSTER ALGORITHM FOR SPIN GLASSES IN ANY

SPACE DIMENSION∗

A plethora of problems across disciplines map onto spin-glass-like Hamiltonians

[143]. Despite decades of intense analytical and numerical scrutiny, a deep under-

standing of these paradigmatic models of disordered systems remains elusive. Given

the inherent difficulties of studying these Hamiltonians analytically beyond mean-

field theory as well as the continuous increase of computer power, progress in this

field has benefited noticeably from numerical studies. The development of efficient

Monte Carlo methods such as parallel tempering [42] and population annealing [43]

has helped in understanding these systems at a much deeper level; however, most

numerical studies are still plagued by corrections to finite-size scaling due to the

small system sizes currently available [151].

In contrast, simulations of spin Hamiltonians without disorder and frustration

are comparably simple: Ferromagnetic systems have greatly benefited from the de-

velopment of cluster algorithms [47, 48] that help in overcoming critical slowing

down close to phase transitions. Therefore, the holy grail of spin-glass simulations is

to introduce accelerated cluster dynamics that improve upon the benefits of efficient

simulation methods such as population annealing or parallel tempering Monte Carlo.

In 2001 Houdayer introduced a seminal rejection-free cluster algorithm tailored to

work for two-dimensional Ising spin glasses [50]. The method updates large patches

of spins at once, therefore effectively randomizing the configurations and efficiently

overcoming large barriers in the free-energy landscape. Furthermore, the energy of

∗Reprinted from “Efficient Cluster Algorithm for Spin Glasses in Any Space Dimension” by
Zheng Zhu, Andrew J. Ochoa, Helmut G. Katzgraber, 2015, Phys. Rev. Lett, Copyright 2015 by
American Physical Society [147].
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the system remains unchanged when performing a cluster move. This means that the

numerical overhead is very small, because there is no need to, for example, compute

any random numbers for a cluster update. The use of these cluster moves made it

possible to obtain a speedup of several orders of magnitude in two space dimensions

and therefore simulate considerably larger system sizes.

While cluster algorithms such as Swendsen-Wang and Wolff [47, 48] work well

for ferromagnetic systems in any space dimension because the clusters reflect the

spin correlations in the system, this is not the case for algorithms that build clusters

like the Houdayer cluster algorithm. In this case the clusters do not reflect overlap

correlations [152, 153] and cluster updates only have an accelerating effect on the

dynamics if the clusters do not span the entire system and are not comprised of single

spins. This is the case either when temperatures are close to zero (small clusters), or

when the underlying geometry of the problem has a percolation threshold below 50%

– as is the case in three space dimensions. Updating such a system-spanning cluster

amounts to swapping out both replicas, thus not randomizing the configurations.

This means that while the method works in principle, it does not really provide

any simulational benefit. As such, Houdayer cluster moves work, in principle, only

for models where the percolation threshold is above 50%, as is the case in two-

dimensional Ising spin-glass Hamiltonians. One way to remedy this situation is

to increase the percolation threshold artificially, e.g., by diluting the lattice [154].

However, this is often not desirable and highly dependent on the problem to be

studied.

In this chapter I show an algorithm that I have developed where Houdayer-like

cluster moves can be applied to spin systems on topologies where the percolation

threshold is below 50%, provided that the interplay of temperature and frustration

prevents clusters from spanning the whole system. We therefore introduce isoener-
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getic cluster moves for spin-glass-like Hamiltonians in any space dimension. These

rejection-free cluster moves accelerate thermalization by several orders of magnitude

even for systems with space dimensions larger than 2. We show that the inherent

frustration present in spin-glass Hamiltonians prevents clusters from spanning the

whole system for temperatures below the characteristic energy scale of the problem.

As such, spin-glass simulations can be sped up considerably in the hard-to-reach

low-temperature regime of interest in many numerical studies.

The fact that the isoenergetic cluster moves are rejection free and leave the energy

of the system unchanged is also of great importance to any heuristic based on Monte

Carlo updates to compute ground-state configurations of spin-glass-like Hamiltoni-

ans. For example, the convergence of simulated annealing [36] can be considerably

improved by adding isoenergetic cluster moves at each temperature step. Because

the moves change the spin configurations but leave the energy of the system intact,

the approach has the potential to “tunnel” through energy barriers, thus overall

improving convergence.

I first introduce the benchmark model, followed by a short description of the

Houdayer cluster algorithm and an outline of our isoenergetic cluster algorithm.

Results in two and three space dimensions, as well as on the nonplanar Chimera

topology [125] are presented.

5.1 Benchmark model and observables

The Hamiltonian of a generic Ising spin glass is defined by

H =
N∑
i 6=j

Jijsisj, (5.1)
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where si ∈ {±1} represent Ising spins and N is the total number of spins. In this

study the interactions Jij are selected from a Gaussian distribution with mean zero

and variance J2 = 1. Because we are only interested in highlighting the improved

thermalization by adding isoenergetic cluster moves, we measure the average energy

per spin defined via [〈H〉]/N , as well as the link overlap

q` = (1/Nb)
N∑
ij

s
(1)
i s

(1)
j s

(2)
i s

(2)
j . (5.2)

Here, 〈· · · 〉 represents a Monte Carlo average, the superscripts represent two replicas

of the system, [· · · ] an average over the disorder, and Nb is the number of bonds in

the system. Using Gaussian disorder, one can equate the internal energy per spin to

the internal energy computed from the link overlap [51], E(q`), i.e.,

E(q`) = −J
2

T

Nb

N
(1− q`). (5.3)

To test that the system is thermalized, we thus study the time-dependent behavior

of

∆ = [〈E(q`)〉 − 〈H/N〉]. (5.4)

When ∆ → 0, the bulk of the disorder instances is thermalized [144]. Simulation

parameters are listed in Table 5.1

5.1.1 Reminder: Houdayer cluster algorithm

The Houdayer cluster algorithm (HCA) [50] is an efficient algorithm to study

two-dimensional Ising spin glasses at low temperatures where thermalization is slow.

It is similar to replica Monte Carlo [155], but with the difference that both replicas

are at the same temperature. By allowing large cluster rearrangements of configura-
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tions, the HCA improves thermalization by efficiently tunneling through configura-

tion space.

The algorithm works as follows: In the HCA, two independent spin configurations

(replicas) are simulated at the same temperature. The site overlap between replicas

(1) and (2), qi = s
(1)
i s

(2)
i , is calculated. This creates two domains in q-space: sites

with qi = 1 and qi = −1. Clusters are defined as the connected parts of these

domains in q-space. One then randomly chooses one site with qi = −1 and builds

the cluster by adding all the connected spins in the domain with probability 1. When

no more spins can be added to the cluster in q-space, the spins in both replicas that

correspond to cluster members are flipped with probability 1, irrespective of their

orientation. The method can be implemented in a very efficient way because cluster

members are added with probability 1 and the cluster updates are rejection free.

To ensure ergodicity, the cluster move is combined with standard single-spin Monte

Carlo updates. Summarizing, one simulation step using the HCA consists of the

following steps:

1. Perform one Monte Carlo sweep (N Metropolis updates) in each replica.

2. Perform one Houdayer cluster move.

3. Perform one parallel tempering update for a pair of neighboring temperatures.

Note that the last step is not necessary; however, the combination of HCA moves

and parallel tempering (PT) updates improves thermalization considerably and rep-

resents the standard modus operandi.

In theory, the efficiency of the HCA depends strongly on the percolation threshold

of the desired topology to be simulated. Because spins are added to the cluster with

probability 1, if the percolation threshold of the studied lattice is below 50%, then the
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cluster might span the entire system and an update will not yield a new configuration.

This is the reason why HCA is claimed to only work in two space dimensions [50]

where the percolation threshold is above 50% (see also Figures 5.1 to 5.3).

5.1.2 Isoenergetic cluster algorithm

Our proposed isoenergetic cluster moves are closely related to the HCA. We

begin by simulating two replicas with the same disorder at multiple temperatures.

The cluster moves alone are not ergodic, so, again, these must be combined with

simple Monte Carlo updates. One simulation step using isoenergetic cluster moves

consists of the following steps:

1. Perform one Monte Carlo sweep (N Metropolis updates) in each replica.

2a. If the number of cluster members with qi = −1 is greater than N/2, then all

the spins in one of the configurations can be flipped, thus reducing the cluster

size while leaving the energy unchanged.

2b. Perform one Houdayer cluster move for all temperatures T . J .

3. Perform one parallel tempering update for a pair of neighboring temperatures.

The main difference thus lies in applying cluster moves to a carefully-selected set

of temperatures where the isoenergetic cluster moves (ICMs) are efficient (steps 2a

& 2b) because clusters do not percolate, as well as reducing cluster sizes and thus

the numerical overhead by exploiting spin-reversal symmetry (step 2a) [159, 160].

For example, in the case of the Chimera lattice the overhead of ICM over PT is

approximately 25% and roughly independent of the system size for the studied N .

However, the overhead for HCA over PT is at least 50% and grows with increasing

system size.
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Figure 5.1: Fraction of spins p of potential cluster members as a function of temper-
ature T for different system sizes N in two space dimensions (2D). The horizontal
line represents the percolation threshold of a two-dimensional square lattice, i.e.,
pc ≈ 0.592 [156]. Because p → 0.5 for T → ∞, for all T clusters do not percolate,
which is why the HCA is efficient in two-dimensional planar geometries. Error bars
are computed via a jackknife analysis over configurations and are smaller than the
symbols.
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Figure 5.2: Fraction of spins p as a function of temperature T for different system
sizes N on the Chimera topology. The horizontal line represents the percolation
threshold of the nonplanar Chimera topology, namely pc ≈ 0.387 computed here
using the approach developed in Ref.[157]. For T & J = 1 clusters percolate and
cluster updates provide no gain. Error bars are computed via a jackknife analysis
over configurations and are smaller than the symbols.
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Figure 5.3: Fraction of spins p as a function of temperature T for different system
sizes N in three space dimensions (3D). The horizontal line represents the percolation
threshold of the three-dimensional cubic lattice (pc ≈ 0.311 [158]). For T & J = 1
clusters percolate. Error bars are computed via a jackknife analysis over configura-
tions and are smaller than the symbols.

Figures 5.1 to 5.3 show the fraction of spins with negative overlap (i.e., the fraction

of potential cluster members) as a function of temperature T for different system sizes

N and on three different topologies. Fig. 5.1 shows data in two space dimensions

where the percolation threshold is pc ≈ 0.592 [156] (solid horizontal line). As such, for

all temperatures simulated, the fraction of cluster members is below the percolation

threshold and saturates at 50% for T → ∞. This means that isoenergetic cluster

updates are efficient for all temperatures studied because the clusters never percolate.

Naively, one would expect that in higher space dimensions clusters percolate for all

T . This is, however, not the case due to the frustration present in spin glasses, as can

be seen for the Chimera topology (Fig. 5.2) or in three space dimensions (Fig. 5.3).

For increasing system size the fraction of cluster members converges to a limiting
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curve that crosses the percolation threshold (horizontal solid lines) at approximately

T ≈ J = 1. This means that for all T & J clusters percolate and the cluster updates

are just numerical overhead without any advantage to the simulation. However, for

T . J the fraction of cluster members lies below the percolation threshold. This

means that performing cluster moves in this temperature regime should improve

thermalization. Note that it is a coincidental property that for three-dimensional

Ising spin glasses Tc ∼ 1 [95], i.e., that cluster moves can be applied to any T . Tc

[161].

When the interactions Jij are drawn from a Gaussian distribution, the ground

state is unique. As can be seen in figs. 5.1 to 5.3, the fraction p of spins potentially in

a cluster also approaches zero for T → 0, i.e., both replicas are in the ground state for

low enough T . Therefore, the cluster is composed of no members or the entire lattice.

In the case of disorder distributions that yield a highly-degenerate ground state,

such as it is the case for bimodal disorder, it is possible to continue to have clusters

at zero temperature. It is thus possible to efficiently hop around the ground-state

manifold by applying cluster moves to low-lying or even zero-temperature states. We

do emphasize, however, that if clusters are too small, then the isoenergetic cluster

moves also become ineffective. Therefore, plotting the p as done in figs. 5.1 to 5.3 is

essential in determining the efficiency and applicability of the method.

5.2 Benchmarking results

Figures 5.4 to 5.6 show ∆ [Eq. (5.4)] as a function of Monte Carlo time (measured

in lattice sweeps) t = 2b. Fig. 5.4 shows data in two space dimensions for simulations

using isoenergetic cluster moves (PT+ICM) and vanilla parallel tempering (PT)

Monte Carlo for N = 1024 spins at T = 0.212. Once ∆ ∼ 0, we deem the system

thermalized. Clearly, the inclusion of cluster moves—as can also be expected from
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Table 5.1: Parameters of the simulation in two space dimensions (2D), three space
dimensions (3D), and on the Chimera (Ch) topology. For each topology simulated
and system sizes N , we compute Nsa disorder instances and measure over 2b Monte
Carlo sweeps (and isoenergetic cluster moves) for each of the 2NT replicas. Tmin

[Tmax] is the lowest [highest] temperature simulated, and NT is the total number
of temperatures used in the parallel tempering Monte Carlo method. Isoenergetic
cluster moves only occur for the lowest Nc temperatures simulated (determined from
figs. 5.1 to 5.3).

N Nsa b Tmin Tmax NT Nc

2D 256, 576, 1024 104 22 0.2120 1.6325 30 30
Ch 128, 288, 512, 800, 1152 104 22 0.2120 1.6325 30 19
3D 64, 216, 512, 1000, 1728 1.5 104 23 0.4200 1.8000 26 13
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Figure 5.4: ∆ [Eq. (5.4)] as a function of simulation time t = 2b measured in Monte
Carlo sweeps in two space dimensions (2D) for N = 1024 and T = 0.212. Simulations
using vanilla PT thermalize at at least 225 Monte Carlo sweeps, whereas with the
addition of ICMs thermalization is reduced to approximately 216 Monte Carlo sweeps.
This means approximately two orders of magnitude improvement. Error bars are
computed via a jackknife analysis over configurations.

84



-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

14 16 18 20 22 24

∆

b

Chimera

PT
PT + ICM

Figure 5.5: ∆ as a function of simulation time t = 2b measured in Monte Carlo sweeps
for an Ising spin glass on Chimera with N = 1152 spins at T = 0.212. Simulations
using PT thermalize at approximately 225 Monte Carlo sweeps, whereas the addition
of ICMs reduces thermalization to 218 Monte Carlo sweeps. Again, approximately
two orders of magnitude speedup. Error bars are computed via a jackknife analysis
over configurations.
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Figure 5.6: ∆ as a function of simulation time t = 2b measured in Monte Carlo
sweeps in three space dimensions (3D) for N = 1728 and T = 0.42 ∼ 0.43Tc. Using
standard PT, the system thermalizes approximately after 223 Monte Carlo sweeps.
This time is reduced to ∼ 220 Monte Carlo sweeps when ICMs are added. Error bars
are computed via a jackknife analysis over configurations.

the results of Houdayer—show an improved thermalization. Fig. 5.5 shows data on

the Chimera topology with N = 1152 spins and T = 0.212, where the HCA is not

expected to show any improvement over PT due to pc < 0.5. As can be seen, our

ICM clearly improve thermalization in comparison to PT by at least two orders of

magnitude; an amount that grows with increasing system size. Finally, Fig. 5.6 shows

∆ as a function of simulation time in three space dimensions with N = 1728 spins

and T = 0.42� Tc. Although not as impressive as for the Chimera topology, we see

a speedup of approximately one order of magnitude — an amount that again grows

with increasing system size.

Finally, Fig. 5.7 shows the ratio of the thermalization time using PT and using

PT+ICM for different topologies at the lowest simulation temperature (see Tab. 5.1)
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as a function of the system size N . In all cases, the speedup increases with increasing

system size, therefore illustrating that the addition of isoenergetic cluster moves

greatly improves thermalization.
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Figure 5.7: Ratio between the approximate average thermalization time of PT and
PT+ICM for different topologies at the lowest simulation temperature (see Tab. 5.1)
as a function of system size N . In all cases the speedup increases with increasing
system size. Note that thermalization times have been determined by eye.

5.3 Summary

We have presented a rejection-free cluster algorithm for spin glasses in any space

dimension that greatly improves thermalization. By restricting Houdayer cluster

moves to temperatures where cluster percolation is hampered by the interplay of

frustration and temperature, we are able to extend the Houdayer cluster algorithm

for two-dimensional spin glasses to any topology/space dimension. Our standard im-

plementation of the cluster updates represents only a minor overhead [160] compared

to the thermalization time speedup obtained from the isoenergetic cluster moves –
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a speedup that increase with the system size [162], significantly minimize resource

usage and reduce the finite size scaling corrections.

88



6. EFFICIENT SAMPLING OF GROUND STATE CONFIGURATIONS FOR

QUASI TWO-DIMENSIONAL ISING SPIN GLASSES

Spin glass physics provides a rich source of challenging theoretical and computa-

tional problems. In particular, the problem of finding ground states is very difficult

because of the quenched disorder and frustration that are present in spin glass mod-

els. Therefore, many different algorithms have been proposed to solve the ground

state problem. Generally speaking, the time that an exact method such as branch-

and-cut [163] takes to find ground states is at a much greater order of magnitude

than heuristic methods such as genetic algorithms [164], simulated annealing, paral-

lel tempering [56, 165], population annealing [57], and quantum annealing [103]. The

first three classical Monte Carlo heuristics based on thermal annealing are known to

almost uniformly sample all ground states and low-lying excited states. Quantum

annealing is a general heuristic method that can find ground states by controlling

quantum fluctuations, it allows a system to exploit quantum superposition and tun-

nel through the rough energy landscape, which will potentially find the ground states

more quickly.

However, research by Matsuda, Nishimori and Katzgraber [166] suggests that

while quantum annealing is superior to simulated annealing for finding ground state

energy, it has a bias towards a subset of the ground states. As a consequence, ver-

ifying that an optimizer can sample all ground state configurations is a far more

stringent test for any newly developed algorithm. It is well known that parallel tem-

pering is more efficient than simulated annealing at finding spin glass ground states

with equal probability [56], and recent results show that population annealing and

parallel tempering are comparably efficient [57]. Here I show that the Isoenergetic
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Cluster Algorithm (ICA) [147] from the previous chapter enhances the sampling of

ground states for quasi two-dimensional Ising spin glasses with a space dimension less

than three. The method is based on a combination of low-temperature parallel tem-

pering (PT) Monte Carlo and rejection-free isoenergetic cluster move. We illustrate

the approach for Ising spin glasses on the D-Wave Two quantum annealer topology,

known as the Chimera graph, as well as for two-dimensional Ising spin glasses with

interactions Jij ∈ {±1,±2,±4} (see next section).

The rest of this chapter is organized as follows. In the next section, I introduce

the criteria from the theory of binomial distribution for fair sampling with equal

probability, and I provide a detailed description of fair sampling algorithm ICA.

Following that, I present numerical results for both PT and ICA on a Chimera graph

as well as a 2D square lattice. The last section presents our concluding remarks.

6.1 Model, algorithm and observables

In order to illustrate ICA, we start with an Ising spin glass model on a non-planar

Chimera graph. An example of the Chimera topology with 8 × 8 blocks of 8 spins

can be found in chapter 4. Its non-planar topology makes finding ground states of

Ising spin glasses defined on a Chimera graph worst-case NP-hard problems [64].

The Hamiltonian for the spin glass model is given by

H({si}) = −
N∑
i<j

Jijsi sj, (6.1)

where si ∈ {±1} are the Ising spins and Jij ∈ {±1,±2,±4} are the interactions.

The interactions are selected based on the range of ground state degeneracy we can

simulate with our high-performance computing cluster.

Suppose n is the total number of times that ground states are found for a sample
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with ground state degeneracy G. The probability distribution for finding any partic-

ular ground state is called a binomial distribution. If p is the probability of success

and q is the probability of failure in a binomial trial, then the expected number

of successes in n trials is e = np and the variance of the binomial distribution is

σ2 = npq. Therefore, the theoretical relative variance Qth is given by

Qth = σ/e =
√

(1− p)/np =
√

(G− 1)/n. (6.2)

An algorithm is said to be optimal if the relative fluctuation of the frequency of

ground states is close or equal to the theoretical value
√

(G− 1)/n. In practice, this

numerical relative variance for any algorithm is greater than the theoretical value,

due to limited computational resources.

Here are the details of our fair sampling algorithm ICA:

1. RunNT sets of replicas of the system at a range of temperatures {T1, T2, ..., TNT },

with each set consisting of M = 4 replicas at the same temperature, thus 4×NT

copies of the system with the same disorder are randomly initialized.

2. Nsw iterations are performed, each iteration consisting of one Monte Carlo

sweep, a parallel tempering update, and a isoenergetic cluster move (but only

for the lowest Nhc temperatures).

3. For the first Nsw/8 iterations, we keep track of the lowest energies for the 4

replicas with the lowest temperature.

4. After Nsw/8 iterations, the lowest energies E1, E2, E3, and E4 for the 4 replicas

with the lowest temperature are compared, and if E1 = E2 = E3 = E4, we

claim that the ground state has been found and we begin to record the ground

state configurations and frequency for the remaining 7Nsw/8 updates.
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Table 6.1: Parameters of the simulation: For each instance class and system size
N , we compute Nsa instances. Nsw = 2b is the total number of Monte Carlo sweeps
for each of the 4NT replicas for a single instance, Tmin [Tmax] is the lowest [highest]
temperature simulated, and NT and Nhc are the number of temperatures used in the
parallel tempering method and in the isoenergetic cluster algorithm, respectively.

Topology N Nsa b Tmin Tmax NT Nhc

2D 144 360 25 0.2120 1.6325 30 19
2D 256 359 25 0.2120 1.6325 30 19
2D 576 355 25 0.2120 1.6325 30 19
2D 784 343 25 0.2120 1.6325 30 19
2D 1024 245 25 0.2120 1.6325 30 19

Chimera 128 360 25 0.2120 1.6325 30 19
Chimera 288 360 25 0.2120 1.6325 30 19
Chimera 512 360 25 0.2120 1.6325 30 19
Chimera 800 359 25 0.2120 1.6325 30 19
Chimera 1152 360 25 0.2120 1.6325 30 19

Note there is no guarantee that any solution obtained by this heuristic method

is the true optimum, or that we have found all configurations that minimize the

Hamiltonian. The simulation parameters are shown in Table 6.1.

6.2 Numerical results

In order to test whether ICA can sample ground states with equal probabilities,

we multiply the numerical relative variance Qnum by the square root of the total

number of times ground states are found,
√
n, and we plot this quantity Qnum

√
n

as a function of the ground state degeneracy G− 1. It is not difficult to verify that

Qth

√
n is the square root of the ground state degeneracy G − 1, and therefore the

function Qth

√
n =
√
G− 1 is a straight line in logarithmic scale for both the x-axis

(x = G− 1) and the y-axis (y = Qth

√
n).

Figure 6.1 shows the quantities Qnum

√
n and Qth

√
n as a function of ground

state degeneracy G − 1 for different spin glass samples on a chimera graph; as we
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Figure 6.1: Scatter plot of quantities Qnum

√
n as a function of the ground state

degeneracy G− 1 for different spin glass samples with different system sizes N on a
Chimera graph. The data points for ICA (blue color) are closer to the theoretical
limit than those for the PT (red color), and this improvement gets better as the
system size increases.

mentioned earlier, the quantity Qnum

√
n is almost always greater than Qth

√
n due to

limited computational resources. However, the algorithm is claimed to be optimal if

the data points from the numerical relative variance are close to a straight line. It is

clear that the data points from ICA (blue color) are closer to a straight line than the

data points from PT (red color), and the discrepancy between ICA and PT seems
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Figure 6.2: Median ratio Qnum/Qth over different spin glass samples as a function of
the system size N on a Chimera graph. The data points show that ICA (blue color)
is better than PT (red color) for all system sizes, and the general trend for both
algorithms is that the ratio goes up as the system size increases, then it peaks at a
certain point, and beyond a certain system size the ratio goes down as the system
size continues to increase. Note there is no critical point and phase transition here.

to become greater as the system size increases.

In Fig. 6.2 we plot the median ratio Qnum/Qth over different samples as a function

of the system size N , and a ratio of one means the algorithm is perfectly optimal.

The data points show that ICA (blue color) is better than PT for all system sizes, and

the general trend for both algorithms is that in the beginning the ratio goes up as the

system size increases, then it peaks at a certain point, and beyond a certain system

size the ratio goes down as the system size continues to increase. One explanation

for this trend is that there are two main factors that determine the ratio, the system

size and the ground state degeneracy, and a larger system size with the same ground

state degeneracy makes fair sampling harder while the same system size with a

larger ground state degeneracy makes fair sampling easier, so that the dominant
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Figure 6.3: Two examples of ground state configurations with different Hamming
distances on a Chimera graph for system size N = 512. The Hamming distance
denotes the difference between two binary strings (ground state configurations). Each
dot in the figure represents a ground state, black lines are 1-bit differences, red lines
are 2-bit differences, and anything that is a light color or blue is an even greater
difference. In the example on the left, all ground state configurations are related
by 1-bit differences, while the example on the right shows that Hamming distances
between certain ground state configurations can be large—which means that it will
take longer for the system to move from one ground state to another and this will
cause larger fluctuations in the ground state frequency.

factor determines whether the ratio goes up or down. Below a certain system size the

dominant factor is the system size, while above that size the ground state degeneracy

is dominant. In addition, careful examination of samples with the same system size

and ground state degeneracy shows that the Qnum/Qth ratio is closely related to

the Hamming distances between ground state configurations: the samples with large

Hamming distances between the ground states tend to have a high Qnum/Qth ratio,

while those with small Hamming distances are more likely to have a low Qnum/Qth

ratio. Two examples of ground state configurations with different Hamming distances

on a Chimera graph are shown in Fig. 6.3, for N = 512. Note that the statistical

error bars are determined by a bootstrap analysis using the following procedure:
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Figure 6.4: Scatter plot of quantities Qnum

√
n as a function of the ground state

degeneracy G− 1 for different spin glass samples with different system sizes N on a
2D lattice. The data points for ICA (blue color) are closer to the theoretical limit
than those for the PT (red color), and this improvement gets better as the system
size increases.

For each system size N and Nsa disorder realizations, a randomly selected bootstrap

sample of the Nsa disorder realizations is generated. The median ratio Qnum/Qth is

computed with this random sample. We repeat this procedure Nboot times for each

system size to obtain the average and standard deviation using these Nboot data

points.
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Figure 6.5: Median ratio Qnum/Qth over different spin glass samples as a function
of the system size N on a 2D lattice. The data points show that ICA (blue color)
is better than PT (red color) for all system sizes, and the general trend for both
algorithms is that the ratio goes up as the system size increases, then it peaks at a
certain point, and beyond a certain system size the ratio goes down as the system
size continues to increase. Note there is no critical point and phase transition here.

Fig. 6.4 shows the quantities Qnum

√
n and Qth

√
n as a function of the ground

state degeneracy G−1 for different spin glass samples on a 2D lattice. Similar to the

Chimera graph case, the data points from ICA (blue color) are closer to a straight

line than the data points from PT (red color), and the discrepancy between ICA

and PT becomes larger as the system size increases. In Fig. 6.5, the median ratio

Qnum/Qth over different samples again demonstrates that ICA is superior to PT.

6.3 Conclusions

We have developed a novel cluster Monte Carlo algorithm for sampling ground

states of Ising spin glasses on a Chimera graph as well as on a 2D square lattice. In

this algorithm, parallel tempering updates combined with rejection-free isoenergetic
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cluster moves create a robust ensemble that is able to sample both low- and high-

energy configurations and allow global moves on the rough energy landscape. This

improves thermalization for Ising spin glasses on a quasi two-dimensional nonplanar

Chimera graph with dimension less than three, and a more equiprobable sampling

of ground states has been achieved, which ensures all ground states for benchmarks

can be found/computed. We also found that Hamming distances between different

ground state configurations are closely related to the relative variance of frequency

with which the ground states are found: ground states with small Hamming distances

have a lower relative variance of frequency.
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7. LIMITATIONS OF APPLYING TENSOR RENORMALIZATION GROUP

METHODS TO GLASSY SYSTEMS

The simulation of strongly correlated quantum or classical statistical systems in

two or higher dimensions remains a great challenge and stimulated great interest on

tensor-network models in recent years [167, 168, 169, 170]. A tensor-network state

is a high-dimensional generalization of the one-dimensional matrix-product state

[171, 172] studied by the density-matrix renormalization group [173]. It captures

the key feature of entanglement in interacting quantum systems and is considered

to be an excellent tool to study correlated systems. On the other hand, in classical

statistical system with local interactions, the Boltzmann weight can be expressed as

a tensor product and all thermodynamic quantities can be determined by studying

equivalent tensor-network model. The tensor renormalization group method (TRG)

[168] was initially introduced by Levin and Nave as a real space renormalization

group approach for classical spin systems on 2D regular lattices, then Xiang [174,

175] developed coarse graining TRG methods based on the higher-order singular

value decomposition (HOTRG) [176] to study physical properties of 2D or 3D lattice

models. HOTRG has recently been successfully applied to 2D and 3D Ising models

[175]. However, it is unclear whether HOTRG can be applied to the 2D Edwards-

Anderson (EA) spin glass model.

Although the EA model has been intensively studied over the past few decades,

many aspects are still far from completely understood. Unlike the ferromagnetic

Ising model, the EA spin glass model is a magnetic system exhibiting both quenched

disorder and frustration without translation symmetry. Wang and coauthors [177]

recently investigated whether TRG can be applied to the 2D EA model. They found
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that TRG might lead to negative values of the partition function at low temperatures,

and they argued that a larger cut-off parameter Dc could be used to decrease the

probability of a negative partition function value. How to avoid negative partition

function values at low temperatures is an open problem in the use of TRG for spin

glasses.

In this chapter I argue that the primary reason for negative partition function

values is the limited precision of the data type (double) used rather than the small

cut-off parameter Dc. TRG fails because of the near-cancellation of the positive

and negative tensor components in the partition function, a very high-precision data

type is required for obtaining the difference of the tensor components with useful

accuracy.

7.1 Model

In this section we illustrate the problems of HOTRG using the two-dimensional

EA Ising spin glass defined on a 2D lattice, its Hamiltonian is given by

H({si}) = −
N∑
i<j

Jijsi sj, (7.1)

where si ∈ {±1} are the Ising spins, and the bimodal-distributed interactions are

given by

P (Jij) = p(Jij − 1) + (1− p)(Jij + 1), (7.2)

with p being the fraction of ferromagnetic bonds. Although the EA model has been

intensively simulated over the past few decades, most of the insights such as nature

of the spin glass phase rely entirely on numerical simulations and remain highly

debated [29, 178, 28, 179, 180, 30, 84].
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7.2 Algorithm

The partition function for the classical statistical model with local interactions

can be obtained by taking the product of local tensors at each site and summing over

all bond indices. It is straightforward to show that the tensor-network representation

of the partition function on a square lattice is given by

Z = Tr
∏
i

Txix′iyiy′i . (7.3)

The local tensor Txix′iyiy′i can be defined by tracing out si from the product of W :

Txix′iyiy′i =
D∑
α=1

W 2
α,xi

W 1
α,x′i

W 2
α,yi

W 1
α,y′i

, (7.4)

where D is the original bond dimension and W 1 and W 2 are 2× 2 matrices defined

by

W 1 =

 √
cosh(1/T )

√
sinh(1/T )√

cosh(1/T ) −
√

sinh(1/T )

. (7.5)

To coarse grain the network, two neighboring tensors are contracted into one:

M
(n)
xx′yy′ =

∑
i

T
(n)

x1x′1yi
T

(n)

x2x′2iy
′ , (7.6)

where x = x1 ⊗ x2, x′ = x′1 ⊗ x′2, and the superscript n denotes the n′th iteration.

This reduces the lattice size by a factor of 2, and the contracted tensor M (n) along

the x axis (or the y axis) has a higher bond dimension D2. Without truncating the

basis space, the bond dimension will grow to D2n after n steps of coarse graining

(one step of coarse graining consists of a contraction of the tensor along both the

x and y axes). TRG truncates tensor M (n) into a lower-rank tensor with different
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strategies. HOTRG is a simple TRG method based on higher-order singular value

decomposition: one can renormalize tensor M (n) by multiplying a unitary matrix

U(n) on each horizontal side (or vertical side) to truncate the expanded dimension

from D2 to Dc,

T
(n+1)
xx′yy′ =

∑
ij

U
(n)
ix M

(n)
ijyy′U

(n)
jx′ , (7.7)

where U(n) is determined by the higher-order singular value decomposition of the ex-

panded tensor M (n). A new tensor T (n+1) with a reduced bond dimension is obtained,

and truncation errors can be reduced by increasing the cut-off bond dimension Dc.

7.3 Numerical results

7.3.1 Exact method

P
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B = 64
B = 1024
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0.04 0.08 0.12 0.16 0.2 0.24 0.28

Figure 7.1: Failure rate Pf of the partition function for 2D Edwards-Anderson spin
glass as a function of the temperature T . 960 samples with L = 4 and p = 0.5 were
generated to calculate the failure rate and error bars.
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The code was written in the C++ programming language, and all the thermo-

dynamic quantities were stored with a double- or higher-precision data type from

the GNU Multiple Precision Arithmetic Library (GMP) [181]. Without the trunca-

tion of TRG, a coarse graining scheme based on the tensor-network model should

in principle produce an exact partition function for 2D EA Ising spin glass. Due to

memory limitations, the maximum system size for this brute force method is L = 4

(The system with L = 8 requires 235 = 34GB memory) .

In order to demonstrate that the limited precision of the data type is the primary

reason for negative partition function values for spin glass at low temperatures, we

first define the failure rate Pf of the partition function as the number of samples

with negative partition function values divided by the total number of samples:

(Pf = nnegative/ntotal
). A total of 960 samples (L = 4) with randomly distributed

bimodal interactions (p = 0.5) were generated, and partition functions for these

samples were calculated with a double- (64 bits) and a higher-precision (1024 bits)

data type. Figure 7.1 shows the failure rate of the partition function as a function of

temperature. It is clear that with a double precision data type, the failure rate goes

up as the temperature decreases. However, the failure rate vanishes with a 1024-bit

precision data type.

To further show that higher-precision data types can reduce the failure rate of

the partition function for 2D spin glass, we plot the failure rate Pf as a function of

the data type’s precision B. Figure 7.2 shows that the failure rate goes down as the

data precision increases. These results are strong evidence that negative partition

function values are caused by the limited precision of the data type.

The success of TRG for ferromagnetic Ising models implies that there is an in-

trinsic difference between the Ising model and spin glass. To probe this difference,

we carried out two steps of coarse graining for 2D spin glass and for the Ising model
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Figure 7.2: Failure rate Pf of the partition function for 2D Edwards-Anderson spin
glass as a function of the number of bits B. 960 samples with L = 4 and p = 0.5 at
T = 0.05 were generated to calculate the failure rate and error bars.

with L = 4, and then plotted 256 tensor components of the contracted tensor T (n+1).

Figure 7.3 shows that for spin glass, near-cancellation of the positive and negative

tensor components of the partition function requires a higher-precision data type

in order to obtain the difference of the tensor components with useful accuracy. In

contrast, for the Ising model, all components are positive, so double precision is good

enough to obtain accurate results.

7.3.2 HOTRG

We applied HOTRG to 2D EA spin glass and computed the failure rate of the

partition function as function of the cut-off parameter and data precision for different

system sizes. Figure 7.4 shows that the failure rate Pf goes up as the system size

L increases, which is not surprising since the precision and truncation errors add

up. With a fixed system size and data precision, the failure rate goes down as the

104



1029

0 50 100 150 200 250

If

-

1029

T
f

1.715167241569028652989795895753217622412× 1029

−1.715167241569028652989795895676763482937× 1029

= 7.6454139475

1067

1068

T
f

SG

FM

Figure 7.3: Example plot for 256 tensor components of 2D Edwards-Anderson spin
glass with p = 0.5, L = 4, and T = 0.05 and components of the ferromagnetic Ising
model with L = 4 and T = 0.05. Tf is the tensor element value and If is the tensor
element index of the final contracted tensor.
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Figure 7.4: Failure rate Pf of the partition function for 2D Edwards-Anderson spin
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and error bars.
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cut-off parameter Dc is increased, but the result doesn’t get much better at low

temperatures. However, with greater data precision (going from 64 bits to 1024

bits), the failure rate drops sharply, which again demonstrates the importance of

data precision for the low-temperature numerical simulation of spin glass.

7.4 Conclusions

By studying the partition function for the two-dimensional EA Ising spin-glass

model on a square lattice using the tensor renormalization group method (TRG), we

demonstrated that the limited precision of the data type rather than a small cut-off

parameter is the primary reason for the negative partition function values for spin

glass at low temperatures. In order to obtain accurate partition function values at

very low temperatures, both a high-precision data type and a large cut-off parameter

are required, thus illustrating that TRG can not be applied to frustrated magnetic

systems.
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8. SUMMARY AND OUTLOOK

In chapter 3 I show that for λ > 3, spin glasses on scale-free graphs in thermal

equilibrium do order at finite temperatures in a field. These results again illustrate

that Boolean decision problems on scale-free networks are superbly robust to global

perturbations. It will be interesting to perform these simulations for real networks in

the future, as well as the study of q-state Potts variables [182]. At zero temperature,

when driven with an external field, Boolean decision problems on scale-free networks

show self-organized critical behavior only when the number of neighbors diverges with

the system size, i.e., for λ ≤ 2. These results show that “damage” can easily spread

on real networks, where typically λ ≤ 3. Boolean decision problems on scale-free

networks show a potential fragility when driven in non-equilibrium scenarios at zero

temperature. However, no unifying mathematical formalism has been elaborated so

far and it appears unclear how to identify whether a given spin system displays SOC

behavior [183]. Upcoming research will analyze general characteristics or sufficient

conditions that guarantee a system will display SOC.

In order to develop hard and robust benchmark instances for a quantum annealer,

in chapter 4 [184] I tested different instance classes by computing their yield and

resilience. The data show that bond noise has a greater impact than field noise,

while resilience decreases with a lower classical energy gap and a larger degeneracy

of the first excited state. The U1 instance class has the highest resilience but virtually

zero yield, while the Sidon instance class is the least resilient to Gaussian random

noise but has a large fraction of unique ground states. The U4 and U5,6,7 instance

classes have roughly the same resilience, but the U5,6,7 instances have a much higher

yield, so instance classes like U5,6,7 with medium high resilience and yield will be
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best suited for detecting quantum enhancement for the D-Wave quantum annealer.

Future research will apply the bulk ε-perturbation developed by Palassini and Young

[185] to design hard instances. For an instance, we determine an exact ground

state, apply a specific perturbation to the couplings and determine a ground state

of the perturbed system. Intuitively, we call a landscape complicated if the spin

configurations of the unperturbed and perturbed ground states are “very” different.

Otherwise the energy landscape is uncomplicated as the perturbation only slightly

changes the ground state.

The phenomenon of quantum tunneling (QA) suggests a better performance of

QA with respect to simulated annealing (SA) in cases of high but narrow energy

barriers. Such intuitive expectation can be made quantitative using the following

argument [186]: if the system tries to overcome an energy barrier of height ∆, the

classical probability of escape over the barrier is of the order of exp (−∆/T ), where

T denotes the temperature of the system, while the quantum tunneling probability

is of the order of exp (−∆1/2w/Γ), where w denotes the width of the barrier and Γ

denotes the strength of the quantum fluctuation. For N -spin glasses, ∆ ∝ N , and

with a linear annealing schedule for the transverse field, one gets τ ∝ exp (N1/2) for

the annealing time (instead of τ ∝ exp (N) for thermal annealing). This O(N1/2)

advantage can be potentially used to detect quantum speedup for D-Wave machine.

Upcoming research will apply fast Fourier transform algorithm to automatically de-

tect peak of probability distribution of spin glass order parameter and mine a large

number of instances down to a much smaller set of engineered instances with the

tunable height of energy barriers. Hopefully we will be able to detect the first signs

of quantum speedup by comparing performance of D-Wave Two machine and SA on

these benchmark instances.

In chapter 5 and 6 I developed a rejection-free cluster algorithm for spin glasses
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in any space dimension, and this greatly improves thermalization and equiprobable

sampling of ground states. By restricting Houdayer cluster moves to temperatures

where cluster percolation is hampered by the interplay of frustration and temper-

ature, we were able to extend the Houdayer cluster algorithm for two-dimensional

spin glasses to any topology/space dimension. Our standard implementation of the

cluster updates represents only minor overhead in relation to the thermalization time

speedup obtained from the isoenergetic cluster moves—a speedup that increases with

the system size. The isoenergetic cluster moves can be potentially applied to Ising

spin glasses with multispin interactions on two-dimensional triangular lattice (50 per-

cent of site percolation threshold), a topology with NP-hard complexity for finding

ground states [187] and an alternative topology for quantum annealer hardware. In

addition, our cluster moves can be added to any algorithm such as population an-

nealing to speed up dynamics. The future research will emphasize the applications

of cluster moves in other research disciplines.

In chapter 7 I investigated the partition function of the two-dimensional Edwards-

Anderson Ising spin-glass model on a square lattice by using the tensor renormaliza-

tion group method based on higher-order singular value decomposition (HOTRG).

We demonstrated that the limited precision of the data type rather than the small

cut-off parameter is the primary reason for the negative partition function value for

spin glass at low temperatures. In order to obtain an accurate partition function

value at very low temperatures, both a high precision data type and a large cut-off

parameter are required. This illustrates that HOTRG can not be applied to frus-

trated magnetic systems. The nature of negative partition function for spin glass

is still unknown. However, the comparison of tensor components of 2D Edwards-

Anderson spin-glass and ferromagnetic Ising model might suggest the presence of

minus sign problem [188], which refers to failure of numerical methods because of
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the near-cancellation of the positive and negative contributions to the integral and

each contribution has to be integrated to very high precision in order for their differ-

ence to be obtained with useful accuracy. Future research will focus on identifying

the underlying mechanism of the highly oscillatory tensor components of Ising spin

glasses.
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[55] F. Liers, M. Jünger, G. Reinelt, and G. Rinaldi in New Optimization Algorithms

in Physics (A. K. Hartmann and H. Rieger, eds.), Berlin: Wiley-VCH, 2004.

[56] J. J. Moreno, H. G. Katzgraber, and A. K. Hartmann, “Finding low-

temperature states with parallel tempering, simulated annealing and simple

Monte Carlo,” Int. J. Mod. Phys. C, vol. 14, p. 285, 2003.

[57] W. Wang, J. Machta, and H. G. Katzgraber, “Comparing Monte Carlo methods

for finding ground states of Ising spin glasses: population annealing, simulated

annealing and parallel tempering,” 2014. (arXiv:1412.2104).

[58] K. F. Pal in Parallel Problem Solving from Nature, (Berlin), p. 170, Springer,

1994.

[59] A. Bautu, E. Bautu, and H. Luchian, “Particle swarm optimization hybrids for

searching ground states of ising spin glasses,” pp. 415–418, 2007.

[60] S. Boettcher and A. G. Percus, “Optimization with Extremal Dynamics,” Phys.

Rev. Lett., vol. 86, p. 5211, 2001.

[61] M. Laguna and P. Laguna, “Applying tabu search to the two-dimensional ising

spin glass,” International Journal of Modern Physics C, vol. 6, pp. 11–23, 1995.

[62] S. Boettcher, “Extremal Optimization for Sherrington-Kirkpatrick Spin

Glasses,” E. Phys. J. B, vol. 46, p. 501, 2005.

117
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Narvion, Gordillo-Guerrero, D. Iñiguez, A. Maiorano, F. Mantovani, E. Mari-

nari, V. Martin-Mayor, J. Monforte-Garcia, A. Muñoz Sudupe, D. Navarro,
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APPENDIX A

ANALYTICAL FORM OF THE DE ALMEIDA-THOULESS FOR HR → 0

In this appendix [31] we derive analytically the form of the AT line in the limit

when Hr → 0 for a type of scale-free network which is very convenient for analytical

calculations, namely the static model used by Kim et al. [33], whose procedures and

equations we shall closely follow. In this model the number of vertices N is fixed.

Each vertex i (i = 1, 2, . . . , N) is given a weight pi, where

pi =
i−µ

ζN(µ)
. (A.1)

where µ is related to λ via λ = 1 + 1/µ, and

ζN(µ) ≡
N∑
j=1

j−µ ≈ N1−µ

1− µ. (A.2)

Only µ in the range [0, 1) (i.e., λ > 2) will be discussed. Two vertices i and j are

selected with probabilities pi and pj and if i 6= j they are connected with a single

bond unless the pair are already connected. The process is repeated NK/2 times.

Then in such a network, the probability that a given pair of vertices is not connected

by an edge is 1 − fij = (1 − 2pipj)
NK/2 ≈ exp(−NKpipj), and the probability that

they are connected by an edge is fij = NKpipj. This product form for fij enabled

Kim et al. [33] to proceed analytically. Note that here K is the mean degree of the

scale-free network generated by this procedure.

We shall work in the paramagnetic phase where the spin glass is replica symmet-
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ric, i.e., where

qab =
∑
i

pi〈sai sbi〉 = q, (A.3)

independently of the replica labels a = 1, 2, . . . , n, where n is set to zero at the

end of the calculation. In qab, a 6= b, Kim et al. [33] showed then that the higher

order parameters such as qabcd =
∑

i pi〈sai sbiscisdi 〉 can be neglected when q is suffi-

ciently small—that is, in the region near Tc studied in this appendix—and that a

“truncation” approximation can be made for q

q =

∫
Dz

N∑
i=1

pi tanh2
(
z
√
NKT2piq +H2

r /T
2
)
, (A.4)

where ∫
Dz ≡ 1√

2π

∫ ∞
−∞

dze−z
2/2 (A.5)

and

T2 = 〈tanh2(Jij/T )〉. (A.6)

Here the average is over the distribution of bonds, assumed symmetric, i.e., P (Jij) =

P (−Jij). The random field of variance H2
r was not included in the Kim et al. [33]

paper, but Eq. (A.4) is consistent with the equations for a spin glass in a random

field studied in Ref. [191] (in the appropriate limit).

In theHr–T phase diagram it is expected that the assumption of replica symmetry

holds until the AT line is crossed. The equation of the line where the spin-glass

susceptibility diverges follows from the expressions given in Ref. [33]:

(KT2)−1 =

∫
Dz

N∑
i=1

Np2
i sech4

(
z
√
NKT2piq +H2

r /T
2
)
. (A.7)

The solution of Eqs. (A.4) and (A.7) together fix the equation of the AT line.
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It is convenient to convert the sums over i to integrals. Let x = i/N . Then∑N
i=1 →

∫ 1

0
Ndx, and in the large-N limit Eq. (A.4) becomes

q =

∫
Dz
∫ 1

0

dx
1− µ
xµ

tanh2
(
z
√
Q′/xµ +H2

r /T
2
)
, (A.8)

where Q′ = (1 − µ)KT2q. Equation (A.7) becomes on converting the sum to an

integral

(KT2)−1 =

∫
Dz
∫ 1

0

dx
(1− µ)2

x2µ
sech4

(
z
√
Q′/xµ +H2

r /T
2
)
. (A.9)

We shall only study explicitly here the case where 3 < λ < 4 (1/3 < µ < 1/2).

Similar procedures can be used to determine the AT line when λ > 4. We first

rewrite Eq. (A.8) as

q =

∫
Dz
∫ 1

0

dx
1− µ
xµ

{
z2(Q′/xµ +H2

r /T
2).

+
[
tanh2(z

√
Q′/xµ +H2

r /T
2)− z2(Q′/xµ +H2

r /T
2)
]}
. (A.10)

The integral over z involving just the first line of Eq. (A.10) can be done to yield

q = (K/Kp)T2q +H2
r /T

2 +R(Hr, q), (A.11)

where

Kp =
1− 2µ

(1− µ)2
, (A.12)

135



and

R(Hr, q) =

∫
Dz
∫ 1

0

dx
1− µ
xµ

[
tanh2

(
z
√
Q′/xµ +H2

r /T
2
)

−z2
(
Q′/xµ +H2

r /T
2
)]
. (A.13)

One can show that R(Hr, q) = R(0, q) + O(Q′H2
r /T

2). For small q, the term in

addition to R(0, q) is negligible in comparison to the term H2
r /T

2 in Eq. (A.11) and

can be dropped. We next re-write the integral for R(0, q) as

R(0, q) =

∫
Dz
(∫ ∞

0

dx−
∫ ∞

1

dx

)
1− µ
xµ

[
tanh2(z

√
Q′/xµ)− z2Q′/xµ

]
. (A.14)

The integral from 1 to∞ can be evaluated for small Q′ by expanding the tanh in

a power series in Q′. The integrals converge for λ < 4 and the leading contribution

is

2Q′
2
(1− µ)

λ− 1

4− λ +O(Q′
3
).

The integral from 0 to ∞ can by evaluated after a variable change w = z
√
Q′/xµ

when it gives a contribution F (λ)Q′λ−2, where

F (λ) = P (λ)

∫ ∞
0

dww3−2λ[tanh2w − w2]. (A.15)

Here P (λ) = (1 − µ)Γ(λ − 3/2)2λ−1(λ − 1)/
√
π. Thus, for 3 < λ < 4, the equation

of state is

H2
r /T

2 = q[1−KT2/Kp]− F (λ)Q′
λ−2

−2Q′
2
(1− µ)

λ− 1

4− λ +O(Q′
3
), (A.16)
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which agrees with the expression given in Ref. [33] when Hr = 0.

When 4 < λ < 5, one can proceed in a similar fashion. The equation of state is

unchanged except F (λ) becomes F̃ (λ) where

F̃ (λ) = P (λ)

∫ ∞
0

dww3−2λ[tanh2w − w2 + 2w4/3]. (A.17)

For λ > 5 the term in Q′λ−2 is subdominant to the term of order Q′3 and can be

ignored to leading order.

We next deduce some simple features which follow from the equations of state.

In the high-temperature state q ∼ H2
r /T

2, and in the limit of Hr/T → 0,

χSG →
q

(H2
r /T

2)
=

1

1−KT2/Kp

. (A.18)

The zero-field spin-glass susceptibility χ diverges at the zero-field transition temper-

ature Tc where T2 = Kp/K, and at lower temperatures q becomes nonzero. The

divergence of this susceptibility as the transition is approached is of the same form

for all λ > 3. This means for the critical exponent

γ = 1 (λ > 3) (A.19)

However, the exponent β in q ∼ (1− T/Tc)β depends on λ. We obtain

β =
1

λ− 3
(3 < λ < 4) (A.20)

β = 1 (λ > 4). (A.21)

We can use Eq. (A.9) in conjunction with the equations of state to determine the

form of the AT line as Hr/T → 0. Once again, we shall start in the region 3 < λ < 4
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and write the term sech4(z
√
Q′/xµ +H2

r /T
2) as 1 + [sech4(z

√
Q′/xµ +H2

r /T
2)− 1].

The term in unity in the integral evaluates to 1/Kp, so

(KT2)−1 = 1/Kp + S(Hr, q), (A.22)

where

S(Hr, q) =

∫
Dz
∫ 1

0

dx
(1− µ)2

x2µ

[
sech4

(
z
√
Q′/xµ +H2

r /T
2
)
− 1
]
. (A.23)

Once again, it is sufficient to evaluate S(Hr, q) at Hr = 0; the corrections of

O(H2
r /T

2) are negligible compared to the terms which we retain. Next we rewrite

the integral as

S(0, q) =

∫
Dz
(∫ ∞

0

dx−
∫ ∞

1

dx

)
(1− µ)2

x2µ

[
sech4

(
z
√
Q′/xµ

)
− 1
]
. (A.24)

The integral from 0 to ∞ can be evaluated after making the same variable change

w = z
√
Q′/xµ, when it gives the contribution G(λ)Q′λ−3, where

G(λ) = 2λ−2(1− µ)2(λ− 1)Γ(λ− 5/2)/
√
π ×

∫ ∞
0

dww5−2λ[sech4w − 1].

The integral from 1 to ∞ can be done in a power series in Q′ and the leading term

of this contribution to S(0, q) is

−2(1− µ)2Q′/(1− 3µ) +O(Q′
2
).

We can now calculate the AT line: It is simplest to combine Eqs. (A.16) and (A.22)
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to eliminate the term in (1−KT2/Kp) when one finds that

H2
AT/T

2 = C(λ)Q′
λ−2

+O(Q′
3
), (A.25)

where

C(λ) =
1√
π

2λ−2(λ− 2)Γ(λ− 5/2)

∫ ∞
0

dww5−2λ
{

sech4w − 1

−2(λ− 5/2)
[
tanh2w/w2 − 1

]}
. (A.26)

The integral has to be done numerically but it stays finite as λ → 4. For example,

C(3.75) ≈ 0.530. The terms of O(Q′2) cancel from Eq. (A.25). Thus, in the range

3 < λ < 4, the equation of the AT line in terms of the temperature rather than Q′

is just

H2
AT/T

2 ∼ (1− T/Tc)
λ−2
λ−3 (3 < λ < 4). (A.27)

Note that this is in agreement with the scaling form

H2
AT/T

2 ∼ (1− T/Tc)β+γ, (A.28)

on inserting the vales for β = 1/(λ− 3) and γ = 1 for 3 < λ < 4.

In the range 4 < λ < 5, a similar expression holds for H2
AT/T

2 as in Eq. (A.25),

but C(λ) becomes C̃(λ) where

C̃(λ) =
1√
π

2λ−2(λ− 2)Γ(λ− 5/2)

∫ ∞
0

dww5−2λ
{

sech4w − 1 + 2w2−

2(λ− 5/2)
[
tanh2w/w2 − 1 + 2w2/3

]}
. (A.29)
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Because in this range the exponent Q′ ∼ (1− T/Tc), the form of the AT line is

H2
AT/T

2 ∼ (1− T/Tc)λ−2 (4 < λ < 5). (A.30)

Finally, in the range λ > 5, the term in Q′λ−2 is subdominant compared with the

term in Q′3 and

H2
AT/T

2 ∼ (1− T/Tc)3 (λ > 5), (A.31)

which is the familiar form of the AT line in the SK model.

One can also use the static model to investigate the behavior when λ < 3. The

spin-glass phase with broken replica symmetry exists in zero field up to infinite

temperature, i.e., Tc is infinite when λ < 3 [33]. However, in the interval 5/2 < λ < 3

the application of a large enough random field Hr can restore replica symmetry. By

solving Eqs. (A.8) and (A.9) it can be shown that this happens at a field HAT, where,

as before, β2H2
AT ∼ Q′λ−2 where

HAT ∼ T
5−2λ
3−λ (2.5 < λ < 3). (A.32)

for the limit when T →∞. This phase boundary is, as usual, for the thermodynamic

limit whenN →∞. The behavior which would be seen in simulations at finite system

size N will be complicated by an unfamiliar finite-size behavior because, for this λ

range, Tc at zero field is infinite. When λ < 5/2 we believe that for all Hr and T

the spin-glass phase has broken replica symmetry and so as a consequence, there will

then be no AT line.

140


