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1. Introduction 

Statistical physics is the area of physics which studies the properties of systems composed of 
many microscopic particles (like atoms and molecules). When combined, the interactions 
between these particles produce the macroscopic features of the systems. The systems are 
usually characterized by a very large number of variables and the limited possibilities for 
observing the properties of the components of the system. For these reasons, solving 
problems arisen in Statistical Physics with analytical approaches is usually ineffective and 
sometimes impossible. However, statistical approaches (such as Monte Carlo simulation) 
can provide acceptable approximations for solutions of these problems. Moreover, recent 
studies showed that nature inspired metaheuristics (like Genetic Algorithms, Evolutionary 
Strategies, Particle Swarm Optimization, etc) can also be used to simulate, analyse, and 
optimize such systems, providing fast and accurate results. Apart from physical 
implications, problems from Statistical Physics are also important in fields like biology, 
chemistry, mathematics, communications, economy, sociology, etc. 
We will present two important problems from Statistical Physics and discuss how one can 
use Particle Swarm Optimization (PSO) to tackle them. First, we will discuss how the real-
valued version of PSO can be used to minimize the energy of a system composed of 
repulsive point charges confined on a sphere. This is known as the Thomson problem and it 
is included in Stephen Smale's famous list of 18 unsolved mathematical problems to be 
solved in the 21st century. This problem also arises in biology, chemistry, communications, 
economy, etc. 
Latter on, we will discuss how the binary version of PSO can be used to search ground 
states of Ising spin glasses. Spin glasses are materials that simultaneously present 
ferromagnetic and anti-ferromagnetic interactions among their atoms. A ground state of a 
spin glass is a configuration of the system in which this has the lowest energy possible. 
Besides its importance for Statistical Physics, this problem has applications in neural 
network theory, computer science, biology, etc. 

2. The Basics of Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a metaheuristic inspired by the behaviour of social 
creatures, which interact between them in order to achieve a common goal. Such behaviour 
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can be noticed in flocks of birds searching for food or schools of fish trying to avoid 
predators (Eberhart & Kennedy, 1995). 
The philosophy of PSO is based on the evolutionary cultural model, which states that in 
social environments individuals have two learning sources: individual learning and cultural 
transmission (Boyd & Richerson, 1988). Individual learning is an important feature in static 
and homogeneous environments, because one individual can learn many things about the 
environment from a single interaction with it. However, if the environment is dynamic or 
heterogeneous, then that individual needs many interactions with the environment before it 
gets to know it. Because a single individual might not get enough chances to interact with 
such environment, cultural transmission (meaning learning from the experiences of others) 
becomes a requisite, too. In fact, individuals that have more chances to succeed in achieving 
their goals are the ones that combine both learning sources, thus increasing their gain in 
knowledge. 
In order to solve any problem with PSO, we need to define a fitness function which will be 
used to measure the quality of possible solutions for that problem. Then, solving the original 
problem is equivalent to optimizing parameters of the fitness function, such that we find 
one of its minimum or maximum values (depending on the fitness function). By using a set 
of possible solutions, PSO will optimize our fitness function, thus solving our original 
problem. In PSO terms, each solution is called a particle and the set of particles is called a 
swarm. Particles gather and share information about the problem in order to increase their 
quality and hopefully become the optimum solution of the problem. Therefore, the driving 
force of PSO is the collective swarm intelligence (Clerc, 2006). 
The fitness function generates a problem landscape in which each possible solution has a 
corresponding fitness value. We can imagine that similar to birds foraging in their 
environment, the PSO particles move in this landscape searching locations with higher 
rewards and exchanging information about these locations with their neighbours. Their 
common goal is to improve the quality of the swarm. During the search process the particles 
change their properties (location, speed, memory, etc) to adapt to their environment. 

3. Particle Swarm Optimization and the Thompson problem 

In 1904, while working on his plum pudding model of the atom, the British physicist Joseph 
John Thomson stated the following problem: what is the minimum energy configuration of 

N  electrons confined on the surface of a sphere? Obviously, each two electrons repel each 

other with a force given by Coulomb's law: 
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where 0ε  is the electric constant of vacuum, eq  is the charge on a single electron, and d  is 

the distance between the two electrons. Because of these forces, each electron will try to get 
as far as possible from the others. However, being confined on the surface of the sphere, 
they will settle for a system configuration with minimum potential energy. The potential 

energy of a system with N  electrons is: 
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where we consider the electrons numbered in some random fashion, and ijd  is the distance 

between electrons ith and jth in the system configuration S . Any configuration with 

minimum potential energy is called a “ground state” of the system. 
Over the years, various generalizations for the Thomson problem have also been studied 
from different aspects. The most common generalization involves interactions between 
particles with arbitrary potentials. Bowick studied a system of particles constrained to a 

sphere and interacting by a γ−d  potential, with 20 << γ  (Bowick et al, 2002). Travesset 

studied the interactions of the particles on topologies other than the 2-sphere (Travesset, 

2005). Levin studied the interactions in a system with 1−N  particles confined on the sphere 

and 1 particle fixed in the centre of the sphere (Levin & Arenzon, 2003). In general, finding 

the ground state of a system of N  repulsive point charges constrained to the surface of the 

2-sphere is a long standing problem, which was ranked 7 in Stephen Smale's famous 
list (Smale, 2000) of 18 unsolved mathematical problems to be solved in the 21st century, 
along with other famous problems, like the Navier-Stokes equations, Hilbert's sixteenth 
problem and the P=NP problem. 
Apart from physics, the Thomson problem arises in various forms in many other fields: 
biology (determining the arrangements of the protein subunits which comprise the shells of 
spherical viruses), telecommunications (designing satellite constellations, selecting locations 
for radio relays or access points for wireless communications), structural chemistry (finding 
regular arrangements for proteins S-layers), mathematics, economy, sociology, etc. From an 
optimization point of view, the Thomson problem is of great interest to computer scientists 
also, because it provides an excellent test bed for new optimization algorithms, due to the 
exponential growth of the number of minimum energy configurations and to their 
characteristics. 

The Thomson problem can be solved exactly for small values of N  point charges on the 

surface of a sphere or a torus. However, for large values of 8>N , exact solutions are not 

known. The configurations found so far for such values display a great variety of 
geometrical structures. The best known solutions so far for such systems were identified 
with numerical simulations, using methods based on Monte Carlo simulations, evolutionary 
algorithms, simulated annealing, etc (Carlson et al., 2003; Morris et al., 1996; Perez-Garrido 
et al., 1996; Pang, 1997). PSO for the Thompson problem was first introduced in (Băutu & 
Băutu, 2007). 
We will present in the following how the real-valued version of PSO can be used to tackle 
the Thomson problem. In order to avoid confusion, we will use the term “point charges” to 
refer to physical particles on the sphere (electrons, for example) and “particles” to refer to 
the data structures used by the PSO algorithm. 
As mentioned in the previous section, in order to use a PSO algorithm we need to define a 
function that will measure the quality of solutions encoded by particles. One can think of 
many such functions for the Thompson problem, but a simple and quick solution is to use 
the potential energy of a system. We can save some computation time if we ignore the 
physical constants and use a simplified version of (2) for our fitness function: 
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where N  is the number of point charges in the system, ijd  is the Euclidian distance 

between point charges i and j, encoded by the particle P . If we represent our system 

configuration in 3D space using a Cartesian coordinate system, then we need to handle N3  

real values, for the values on the Ox, Oy and Oz axis of each particle (see Figure 1). We will 
also need to explicitly enforce the sphere surface constraints which require additional 
computation time. 

`  

Figure 1. Point charge represented in 3D Cartesian coordinate system 

The memory requirements can be reduced and the computation overhead for constraint 
enforcing can be avoided, if we scale our system to the unit sphere and represent its 
configuration using a Spherical coordinate system. In this way, the sphere surface constraint 
is implicitly enforced and since r  is constant, the system configuration is encoded with only 

N2  real values, representing the azimuth φ  and elevation θ  angles (see Figure 2). 

 

Figure 2. Point charge represented in 3D Spherical coordinate system 

In this case, the distance between point charges i and j located on the surface of the unit 
sphere is 

 )]cos(sinsincos[cos22 jijijiijd θθφφφφ −+−= , (4) 
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where [ ]ππφφ ,, 21 −∈  is the azimuth angle and [ ]2/,2/, ππθθ −∈ji  is the elevation angle. 

Thus, PSO particles move in the search space [ ] N2
1,0  and the location [ ] Nx

2
1,0∈  of a particle 

decodes into a system configuration with: 

 ππφ −= −122 ii x  (5) 

 2/2 ππθ −= ii x  (6) 

With this setup in place, the PSO algorithm begins with a swarm of particles randomly 
scattered around the search space. This generic initialization method could be replaced with 
a problem specific one (spherical initialization, for example). Each particle has a set of 
neighbours with which it will exchange information. An iterative process begins, which 
updates the properties of the particles. On each iteration each particle use the information 
from its own memory and the information gathered from its neighbours to update its 
properties. The equation used for updating the speed is: 

 ( ) ( )112211111 −−−−− −+−+= tttttt xgRxpRvv φφω , (7) 

where tv  is the speed at iteration t , tx  is the location of the particle at iteration t , tp  is the 

best location the particle has found until iteration t , tg  is the best location the neighbours 

of the particle found up to the iteration t . The individual learning and cultural transmission 

factors ( 1φ  and 2φ ) control the importance of the personal and neighbour's experience on 

the search process. Note that although they share the same notation, these are parameters of 
the algorithm and are distinct and not related to the azimuth angles of the point charges. 
Because the importance of individual learning and cultural transmission is unknown, the 

learning factors are weighted by random values )1,0[, 21 ∈RR . Usually the speed is bounded 

by some maxv  parameter to prevent it from increasing too much because of these random 

values. 
With the updated speed vector and the old position of the particle, the new position is 
computed with: 

 tvx tt ∆+= −1tx , (8) 

for 1=∆t  iteration. 

Based on the previous discussion, the PSO algorithm used for the Thomson problem is 
summarized in Figure 3. The algorithm is very simple and requires basic programming 
skills to be implemented in any programming language. It has many parameters that can be 
tuned in order to achieve high performance results. The tuning process of these parameters 

is beyond the purpose of this chapter. For now, let’s consider the following setup: 9.0=ω  

— will allow the algorithm to avoid rapid changes in the trajectories of the particles; 

221 == φφ  — gives equal weight to individual and social learning; iterations = 500 — for 

small and medium size systems, this should be enough for the particles to discover and 

focus on good solutions; NM 2=  — increases the swarm size with the size of the system. 
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Figure 3. PSO algorithm for the Thomson problem 

Performing 10 runs of the algorithm from Figure 3 for systems with different sizes, we 
obtained the results presented in Table 1: 

N Minimum known energy Energy of PSO solution

2 0.500000000 0.500000000

3 1.732050808 1.732050808

4 3.674234614 3.674234614

5 6.474691495 6.474691495

6 9.985281374 9.985281374

7 14.452997414 14.452987365

8 19.675287861 19.675287861

9 25.759986531 25.759986599

10 32.716949460 32.717003657

15 80.670244114 80.685310397

20 150.881568334 150.953443814

25 243.812760299 243.898092955

30 359.603945904 359.901863399

35 498.569872491 499.018395878

40 660.675278835 661.666117852

45 846.188401061 847.129739052

50 1055.182314726 1056.517970873

Table 1. Minimum energies for Thomson problem found in experiments 

From the results in Table 1, one can see that this simple PSO algorithm can provide high 
quality estimates for the ground states of various instances of the Thomson problem. The 
algorithm can be further improved not only in its parameters, but also in its structure (using 
a more advanced initialization method, for example). Obviously, the Particle Swarm 
Optimization algorithm can be applied for generalized forms of Thomson problem and 
other related problems, not only from Statistical Physics, but other domains, too. 

1. Initialize M  random particles 
2. for t = 1 to iterations 
3.  for each particle 

4.   Update tv  according to (7) 

5.   Update tx  according to (8) 

6.   Decode tx  using (5) and (6) 

7.   Evaluate tx  using (3) and (4) 

8.   Update tp  and tg  according to their definition 

9.  next 
10. next 
11. return solution from the particle with smaller fitness
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4. Binary Particle Swarm Optimization and Ising Spin Glasses  

Matter is composed of atoms and each atom carries a spin, meaning the magnetic moment 
of the microscopic magnetic field around the atom generated by the motion of the electrons 
around its nucleus. 
If we heat a metal object higher than the Curie point of its material, the object will loose its 
ferromagnetic properties and become paramagnetic. At that point, the spins of the atoms 
change randomly so erratic that at any time they can point with equal probability to any 
possible direction. In this case, the individual microscopic magnetic fields generated by the 
spins cancel each other out, such that there is no macroscopic magnetic field (Huang, 1987). 
When the temperature is lower than the Curie point, in some metals (iron and nickel, for 
example) the spins of the atoms tend to be polarized in the same direction, producing a 
measurable macroscopic magnetic field. This is called “ferromagnetic” behaviour. By 
contrast, below the Curie point, in spin glasses only some pairs of neighbouring spins prefer 
to be aligned, while the others prefer to be anti-aligned, resulting two types of interactions 
between atoms: ferromagnetic and anti-ferromagnetic. Because of this mix of interactions, 
these systems are called disordered (den Hollander & Toninelli, 2005). 
In the past, condensed matter physics has focused mainly on ordered systems, where 
symmetry and regularity lead to great mathematical simplification and clear physical 
insight. Over the last decades, spin glasses became a thriving area of research in condensed 
matter physics, in order to understand disordered systems. Spin glasses are the most 
complex kind of condensed state encountered so far in solid state physics (De Simone et al., 
1995). Some examples of spin glasses are metals containing random magnetic impurities 
(called disordered magnetic alloys), such as gold with small fractions of iron added (AuFe). 
Apart from their central role in Statistical Physics, where they are the subject of extensive 
theoretical, experimental and computational investigation, spin glasses also represent a 
challenging class of problems for testing optimization algorithms. The problem is interesting 
because of the properties of spin glass systems, such as symmetry or large number of 
plateaus (Pelikan & Goldberg, 2003). 
From an optimization point of view, the main objective is to find the minimum energy for a 
given spin glass system (Hartmann, 2001; Pelikan & Goldberg, 2003; Fischer, 2004; 
Hartmann & Weigt, 2005). System configurations with the lowest energy are called ground 
states and thus the problem of minimizing the energy of spin glass instances can be 
formulated as the problem of finding ground states of these instances (Pelikan et al., 2006). 
The main difficulties when searching for ground states of spin glasses come from the many 
local optima in the energy landscape which are surrounded by high-energy neighbouring 
configurations (Pelikan & Goldberg, 2003). 
The Ising model is a simplified description of ferromagnetism, yet it is extremely important 
because other systems can be mapped exactly or at least approximately to it. Its applications 
range from neural nets and protein folding to flocking birds, beating heart cells and more. It 
was named after the German physicist Ernst Ising who first discussed it in 1925, although it 
was suggested in 1920 by his Ph.D. advisor, Wilhelm Lenz. Ising used it as a mathematical 
model for phase transitions with the goal of explaining how long-range correlations are 
generated by local interactions. 
The Ising model can be formulated for any dimension in graph-theoretic terms. Let us 

consider a spin glass system with N  spins and no external magnetic field. The interaction 

graph ( )EVG ,=  associated with the system has the vertex set { }NvvV ,,1 K= . Each vertex 
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Vi∈  can be in one of two states { }1,1−∈iS . Edges in this graph represent bonds between 

adjacent atoms in the spin glass system. Each edge Eij∈  has assigned a coupling constant, 

denoted by { }JJJ ij ,−∈ ; an edge exists between vertices i and j if the interaction between 

atoms i and j is not zero. In the classic model, this graph is a standard “square” lattice in 
one, two, or three dimensions. Therefore, each atom has two, four, or six nearest neighbours, 
respectively (see Figure 4). However, various papers present research done on larger 
dimensions (Hartmann, 2001). 

 

Figure 4. Two dimensional Ising spin glass system 

 

Figure 5. Ground state of the system from Figure 4 (values inside circles represent the states 
of the spins; dashed lines represent unsatisfied bonds) 

For a system configuration S , the interaction between neighbouring vertices i and j 

contributes an amount of jiij SSJ−  to the total energy of the system, expressed as the 

Hamiltonian: 

 ( ) ∑
∈

−=

Eij

jiij SSJSH . (9) 

The sign of ijJ  gives the nature of the interaction between neighbours i and j. If ijJ  is 

positive, the interaction is ferromagnetic. Having the two neighbours in the same state 

( ji SS = ) decreases the total energy. If ijJ  is negative, the interaction between neighbours i 
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and j is anti-ferromagnetic. The decrease in total energy is obtained if they have opposite 
states. When all coupling constants are positive (or negative), a lowest-energy configuration 
is obtained when all vertices have the same state. This is the case of ferromagnetic materials. 
When the coupling constants are a mix of positive and negative values, as is the case for spin 
glasses, finding the “ground state” is a very difficult problem. A ground state of the system 
from Figure 4 is presented in Figure 5. 
The two-dimensional Ising model of ferromagnetism has been solved exactly by Onsager 
(Onsager, 1944). The most common configurations in the literature are 2D Ising spin glasses 
on a grid with nearest neighbour interactions. In the case of no periodic boundary 
conditions and no exterior magnetic field, the problem reduces to finding a minimum 
weight cut in a planar graph for which polynomial time algorithms exist (Orlova & 
Dorfman, 1972; Goodman & Hedetniemi, 1973; Hadlock, 1975). Barahona showed that 

finding a ground state for the three-value coupling constant ( { }1,0,1−∈ijJ ) on a cubic grid is 

equivalent to finding a maximum set of independent edges in a graph for which each vertex 
has degree 3 (Barahona, 1982). He also showed that computing the minimum value of the 
Hamiltonian of a spin glass with an external magnetic field,  

 ( ) ∑ ∑
∈ ∈

−−=

Eij Vi

ijiij SShSSJSH 0 , (10) 

is equivalent to solving the problem of finding the largest set of disconnected vertices in a 
planar, degree-3 graph. This means that finding ground states for three-dimensional spin 
glasses on the standard square lattice and for planar spin glasses with an external field are 
NP-complete problems. Istrail showed that the essential ingredient for the NP-completeness 
of the Ising model is the non planarity of the graph (Istrail, 2000). 
Particle Swarm Optimization was introduced as a technique for numerical optimization and 
has proved to be very efficient on many real-valued optimization problems. Because finding 
the ground state of a spin glass system in the Ising model is a combinatorial problem, we 
need to apply a modified version of PSO. We will use the binary version of PSO (Kennedy & 
Eberhard, 1997). In this case, the ith component of the position vector of a particle encodes 
the state of the ith spin in the system (0 means down, 1 means up), while the ith component of 
the velocity vector determines the confidence of the particle that the ith spin should be up. 
On each iteration of the search process, each particle updates its velocity vector (meaning its 
confidence that the spins should be up) using (7). After that, the particle's position vector 
(meaning its decision about spins being up or down) it updated using the component-wise 
formula: 

 
( )( )

⎪⎩

⎪
⎨
⎧ −+<

=
−

otherwise ,0

exp1 if ,1
1

ti
ti

vR
x  (11) 

where )1,0[∈R  is a random value. Once a particle's position is known, its profit can be 

computed by: 

 ( ) ( )( )∑
≤<≤

−−−=

Nji

tjtiijt xxJxF

1

1212 , (12) 
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With such fitness function, lower values indicate better solutions. Obviously, this fitness 
function is inspired by the Hamiltonian given in (9) and can be adapted easily to external 
magnetic field environments using (10). 
Based on the previous discussion, the Binary PSO algorithm used for the Ising spin glass 
problem is presented in Figure 6. A more advanced PSO algorithm for this problem is 
described in (Băutu et al., 2007). It combines the PSO algorithm with a local optimization 
technique which allows the resulting hybrid algorithm to fine tune candidate solutions. 

 

Figure 6. PSO algorithm for the Ising spin glass problem 

In order to test this algorithm, one can use a spin grass system generator, like the Spin Glass 
Server (SGS). SGS can be used to solve exactly 2D and 3D systems with small sizes or to 
generate systems for testing. It is available online at http://www.informatik.uni-koeln.de/
ls_juenger/research/sgs/sgs.html. 

N 
SGS minimum 
energy per spin 

PSO minimum 
energy per spin 

64 / 3D -1.6875 -1.6875

64 / 3D -1.7500 -1.7500

64 / 3D -1.8750 -1.8750

125 / 3D -1.7040 -1.6720

125 / 3D -1.7680 -1.7360

125 / 3D -1.7360 -1.7040

Table 2. Minimum energies for Ising spin glasses found in experiments 

Table 2 presents the energy per spin values obtained for 3D systems of 4x4x4 and 5x5x5 
spins using (13). They will give you an idea about the performance of the binary PSO on this 
type of problems. The actual values depend on the spin system for which the algorithm is 
used. 

 ( )
( )
N

xF
xE t
t =  (13) 

The results from table 2 were obtained without any tuning of the PSO parameters: the 

individual and social learning factors are 221 == φφ and the inertia factor is 9.0=ω . The 

number of iterations is twice the number of spins, and the number of particles is three times 

1. Initialize M  random particles 
2. for t = 1 to iterations 
3.  for each particle 

4.   Update tv  according to (7) 

5.   Update tx  according to (11) 

6.   Evaluate tx  using (12) 

7.   Update tp  and tg  according to their definition 

8.  next 
9. next 
10. return solution from the particle with smaller fitness 
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the number of spins. SGS provides the minimum energy for these systems using a branch-
and-cut algorithm (De Simone et al., 1995). 

5. Conclusions 

This chapter presented the basic traits of Particle Swarm Optimization and its applications 
for some well known problems in Statistical Physics. Recent research results presented in 
the literature for these problems prove that PSO can find high quality solutions in 
reasonable times (Băutu et al, 2007; Băutu & Băutu, 2008). However, many questions are still 
open: how do the parameters setups relate to the problems tackled? how can we improve 
the basic PSO to get state of the are results? how can we tackle very large size systems? 
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