195 research outputs found

    Verification and Validation of Robot Manipulator Adaptive Control with Actuator Deficiency

    Get PDF
    This work addresses the joint tracking problem of robotic manipulators with uncertain dynamical parameters and actuator deficiencies, in the form of an uncertain control effectiveness matrix, through adaptive control design, simulation, and experimentation. Specifically, two novel adaptive controller formulations are implemented and tested via simulation and experimentation. The proposed adaptive control formulations are designed to compensate for uncertainties in the dynamical system parameters as well as uncertainties in the control effectiveness matrix that pre-multiplies the control input. The uncertainty compensation of the dynamical parameters is achieved via the use of the desired model compensation–based adaptation, while the uncertainties related to the control effectiveness matrix are dealt with via two fundamentally different novel adaptation methods, namely with bound-based and projection operator-based methods. The stability of the system states and convergence of the error terms to the origin are proven via Lyapunov–based arguments. Extensive numerical studies are performed on a two–link planar robotic device, and experimental studies are preformed on Quansers QArm to illustrate the effectiveness of both adaptive controllers. In the experimental validation of the theory, both adaptive controllers demonstrate remarkable resilience, maintaining control of the Quanser QArm even with up to an 80% control input deficiency. After tuning the gains, both joints satisfactorily tracked the desired trajectories. When evaluating the entire experiment, the norm of the square of the total error is averaged. The bound-based controller exhibited an average error of 2.816◦ across all cases, while the projection operator-based controller had a reduced average error of 1.012◦ across all cases. Furthermore, over time, there is a noticeable decrease in error for both joints. These results underscore the robustness and effectiveness of the proposed adaptive controllers, even under substantial actuator deficiencies. The results highlight the significance of achieving near-perfect system knowledge and the careful selection of controls for desirable system performanc

    Model-Based Robot Control and Multiprocessor Implementation

    Get PDF
    Model-based control of robot manipulators has been gaining momentum in recent years. Unfortunately there are very few experimental validations to accompany simulation results and as such majority of conclusions drawn lack the credibility associated with the real control implementation

    Development of Robust Control Strategies for Autonomous Underwater Vehicles

    Get PDF
    The resources of the energy and chemical balance in the ocean sustain mankind in many ways. Therefore, ocean exploration is an essential task that is accomplished by deploying Underwater Vehicles. An Underwater Vehicle with autonomy feature for its navigation and control is called Autonomous Underwater Vehicle (AUV). Among the task handled by an AUV, accurately positioning itself at a desired position with respect to the reference objects is called set-point control. Similarly, tracking of the reference trajectory is also another important task. Battery recharging of AUV, positioning with respect to underwater structure, cable, seabed, tracking of reference trajectory with desired accuracy and speed to avoid collision with the guiding vehicle in the last phase of docking are some significant applications where an AUV needs to perform the above tasks. Parametric uncertainties in AUV dynamics and actuator torque limitation necessitate to design robust control algorithms to achieve motion control objectives in the face of uncertainties. Sliding Mode Controller (SMC), H / μ synthesis, model based PID group controllers are some of the robust controllers which have been applied to AUV. But SMC suffers from less efficient tuning of its switching gains due to model parameters and noisy estimated acceleration states appearing in its control law. In addition, demand of high control effort due to high frequency chattering is another drawback of SMC. Furthermore, real-time implementation of H / μ synthesis controller based on its stability study is restricted due to use of linearly approximated dynamic model of an AUV, which hinders achieving robustness. Moreover, model based PID group controllers suffer from implementation complexities and exhibit poor transient and steady-state performances under parametric uncertainties. On the other hand model free Linear PID (LPID) has inherent problem of narrow convergence region, i.e.it can not ensure convergence of large initial error to zero. Additionally, it suffers from integrator-wind-up and subsequent saturation of actuator during the occurrence of large initial error. But LPID controller has inherent capability to cope up with the uncertainties. In view of addressing the above said problem, this work proposes wind-up free Nonlinear PID with Bounded Integral (BI) and Bounded Derivative (BD) for set-point control and combination of continuous SMC with Nonlinear PID with BI and BD namely SM-N-PID with BI and BD for trajectory tracking. Nonlinear functions are used for all P,I and D controllers (for both of set-point and tracking control) in addition to use of nonlinear tan hyperbolic function in SMC(for tracking only) such that torque demand from the controller can be kept within a limit. A direct Lyapunov analysis is pursued to prove stable motion of AUV. The efficacies of the proposed controllers are compared with other two controllers namely PD and N-PID without BI and BD for set-point control and PD plus Feedforward Compensation (FC) and SM-NPID without BI and BD for tracking control. Multiple AUVs cooperatively performing a mission offers several advantages over a single AUV in a non-cooperative manner; such as reliability and increased work efficiency, etc. Bandwidth limitation in acoustic medium possess challenges in designing cooperative motion control algorithm for multiple AUVs owing to the necessity of communication of sensors and actuator signals among AUVs. In literature, undirected graph based approach is used for control design under communication constraints and thus it is not suitable for large number of AUVs participating in a cooperative motion plan. Formation control is a popular cooperative motion control paradigm. This thesis models the formation as a minimally persistent directed graph and proposes control schemes for maintaining the distance constraints during the course of motion of entire formation. For formation control each AUV uses Sliding Mode Nonlinear PID controller with Bounded Integrator and Bounded Derivative. Direct Lyapunov stability analysis in the framework of input-to-state stability ensures the stable motion of formation while maintaining the desired distance constraints among the AUVs

    Adaptive nonlinear control using fuzzy logic and neural networks

    Get PDF
    The problem of adaptive nonlinear control, i.e. the control of nonlinear dynamic systems with unknown parameters, is considered. Current techniques usually assume that either the control system is linearizable or the type of nonlinearity is known. This results in poor control quality for many practical problems. Moreover, the control system design becomes too complex for a practicing engineer. The objective of this thesis is to provide a practical, systematic approach for solving the problem of identification and control of nonlinear systems with unknown parameters, when the explicit linear parametrization is either unknown or impossible. Fuzzy logic (FL) and neural networks (NNs) have proven to be the tools for universal approximation, and hence are considered. However, FL requires expert knowledge and there is a lack of systematic procedures to design NNs for control. A hybrid technique, called fuzzy logic adaptive network (FLAN), which combines the structure of an FL controller with the learning aspects of the NNs is developed. FLAN is designed such that it is capable of both structure learning and parameter learning. Gradient descent based technique is utilized for the parameter learning in FLAN, and it is tested through a variety of simulated experiments in identification and control of nonlinear systems. The results indicate the success of FLAN in terms of accuracy of estimation, speed of convergence, insensitivity against a range of initial learning rates, robustness against sudden changes in the input as well as noise in the training data. The performance of FLAN is also compared with the techniques based on FL and NNs, as well as several hybrid techniques

    Dynamics and Control of Flexible Composite Robotic Manipulators Based on Finite Element Method

    Get PDF
    The robotic manipulator is a device to carry out the various tasks according to the requirements without any human intervention. Vibration analysis of flexible manipulators has been an important area of research in order to model and control of such systems. In the present analysis, the Timoshenko beam theory based single and double link flexible manipulators made up of advanced composite material have been analyzed using finite element method. A three noded beam element has been implemented for modelling and analysis of the flexible composite manipulators under different input torques. The effects of hybridization of the different composite materials on the positions and residuals of the end effectors have also been studied. The input shaping has also been carried out in order to reduce the residual vibration of the end effector by adjusting the amplitude and time delay. The influences of the taper angles of the tapered flexible composite manipulators on the end effector movement and vibration have also been presented. The linear quadratic regulator control (LQR) scheme has been applied in order to further reduce the residual vibration of the end effector. Various results have been obtained based on the different analyses. The results reveal that the tapered hollow flexible composite manipulators give the better performances in terms of end effector positions and residual vibration. The obtained results based on the LQR control scheme show that residual vibration can be controlled without compromising the end effector movement

    Neuromorphic Robust Framework for Concurrent Estimation and Control in Dynamical Systems using Spiking Neural Networks

    Full text link
    Concurrent estimation and control of robotic systems remains an ongoing challenge, where controllers rely on data extracted from states/parameters riddled with uncertainties and noises. Framework suitability hinges on task complexity and computational constraints, demanding a balance between computational efficiency and mission-critical accuracy. This study leverages recent advancements in neuromorphic computing, particularly spiking neural networks (SNNs), for estimation and control applications. Our presented framework employs a recurrent network of leaky integrate-and-fire (LIF) neurons, mimicking a linear quadratic regulator (LQR) through a robust filtering strategy, a modified sliding innovation filter (MSIF). Benefiting from both the robustness of MSIF and the computational efficiency of SNN, our framework customizes SNN weight matrices to match the desired system model without requiring training. Additionally, the network employs a biologically plausible firing rule similar to predictive coding. In the presence of uncertainties, we compare the SNN-LQR-MSIF with non-spiking LQR-MSIF and the optimal linear quadratic Gaussian (LQG) strategy. Evaluation across a workbench linear problem and a satellite rendezvous maneuver, implementing the Clohessy-Wiltshire (CW) model in space robotics, demonstrates that the SNN-LQR-MSIF achieves acceptable performance in computational efficiency, robustness, and accuracy. This positions it as a promising solution for addressing dynamic systems' concurrent estimation and control challenges in dynamic systems.Comment: 12 pages, 15 figure

    Aerial Robotics for Inspection and Maintenance

    Get PDF
    Aerial robots with perception, navigation, and manipulation capabilities are extending the range of applications of drones, allowing the integration of different sensor devices and robotic manipulators to perform inspection and maintenance operations on infrastructures such as power lines, bridges, viaducts, or walls, involving typically physical interactions on flight. New research and technological challenges arise from applications demanding the benefits of aerial robots, particularly in outdoor environments. This book collects eleven papers from different research groups from Spain, Croatia, Italy, Japan, the USA, the Netherlands, and Denmark, focused on the design, development, and experimental validation of methods and technologies for inspection and maintenance using aerial robots

    Design and Control of an Articulated Robotic Arm Using Visual Inspection for Replacement Activities

    Get PDF
    Design of robotic systems and their control for inspection and maintenance tasks is highly complex activity involving coordination of various sub-systems. In application like inspections in fusion reactor vessels and deep-mining works, a regular off-line maintenance is necessary in certain locations. Due to the hostile environments inside, robotic systems are to be deployed for such internal observations. In this regard, current work focuses on the methodology for maintenance of the first wall blanket modules in a fusion reactor vessel using a manipulator system. A design is proposed for wall tile inspections in an ideal environment in which vacuum and temperature conditions are not accounted and wall surface curvature is not accounted initially. The entire design has four important modules: (i) mathematical modelling (ii) control system design (iii) machine vision and image processing, (iv) hardware development and testing. A five- axis articulated manipulator equipped with a vision camera in eye-to-hand configuration is designed for performing the pick and place operations of the defected tiles in a systematic manner. Kinematic and dynamics analysis of the system are first carried-out and a scaled prototype is fabricated for testing various operating issues. Forward kinematics of manipulator allows in estimation of robot workspace and in knowing the singular regions during operation, while the inverse kinematics of the manipulator would be needed for real time manipulator control task. Dynamics of manipulator is required for design of model-based controllers. Interactive programs are developed in Matlab for kinematics and dynamics and three-dimensional manipulator assembly configuration is modelled in SolidWorks software. Motion analysis is conducted in ADAMS software in order to compare the results obtained from the classical kinematics. Two types of model-based control schemes (namely Computed Torque Control and Proportional Derivative-Sliding Mode Control approach) with and without external disturbances are implemented to study trajectory tracking performance of the arm with different input trajectories. A disturbance observer model is employed in minimizing the tracking errors during the action of external disturbances such as joint friction and payload. In order to experimentally understand the inspection and replacement activities, a test set-up is developed using vision camera and microcontroller platform to guide the robot joint servos so as to perform defected object replacement activity. Presence of crack and the coordinate of the region are indicated with the use of image-processing operations. Using a high resolution Basler camera mounted at fixed distance from the tile surface, the surface images are acquired and image processing module identifies the crack details using edge detection algorithms. Necessary motion of the end-effector will be provided based on the pose calculations using coordinate transformations. Both visual inspection and joint guidance are combined in a single application and the results are presented with a test case of tile replacement activity. The results are presented sequentially using a test surface with uniform rectangular tiles

    Multimodal series elastic actuator for human-machine interaction with applications in robot-aided rehabilitation

    Get PDF
    Series elastic actuators (SEAs) are becoming an elemental building block in collaborative robotic systems. They introduce an elastic element between the mechanical drive and the end-effector, making otherwise rigid structures compliant when in contact with humans. Topologically, SEAs are more amenable to accurate force control than classical actuation techniques, as the elastic element may be used to provide a direct force estimate. The compliant nature of SEAs provides the potential to be applied in robot-aided rehabilitation. This thesis proposes the design of a novel SEA to be used in robot-aided musculoskeletal rehabilitation. An active disturbance rejection controller is derived and experimentally validated and multiobjective optimization is executed to tune the controller for best performance in human-machine interaction. This thesis also evaluates the constrained workspaces for individuals experiencing upper-limb musculoskeletal disorders. This evaluation can be used as a tool to determine the kinematic structure of devices centred around the novel SEA
    corecore