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ABSTRACT 

The robotic manipulator is a device to carry out the various tasks according to the 

requirements without any human intervention. Vibration analysis of flexible manipulators has 

been an important area of research in order to model and control of such systems. In the 

present analysis, the Timoshenko beam theory based single and double link flexible 

manipulators made up of advanced composite material have been analyzed using finite 

element method. A three noded beam element has been implemented for modelling and 

analysis of the flexible composite manipulators under different input torques. The effects of 

hybridization of the different composite materials on the positions and residuals of the end 

effectors have also been studied. The input shaping has also been carried out in order to reduce 

the residual vibration of the end effector by adjusting the amplitude and time delay. The 

influences of the taper angles of the tapered flexible composite manipulators on the end 

effector movement and vibration have also been presented. The linear quadratic regulator 

control (LQR) scheme has been applied in order to further reduce the residual vibration of the 

end effector. Various results have been obtained based on the different analyses. The results 

reveal that the tapered hollow flexible composite manipulators give the better performances 

in terms of end effector positions and residual vibration. The obtained results based on the 

LQR control scheme show that residual vibration can be controlled without compromising 

the end effector movement.   
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  1 

 Introduction 

 The rigid manipulators have high positional accuracy than flexible manipulators but 

the power required for attaining the positional accuracy are very high due to their high inertia. 

The flexible manipulator has low weight compared to rigid one. The manipulator made up of 

advanced composite materials have low weight, high specific stiffness and strength, and 

higher energy efficiency with better payload capacity. Hence it finds many applications. The  

improvement  of  the  accuracy  of  a  flexible  open kinematic chain is  a  very  emerging 

research  problem.  The advantage of flexible robotic arm fabricated with advanced composite 

material are increasingly being proposed, proved and developed in order to achieve high 

performance compared with heavy and rigid robotics arms. Due to the residual vibration, there 

is a possibility of failure of the flexible manipulator under the high payload situations. The 

control design of flexible manipulator must also take into account the presence of 

uncertainties in the model. The researchers are actively involved in order to reduce vibration 

and control of flexible manipulators. The control of manipulator mainly carried out by using 

two methods such as feed forward and feedback control techniques. The linear quadratic 

regulator (LQR) controller is a modern control technique which is designed in order to 

maximize the gain by minimizing the objective function or performance index. To materialize 

these, the following points are important. 

i. To develop an efficient computational tool to simulate the behaviour/response of 

flexible composite manipulators subjected to loads considering any number of plies, 

orientations and materials structures. Finite element (FE) methods have already been 

extensively used for analysis and hence significant attention has been paid by 

researcher in recent times for development of efficient FE for analysis of such 

systems. 

ii. To study the effects of hybrid composites on the responses of flexible composite 

manipulators in order to find more energy efficient material for robotic manipulators 

iii. To study the responses of tapered flexible composite manipulators compared to 

conventional prismatic manipulators and 

iv. To develop suitable control scheme which optimizes the controller gain so that most 

effective control could be achieved with minimum control input. 

 Robots are specially desirable for certain work functions because, unlike humans, they 

never become tired; they can sustain physical circumstances that are uncomfortable or even 

hazardous; they can work in airless circumstances; they do not get tired by repetition; and 

they cannot be diverted from the task at hand. The ease with which they can be programmed 
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and the accuracy with which they can carry out repetitive tasks leads to their wide spread use 

in industry.  Moreover, increasing labour costs, as well as the capability of executing tasks 

which are impossible, difficult, or dangerous to humans are other motives for the increased 

use of robots in manufacturing lines.  

 Robotic manipulators are made by links joints to produce the kinematic chains. Joints 

are usually revolute (rotary) or prismatic (linear). A revolute joint is type of joint and permits 

relative rotation between two links. A prismatic joint permits a linear motion between two 

links. Every joint signifies the connection corresponding between two links. The robotic 

manipulator are classified into several criteria, such as their geometry, their intended 

application area, or way in which the joints are actuated, their power source, or kinematic 

structure, or techniques of control.  

 Materials for Robotic Manipulator  

 The manipulator is the device to carry out different task according to the requirement 

of the human without any direct contact. The manipulator are made up of different materials. 

The properties of a material will determine its suitability for a design. The materials choose 

depend mainly on the environment where they are used. Another criteria is the easy to 

machining and shaping requirements. Weight of the manipulator and desired mechanical 

properties are also important. 

 Woods are usually low cost and can be shaped by means of ordinary tools. Hard type 

woods are used for modelling the buildings. The balsa wood is usually used to create model 

of airplanes. Plastic component can be easily made into different shapes by moulding. The 

usual plastic moulding process involves molten plastic inserted under high pressure and 

temperature into specially made metal systems (such as core and cavity).  For robotics, there 

are less use of plastic materials. Normally HDPE (High Density Poly Ethylene) is used for 

building the robot chasing. The HDPE plastic can mainly be selected because of its low cost, 

lightweight, high strength, and easy machinability. The plastic has low thermal conductivity 

so it cannot be used for high temperature applications. The deformation is also higher than 

the other materials, so it cannot be implemented in case of high payload situations. 

 For robots, the most common conventional materials are aluminium and steel. 

Aluminium is a softer in nature and hence it is easy to machining but steel is much stronger.  In 

every case, robot bodies can be prepared using sheet, rod, bar, channel, and other shapes 

because of the natural strength of metals. Aluminium is resistant to corrosion as well as 
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lightweight. Most significantly, it is very easy to shape, cut, bend, and drill. The vibration of 

the robotic manipulator is increased by using the aluminium. The metal must be able to carry 

the weight of the batteries, motors and other parts without unnecessary bending or 

flexing. The main drawback of the steel based manipulators are normally rigid in nature and 

the weight of the manipulator is also more. The power consumption of the robots for 

movement will also rise when the high weight manipulators are not flexible in nature. Weight 

of the manipulators offer benefits such as higher speed, improved mobility, better energy 

efficiency, and higher payload-to-arm weight ratio. Light weight links are mainly 

implemented to effectively attain the criteria’s of high speed and high acceleration placement. 

Although, light weight parts are more prone to vibrate due to the inertia forces, tip mass and 

external forces due to actuators. 

 By using the composite material manipulator one can get the combined properties of 

the two or more materials. Composite materials are classified into two board categories (such 

as particulate and fiber reinforced composites). In particulate composites, the particles have 

various shapes and size which are randomly dispersed in the matrix. Examples of particulate 

composites are lead particles in the copper alloy and aluminium particle in the polyurethane 

rubber. In fiber reinforced composite, major constituents are reinforced fiber, matrix coupling 

agent, coating and fillers. Advanced fibers are mainly the load carrying members while matrix 

keeps them proper location and correct orientation, and also acts the medium by which the 

load to transferred through the fibers by means of shear stress. Coupling agent and coating 

which are applied to the fiber to improve the wetting and bonding with the matrix.  

 Fiber is the most important constituent of a fiber reinforced composite materials. They 

are major volume fraction of the composite and can take only tensile load along it but if it 

used as a fiber reinforced composites, it can contribute the major part of the tensile, 

compressive, flexural, or the shear strength and stiffness of the FRP composites. According 

to the requirements of the applications, different type of fibers are used such as carbon fibers, 

glass fibers, boron fibers, aramid fibers and ceramic fibers. For the present study, Kevlar fiber 

and graphite fiber are used. Kevlar is the type of armide fiber. The advantage of the Kevlar is 

low density, high tensile strength and low cost. The main characteristics of the Kevlar are 

high specific strength and stiffness, vibration damping, resistance of damage, fatigue and 

stress ruptures. The graphite fiber is the type of carbon fiber. The benefits of graphite fibers 
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are low coefficient of thermal expansion, very high tensile strength-to-weight ratio, high 

fatigue strength and high tensile modulus to weight ratio. 

 The matrix is used as epoxy resin. Epoxy resin is used due to easy to process, excellent 

mechanical properties, and high hot and wet strength properties. The epoxy resin matrix also 

gives a better adhesion to reinforcing fiber than polyester resins. 

 The behaviour of the composite material is studied by two methods such as 

micromechanics and macro mechanics). In micromechanics which deal with the local failure, 

such as fiber, matrix and interface failures. The constituent material can be examined on a 

microscopic scale without changing their internal structure. In the macro mechanics, 

properties are considered along the length and perpendicular to the fiber directions. In the 

present analysis, the dynamics behaviour of the composite material is considered by macro 

mechanics.      

 Kinematic and Dynamic Analysis of Flexible Manipulator  

 Kinematics mean study the motion of object without concern of the forces or moments 

that cause the motion. Robot kinematic states the analytical study of the motion of robot. For 

kinematic analysis requires to find out the kinematic model for the robotic. For kinematics 

modelling of manipulators mainly used two dissimilar spaces i.e. Quaternion space and 

Cartesian space. The transformation between two Cartesian coordinate systems can be 

represented into a rotation and translation. The kinematic problems of robotic are solved by 

two methods such as forward and inverse kinematics. In forward (direct) kinematics, the 

position and orientation of the end point effector are calculated by means of group of joint 

angles where as in inverse kinematics, the joint angles are determined by means of position 

and orientation. 

 Robotic dynamics mean that the study deals with motion of the manipulator 

considering the force and moment which cause that motion. For controlling the position of 

the robot for required accuracy, it must know about the dynamic behaviour of the robots. For 

example, if little force exert on the manipulator and it will slowly respond and for more force 

exert, the manipulator will oscillate about its preferred position. The dynamic equation of 

motion can be derived by different methods. Euler-Lagrange equations, which define the 

development of a mechanical system subject to holonomic constraints. The dynamic problems 

of the robots are normally solved by three type of techniques such as experimental, analytical 

and numerical methods. Experimental method is more costly, time consuming and less 
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possibility to variation of system parameters. Analytical method is in rigorous one provide 

exact solution but hard to use complex problems. The Euler-Lagrangen equation may be 

derived from the principle of virtual work. For determining the Euler-Lagrangen equation, 

first has to form Lagrange of the system which is difference between kinetic and potential 

energy. The method is for evaluating the dynamics of robot manipulators well-known as the 

Newton-Euler formulation. In the Newton-Euler formulation consider each link of the 

manipulator in turn, and express the equations define its angular motion and its linear motion. 

Obviously, since each link is coupled to additional links, these equations which define each 

link carry coupling forces and torques that appear moreover in the equations that designate 

next links. The main disadvantages of the analytical methods are difficult to solve the complex 

problems.  

 Numerical methods have the improvement of the computing competences, and 

although they give approximate results, have enough accuracy for engineering purposes. The 

Runge-Kutta method is one of numerical methods for solving the equations. For a differential 

equation that define performance over time, the numerical method starts with the initial values 

of the variables, and then uses the equations to solve the alterations in these variables over a 

very short time period. In modelling of flexible manipulator are widely used numerical 

analysis methods viz. Finite Element Method (FEM), Assumed Mode Method (AMM) and 

Finite Difference Method (FDM). 

 Control of Flexible Manipulator 

 The state of the art in robot manipulator control is that manipulators are assumed to 

be rigid structures. Controllers that use joint variable feedback information, are designed 

based on that assumption. The flexible manipulator have structural flexibility as compared to 

the rigid link. Structural flexibility of the flexible manipulator is become significant. 

However, it is limit the performance of a control system when manipulator is large structure, 

manipulating on large payload, and/or operating at high speed. 

 Advanced motion control of robotic manipulators were studied by academic and 

industrial researchers since the beginning of the 1970’s. The main approach for controlling 

an elastic manipulator is considered to be linear feedback in combination with nonlinear feed 

forward or feed-back linearization control. The control of robot manipulators can be described 

and classified in many ways e.g. 

i. Type of drive system (direct drive or gear transmission) 
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ii. Type of model used (model-based  such as rigid models, flexible joint models, or 

flexible link models)  for the control 

iii. Controlled variable (position, speed, compliance, or force) 

iv. Motion type considered (high-speed continuous path tracking, low-speed continuous 

path tracking, point-to-point movement, tracking in contact with the environment, 

or regulation control) 

v. Type of control law (linear/nonlinear, feedback/feed forward, static/dynamic, 

robust/ adaptive) and 

vi. Type of measurements (actuator position, actuator speed, link position, link speed, 

link acceleration, link torque, tool position, tool speed, tool acceleration, tool force, 

or tool torque) 

The different control techniques used for manipulator are position control, force control, 

and vision based control. The position control deals with motion control difficulties which 

contain of the tracking and disturbance rejection so it is difficult for finding the control inputs 

essential to monitor, or track, a chosen trajectory that to be scheduled for the manipulator. 

The torque control is also used for getting the accurate position control of the manipulator.   

 Organization of the Thesis 

The present thesis has been organized as follows. 

Chapter 1 discusses the brief introduction of the robotics, significance of the structural design 

of the flexible manipulator, importance of the material for robotic manipulators, vibration 

analysis and control technique used for the flexible composite manipulator, and outline of the 

thesis.  

In order to understand the state of art in the broad field of modelling, analysis and 

vibration control of flexible composite manipulators a comprehensive literature review has 

been done and presented in chapter 2. Chapter 2 also includes the motivations from the 

exhaustive literature review and objectives of the present work.  

Chapter 3 presents the detail of mathematical formulation of the flexible single and 

double-link manipulator using the developed three noded layered beam element based on the 

Timoshenko beam theory. The mathematical modelling involves governing equation, 

dynamic analysis, finite element formulation, state space representation, free vibration 

analysis, formulation of input shaping and LQR control techniques. 
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 In Chapter 4, results of the flexible single and double links composite manipulators 

have been presented based on the formulations given in Chapter 3. This chapter also discusses 

the free vibration, dynamic analysis of flexible single and double-link composite manipulators 

by changing the different important parameters, and control of such manipulators.  

Finally in Chapter 5, some important conclusions from the present work have been 

presented. Again scopes for the future extension of the present work have also been outlined 

in this chapter.  
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 Literature Review 

 This chapter contains an exhaustive literature reviews in the broad fields of dynamic 

and control of flexible manipulator. Some of the important research works have been 

presented in the sub field of kinematic, dynamic and control of such manipulator systems. 

Firstly it is concentrated on the kinematic analysis of robotic manipulator. Then concentration 

is given to the literatures related on the dynamic analysis of manipulator. Finally, the focus of 

interest shifts to control techniques used for the said manipulator and motivation, and 

objectives based on the literature reviews has also been presented in the end of this chapter.  

 Kinematic Analysis of Robotic Manipulators 

Kinematic analysis concerned with the motion of objects without reference to the force 

which causes the motion. It is important to know the position and orientation (geometric 

configuration) of a robot, along with velocities and accelerations of the robot components 

(links) in order to monitor and properly control the manipulator. There are numerous possible 

methods to use prismatic and revolute joints to build kinematic chains, in practice only a 

limited of these are usually used. In robotics, there are two kinematic tasks, first one direct 

(also forward) kinematics and second inverse kinematics. In direct kinematics finding the 

position and orientation of the end point effector by using group of joint angles but in case of 

inverse kinematics calculating the joint angles by using position and orientation. 

Ataf et al. [1] presented the dynamic analysis of a flexible manipulator considering 

single link with a payload at the end of the manipulator. The analysis was done by means of 

tangential coordinate system (TCS) and the virtual link coordinate system (VLCS). The 

extended Hamilton's Principle was used for deriving the governing equation and found the 

maximum deflection at the distal end by considering TCS was much more than the maximum 

deflection at the center point of the VLCS for in the first mode shape. The TCS signifies the 

kinematics of the single link more accurate and in a real manner compared to the VLCS which 

carried out the condition that the deflection at the distal end is zero. Kumar et al. [2] presented 

a theoretical approach which gives the forward kinematics and inverse kinematics values but 

to find individual velocity, force, torque values of each link and joint was complicated. By 

using robot analyser it can easily identify velocity, acceleration graphs and their values 

regarding the joints and links and simulation of robot end effector can be done. Manjaree et 

al. [3] presented forward and inverse kinematic analysis of robotic manipulator with three 

degree-of-freedom (DOF) by moving in 3D spaces. Neuro-fuzzy intelligent technique viz.  

ANFIS was used. An example of triangle in three positions was used for comparisons. The 

comparison drawn on the methods show that the results obtained for inverse kinematics were 
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in reasonable agreement with one another though for some positions, the results differ. Al-

Faiz and Saleh [4] presented an algorithm to find the inverse kinematics for a robotic 

manipulator with wrist offset. The proposed algorithm starts from finding the wrist point by 

vector computation, then compute the first three joint angles and after that compute the wrist 

angles by analytic solution. Eliot et al. [5] presented the design, construction and analysis of 

a five axes articulated robotic manipulator. The direct kinematic model was implemented in 

order to calculate the end effector’s position and orientation.  

Chang et al. [6] presented a modelling technique called "wheel-center modelling" for 

kinematics of a wheeled mobile robot that moves on irregular ground. The inverse kinematics 

solution for the lunar rover was used to control the motion of the rover. To model 

kinematically a six wheeled mobile robot by the "wheel-center modelling" technique was 

introduced in detail. Manjunath [7] studied a 5-axis stationary articulated robot arm with 

features the kinematic modelling which was used for doing an effective robotic manipulation 

job in its workspace. A 5-axes articulated robot was designed and a brief kinematic modelling 

was performed and using this kinematic model, the robot successfully performed the pick and 

place task in the workspace.  Zarkandi and Esmaili [8] studied the forward position kinematics 

of a three (DOF) parallel manipulator with three identical limbs which may revolute-

prismatic-spherical (RPS), and analysed it is three parametric equations used to represent the 

legs of the manipulator, a system of three nonlinear equations in three unknowns was attained. 

By using the Sylvester dialytic elimination method, the system of equations were reduced to 

a univariate polynomial of degree of eight and two quadratic equations. He et al. [9] presented 

a two-body mobile robot with a kind of modelling method that provides its kinematic structure 

constraints and analyses the direct kinematics and inverse kinematics. Considering the 

significance of superior problems in performing a complex task of the mobile robot, the results 

of inverse kinematics was identified using the geometric approach in particular specific 

conditions. The foremost contributions was to analyse the surpassing problems and rotating 

in different modes because the robot can alter the configuration actively. Results were 

revealed that the robot was a good capacity of surpassing problems actively. The rotating 

ability was analysed through many different ways and the result showed that the big difference 

of speeds and included angle will advantage to rotate. 
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 Dynamic Analysis of Robotic Manipulator 

A robotic manipulator is mainly a positioning device. To control the position it must 

identify the dynamic parameters of the robot in order to know how much force to utilize on it 

to reason it to move. The dynamic equations clearly define the relationship concerning force 

and motion. The equations of motion are significant to study in the design of robots, in 

simulation and animation of robot motion, and in the design of control systems. The dynamic 

equations can mainly be deduced using three methods which are classical methods, assumed 

modes method (AMM) and finite element method (FEM). 

Based on the literature survey, some of the important work are related to the present 

work are listed here. The list is carefully chosen and related mostly to the present work done. 

Kalyoncu [10] presented a single link manipulator contains of a revolving prismatic joint and 

a sliding robot arm with a payload at the tip, investigations were carried out by studying the 

mathematical model and finding dynamic response of a flexible robot manipulator with 

rotational-prismatic joint. Flexible arm carrying an end-mass was modelled based on the 

Euler–Bernoulli beam. Here under the action of an external driving torque and an axial force, 

the tip end of the flexible robot manipulator traces a multi straight line path. Lagrange’s 

equation used to find the governing equation of the flexible manipulator where effect of rotary 

inertia, axial shortening and gravitation was considered in the analysis. Hussein and Al-

Robaiy [11] presented a modelling process of single link flexible manipulator. The equation 

of motion of the system for clamped and pinned boundary conditions were solved by finite 

element method (FEM). The nonlinear terms such as payload inertia and viscous friction 

factors were added to the model matrices. The model was presented in two forms, one in 

matrices form and the other in state space form. Tokhi and Mohamed [12] presented the 

performance evaluation and computational requirements of the FE method in the dynamic 

simulation of a flexible manipulator. A simulation of dynamic performance of a flexible single 

link manipulator was carried on the basis of precision and computational efficiency. It has 

been shown that by increasing the number of elements, better accuracy in the characterization 

of the system is attained with the FE method. However, processing time increased nonlinearly. 

Ahmad et al. [13] presented a dynamic analysis of single link manipulator including damping 

and hub inertia using finite element methods and addressed the effect of beam length on the 

system performance. The resonance modes of vibration of the system moved to lower 

frequencies and produces a slower response with increasing the length. Loudini et al. [14] 
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presented the planar single link flexible robot manipulator clamped at its actuated base and 

carrying a tip mass using modelled based on the Timoshenko beam theory (TBT). The effects 

of shear and rotary inertia of the flexible link cross-section were compensated by including 

the internal structural viscoelasticity effect (Kelvin-Voigt damping) and external viscous air 

damping. The Lagrangian approach combined with the assumed modes method was proposed 

to derive the dynamic model for the planar single link lightweight manipulator.  

KhalilIbrahim et al. [15] presented the single link flexible arm with the development 

of efficient approach to dynamic modelling and mode analysis. The modelling of a single link 

flexible manipulator on the basis of the Euler-Bernoulli beam and Lagrange’s equations of 

the motion were briefly discussed and accurate modes of the system were attained 

analytically. It was found a good agreement between the experimental and simulation results 

were dynamic model was suitable to describe the open loop response of a single flexible arm. 

Korayem et al. [16] presented the effect of the beam's length, shear deformation and different 

beam theories on the dynamic modelling of single link manipulator. At the first step, the 

Euler-Bernoulli beams theory (EBBT) was adopted. Next step the Timoshenko beam theory 

(TBT) was considered. Here, two types of dynamic models based on the Euler-Bernoulli and 

Timoshenko, were established and used to analyse the dynamic performance of the system. 

The results was showed that it is better to use (EBBT) for multi flexible link manipulators 

with longer length but if the links have short length it should use (TBT) for more accuracy. 

Oguamanam et al. [17] presented some important issues involved in the dynamic modelling 

of single link manipulators. These are the selection of reference frames, the determination of 

closed-form eigen functions expressions for use in the assumed mode method (AMM), and 

the role of geometric stiffening. It was observed that the choice of reference frames will affect 

the complexity of the resulting system equations of motion, but there are transformations that 

map one frame to the other. In determining the eigen functions, the role of tip-mass was treated 

in a more generalized form by using reference frames that permit a lucid reflection of the 

coordinates of the offset of the center of gravity of the tip mass from the point of attachment 

to the beam. Wang and Wei [18] modelled flexible single link robot manipulator modelled by 

considering moving slender prismatic beam. It was observed that the extending and 

contracting motions have destabilizing and stabilizing effects on the vibratory motions 

separately. The vibration of the system was analysed based on a Galerkin approximation with 

time-dependent basis functions. 



Chapter 2 

 

  12 

 

Zohoor and Kakavand [19] considered a two-link flexible manipulator of a prescribed 

motion, the Timoshenko and Euler–Bernoulli beam models were considered. Using the 

Galerkin method, nonlinear equations of motion were solved. It was demonstrated that for 

two link manipulators, both theories provide good models and the results for both theories 

were very similar for the entire range of slenderness ratios. It was also known that for the high 

slenderness ratios, both theories act similarly. It is found that for two link planar manipulators 

with relatively high slenderness ratios there is a remarkable difference in models. It is obvious 

for high precision applications the Timoshenko model was recommended, and for low 

precision applications in low and medium ranges of speed, the Euler–Bernoulli model is 

suitable. It is also interesting that the joint torques in the entire range of slenderness ratios are 

the same. Gripp et al. [20] presented the modelling and identification of a two link manipulator 

with mechanical flexibility distributed along the links. The two link manipulator was 

modelled using the assumed mode method. The Lagrangian approach leads to explicit 

equations of motion. Actuators and sensors were also modelled in order to derive a complete 

and explicit model of the complete system. The theoretical model was simulated and 

compared to experimental results. Parametric identification successfully was fitted to the 

theoretical and experimental frequency response functions.  

Chen [21] presented a dynamic model for multi-link planar flexible manipulators 

which contain an arbitrary number of flexible links. The elastic deformation of multi-link 

manipulator was modelled by means of the assumed mode method (AMM). Flexible links 

were modelled based on Euler-Bernoulli beams and ignoring the rotary inertia and shear 

deformation are thus ignored. Trapezoidal torques with changeable slopes but constant 

magnitude and period were applied to examine the dynamic behaviour of the links to the 

corresponding torques. Steeper torques tend to stimulate higher flexible deformations of the 

link. But the variance between the magnitudes of the flexible deformations was not very 

significant. The difficult as to which kind of driving torque stimulates the minimum flexible 

deformation was the best solution by inverse dynamics based on the computed torque method.  

Theodore and Ghosal [22] presented the axially translating flexible link manipulators with a 

prismatic joint modelled based on the Euler Bernoulli beam equation combined with the 

convective terms. To find a time-dependent frequency equation for the translating flexible 

beam based on clamped-mass boundary conditions, a novel method was presented to finding 

this time dependent frequency equation by considering a differential equation of the frequency 
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equation. A systematic modelling method was also presented for spatial multi-link flexible 

manipulators having both revolute and prismatic joints. The equation of motion was derived 

by employing assumed mode method and Lagrangian formulation.  

Shaker and Ghosal [23] also presented nonlinear modelling of planar single and two 

link, flexible manipulators with rotary joints using finite element method (FEM) based 

approaches. The non-linear models, were derived from a non-linear strain-displacement 

relationship of the planar flexible manipulators with single and two revolute joints. The 

formulated FE mode method of modelling was compared with the conventional component 

mode method. The comparison of linear and nonlinear models. It has been cleared that 

nonlinear model can employ only if flexural rigidities of the links are low. Pratap and Reddy 

[24] presented the flexibility and dynamic analysis of flexible manipulator considering 

deflection. The distributed parameter method, was implemented to derive the generalized 

equation of motion of robot manipulator with flexible links. Elastic deformations of the 

flexible manipulator arms were found by using ANSYS-12.0 software package. Elastic 

compensation was introduced in the co-ordinates of robotic programming to acquire precise 

end-effectors path. A comparison of path trajectories and variation of torques were also 

studied after considering elastic compensation. Torby and Kimura [25] presented the revolute 

prismatic prismatic (RPP) model used to introduce 16 flexural (DOF), but the computer 

algorithm was such that an infinite amount of links can be treated. The prismatic links were 

considered as beams with moving boundary conditions, and the location of finite-element 

node points were not different relative to the link. They are compared with the eigenvalues 

attained for the same problem considering the assumed-mode method (AMM). The curves 

were very similar except for the higher natural frequencies found using the finite-element 

method. Al-Bedoor and Khulief [26] formulated a dynamic model of a translating and rotating 

beam by finite element method. The time dependent boundary condition obvious by the 

prismatic joint constraint were measured. In the FEM formulation the inertia coupling among 

the beam reference motion and local elastic deformation were considered. A transition 

element with variable stiffness was interfaced with the joint hub.  These models have some 

benefits over the previously reported models as it avoids numerical problems because the 

nodal point belongs to a fixed finite element mesh.  
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 Control Techniques used in Multi-Link Manipulators 

 The control of robotic manipulators has been an important field for study, 

development, and manufacturing. Industrial manipulators are mainly positioning and 

handling devices. Therefore, a suitable robot is only that is capable to control its motion and 

the interactive forces and torques between the manipulator and its location. 

Tokhi et al. [27] presented a study into the improvement of an interactive and user 

friendly location for simulation and control of flexible single link manipulators using 

Simulink. A planar single link flexible manipulator was modelled and finite difference (FD) 

method was used in discretizing the governing dynamic equations of motion of the system. 

Open loop control strategies using bang-bang, Gaussian shaped and filtered command inputs 

were developed and implemented within the simulation environment and possible control 

strategies were presented and discussed. Yih [28] presented a modelling of single link flexible 

robot arm. The equation of motion of the system was solved by finite element method (FEM) 

where the clamped boundary conditions were considered and bang-bang torque was used to 

drive the system. Then the adaptive input shaper was presented. The adaptive input shaper 

was effective to the changes of dynamic response in the system. The amplitude and the time 

delay of the impulses were the parameters to the changes in the dynamic response of the 

system. Akyuz et al. [29] presented design and control of the single link joint manipulator. A 

cascade fuzzy logic controller (FLC) used to remove the vibration of link as well as trajectory 

tracking performance and also compared the performances of the cascade FLC with the PID 

controller, step input was applied to the system. Based on the comparison, the proposed FLC 

yield better result than the PID controller. It was also demonstrated the robustness of the 

controller, external disturbances and change in parameters such as link length and spring 

stiffness were employed. Mohamed and Tokhi [30] implemented the feed forward control 

strategies for vibration control of a single link manipulator by means of command shaping 

techniques based on the input shaping, low pass filter, band stop filter. The dynamic model 

of the flexible single link manipulator was determined by the finite element method. 

Significant drop in the system vibration was attained with these control strategies. From this 

analysis clears that low pass filter input has been revealed to achieve better performance than 

the band stop filter input. The processing time rising for an input shaping command is longer 

than required for the filtered input.  Sa'id et al. [31] studied the dynamic modelling and step 

input tracking control of single flexible link. Two approaches to control were used for the 
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flexible link manipulator. The first one was a hybrid (i.e. PD and sliding mode) controller. 

Where, the augmented PD controller was used as a hub position control while the sliding 

mode control was used to damp out the vibration of tip position. The second control approach 

was to use a fuzzy based PI controller for control both of the hub angle and tip deflection. 

From the analysis, hybrid controller shows the better behaviour than the proposed fuzzy based 

PI controller for the single flexible link manipulator. Shaheed et al. [32] studied the open loop 

control configuration and used for vibration reduction of the flexible manipulator using 

genetic algorithm. Low pass and band stop filtered were developed and investigated in an 

open loop control configuration. It was revealed that better performance can attain in case of 

low-pass filtered input as compared to band-stop filtered torque input. 

Subudhi and Morris [33] modelled and analysed the dynamics of a manipulator with 

multiple flexible links and flexible joint based on a combined Euler Lagrange formulation and 

assumed modes method (AMM). The control difficulties were resolved by considering a 

singularly perturbed model to design a reduced order controller, which was revealed to 

become stable the link and joint vibrations efficiently while retaining good tracking 

performance. Zebin and Alam [34] presented a theoretical study for the dynamic modelling, 

analysis and representation of a constrained two link flexible manipulator, by considering FE 

method. The final derived model of the system was simulated to study the dynamic response 

of the system. The end point vibration of a flexible manipulator has been reduced by adding 

of a Genetic Algorithm (GA) based fuzzy logic control strategy without compromising its 

speed of response. An uncoupled fuzzy logic controller method was also implemented with 

each controllers at the shoulder and the elbow link applying hub angle error and hub velocity 

feedback. Bottega et al. [35] presented tracking control model for a flexible single link 

manipulator by means of motor torque piezoelectric actuator. The Lagrange equation has been 

implemented to the dynamic modelling of the single link manipulator. Piezoelectric actuators 

and sensors were established to the system to control the high frequency vibration. Rigatos 

[36] developed the robust control approach for flexible-link robots that comprises sliding-

mode control theory and kalman filtering. Sliding-mode control is a state feedback-based 

control approach which enables the flexible manipulator joints to track accurately. 

Shan et al. [37] also presented feed forward approach based on input shaping implement 

to decrease vibration of the flexible system. In this research work, the modified input shaping 

(MIS) method was projected to develop better performance. The response of the manipulator 
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was compared in detail between the modified input shaping (MIS) method and the traditional 

input shaping (TIS) method. The MIS method is easier than the (TIS) method because the 

numerical optimization is avoidable in the design of the MIS shaper. However, to acquire a 

reasonable shaper with the TIS method, optimization is essential. Tang et al. [38] 

implemented a planar two link flexible manipulator to control the tip position based on neural 

network (NN) controller. The dynamic error was used to construct NN controller. The output 

redefinition approach was also used to derive the NN controller. Without the filtered tracking 

error, the offered NN controller has been still assurance the closed-loop system consistently 

asymptotically stable in addition to neural network weights bounded. To compare with the 

offered controller, Lewis’s NN controller was also extended to the flexible link manipulator. 

Simulation response of a planar two link flexible manipulator revealed that the suggested NN 

controller decreases the vibration of the manipulator efficiently and also can make the tracking 

error converge to zero very rapidly. Kuo and Lin [39] presented a rotating thin flexural link 

with an entire control strategy which contains a design based model, controller design, and 

system output alteration for a distributed parameter system. The finite element modelling and 

the state space representation was presented successfully for control system analysis and 

computer simulation. It  has been revealed, by directly tuning the system proportional gain, 

the rotating flexural link system can reach the desired damping ratio and the response has 

been  attained that is exactly ten times faster than the first natural cantilever period of the 

system. Mansour and Kazi [40] proposed a single link flexible manipulator and vibration 

control by Modified Proportional-Integral- Derivative (MPID) control. To find the gain for 

optimal vibration control of the MPID controller a fuzzy logic tuning scheme was used. The 

recommended fuzzy logic scheme calculate an optimum vibration control gain that reduces 

the tip vibration for the end effector of the single link flexible manipulator. The main benefit 

of using fuzzy logic is the capacity to include the effect of varying the system configuration, 

environment constraint in addition to the PD control gains to obtain best tuned gain. Wang et 

al. [41] presented a new method to robust control of a multi-link flexible manipulator via 

regional pole assignment. A multi objective instantaneous awareness problem was presented 

to the controller design such that the controlled manipulator system, for all permissible 

parameter qualms in the operating space, instantaneously satisfies both the predetermined 

norm constraint on the transfer function from disturbance inputs to system outputs, and the 

predetermined circular pole constraint on the closed-loop system matrix. 
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 Motivation  

 From the exhaustive literature review, the following important observations have been 

made. 

i. A large number of research work available for dynamic analysis of flexible 

manipulator based on the Euler Bernoulli beam theory whereas very few works 

considered  the Timoshenko beam theory. 

ii. Most of the researchers analysed the manipulator made by conventional materials 

and only very few researchers have considered advanced composite for modelling 

and analysis. 

iii. Most of the available research consider prismatic manipulators for modelling, 

analysis and control.  

iv. PID control technique found to be focus on flexible single link manipulator and only 

very few research work considered the LQR control scheme  

 Objectives of Present Work 

 Keeping the above points in mind, the specific objectives of the present thesis have 

been laid down as 

i. To model and analyse the single and flexible multi-link composite manipulators 

using the Timoshenko’s beam theory based finite element method 

ii. To study the influences of hybrid composites on the responses of flexible 

manipulators 

iii. To study the responses of flexible composite manipulators under different input 

torques 

iv. To analyse the flexible tapered solid as well as hollow composite manipulators in 

order to study the influences of taper angles on the responses of such manipulators 

v. To incorporate the material damping based on the Rayleigh damping model so as to 

study the effects of damping on the responses of such manipulators 

vi. To analyse and study the responses of such manipulators based on input shaping and 

vii. To control the responses of such manipulators based on LQR control scheme.
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 Mathematical Formulation for Dynamic Analysis of Flexible 

Composite Manipulator 

It is important initially to identify the flexible nature of the robots and formulate a 

mathematical model for the structure that accounts for connections with actuators and 

payload. Such a model can be implemented by considering partial differential equations 

(PDEs). Generally used method for solving a PDE signifying the dynamics of a manipulator, 

sometimes discussed to as the separation of variables method, and is to utilize a representation 

of the PDE attained through a simplification procedure, to a finite set of ordinary differential 

equations. Modelling of flexible manipulator can be derived by different approaches. The 

assumed mode method, singular perturbation, frequency domain, finite difference (FD) and 

finite element (FE) method are the various approaches to solving the (PDE)s expressing the 

dynamic properties of a flexible manipulator.  

The dynamic equation of the manipulator has been derived normally by Hamiltonian 

equation. For modelling of manipulator is based on two beam theories. First one is the Euler 

Bernoulli’s theory (EBT), in this theory mostly used for long or slender beams. In EBT shear 

deformation and rotary inertia effects are ignored. Second one is the Timoshenko beam theory 

(TBT), in this PDE based model is preferred because it is more accurate in calculating the 

beam’s response compare to the Euler–Bernoulli (EB) beam. The TBT accounts for both the 

effect of rotary inertia and shear deformation.  

In the present study the dynamic analysis of different links are carried out. The dynamic 

model of a physical structure (including rigid robotic manipulators) is obtainable by using 

Lagrange’s equation. For robotic manipulators, the Lagrangian technique is simplified by first 

formulating certain (generalized) inertia matrices. This approach can be combined with the 

FE method to model the flexible links of robotic manipulators. The flexible link is considered 

as an assembly of a finite number of small elements. The elements are supposed connected at 

certain points, well-known as nodes. For each finite element, the scalar kinetic energy and 

potential energy functions are expressed as functions of the generalized coordinates. The 

dynamic model is obtained by applying Lagrange’s equations. The element size is reduced, 

by increasing the number of elements, the general solution of the system equations can be 

made to converge to the exact solution as accurately as desired.  
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 The Single Link Flexible Manipulator System 

 The flexible composite manipulator system is modelled as a clamped-free flexible 

beam with a mass at the hub which can bend freely in the horizontal plane but is stiff in 

vertical bending and torsion. The length of the manipulator is assumed to be constant and 

shear deformation as well as rotary inertia are also considered. The schematic representation 

of the flexible manipulators is shown in Fig 3.1 The payload mass is Mp and input torque τ(t) 

is applied at the hub of the manipulator by an actuator motor. The angular displacement of 

the manipulator is denoted by θ1(t). For an angular displacement θ1 and an elastic deflection 

w, the total displacement y(x, t) of a point along the manipulator at a distance x from the hub 

can be described as a function of both the rigid-body motion θ1(t) and elastic deflection w(x, 

t).  

 

Fig. 3.1 Schematic representation of the flexible manipulator system 

For an angular displacement θ1 and an elastic deflection w, the total (net) displacement y(x, t) 

of a point along the manipulator at a distance x from the hub can be described as a function 

of both the rigid-body motion θ(t) and elastic deflection w(x, t) measured from the line OX. 

    ,   ( , )y x t x t w x t 
                                                                                        (3.1) 

To obtain equations of motion of the manipulator, the associated energies have to be obtained. 

These include the kinetic, potential and dissipated energies. 

 Various Energies Associated with the System 

 The energies associated with the system include the kinetic, potential and dissipated 

energy. These are considered for the SLFM in this section. As the contribution of the 

rotational moment of inertia is neglected, the kinetic energy of the system can be written as 
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k h l MPE E E E  
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Note in the above equation where Eh, El, EMP are the kinetic energies associated to the rigid 

hub, the flexible link, and the payload respectively. Moreover, note that only small elastic 

deflection and small angular velocity are considered. 

 The Dynamic Equations of Motion 

The non-conservative work for the input torque τ can be written as 

W                    (3.6) 

To obtain the equations of motion of the manipulator, the Extended Hamilton’s principle 

described by  

 
2

1

0

t
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L W dt  
                                       (3.7)       

can be used, subject to δθ and δu ≠0 at t1 to t2, where, t1 and t2 are two arbitrary times, and  

L= EK − EP is the system Lagrangian. δW represents the virtual work, δθ represents a virtual 

rotation and δu represents a virtual elastic displacement.  
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                           (3.8) 

For the two link manipulator the dynamic equation has been derived same as SLFM. The 

various energies associated with the two link manipulator are the sum of the energies of first 

link and second links. The dynamic equation of link 1 and link 2 are expressed as  

The Lagrangian of link 1 can be derived as followed 

     1 11 K PL E E 
                 (3.9) 

The Lagrangian of link 2 can be derived as followed 

2 22 K PL E E 
                (3.10) 
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Where the
1KE , 

1P
E  and.

2KE , 
2PE  are the total kinetic energy and total potential energy of link 

1 and 2 respectively. Now the total Lagrangian for both link can be given as   

1 2L L L                 (3.11) 

The Extended Hamilton’s principle can be used to obtain the equations of motion of the 

double link manipulator. 

 Mathematical Modelling of Composite Beam based on the 

Timoshenko Beam Theory     

 The Fig.3.2 represents the configuration of the Timoshenko beam where x is the 

Euler’s angle which represents the rotation of the cross-section about an axis (refer Fig.3.2), 

which is mutually perpendicular to both x and z axes and assumed to be small compared to 

unity. Hence the kinetic energy of beam of length ‘L’ is represented as 

 

Fig. 3.2 Deformed beam 
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Where Im is to the mass intensity and denotes mass per unit length of the beam and Id 

diametrical mass moment of inertia of the cross-section of interest with inner and outer 

diameter ri and ro respectively. By taking the first variation in the kinetic energy gives 
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The second step is derive the expression of potential energy for which the displacement fields 

are needed and hence can be assumed to be 
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where xu  and zu are the flexural displacements of any point on the cross-section of interest 

along x and z direction respectively which are axes of coordinate system with origin at the 

centre of cross-section such that x and z  remains parallel to inertial reference frame X and Z  

respectively. u  and w  represent flexural displacements of any point  on reference exes of the 

beam. Linear elastic theory is applied to get the linear strain displacement relationship as 
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xx xz x yy zz yz xy
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x x
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  
       

             (3.15) 

The polar coordinate system (x, r, θ) is used for the convenience. Then the strain displacement 

relationship would results [43]   
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
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     
                       (3.16)                                                                       

where cosm  and sinn  . Taking sinz r  , the strain displacement relation in terms 

of displacement variable would yield  

1
sin , cos
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  

 
     

                         (3.17)  

Hence the stress and strain expressed as  
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    
                     (3.18)  

where sk is the shear correction factor. Hence the strain energy expressed as 

     
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          (3.19)                                         

By taking the first variation in the strain energy gives 
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 sin sin cosx
xx xr x x

V

w
U r dV

x x


 
       

   
      

   


        (3.21) 

The stress resultants xN , xrQ , xQ   and stress couple
yM  are defined as 

sin ; sin ; cosxx xr xr x x

A A A

M r dA Q dA Q dA          
         (3.22) 

The first variation of potential energy again can be written as 

 x
xx y xr x x

V
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U M Q Q dV
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

 
  

   
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

          (3.23) 

The stress resultants can be written as 

11 55 66; ;x
xr s x x s x

w w
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


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     
       

               (3.24) 

The third step is to find the equation of motion of the system. Hamilton’s principle is applied 

as follows  

2

1

( ) 0

t

t

T U dt  
               (3.25) 

So the equation of motion can be written as 
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Applying the value of stress resultants in Eq. (3.26), will result  
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The terms A55, A66, D11 , mI  and dI  of Eq. (3.26) for n number of composite plies are given as 

follows 
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 Finite Element (FE) Formulation of the Flexible Composite 

Manipulators 

FE analysis aim is to find out the field variable (displacements) at nodal points by 

approximate analysis. In the present FE model, the three-nodded one-dimensional line 

elements are considered, each node having two degree of freedom (DOF) as shown in Fig.3.3. 

The Lagrange’s interpolation functions are used to approximate the displacement fields of 

flexible beam. The element’s nodal DOF at each node is . Now displacement field variable 

can be represented as, 

 

Fig. 3.3 FE model of flexible single link manipulator 

     
1 1

 ,  ( )
n n

k k

k x x k

k k

w w t t     
 

  
            (3.29) 

For three nodded element, the Lagrange’s shape functions or Interpolating functions can be 

expressed as 

   2

1 2 3

1 1
( )= ; ( )=1 ; ( )=

2 2
1 1           

           (3.30) 

So the displacement field can be written as      ,
a a

w x t N x Q t , Where Na(x) and Qa(t) 

represent the shape function and nodal displacement respectively. Hence,                                                                                                                                                                                                                                                                                                                                            

the total displacement can be obtained as      ,y x t N x tq    

Where 
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      1 a
t t Q tq 

              (3.31)

        
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... ( ) ( ) ( )

a

T

a n n n nx x n x n

N x x x x

Q t w w w

  

  
   




          (3.32) 

After putting the displacement field variables and shape function expressions into governing 

equations, the equation of motion for an element can be written as, 

       e e eM q K q F 
              (3.33)  

Where,      , ,e e eM K F  are the elemental mass, stiffness and force vector respectively. The 

elemental stiffness and mass matrix can be determined as follows. 
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        (3.34) 
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Where Kw and Kβx are the stiffness corresponding to axial displacement degree of freedom 

and rotational degree of freedom respectively. Kwβx is the stiffness corresponding to coupling 

between displacement and rotational degree of freedom.  L is the length of the element and 

ww
M  is associated with the elastic degree of freedom (residual motion),

w
M


representing the 

coupling between these elastic degree of freedom and hub angle   and M


 is associated with 

the inertia of the system about the motor axis. After assembling all elemental matrices and 

considering the Rayleigh damping model, the equation of motion of the flexible composite 

manipulator can be written as 



   Chapter 3 

 

  26 

 

 
          M q C q K q F  

             (3.37)  

Where  M is the global mass matrix,  C  is the global damping matrix,  K  is the global 

stiffness matrix. The force vector for flexible manipulator is taken as  ( ) ( ) 0 ... 0F t t

where ( )t is the applied torque at the hub.  The equation of motion for free vibration analysis 

can be written as  

      0M q K q 
              (3.38)  

The damping matrix (C) can be obtained as where 
ww

C  denote the sub-matrix associated with 

the damping of flexible manipulators. The matrix 
ww

C  is obtained based on the Rayleigh 

damping model as follows: 

1 2 1 2 2 1 2 2 1 1

2 2 2 2

2 1 2 1

2 ( ) 2( )
Where

ww ww ww

f f f f f f
C M K

f f f f

   
   

 
   

 
        (3.39) 

Where
1

 ,
1

 , 
1

f and 
2

f  representing the damping ratios and natural frequencies of first and 

second modes respectively. 

For the two link manipulator the finite element formulation can be derived same as SLFM.  

 

Fig. 3.4 Finite element model with two link manipulator 

The Fig.3.4 shows the two links are connected together by serial manner. The total 

displacement of the two link flexible manipulator as same as the previous one. The Fig.3.4 

describe the inertial systems of co-ordinates and the corresponding degree of freedom of the 
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finite element. The nodal displacement of the two link manipulator contain deformation of 

first and second link can be written as.  

1 2
( ) a aQ t Q Q                   (3.40)                              

1 2 1 2 1 2 2 1 2 11 1 1 1 1 1 2 2 2 2 2 2[ ]; [ ]
n n n n n n n n n n n na aQ w w w Q w w w     
       

 
       (3.41)                      

The shape function are used for two link manipulator as same as previous one. The equation 

of motion of free vibration analysis is describe in the Eq. (3.38) where  M is the global mass 

matrix,  C  is the global damping matrix,  K  is the global stiffness matrix of the double link 

manipulator and. 

The elemental mass matrix for the first and second link can be determined as. 

1 2

w we e

w ww w ww

M M M M
M M

M M M M

   

 
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   

         
               (3.42)  

Where wwM  is associated with the elastic degree of freedom (residual motion) is as same as 

the single link manipulator. After assembling all elemental matrices and considering the 

Rayleigh damping model, the equation of motion of the flexible composite double link 

manipulators can be written as 

    1 1

2 2

0 0
,

0 0

M K
M K

M K

   
    
   

             (3.43) 

 State Space Representation 

The second order matrix differential equation i.e. Eq. (3.37) can be represented in a state-

space form 

 

;X AX Bu

y CX

 

                (3.44)

1 1 1

0 I 0
Where A= ; B=

M K M MC  
 

   
   
    , 

      
 0 ... 0 the state vectorand [ ... ... ... ...] T

u wX w     
 

 Design of Input Shaper 

 The input shaping is done by adjusting the time delay and amplitude of the impulse 

response. The parameters used for the study are natural frequencies and damping ratio of the 

manipulator. The impulse response of the system can be obtained as  
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           (3.45)                                                                         

Where Ais is the amplitude of the impulse, t0 is the time of the impulse, ω is the natural 

frequency of the system and ξd is the damping ratio of the system. The impulse response is 

found out by superposition of the impulse responses. For the N impulses with                                

ωd = ω (1- ξd
 2)1/2, the impulse response can be expressed as  
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       (3.46) 

Where the Ai and the ti are the amplitude and time of the impulse. The residual vibration of 

the single mode amplitude of the impulse response is obtained as the time of the last impulse 

i.e. t = tN as 
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        (3.47)  

To attain the zero vibration (ZV), the V(ω,ξd) is set to zero. A constraint must be applied to 

make certain that the shaped command creates the same rigid body movement as the unshaped 

command. To fulfil this requirement, the addition of the impulse amplitude must be one. For 

reducing the response lag, the first impulse is selected at time ti = 0. So the V1 and V2 in the 

Eq. (3.47) is set to zero. By solving for two impulse sequences, the ZV shaper are obtained 

as: 

     

*

1 2 1 2* *2 * *2

1 2
0; ; ;

1 2 1 2d

K
t t A A

K K K K




   

   
          (3.48) 

To achieve the robustness of the input shaping process, an added constraint is utilized to 

design the input shaper. The derivative of the residual vibration with respect to the natural 

frequency is equal to zero. By setting the derivative to zero is same to producing small changes 

in vibration with corresponding changes in the natural frequency. By solving the three impulse 

sequences, the zero vibration derivative (ZVD) are obtained as: 
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1 2 3 2 1 2 3* *2 * *2 * *2

1 2
0; ; 2 ; ; ;

1 2 1 2 1 2
d

K K
t t t t A A A

K K K K K K
     
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      (3.49) 

Where 
21*

d

dK e




 the vibration reduction was accomplished by convolving any desired 

system input with impulse sequences. This modified shaped input that drives the system to a 

desired location without vibration. 

 LQR Controller for Flexible Manipulator 

 Linear quadratic regulator (LQR) optimal control theory has been used to determine 

the control gains.  

 

Fig. 3.5 General robot feedback controller structure. 

 A general feedback controller structure is illustrated in Fig.3.5. In this, the feedback 

control system has been designed to minimize a cost function or a performance index, which 

is proportional to the required measure of the system’s response. The cost function (i.e. total 

energy of the system such as potential, kinetic and electrical energies) used in the present case 

is given by   

0
( )T TJ X QX u Ru dt



                (3.50) 

Where u and X are input and output vectors respectively, and [Q] and [R] are the semi-

positive-definite and positive-definite weighting matrices on the outputs or states and control 

inputs, respectively. The steady-state matrix Ricatti equation can be written as      

1[ ] [S] [S][ ] [S][ ][ ] [ ] [S] [ ] 0T TA A B R B Q               (3.51) 

The Eq. (3.51) can be obtained by forming an unconstrained optimization using Eq. (3.44) 

and Eq. (3.50). After solving the Ricaati equation using Potter’s method, optimal gain can be 

written as  
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  1[ ] [ ] [S]T

cG R B
              (3.52)                

where [S] is solution of the Ricatti equation which is symmetric and positive definite matrix. 

Considering full state feedback, the control input to the hub can be determined as  

{ } [ ]{ }a cG X  
               (3.53)  

Weighting matrices [Q] and [R] are important components of LQR optimization process. The 

compositions of [Q] and [R] elements influence the system’s performance. The [Q] and [R] 

matrices could be determined considering weighted energy of the system as follows 

2

1

[ ] [ ][ ] [0] ˆ[ ] and [ ] [ ]
[0] [ ] [ ][ ]

T

T

K
Q R R

M

  


  

 
  
            (3.54)  

where M, K, and   are the global mass, stiffness and mode shape matrices respectively. ˆ[ ]R  

is considered as identity matrix and 1 2,  and    are the coefficients associated with total 

kinetic energy, strain energy and input energy respectively and have been determined by trial 

and error method. The modified input can be written as   

v( ) ( ) ct u t G X 
               (3.55)  

The closed loop responses can be determined as follows 

 
 ( )cX A BG X Bu  

              (3.56)  

The energy coefficients ( 1 2,  and    ) are selected by random numbers within the specified 

ranges which are determined by trial and error method. 

 Summary 

This chapter deals with the mathematical formulation of dynamic equation of motion of 

the flexible composite single and double link manipulators based on the Hamilton principle. 

A three noded layered composite beam element has been implemented based on the 

Timoshenko beam theory to model and analyse of such manipulator system. The equation of 

motion has been converted to state space model to obtain the dynamic responses of the flexible 

manipulators and the formulations of the end effectors based on input shaper and LQR control 

scheme have also been presented 
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 Results and Discussions  

 Based on above mentioned formulations in chapter 3 of flexible composite 

manipulator a complete MATLAB code has been developed and validated with the available 

results obtained by analytical method and literatures. After validating free and forced 

vibration analysis has been carried out and presented in the following subsections. The 

material properties for the convergence study, validation, static and dynamic analysis of the 

present study are given in Table 4.1. 

Table 4.1. Properties of graphite/epoxy (T300/5208) and kevlar/epoxy (Kevlar 49) [43] 

Material 

Longitudinal 

Young’s 

modulus         

Exx (GPa) 

 

Transverse 

Young’s 

modulus 

Eyy(GPa) 

 

Shear 

modulus 

Gxy(GPa) 

Shear 

modulus 

Gyy(GPa) 

Poisson’s 

ratioϑ 

 

Density 

ρ(kg/m3) 

Graphite 

epoxy 
181 10.3 7.17 7.17 .28 1600 

Kevlar epoxy 76 5.5 2.3 2.3 .34 1360 

 Convergence Study 

 For the convergence study of the present finite element formulation, the 

graphite/epoxy composite with 16 layers having stacking sequence of [0/ -45/ 45/ 90/ 0/-

45/45/90]s has been considered. The first flexural natural frequency of the composite beam 

with different number of elements is shown in Fig.4.1. 

 

Fig. 4.1 Natural frequency Vs. Number of element 

It has been cleared from Fig.4.1 that the frequency started converging after taking 16 elements 

to 0.7570 kHz. For better accuracy for whole present analysis has been carried out considering 

20 elements. 
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 Validation 

 In order to validate the present finite element code, a cantilever beam has been 

considered. The natural frequency of cantilever beam of isotropic material using classical 

method can be obtained as follows 

 2 1.876; 4.733; 7.855n i i

EI
L

A
  


               (4.1) 

Table 4.2. Validation of result 

Fundamental 

frequencies 
Classical theory 

Present                            

finite element code 

Percentage of 

error % 

First Natural 

frequency 

102(rad/sec) 

1.2690 1.2043 5 

Second Natural 

frequency  

102 (rad/sec) 

8.0775 7.5423 6.62 

Third Natural 

frequency 

102 (rad/sec) 

22.249 21.094 5.185 

It is clear from the Table 4.2 that the percentage of deviation for first, second and third natural 

frequencies obtained from the classical theory and present finite element code are 5, 6.62 and 

5.185 respectively.   

 

Fig. 4.2 Validation of result 

It can also be seen from Fig.4.2 that the present formulation is in excellent agreement with 

the studies by Ahmad et al. [13].  
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 Free Vibration Analysis of Single Link Manipulator with Different 

Materials   

 In the present analysis single link manipulator with hollow straight section are 

considered. The cross section of manipulator consider as a solid circular, with outer diameter 

19.008mm. The length of SLFM are 900mm.   

Table 4.3. Comparison of first, second and third natural frequency of single link manipulator 

considering different materials with different stacking sequences 

Material Stacking sequence 

First Natural 

frequency 

(rad/sec)×103 

Second 

Natural 

frequency 

(rad/sec) ×103  

Third 

Natural 

frequency 

(rad/sec) 

×103  

Graphite epoxy 

(GGGG) 

[0G/-45G/45G/90G]2s 0.1055 0.7444 2.1890 

[90/45/-45/0/45/0/0/90]AS 0.1104 0.7782 2.2850 

Graphite/epoxy 

and Kevlar/epoxy 

(KGGK1) 

[0K/-45G/45G/90G/0G/-

45G/45G/90G]s 
0.1005 0.7277 2.1558 

[90/45/-45/0/45/0/0/90]AS 0.1116 0.8071 2.3856 

Graphite/epoxy 

and Kevlar/epoxy 

(KGGK2) 

[0K/-45K/45K/90K/0G/-

45G/45G/90G]s 
0.0854 0.6189 1.8341 

[90/45/-45/0/45/0/0/90]AS 0.0909 0.6577 1.9456 

Graphite/epoxy 

and Kevlar/epoxy 

(GKKG2) 

[0K/-45K/45K/90K/0G/-

45G/45G/90G]s 
0.0957 0.6747 1.9820 

[90/45/-45/0/45/0/0/90]AS 0.0989 0.6968 2.0440 

Graphite/epoxy 

and Kevlar/epoxy 

(GKKG1) 

[0K/-45K/45K/90K/0G/-

45G/45G/90G]s 
0.0769 0.5424 1.5925 

[90/45/-45/0/45/0/0/90]AS 0.0811 0.5720 1.6798 

Kevlar/epoxy 

(KKKK) 

[0K/-45K/45K/90K/0K/-

45K/45K/90K]s 
0.0718 0.5196 1.5381 

[90/45/-45/0/45/0/0/90]AS 0.0751 0.5433 1.6053 

Aluminum 0 0.0890 0.5915 1.7075 

From the Table 4.3, it is clear that the natural frequencies influences with the materials as well 

as changes of stacking sequence. By comparing different type of laminated composite links, 

it is also observed that the natural frequencies is less for symmetric laminated composites than 

that of anti-symmetric laminates. The natural frequency is high for the graphite/epoxy 

composites than that of kevlar/epoxy composites but it is in between for hybrid composites 

(i.e. combination of graphite/epoxy and kevlar/epoxy). 
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 Response Histories of Flexible Composite Manipulators under 

Different Input Torques 

 A flexible composite manipulator which is made up of sixteen layers of kevlar/epoxy 

materials having stacking sequence of [0/-45/45/90/0/-45/45/90]s has been analysed under 

different input torques. The flexible manipulator is driven by different torques at the hub as 

shown in Fig.4.3 to Fig.4.6. The Fig.4.7 shows the dynamic behaviour of flexible link 

manipulator system such as end point displacement, hub angle and end point residual histories 

means (residual vibration of the link is caused by movement of the link, which will create 

uncertainty of the  end point position)  under various input torques. 

 

Fig. 4.3 Trapezoidal torque 

 

Fig. 4.4 Bang-Bang torque 

 

Fig. 4.5 Sin torque 

 

Fig. 4.6 Triangular torque 

From the Fig.4.7, it is observed that maximum responses for triangular input are less 

compared to other inputs. It is also clear from the Fig.4.7 that bang-bang torque gives 

suddenly high end point displacement and hub angle responses, and sin torque may be used 

for smooth operations of the system but difficultly may arise under the high payload situations 

whereas trapezoidal torque may prefer because it is better in terms of responses as well as 

residual vibrations.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4.7 The comparison of responses of the flexible manipulator under different input torques with 

payload 90g:  (a) End point displacement (b)  Hub angle (c) hub velocity (d) end point residual 

 Response Histories of the Flexible Manipulator Considering Different 

Materials  

 In this analysis, the flexible composite manipulators made by different hybrid 

composite with stacking sequence of [0/-45/45/90/ 0/-45/45/90]s have been analysed under 

the trapezoidal input torque. In the present analysis flexible manipulator made up of 

kevlar/epoxy, graphite/epoxy and aluminium are considered. The hybrid laminates is a 

combination of graphite/epoxy and kevlar/epoxy and four combination of graphite/epoxy and 

kevlar/epoxy laminates have been considered which are given below.   

         KGGK1: [K/G/G/G/G/G/G/G]s                                           KGGK2:[K/K/K/K/G/G/G/G]s 

         GKKG1: [G/K/K/K/K/K/K/K]s                                          GKKG2:[G/G/G/G/K/K/K/K]s 

Where, K and G stand for kevlar/epoxy and graphite/epoxy ply respectively. The 

dynamic responses of manipulators under different materials are shown in Fig.4.8 and Fig.4.9. 

From the Fig.4.8 (a) and (b), it is clear that the displacement as well as hub angle responses 

increase with more inclusion of kevlar/epoxy layer in the hybrid laminates. It is also observed 

that end point displacement and hub angle responses are almost equal for GKKG1 hybrid 
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laminate and considering all layers of kevler/epoxy laminate. It is also apparent from Fig.4.8 

(c) that the maximum end point displacement increases with slenderness ratio for all materials. 

It can also be seen that the maximum end point displacement increases with more inclusion 

of kevlar/epoxy layer in the hybrid laminates. Hence it can be concluded that flexible 

manipulator can be more flexible by inclusion of kevlar/epoxy in to hybrid laminates.   

 

(a) 

 

(b) 



   Chapter 4 

 

  37 

 

 

(c) 

Fig. 4.8 Responses of kevlar/epoxy  hybrid composite manipulators: (a) Displacement histories (b) Hub 

angle variations (c) the maximum end point displacement vs. various slenderness ratio 

 

(a) 



   Chapter 4 

 

  38 

 

 

(b) 

 

(c) 

Fig. 4.9 Responses of graphite/epoxy  hybrid composite manipulators: (a) Displacement histories (b) 

Hub angle variations (c) the maximum end point displacement vs. various slenderness ratio 

For further analysis, Fig.4.9 (a), it is clear that the displacement as well as hub angle decrease 

with more by inclusion of graphite/epoxy layer in the hybrid laminates. The end point 

displacement and the hub angle of manipulator is much lower in aluminium as to the 

composite laminates. It can also be seen that the maximum end point displacement decreases 

with more inclusion of graphite/epoxy layer in the hybrid laminates. Hence it can be 

concluded that flexible manipulator is stiffer by inclusion of graphite/epoxy in to the hybrid 

laminates.   
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 Analysis of Flexible Tapered Single and Double Links Hybrid 

Composite Manipulators under Trapezoidal Torque 

 This section concentrates on analysis of hybrid composite manipulators of two types 

of links, first is solid taper and the second is double tapered single link and double links. For 

all type of manipulators variation of end point displacement, hub angle response and end point 

residual with respect to time have also been presented. Finally frequency response of 

manipulators has also been obtained.     

4.6.1 Analysis of flexible solid tapered single and double link hybrid composite 

manipulators under trapezoidal torque 

 In the present analysis is used to compare the dynamic responses of the solid tapered 

single link with solid cross-sections. The GKKG2 hybrid laminate is considered. The taper 

angles α are varied from 0° to 0.4° (as shown in Fig.4.10). It is clear from the analysis that 

there is profound effect of the taper angles on dynamic responses of this type of single links 

(shown in Fig.4.11 (a) and (b)). 

 

Fig. 4.10 Variation of  solid cross-section along the length of both links by the taper angles α 

It is observed that the maximum end point displacement and hub angle can be obtained 

for α= 0.4° and β=0°. Figures 4.12 (a) and (b) represent the variation of end point displacement 

and hub angle respectively with respect to time for particular values of α and β. Frequency 

response analysis has also been carried out by applying the magnitude of torque of 0.2 N-m 

at the hub. Figures 4.12 (c) and (ds) show the end point residual and frequency response 

residual of the link. It has been observed from the Fig.4.12 (d) that first resonance frequency 

increases for the taper angles of α= 0.4° and β=0°.   
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(a) 

 

(b) 

Fig. 4.11 Variation of maximum endpoint displacement and hub angle response with taper angles 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4.12 Comparison of the responses of the single link for particular taper angles: (a) End point 

displacement (b) Hub angle (c) End point residual and (d) Frequency response of residual 

4.6.2 Analysis of flexible solid tapered double link hybrid composite manipulators 

under trapezoidal torque 

 In the present analysis is used to compare the dynamic responses of the tapered double 

link manipulators with solid cross-sections. The GKKG2 hybrid laminate is considered. The 

taper angles (both α and β) are varied from 0° to 0.2°. It is clear from the analysis that there 

is profound effects of the taper angles on dynamic responses of this type of double links 

(shown in Fig.4.13 to Fig.4.16).  
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Fig. 4.13 Variation of maximum endpoint 

displacement of the first link with taper angles 

under solid cross section 

 

Fig. 4.14 Variation of maximum endpoint 

displacement of the second link with taper angles 

under solid cross section 

 

 

Fig. 4.15 Variation of maximum hub angle of the 

first link with taper angles under solid cross section 

 

Fig. 4.16 Variation of maximum hub angle of the 

second link with taper angles under solid cross 

section 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 4.17 Comparison of the responses of the first link for particular taper angles in solid cross section: (a) 

End point displacement (b) Hub angle (c) End point residual and (d) Frequency response of residual 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4.18 Comparison of the responses of the second link for particular taper angles in solid cross 

section: (a) End point displacement (b) Hub angle (c) End point residual and (d) Frequency response of 

residual 

It is observed that the maximum end point displacement and hub angle can be obtained 

for α=0.2° and β=0°. Figures 4.17 (a) and (b) represent the variation of end point 

displacement and hub angle respectively with respect to time for particular values of α and β. 

Frequency response analysis has also been carried out by applying the magnitude of torque 

of 0.2 N-m at the hub. Figures 4.17 (c) and (d) show the end point residual and frequency 
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response residual of the first link. It has been observed from the Fig.4.17 (d) that first 

resonance frequency increases for the taper angles of α= 0.2° and β=0°.  For α= 0.2° and 

β=0° section modulus goes on decreasing from the hub to end of the link rapidly than other 

cases α and β. Hence the end point residual is maximum for the mentioned value of α and β. 

Figures 4.18 (a) and (b) represent the variation of end point displacement and hub angle 

respectively with respect to time for a particular value of α and β for the second link. The rate 

of variation of end point displacement and hub angle is higher in case of α= 0.2° and β=0°. 

Figures 4.18 (c) and (d) represent the end point residual and frequency responses of residual 

of second link. It has also been observed from the Fig. 4.18 (d) that first resonance frequency 

increases of second link for the taper angles of α= 0.2° and β=0°. 

4.6.3 Analysis of flexible hollow tapered single link hybrid composite manipulators 

under trapezoidal torque 

This analysis is used to compare the dynamic responses of the hollow tapered single 

link with hollow cross-sections. The GKKG2 hybrid laminate is considered. The taper angles 

(both α and β) are varied from 0° to 0.4° (as shown in Fig.4.19).  

 

Fig. 4.19 Variation of  hollow cross-section along the length of both links by the taper angles α and β 

It is clear from the analysis that there is profound effect of the taper angles on dynamic 

responses of this type of single links (shown in Fig.4.20 (a) and (b)). It is observed that the 

maximum end point displacement and hub angle can be obtained for α= 0.4° and β= 0°. 
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(a) 

 

(b) 

Fig. 4.20 . Variation of maximum endpoint displacement and hub angle response with taper angles 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4.21 Comparison of the responses of the single link for particular taper angles: (a) End point 

displacement (b) Hub angle (c) End point residual and (d) Frequency response of residual 

Figures 4.21 (a) and (b) represent the variation of end point displacement and hub angle 

respectively with respect to time for particular values of α and β. Frequency response analysis 

has also been carried out by applying the magnitude of torque of 0.2 N-m at the hub. Figures 

4.21 (c) and (d) show the end point residual and frequency response residual of the link. It has 

been observed from the Fig.4.21 (d) that first resonance frequency maximum for the taper 

angles of α= 0.4° and β=0°.   
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4.6.4 Analysis of flexible hollow tapered double link hybrid composite manipulators 

under trapezoidal torque 

 In the present analysis is used to compare the dynamic responses of the tapered double 

link manipulators with hollow tapered cross-sections. The GKKG2 hybrid laminate is 

considered. The taper angles (both α and β) are varied from 0° to 0.2°. It is clear from the 

analysis that there is profound effect of the taper angles on dynamic responses of this type of 

double links (shown in Fig.4.22 to Fig.4.25).It is observed that the maximum end point 

displacement and hub angle can be obtained for α= 0.2° and β=0°. Figures 4.26 (a) and (b) 

represent the variation of end point displacement and hub angle respectively with respect to 

time for particular values of α and β. Frequency response analysis has also been carried out 

by applying the magnitude of torque of 0.2 N-m at the hub. Figures 4.26 (c) and (d) show the 

end point residual and frequency response residual of the first link. It has been observed from 

the Fig.4.26 (d) that first resonance frequency increases for the taper angles of α= 0.2° and 

β=0°. 

 

Fig. 4.22 Variation of maximum endpoint 

displacement of the first link with taper angles 

 

Fig. 4.23 Variation of maximum hub angle of the 

first link with taper angles 

 

 

Fig. 4.24 Variation of maximum endpoint 

displacement of the second link with taper angles 

 

Fig. 4.25 Variation of maximum hub angle of the 

second link with taper angles 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4.26 Comparison of the responses of the first link for particular taper angles: (a) End point 

displacement (b) Hub angle (c) End point residual and (d) Frequency response of residual 

For α= 0.2° and β=0° section modulus goes on decreasing from the hub to end of the link 

rapidly than other cases α and β. Hence the end point residual is maximum for the mentioned 

value of α and β. Figures 4.27 (a) and (b) represent the variation of end point displacement 

and hub angle respectively with respect to time for a particular value of α and β for the second 

link. The rate of variation of end point displacement and hub angle is higher in case of α= 

0.2° and β=0°.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 4.27 Comparison of the responses of the second link for particular taper angles: (a) End point 

displacement (b) Hub angle (c) End point residual and (d) Frequency response of residual 

Figures 4.27 (c) and (d) represent the end point residual and frequency responses of residual 

of second link. It has also been observed from the Fig.4.27 (d) that first resonance frequency 

increases of second link for the taper angles of α= 0.2° and β=0°. 

 Responses of Flexible Tapered Single and Double Links Hybrid 

Composite Manipulator based on the Input Shaping of Trapezoidal 

Torque 

 In this study mainly focus on the design of the input shaper on the single and double 

link manipulators. The input shaper designed to reduce the end point residual of the 

manipulators. The responses of flexible tapered single and double links hybrid composite 

manipulators have been shown in below. Responses of the manipulators are studied based on 

variation of the end point displacement, hub angle and end point residual.  

4.7.1 Responses of flexible tapered single link hybrid composite manipulator based 

on the input shaping of trapezoidal torque 

 The input shaper are designed considering two and three impulse sequences for first 

three modes of vibrations.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 4.28 Comparison of the responses of flexible tapered hybrid composite manipulator under different 

input shapers and trapezoidal torque (a) Different torques (b) End point displacement (c) hub angle (d) 

End point residual. 

The amplitude and time delay are calculated based on the discussion in the subsection 

3.7 of chapter 3. The GKKG2 hybrid laminate is considered and the taper angle is taken as 

α=0.4° and β=0°. The trapezoidal torque, different input shapers and dynamic responses of 

this flexible manipulator are shown in Fig.4.28. From the Fig.4.28, It has been observed that 

the maximum end point displacement and hub angle responses is almost same considering 

ZV and ZVD shapers but the end point residual vibration is less while considering the input 

shapers. The end point residual vibration is less in case of ZVD input shaper compared to ZV 

input shaper.   

4.7.2 Responses of flexible tapered double links hybrid composite manipulator based 

on the input shaping of trapezoidal torque  

In the present study, a flexible tapered double links hybrid composite manipulator is 

also analysed under different input shapers. The same taper angle and hybrid laminate are 

considered as single link. The responses of this flexible link under different input shapers 

compared to trapezoidal torque is depicted in the Fig.4.29. From the Fig.4.29, it can be 

observed that the smoothening effects is more in case of second link than that of first link. 

 

(a) 

 

(b)  
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(c) 

 

(d) 

 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Fig. 4.29 Comparison of the responses of flexible tapered hybrid composite manipulator under different 

input shapers and trapezoidal torque (a) Different Torques for first link (b) End point displacement for 

first link (c) hub angle for first link (d) End point residual for first link (e) Different Torques for second 

link (f) End point displacement for second link (g) hub angle for second link (h) End point residual for 

second link 

It is also found that the smoothening effect is more while using ZVD shaper compared 

to ZV shaper. The residual is more for first link than second link this may due to inertial effect 

of first link. 
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 Controlled Responses of Flexible Tapered Double Links Hybrid 

Composite Manipulator using LQR Scheme 

 In the present study, a flexible tapered double links hybrid composite manipulator is 

considered to study the control performances and responses using present LQR control 

scheme. The manipulator has been driven by ZVD shaper. 

4.8.1 Responses of flexible hollow tapered double links hybrid composite 

manipulator using LQR scheme 

The Fig.4.30 (a) and (b) show that control input and responses of the first link for 

different values of energy coefficients. The Fig.4.30 (c) and (d) show that control input and 

responses of the second link for different values of energy coefficients.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4.30 Comparison of the end point residual and control input of the flexible hollow tapered hybrid 

composite manipulator using LQR controller with energy coefficients 1 2,  and    : (a) Control input 

for first link (b) Uncontrolled and controlled residuals of first link (c)  Control input for second link (d) 

Uncontrolled and controlled residuals of second link 

It has been observed from the Fig.4.30 that the present LQR control scheme is capable to 

control the end effector residuals with less control efforts. 
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4.8.2 Responses of flexible solid tapered double links hybrid composite manipulator 

using LQR scheme 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4.31 Comparison of the end point residual and control input of the flexible solid tapered hybrid 

composite manipulator using LQR controller with energy coefficients 1 2,  and    : (a) Control input 

for first link (b) Uncontrolled and controlled residuals of first link (c)  Control input for second link (d) 

Uncontrolled and controlled residuals of second link. 

The Fig.4.31 (a) and (b) show that control input and responses of the first link for 

different values of energy coefficients. The Fig.4.31 (c) and (d) show that control input and 

responses of the second link for different values of energy coefficients. It has been observed 

from the Fig.4.31 that the present LQR control scheme is capable to control the end effector 

residuals with less control efforts 

 Summary 

 In this present chapter first the convergence study has been carried out and it has been 

found that the results from presented code are converged at 16 elements. Then the results have 

been validated with analytical method and also from available results in the literature. It has 

been observed that obtained result from present computer code based on the present 

formulations are an excellent agreement with the analytical as well as already published 

results [13]. 
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The free vibration analysis have been carried out considering symmetric and anti- 

symmetric hybrid composite laminates. It has been found that the natural frequency of the 

system is less under the symmetric laminates and also the natural frequency is high for 

graphite/epoxy laminates. The inclusion of the kevlar/epoxy layer into hybrid composite the 

natural frequency of the system decreases.   

The dynamic analysis of the flexible manipulator considering different parameters are 

also studied. Firstly the dynamic analysis of the single link manipulator under different torque 

are carried out. It has been found that the trapezoidal torque has better performance than that 

of other torques. The dynamic analysis of the single link manipulator for different materials 

has also been carried out. By the inclusion of the kevlar/epoxy into the hybrid composite the 

results in increase of response of the single link manipulator. It has also been found that it is 

better to make inner layers softer by kevlar/epoxy layers and outer surfaces stronger by 

graphite/epoxy layers. The dynamic analysis also reveal that the end point displacement for 

link with α=.4° and β=0° is more than that of link with other configuration including solid 

links. It has also been observed that the responses of the flexible manipulator is high under 

the condition of tapered hollow cross-sections. The responses of the manipulator under the 

input shaper have also been analysed. It has been observed that the developed input shaping 

scheme is efficient to reduce the end point vibration of the flexible tapered single and double 

hybrid composite manipulators without compromising the end effector displacement. The 

LQR scheme has been applied in order to further reduce the residual vibration of the end 

effector. It has also been observed that the present LQR control scheme is capable to control 

the end point residual of the flexible tapered hybrid composite manipulators.  
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 Conclusions and Scope of Future Works 

 Some important observations based on the formulation and results obtained are 

presented here and the scope of future works also encapsulated at the end of this chapter. 

5.1 Conclusions 

 A three noded beam element has been implemented based on the Timoshenko beam 

theory for modelling and analysis of the flexible composite manipulators under different input 

torques. The developed layered beam element can model the flexible manipulators for any 

number of layers and composite materials. The single and double link manipulators are 

modelled based on the finite element method. Such systems are then simulated under the 

different input torques using MATLAB and the responses are analysed. Various analysis of 

the flexible single and double links have been carried out. Important conclusions obtained 

from the present study have been presented as follows:   

i. Convergence study of present FE model has been done for  the first natural frequency 

of the manipulator with number of elements. It has been found that first natural 

frequency is coverged after 16 elements.  

ii. It has been found from free vibration analysis that there is profound effect on the 

natural frequencies of flexible composite manipulator with different stacking 

sequences of the composite layers. It has also been found that the natural frequency 

has more in the case of graphite/epoxy laminate compare to the kevlar/epoxy 

laminates. The less natural frequency obtained under the case of symmetric laminates 

iii. Responses of the flexible single link composite manipulators due to different input 

torques have also been analysed and it has been found that the trapezoidal torque has 

better performance than that of other torques.  

iv. Responses of flexible single links composite manipulators considering different type 

of composite materials ((such as graphite/epoxy and kevlar/epoxy)  have also been 

analysed which reveals that the end point displacement and hub angle variation of the 

flexible composite manipulator made by graphite/epoxy laminate is less than that of 

Kevlar/ epoxy laminate. 

v. Responses of the single link manipulator with the different hybrid composites 

laminates (combination of graphite/epoxy and kevlar/epoxy materials) have also been 



Chapter 5 

 

  54 

 

obtained. It has been found that it is better to make inner layers softer by kevlar/epoxy 

layers and outer surfaces stronger by graphite/epoxy layers. 

vi. Response of flexible manipulator with the aluminum and composite materials has been 

analyzed, which reveals that the displacement histories and hub angle variation of the 

flexible composite manipulator made by aluminum is less than that of considered 

composite laminates. 

vii. The effects of taper angles on the responses of tapered solid hybrid composite 

laminates of the flexible single and double links manipulator have also been analysed. 

It is observed that for the single link manipulator, the maximum end point displacement 

and hub angle can be obtained for the taper angles of α = 0.4° and β=0° and for the 

double link manipulator can be obtained for the taper angles of α = 0.2° and β=0°. 

viii. The effects of taper angles on the responses of tapered hollow hybrid composite 

laminates of the flexible single and double links manipulator have also been analysed. 

It is observed that for the single link manipulator the maximum end point displacement 

and hub angle can be obtained for the taper angles of α = 0.4° and β=0° and for the 

double link manipulator obtained for the taper angles of α = 0.2° and β=0°. It has also 

been found that the maximum response of the hollow tapered cross sections is more 

than the solid tapered cross sections. 

ix. The input shaping of the trapezoidal input torque based on the zero vibration (ZV) and 

zero vibration derivative (ZVD) has also been carried out in order to reduce the residual 

vibration of the end effector by adjusting the amplitude and time delay. It has been 

observed that the developed input shaping scheme is efficient to reduce the end point 

vibration of the flexible tapered hybrid composite manipulators without compromising 

the end effector displacement and hub angle response. 

x. The linear quadratic regulator control (LQR) scheme has been applied in order to 

further reduce the residual vibration of the end effector. It has also been observed that 

the present LQR control scheme is capable to control the end point residual of the 

flexible tapered hybrid composite manipulators.  
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5.2 Scope of Future Works 

i. Incorporation of coupled axial, bending and torsion effects considering 3D flexible 

beam based on the Timoshenko beam theory 

ii. Incorporation of non-linearity to the present FE model 

iii. Study of delamination of flexible composite manipulator and 

iv. Optimal design and control of flexible composite manipulator with sensors and 

actuators
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